## FINITE MATHEMATICS TEST ONE CERRITOS NAME: SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS. SEPT. 19, 2002. Page 1 of 5. Best EIGHT problems count, for a score out of 100.

(12.5 points) 1. (a) Multiply the matrices. 
$$\begin{pmatrix} 2 & 3 & -2 \\ 3 & -5 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 6 & 0 \\ 5 & -2 \end{pmatrix} =$$

Show the calculation for the row 1, column 1 entry.

(b) The matrix 
$$\begin{pmatrix} 3 & -5 \\ -4 & 7 \end{pmatrix}$$
 has **inverse**  $\begin{pmatrix} 7 & 5 \\ 4 & 3 \end{pmatrix}$ . Use this fact and

matrix multiplication to solve the system

$$3x - 5y = 3$$
  
 $-4x + 7y = 2$ 

(12.5 points) 2. B =  $\begin{pmatrix} 4 & -2 & 3 \\ 7 & -2 & 7 \\ 2 & 1 & 4 \end{pmatrix}$ 

(a) Show the initial matrix <u>setup</u> to find  $B^{-1}$  by the Gauss-Jordan procedure.

(b) Show the **reduced row echelon form** for the matrix in part (a). (Can use a calculator.)

(c) Obtain  $B^{-1}$  from (b), or by using a calculator.  $B^{-1} =$ 

(12.5 points) 3. Matrix A = 
$$\begin{pmatrix} 2 & 1 & -2 & 5 \\ 3 & 5 & -2 & 14 \\ 2 & -4 & 3 & 15 \end{pmatrix}$$
.

(a) Describe row operations that would transform the first column of A so that it has a leading 1 at the top, with 0's below.

(b) Perform only the row operations from (a) and show the resulting matrix.

FINITE MATHEMATICS TEST ONE CERRITOS NAME:SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS.SEPT. 19, 2002.Page 2 of 5.Best EIGHT problems count, for a score out of 100.

(12.5 points) 4. (a) Give the **reduced row echelon form** of the matrix, A, in the problem above, using a calculator or row operations.

(b) State the solution to the system 
$$\begin{array}{rrrrr} 2x + y - 2z &=& 5\\ 3x + 5y - 2z &=& 14\\ 2x - 4y + 3z &=& 15 \end{array}$$

|     | ( 1 | 0 | 5 | 2)  | ſ    | 1 | 0 | 5 | 0)  |
|-----|-----|---|---|-----|------|---|---|---|-----|
| (i) | 0   | 1 | 2 | 3   | (ii) | 0 | 1 | 2 | 0.  |
|     | l 0 | 0 | 0 | 0 J | l    | 0 | 0 | 0 | 1 ] |

| (12.5 points) | 5. Given the <b>input-output</b> matrix | $\left(\begin{array}{cccc} 0.2 & 0.1 & 0 \\ 0 & 0.5 & 0.5 \\ 0.5 & 0.1 & 0.3 \end{array}\right)$ | and the <b>demand</b> matrix | $ \left(\begin{array}{c} 43\\ 86\\ 43 \end{array}\right), $ |  |
|---------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|--|
|               | find the <b>production</b> matrix.      | ````                                                                                             |                              |                                                             |  |

## FINITE MATHEMATICS TEST ONE CERRITOS NAME:

SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS. SEPT. 19, 2002. Page 3 of 5. Best EIGHT problems count, for a score out of 100.

## (12.5 points) 6. (a) Complete the table, with sums at bottom.

- (b) Find r, the **coefficient of linear correlation**, using calculator or formulas.
- (c) Find the equation of the line of best fit in the form
   y = mx + b showing the formulas used.

|   | r |                |    |    |
|---|---|----------------|----|----|
| х | у | X <sup>2</sup> | ху | y² |
| 2 | 1 |                |    |    |
| 4 | 3 |                |    |    |
| 6 | 4 |                |    |    |
| 7 | 5 |                |    |    |
|   |   |                |    |    |

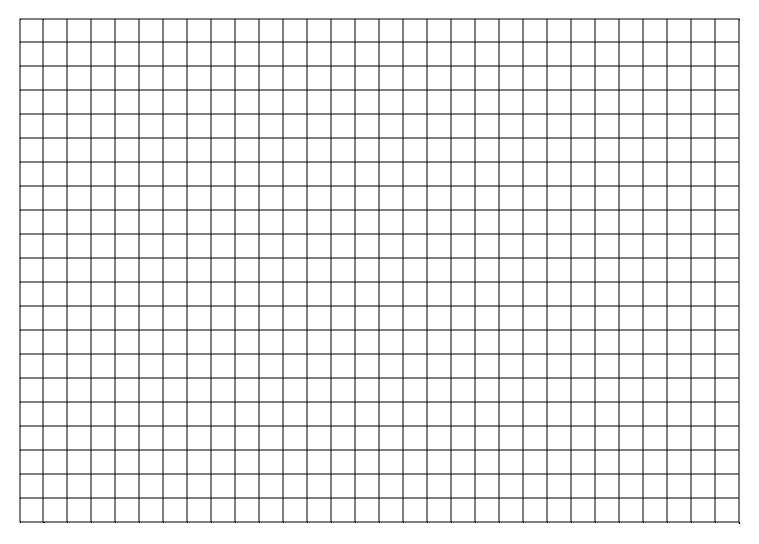
(d) Predict y if x = 8.

 (12.5 points)
 7. We need to ship at least 6000 widgets from our widget factory to help fill an order. Two types of crates can be used to ship them in. Crate A holds 13 widgets, requires 17 nails to close it, and costs \$22. Crate B holds 15 widgets, requires 20 nails to close it, and costs \$27. There are only 8100 nails available. We want to ship the widgets at least cost.

- (a) Set up **all** appropriate **inequalities** for **X** crates of type A, and **y** crates of type B.
- (b) Write a formula for the **cost**, C, as a function of X and Y.

(12.5 points) 8. Given the **input-output** matrix  $\begin{pmatrix} 0.2 & 0.4 & 0.2 \\ 0.3 & 0.5 & 0.5 \\ 0.5 & 0.1 & 0.3 \end{pmatrix}$ , find the **ratio** in the form a:b:c,

for the production in the three sectors in a **closed model**.


## FINITE MATHEMATICSTEST ONECERRITOSNAME:SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS.SEPT. 19, 2002.Page 4 of 5.Best EIGHT problems count, for a score out of 100.

 (12.5 points)
 9. (a) Graph the system of inequalities at the right. Make a large graph, shade the feasible set in your graph, and give the coordinates of its vertices.

 $\begin{array}{l} x \geq 0, \ y \geq 0, \\ 2x + y \leq 12, \\ x + y \leq 7, \\ 2x + 3y \leq 18 \end{array}$ 

(b) Find the values of x and y to **maximize** P = 5x + 7y subject to the conditions in part (a).

(c) On the graph for part (a), draw a broken line for P = 35.



(100 points total.)

FINITE MATHEMATICS TEST ONE CERRITOS NAME: SHOW ALL CALCULATIONS AND SIMPLIFY ANSWERS. SEPT. 19, 2002. Page 5 of 5. Best EIGHT problems count, for a score out of 100.

Go to page 6.