(12.5 points) 1. (a) Multiply the matrices. $\left(\begin{array}{ccc}2 & 3 & -2 \\ 3 & -5 & 1\end{array}\right)\left(\begin{array}{cc}4 & 1 \\ 6 & 0 \\ 5 & -2\end{array}\right)=$

Show the calculation for the row 1, column 1 entry.
(b) The matrix $\left(\begin{array}{cc}3 & -5 \\ -4 & 7\end{array}\right)$ has inverse $\left(\begin{array}{ll}7 & 5 \\ 4 & 3\end{array}\right)$. Use this fact and matrix multiplication to solve the system

$$
\begin{array}{r}
3 x-5 y=3 \\
-4 x+7 y=2
\end{array}
$$

(12.5 points)
2. $B=\left(\begin{array}{ccc}4 & -2 & 3 \\ 7 & -2 & 7 \\ 2 & 1 & 4\end{array}\right)$
(a) Show the initial matrix setup to find B^{-1} by the Gauss-Jordan procedure.
(b) Show the reduced row echelon form for the matrix in part (a). (Can use a calculator.)
(c) Obtain B^{-1} from (b), or by using a calculator. $B^{-1}=$
(12.5 points)
3. Matrix $A=\left(\begin{array}{rrrr}2 & 1 & -2 & 5 \\ 3 & 5 & -2 & 14 \\ 2 & -4 & 3 & 15\end{array}\right)$.
(a) Describe row operations that would transform the first column of A so that it has a leading 1 at the top, with 0's below.
(b) Perform only the row operations from (a) and show the resulting matrix.

Go to page 2.
(12.5 points) 4. (a) Give the reduced row echelon form of the matrix, A, in the problem above, using a calculator or row operations.

$$
\begin{aligned}
& 2 x+y-2 z=5 \\
& 3 x+5 y-2 z=14 \\
& 2 x-4 y+3 z=15
\end{aligned}
$$

(b) State the solution to the system
(i) $\left(\begin{array}{llll}1 & 0 & 5 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$
(ii) $\left(\begin{array}{llll}1 & 0 & 5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
(12.5 points)
5. Given the input-output matrix $\left(\begin{array}{ccc}0.2 & 0.1 & 0 \\ 0 & 0.5 & 0.5 \\ 0.5 & 0.1 & 0.3\end{array}\right)$ and the demand matrix $\left(\begin{array}{l}43 \\ 86 \\ 43\end{array}\right)$, find the production matrix.
(12.5 points)
6. (a) Complete the table, with sums at bottom.
(b) Find r, the coefficient of linear correlation, using calculator or formulas.
(c) Find the equation of the line of best fit in the form $y=m x+b$ showing the formulas used.

x	y	x^{2}	$x y$	y^{2}
2	1			
4	3			
6	4			
7	5			

(d) Predict y if $X=8$.
(12.5 points) 7. We need to ship at least 6000 widgets from our widget factory to help fill an order. Two types of crates can be used to ship them in.
Crate A holds 13 widgets, requires 17 nails to close it, and costs $\$ 22$.
Crate B holds 15 widgets, requires 20 nails to close it, and costs $\$ 27$.
There are only 8100 nails available. We want to ship the widgets at least cost.
(a) Set up all appropriate inequalities for X crates of type A, and y crates of type B.
(b) Write a formula for the cost, C , as a function of X and y .
(12.5 points)
8. Given the input-output matrix $\left(\begin{array}{ccc}0.2 & 0.4 & 0.2 \\ 0.3 & 0.5 & 0.5 \\ 0.5 & 0.1 & 0.3\end{array}\right)$, find the ratio in the form $a: b: c$, for the production in the three sectors in a closed model.

Go to page 4.

FINITE MATHEMATICS TEST ONE CERRITOS NAME:
SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS. SEPT. 19, 2002. Page 4 of 5.
Best EIGHT problems count, for a score out of 100.
(12.5 points)
9. (a) Graph the system of inequalities at the right.

Make a large graph, shade the feasible set in your graph, and give the coordinates of its vertices.

$$
\begin{gathered}
x \geq 0, y \geq 0 \\
2 x+y \leq 12 \\
x+y \leq 7 \\
2 x+3 y \leq 18
\end{gathered}
$$

(b) Find the values of x and y to maximize $P=5 x+7 y$ subject to the conditions in part (a).
(c) On the graph for part (a), draw a broken line for $P=35$.

FINITE MATHEMATICS TEST ONE CERRITOS NAME:
SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS. SEPT. 19, 2002. Page 5 of 5.
Best EIGHT problems count, for a score out of 100.

Go to page 6.

