# Chemical Nomenclature: A Tutorial Rules & Drills with Answers

## Table of Contents

| Unit I: Chemical Symbols of Some Common Elements (Drill A)                 | 2  |
|----------------------------------------------------------------------------|----|
| Unit II: Nomenclature of Pure Elements (Drill B)                           | 4  |
| Unit III: Nomenclature of Monatomic Ions (Simple Ions)                     |    |
| Unit IIIA: Nomenclature of Monatomic Anions                                |    |
| Unit IIIB: Nomenclature of Monatomic Cations of Fixed Charges              | 6  |
| Unit IIIC: Nomenclature of Monatomic Cations of Variable Charges (Drill C) |    |
| Unit IV: Nomenclature of Ionic Compounds of Monatomic Ions                 |    |
| Unit IVA: Writing Formulas from a Given Name (Drill D)                     |    |
| Unit IVB: Writing Names from a Given Formula (Drills É thru H)             | 9  |
| Unit V: Nomenclature of Polyatomic Ions                                    |    |
| Unit VA: The "Basic Eight" Polyatomic Ions (Drills I-1 thru I-4)           | 11 |
| Unit VB: Polyatomic Ions with "- ite" Ending                               | 14 |
| Unit VC: Nomenclature of "- ate" and "- ite" Compounds (Drill I-5)         | 14 |
| Unit VD: Nomenclature of Oxohaloanions (Drills J & K)                      |    |
| Unit VI: Nomenclature of Acids (Drill L)                                   |    |
| Unit VII: Nomenclature of Acid Anions (Drill M)                            |    |
| Unit VIII: Nomenclature of Other Common Polyatomic Ions (Drill N)          | 22 |
| Unit IX: Nomenclature of Molecular Binary Compounds (Drill O & P)          | 23 |
| Unit X: Nomenclature of Hydrates (Drill Q)                                 | 24 |
|                                                                            |    |
| Answers to Drill A                                                         | 26 |
| Answers to Drill B.                                                        | 26 |
| Answers to Drill C                                                         | 26 |
| Answers to Drill D                                                         | 27 |
| Answers to Drill E                                                         | 27 |
| Answers to Drill F                                                         | 27 |
| Answers to Drill G                                                         | 28 |
| Answers to Drill H                                                         | 28 |
| Answers to Drill I-1, I-2, I-3                                             | 29 |
| Answers to Drill I-4, I-5                                                  | 30 |
| Answers to Drill J                                                         | 31 |
| Answers to Drill K                                                         | 31 |
| Answers to Drill L                                                         | 32 |
| Answers to Drill M                                                         | 33 |
| Answers to Drill N                                                         | 34 |
| Answers to Drill O                                                         | 34 |
| Answers to Drill P                                                         | 34 |
| Answers to Drill Q.                                                        | 35 |

# Chemical Nomenclature: A Tutorial Rules & Drills with Answers

For beginning students, the study of nomenclature (system of naming chemicals) can seem impossibly complex. For that reason, the rules and drills presented here are broken down into Units, and it is not advisable to study all the units at one sitting, but you should take it one unit at a time. If you are not able to spread out your work over several days, you should at least take a break in between units.

### **Unit I: Chemical Symbols of Some Common Elements**

You must first learn the symbols of some common elements. Your instructor may have different requirements on which elements you must learn. The ones listed below are the one you have to know to make use of this tutorial, and most likely they are the only ones you will ever have to know even as you move on to more advanced courses. You might want to put them on flash cards. You should drill yourself one way or another before you proceed to the next unit.

Notice that the elements below are boxed together in groups, some elements appearing in more than one group. My suggestion is you learn them in groups, in this order: Elements #1 through 18, Group IA, IIA, VIIA, VIIIA, Common Transition Elements, and finally, Other Common Elements. If you have trouble with spelling, you'll find it easier to learn correct spelling if you copy the names several times as you sound it out. If you think this is too much work, then you are taking the wrong course. Studying chemistry takes work, regardless of how smart you are.

### **COMMON ELEMENTS: NAMES AND SYMBOLS**

Learn the names (with correct spelling) and symbols of the elements listed below (no need to memorize numbers). Note that the symbols are capitalized. If the symbol consists of two letters, *only* the first letter is capitalized.

| Elem                               | Elements # 1 - 18                                                                   |                                      | Group IA                                                                     | <u>G</u> 1                       | roup VIIA                                             |
|------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|
| H<br>He<br>Li<br>Be<br>B<br>C<br>N | hydrogen<br>helium<br>lithium<br>beryllium<br>boron<br>carbon<br>nitrogen<br>oxygen | H<br>Li<br>Na<br>K<br>Rb<br>Cs<br>Fr | hydrogen<br>lithium<br>sodium<br>potassium<br>rubidium<br>cesium<br>francium | H<br>F<br>Cl<br>Br<br>I          | hydrogen<br>fluorine<br>chlorine<br>bromine<br>iodine |
| F                                  | fluorine                                                                            | (                                    | Group IIA                                                                    | Group VIIIA                      |                                                       |
| Ne Na Mg Al Si P S Cl Ar           | neon sodium magnesium aluminum silicon phosphorus sulfur chlorine argon             | Be<br>Mg<br>Ca<br>Sr<br>Ba<br>Ra     | beryllium<br>magnesium<br>calcium<br>strontium<br>barium<br>radium           | He<br>Ne<br>Ar<br>Kr<br>Xe<br>Rn | helium<br>neon<br>argon<br>krypton<br>xenon<br>radon  |

| Comi                                         | mon Transition                                             | Other Common Elements |                                     |                |                                |          |                       |
|----------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------------|----------------|--------------------------------|----------|-----------------------|
| Ti<br>Cr<br>Mn<br>Fe<br>Co<br>Ni<br>Cu<br>Zn | titanium chromium manganese iron cobalt nickel copper zinc | Sn<br>Pb<br>U<br>Pu   | tin<br>lead<br>uranium<br>plutonium | As<br>Sb<br>Bi | arsenic<br>antimony<br>bismuth | Se<br>Te | selenium<br>tellurium |
| Pt<br>Ag<br>Au<br>Cd<br>Hg                   | platinum<br>silver<br>gold<br>cadmium<br>mercury           |                       |                                     |                |                                |          |                       |

### **Drill A: Nomenclature of Elements**

This is a self-test, since you can easily look up answers yourself. Take this as a practice test, <u>after</u> you have drilled yourself on the symbols and spelling of the elements listed above.

| Name     | Symbol | Symbo | ol Name |  |
|----------|--------|-------|---------|--|
| chlorine |        | S     |         |  |
| calcium  |        | K     |         |  |
| arsenic  |        | Fe    |         |  |
| mercury  |        | Na    |         |  |
| copper   |        | P     |         |  |

Remember not to proceed to the next unit until you have <u>studied</u> Unit I.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Unit II: Nomenclature of Pure Elements**

The term, "Pure Elements", refers to elements when they are not combined with other elements such as in compounds. Certain pure elements exist in clusters, joined by covalent bonds, called molecules. For example, pure nitrogen exists as N<sub>2</sub> rather than N. When nitrogen is not part of a compound, it is also referred to as "free nitrogen" or "nitrogen in its elemental state".

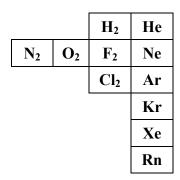
### **Formulas of Pure Elements**

Diatomic molecules:

|                |       | $H_2$           |
|----------------|-------|-----------------|
| N <sub>2</sub> | $O_2$ | $\mathbf{F_2}$  |
|                |       | $Cl_2$          |
|                |       | Br <sub>2</sub> |
|                |       | $I_2$           |

Other molecular elements:




Monatomic elements: with a few exceptions, all others are monatomic (e.g. He, Ne, Fe, Al are monatomic).

Exceptions: Elemental oxygen also exists in a less stable form as O<sub>3</sub> (ozone).

Although we usually write C for pure carbon, it usually exists as an extended network of various types. Refer to your textbook if you are interested in these various *allotropes* of carbon. We will simply write C as if it were monatomic.

### **Physical States of Pure Elements**

gases:



liquids: Br<sub>2</sub> and Hg

solids: with a few exceptions, all others are solids (e.g. K, Fe, Co, Sn, U are solids.)

### **Drill B: Formulas and Physical States of Pure Elements**

To make the best use of the drills in this tutorial, you should first study and memorize the above rules on the formulas and physical states of pure elements. Then <u>write down</u> the answers to the drill (rather than keeping them in your head). Answers are provided in a later part of this exercise, but do not check your answers until you have <u>written down</u> your answers to the entire drill. This takes discipline, but it would do you no good to flip to the answers without having put thought and time in working out the answers first.

Using only a periodic table, give the formulas and physical states of the elements specified. Specify the physical states with (g) (l) or (s) Example: fluorine =  $F_2(g)$ 

| specify the physical states with (g), (i) of (s). Example: Indoffice 12 (g) |            |          |  |  |  |  |
|-----------------------------------------------------------------------------|------------|----------|--|--|--|--|
| chlorine                                                                    | bromine    | sulfur   |  |  |  |  |
| argon                                                                       | phosphorus | lead     |  |  |  |  |
| nitrogen                                                                    | krypton    | element  |  |  |  |  |
| chromiu                                                                     | mercury    | gold     |  |  |  |  |
| strontium                                                                   | iodine     | hydrogen |  |  |  |  |
|                                                                             |            |          |  |  |  |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Unit III: Nomenclature of Monatomic Ions (Simple Ions)**

"Simple Ions" refer to ions that are charged *atoms*, as opposed to charged *molecules*. They are therefore also known as *monatomic ions*.

#### **Unit IIIA: Nomenclature of Monatomic Anions**

A negatively charged ion is known as an "anion". Its name ends with *-ide*. For example, the chlorine ion is named *chloride*, and the phosphorus ion is named *phosphide*. The charge of a monatomic anion can be determined by its Group number in the periodic table. An anion in Group VIIA has a charge of 1–. An anion in Group VIA has a charge of 2–, etc. See Table below.

|                   | NAMES OF MONATOMIC ANIONS (SIMPLE ANIONS) |                  |           |                  |           |                 |          |  |  |
|-------------------|-------------------------------------------|------------------|-----------|------------------|-----------|-----------------|----------|--|--|
|                   | IVA                                       |                  | VA        |                  | VIA       |                 | VIIA     |  |  |
|                   |                                           |                  |           |                  |           | H <sup>-</sup>  | hydride  |  |  |
| $\mathbf{C}^{4-}$ | carbide                                   | $N^{3-}$         | nitride   | $O^{2-}$         | oxide     | F <sup>-</sup>  | fluoride |  |  |
|                   |                                           | P <sup>3-</sup>  | phosphide | $S^{2-}$         | sulfide   | Cl              | chloride |  |  |
|                   |                                           | As <sup>3-</sup> | arsenide  | Se <sup>2-</sup> | selenide  | Br <sup>-</sup> | bromide  |  |  |
|                   |                                           |                  |           | Te <sup>2-</sup> | telluride | I_              | iodide   |  |  |

### **Unit IIIB: Nomenclature of Monatomic Cations of Fixed Charges**

A positively charged ion is known as a *cation*. Cations in Group IA, IIA and aluminum have *fixed* charges (i.e. nonvariable charges). Those in Group IA always have a charge of 1+, and those in Group IIA, a charge of 2+. The aluminum ion always has a charge of 3+. The name of a monatomic cation of fixed charge is merely the name of the element followed by the word "ion". Thus  $Na^+$  is "sodium ion". It is *not necessary* to specify the charge since it is nonvariable. There are a few other cations that also fall in this category, but we will keep it simple for now and stick with just Groups IA, IIA and aluminum.

| N                | NAMES OF MONATOMIC CATIONS (SIMPLE CATIONS) |                  |               |                  |              |  |  |
|------------------|---------------------------------------------|------------------|---------------|------------------|--------------|--|--|
|                  | IA                                          |                  | IIA           |                  | IIIA         |  |  |
| $\mathbf{H}^{+}$ | hydrogen ion                                |                  |               |                  |              |  |  |
| Li <sup>+</sup>  | lithium ion                                 | Be <sup>2+</sup> | beryllium ion |                  |              |  |  |
| Na <sup>+</sup>  | sodium ion                                  | $Mg^{2+}$        | magnesium ion | Al <sup>3+</sup> | aluminum ion |  |  |
| K <sup>+</sup>   | potassium ion                               | Ca <sup>2+</sup> | calcium ion   |                  |              |  |  |
| $Rb^{+}$         | rubidium ion                                | Sr <sup>2+</sup> | strontium ion |                  |              |  |  |
| Cs <sup>+</sup>  | cesium ion                                  | Ba <sup>2+</sup> | barium ion    |                  |              |  |  |
| Fr <sup>+</sup>  | francium ion                                | Ra <sup>2+</sup> | radium ion    |                  |              |  |  |

**Unit IIIC: Nomenclature of Monatomic Cations of Variable Charges** 

Cations not named above are assumed to be of variable charges. For example iron can exist with various charges, the most common of which are in the form of  $\mathbf{Fe}^{2+}$  and  $\mathbf{Fe}^{3+}$ . Their names <u>must</u> therefore specify the charges. This is done by following the name of the element with the charge in Roman numerals, within parentheses.  $\mathbf{Fe}^{2+}$  is named iron(III) ion, and  $\mathbf{Fe}^{3+}$  is named iron(III) ion. Tin(IV) ion refers to  $\mathbf{Sn}^{4+}$ . Names based on this system of nomenclature are known as "Stock names".

Many of these ions have "common names". Of the two most common ions, the one with the lower charge has the ending -ic. Thus  $\mathbf{Fe}^{2+}$  has the common name, of ferrous ion.  $\mathbf{Fe}^{3+}$  has the common name of ferric ion. Since some of these names are indeed quite commonly used (as in food labels), it would be wise to learn at least the four common names included in the table below.

| Formula          | Stock Name     | <b>Common Name</b> |
|------------------|----------------|--------------------|
| Fe <sup>2+</sup> | iron(II) ion   | ferrous ion        |
| Fe <sup>3+</sup> | iron(III) ion  | ferric ion         |
| Cu <sup>+</sup>  | copper(I) ion  | cuprous ion        |
| Cu <sup>2+</sup> | copper(II) ion | cupric ion         |

Since the ending in the common name specifies the charge, it would be redundant (therefore wrong) to also include the Roman numeral. Thus  $\mathbf{Cu}^+$  should *not* be named as *cuprous(I) ion*. Incidentally, the ending –ous does <u>not</u> indicate the charge is 1+, nor 2+. The –ous ending indicates the *lower* charge of the two most common charges. In the case of iron, the two common charges are 2+ and 3+, so the *lower* charge would be 2+. Thus ferrous refer to  $\mathrm{Fe}^{2+}$  rather than  $\mathrm{Fe}^{3+}$ .

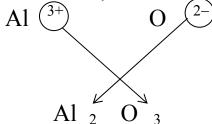
Note: Dr. Yau will not require you to learn the common names. (You <u>do</u> need to know that  $Fe^{2+}$  is iron(II), but you do not need to know whether it is ferrous or ferric.) Check with your own instructor whether that is so in <u>your</u> class.

#### **Drill C: Nomenclature of Monatomic Ions**

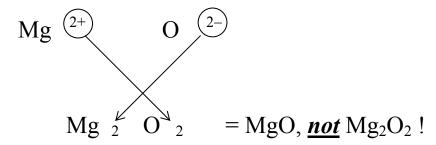
Again, study the rules before taking this as a practice test. <u>Write down</u> your answers and compare them with the answers provided only after you have finished the entire drill. You may use only a periodic table.

| FORMULA                          | NAME |
|----------------------------------|------|
| Rb <sup>+</sup>                  |      |
| Ba <sup>2+</sup> p <sup>3-</sup> |      |
| P <sup>3-</sup>                  |      |
| Br -<br>N <sup>3-</sup>          |      |
|                                  |      |
| S <sup>2-</sup>                  |      |
| <b>V</b>                         |      |
| Cu <sup>2+</sup>                 |      |
| Ca                               |      |

| NAME          | FORMULA |
|---------------|---------|
| nitride       |         |
| iodide        |         |
| oxide         |         |
| chromium(III) |         |
| potassium ion |         |
| aluminum ion  |         |
| magnesium     |         |
| iron(II) ion  |         |
| copper(I) ion |         |


\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Unit IV: Nomenclature of Ionic Compounds of Monatomic Ions**


An ionic compound is generally made of one type of cation combined with one type of anion. The formula has no *net* charge even though the ions themselves are charged. Thus, the number of cations and the number of anions present must reflect a net charge of zero. These numbers appear as subscripts, immediately following each element.

For example,  $Na^+$  combines with  $Cl^-$  to form NaCl (net charge of zero, so no charges are shown). When  $Na^+$  combines with  $O^{2-}$ , however, you will need two  $Na^+$  to neutralize the charge of 2- on the oxygen, to give  $Na_2O$ . When  $Mg^{2+}$  combines with  $Cl^-$ , you will similarly need two  $Cl^-$  to neutralize the charge of 2+ on the magnesium, to give  $MgCl_2$ . Note that the subscript 2 refers only to the number of Cl, and not the number of Cl. When no subscript shows, it is assumed to be one. Thus, the formula  $MgCl_2$  tells us that there is one Cl ions. The subscripts show us the *simplest ratio* of cation to anion. (It would be wrong to write Cl because 2:4 can be reduced to 1:2.)

When you combine  $Al^{3+}$  with  $O^{2-}$ , in order to come up with a net charge of zero, you would need two  $Al^{3+}$  and three  $O^{2-}$ , to give  $Al_2O_3$ . You can arrive at this answer by simply thinking about how the charges must work out, or use the *Cross Over Method*.



The *Cross Over Method* is merely a fast way to figure out how to make the net charge come out zero. It does <u>not</u> mean that Al now becomes **2**— and oxygen now becomes **3**+. Note also that in the *Cross Over Method*, the signs (charges) do not cross over (i.e. charges do not appear in the subscript.) Note also that in this method, you must always check that the subscripts are always reduced to the *simplest ratio*.



Even though there are ions (and charges) present in the compound, we do not show the charges in these formulas. It would be improper to write  $Al_{2}^{3+}O_{3}^{2-}$  or  $Mg_{3}^{2+}O_{3}^{2-}$ , unless you needed to stress the charges for a special reason.

### Unit IVA: Writing Formulas from a Given Name

First figure out the charges of the cation and the anion by examining the name. Then combine the ions in a ratio that gives you a net charge of zero as described above. If you have trouble deciding what the charges are on the ions, *you need to review Unit III!* You should be able to do the drill without using anything but a periodic table.

For example, given the name, tin(II) oxide, you know that the ions are  $Sn^{2+}$  and  $O^{2-}$ . To write the formula for the compound with  $Sn^{2+}$  and  $O^{2-}$ , you examine the charges and can see that it will take one  $Sn^{2+}$  and one  $O^{2-}$  to form a neutral compound.

Let's look at another example. Given the name, tin(IV) oxide, you know that the ions are  $Sn^{4+}$  and  $O^{2-}$ . In order to form a neutral compound, we must have one  $Sn^{4+}$  and  $\underline{two}$   $O^{2-}$ . The formula must therefore be  $SnO_2$ .

Now try out the Drill D.

**Drill D: Formulas of Ionic Compounds of Monatomic ions** 

| NAME                  | FORMULA |
|-----------------------|---------|
| magnesium fluoride    |         |
| lithium sulfide       |         |
| calcium selenide      |         |
| nickel(II) fluoride   |         |
| copper(II) bromide    |         |
| chromium(III) sulfide |         |
| tin(II) phosphide     |         |

### Unit IVB: Writing Names from a Given Formula

Examine the formula. If the cation belongs in the group that has *fixed charges*, then you just name the cation, followed by the anion, but drop the word "ion" that comes in between. For example NaCl is sodium chloride, and not sodium ion chloride. MgCl<sub>2</sub> is magnesium chloride.

**Drill E: Writing Names of Compounds with Cations of Fixed Charges** 

| KBr                             |  |
|---------------------------------|--|
| Li <sub>2</sub> O               |  |
| Mg <sub>3</sub> As <sub>2</sub> |  |
| Na <sub>3</sub> P               |  |

If the cation belongs in the group that has variable charges, you must figure out what that charge is from the charge of the anion (which is always fixed). Do <u>not</u> use the *Cross Over Method* as it may lead to the wrong answer. For example, the formula SnO tells us that Sn must have a charge of **2**+ since the oxygen ion is always **2**-. If you used the *Cross Over Method*, you would have erroneously come up with Sn having **1**+ charge. The *Cross Over Method* may seem to work, but it works only in some and not *all* cases. So, it would be wiser not to use it at all for going backwards (from formula to name).

Remember that the charge is per ion. Thus  $Cu_2S$  tells us that Cu had a charge of 1+, not 2+. Since the S ion is always 2- (Group VIA), the two Cu must have a total charge of 2+. Thus each Cu must have 1+.

Drill F: Determining the Charge and Name of the Cation First, Then Name of Compound

| Formula                        | Charge of Cation | Name of Cation | Name of Compound |
|--------------------------------|------------------|----------------|------------------|
| MnO <sub>2</sub>               |                  |                |                  |
| PbS                            |                  |                |                  |
| Cr <sub>2</sub> O <sub>3</sub> |                  |                |                  |
| Rb <sub>2</sub> Se             |                  |                |                  |
| CuCl <sub>2</sub>              |                  |                |                  |
| CuO                            |                  |                |                  |
| Cu <sub>2</sub> O              |                  |                |                  |

Check your answers to the above drill before going on. If you have made any mistakes be sure you find out why before you continue to the next drill. If necessary you should review all the previous Units.

**Drill G: Nomenclature of Ionic Compounds of Monatomic Ions (Both Fixed & Variable Charges)** 

| FORMULA | NAME                 |  |
|---------|----------------------|--|
|         | sodium oxide         |  |
|         | magnesium nitride    |  |
|         | copper(I) sulfide    |  |
|         | manganese(II) iodide |  |
|         | iron(III) phosphide  |  |
|         | copper(I) oxide      |  |
|         | tin(II) nitride      |  |
|         | strontium oxide      |  |
|         | tin(IV) oxide        |  |

| FORMULA                        | NAME |
|--------------------------------|------|
| RbBr                           |      |
| FeBr <sub>2</sub>              |      |
| PbS                            |      |
| BaO                            |      |
| K <sub>2</sub> O               |      |
| SbBr <sub>3</sub>              |      |
| Fe <sub>3</sub> P <sub>2</sub> |      |
| Li <sub>2</sub> Se             |      |
| CuCl <sub>2</sub>              |      |

Check your answers to the above drill before going on. If you have made any mistakes be sure you find out why before you continue to the next drill. If necessary you should review all the previous Units.

## Extra Drill H: Nomenclature of Ionic Compounds of Monatomic Ions (Both Fixed & Variable Charges)

| FORMULA                        | NAME |
|--------------------------------|------|
| RaCl <sub>2</sub>              |      |
| BiCl <sub>3</sub>              |      |
| Fe <sub>2</sub> 0 <sub>3</sub> |      |
| CdBr <sub>2</sub>              |      |
| MnO                            |      |
| MnO <sub>2</sub>               |      |

### **Unit V: Nomenclature of Polyatomic Ions**

### Unit VA: The "Basic Eight" Polyatomic Ions

In this unit you are asked to memorize the names and formulas of 8 polyatomic ions, to start with. You will be asked to learn more later on. "Learning" means memorizing the correct spelling of the name, the correct subscript(s) and charge of each ion.

| 1+                           | 1-               | 2-                            | 3-                            |
|------------------------------|------------------|-------------------------------|-------------------------------|
| NH <sub>4</sub> <sup>+</sup> | $C_2H_3O_2^-$    | $CO_3^{2-}$                   | PO <sub>4</sub> <sup>3-</sup> |
| ammonium                     | acetate*         | carbonate                     | phosphate                     |
|                              | NO <sub>3</sub>  | SO <sub>4</sub> <sup>2-</sup> |                               |
|                              | nitrate          | sulfate                       |                               |
|                              | OH               |                               |                               |
|                              | hydroxide        |                               |                               |
|                              | ClO <sub>3</sub> |                               |                               |
|                              | chlorate         |                               |                               |

<sup>\*</sup>acetate is also written as CH<sub>3</sub>CO<sub>2</sub>

In memorization, it helps to look for patterns. Note that all but two of the ions have the ending "-ate". For the ions with a charge of 1-, look up where the first element of each ion is located on the period table (C, N, O, Cl). Study the formulas and names of this group of ions before

moving on to ions with a charge of 2—. Again look up the location of the first element of each ion in the periodic table (C and S). Study these two names and formulas, and finally move to the ion with a charge of 3—. Look up the position of P in the periodic table. After you have studied each group based on charges, put them on flash cards and test yourself over and over.

Drill I - 1: Nomenclature of the "Basic Eight" Polyatomic Ions

| NAME      | FORMULA | FORMULA                       | NAME |
|-----------|---------|-------------------------------|------|
| sulfate   |         | OH <sup>-</sup>               |      |
| acetate   |         | SO <sub>4</sub> <sup>2-</sup> |      |
| chlorate  |         | NH <sub>4</sub> <sup>+</sup>  |      |
| ammonium  |         | NO <sub>3</sub>               |      |
| phosphate |         | ClO <sub>3</sub>              |      |
| carbonate |         | PO <sub>4</sub> <sup>3-</sup> |      |
| hydroxide |         | CO <sub>3</sub> <sup>2-</sup> |      |
| nitrate   |         | $C_2H_3O_2^-$                 |      |

**Drill I - 2: Nomenclature of Compounds of the "Basic Eight" Polyatomic Ions With Cations of Fixed Charges:** 

| NAME                | FORMULA | FORMULA                                         | NAME |
|---------------------|---------|-------------------------------------------------|------|
| sodium carbonate    |         | K <sub>3</sub> PO <sub>4</sub>                  |      |
| strontium carbonate |         | Ca(NO <sub>3</sub> ) <sub>2</sub>               |      |
| aluminum sulfate    |         | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |      |
| ammonium phosphate  |         | Al(OH) <sub>3</sub>                             |      |
| aluminum chlorate   |         | LiC <sub>2</sub> H <sub>3</sub> O <sub>2</sub>  |      |
| potassium sulfate   |         | MgCO <sub>3</sub>                               |      |
| calcium acetate     |         | Ba(ClO <sub>3</sub> ) <sub>2</sub>              |      |

**Drill I - 3: Nomenclature of Compounds of the "Basic Eight" Polyatomic Ions With Cations of Variable Charges:** 

| NAME                   | FORMULA | FORMULA                            | NAME |
|------------------------|---------|------------------------------------|------|
| iron(II) carbonate     |         | Cu <sub>2</sub> CO <sub>3</sub>    |      |
| iron(III) carbonate    |         | CuCO <sub>3</sub>                  |      |
| copper(I) sulfate      |         | SnSO <sub>4</sub>                  |      |
| cobalt(II) phosphate   |         | $Fe_3(PO_4)_2$                     |      |
| chromium(III) chlorate |         | $Hg(C_2H_3O_2)_2$                  |      |
| tin(IV) sulfate        |         | BiPO <sub>4</sub>                  |      |
| antimony(III) acetate  |         | Mn(ClO <sub>3</sub> ) <sub>2</sub> |      |

Drill I - 4: Compounds of the "Basic Eight" Polyatomic Ions and —ide ions With Cations of Both Fixed and Variable Charges: (This helps you learn to distinguish between those that require Roman numerals and those that do not.)

| NAME                    | FORMULA | FORMULA                            | NAME |
|-------------------------|---------|------------------------------------|------|
| calcium phosphate       |         | Na <sub>3</sub> N                  |      |
| chromium(III) sulfide   |         | NaNO <sub>3</sub>                  |      |
| potassium carbonate     |         | K <sub>2</sub> SO <sub>4</sub>     |      |
| magnesium acetate       |         | CdCO <sub>3</sub>                  |      |
| chromium(III) hydroxide |         | FeCl <sub>2</sub>                  |      |
| aluminum chlorate       |         | FeCl <sub>2</sub>                  |      |
| lead(IV) selenide       |         | NH <sub>4</sub> NO <sub>3</sub>    |      |
| copper(II) nitride      |         | Mn(ClO <sub>3</sub> ) <sub>2</sub> |      |

### Unit VB: Polyatomic Ions with "-ite" Ending

In the previous unit (Unit VA) you learned six polyatomic ions with the "-ate" ending. Certain of these have counterparts with the "-ite" ending. The only difference in formula for those with "-ite" endings is in having one less oxygen. The charge is unchanged. For example, nitrate is  $NO_3^-$  and nitrite is  $NO_2^-$ . Below are the ones with which you should become familiar.

| NO <sub>3</sub> | SO <sub>4</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup> |
|-----------------|-------------------------------|-------------------------------|
| nitrate         | sulfate                       | phosphate                     |
| $NO_2^-$        | $SO_3^{2-}$                   | PO <sub>3</sub> <sup>3-</sup> |
| nitrite         | sulfite                       | phosphite                     |

| ClO <sub>3</sub> |
|------------------|
| chlorate         |
| ClO <sub>2</sub> |
| chlorite         |

Unit VC: Nomenclature of "-ate" and "-ite" Compounds

The rules for naming and writing formulas for polyatomic ions are the same as for the monatomic ions (see Unit VI). The only difference is if (and only if) there is more than one polyatomic ion, parenthesis must be used to avoid confusion.

For example, magnesium nitrite is  $Mg(NO_2)_2$ . Since Mg is in Group IIA, it has a charge of **2**+ and nitrite has a charge of **1**- (from memory), to obtain a net charge of zero, there must be *two* nitrite ions for every magnesium ion. In the case of potassium acetate, since potassium is in Group IA, it must have a charge of **1**+, and acetate has a charge of **1**-, the formula is simply  $KC_2H_3O_2$ . No parenthesis is necessary.

In naming compounds with cations of variable charges, the charge of the cation must be deduced from the charge of the anions. It is therefore imperative that you have learned the charges of the ions presented in Units VA and VB. For example,  $MnSO_4$  should be named manganese(II) sulfate. Since you had previously memorized the fact that  $SO_4^{2-}$  has a charge of 2-, the manganese ion must have a charge of 2+. In the case of  $Cu(NO_3)_2$ , since the nitrate ion has a charge of 1-, two nitrates would have a total charge of 2-. Thus Cu must have a charge of 2+. The name for  $Cu(NO_3)_2$  is therefore Cu(II) nitrate or cupric nitrate.

Drill I-5: Nomenclature of "-ate" and "-ite" ions and compounds

| FORMULA                                                        | NAME                |  |
|----------------------------------------------------------------|---------------------|--|
| SO <sub>4</sub> <sup>2-</sup><br>SO <sub>3</sub> <sup>2-</sup> |                     |  |
| SO <sub>3</sub> <sup>2-</sup>                                  |                     |  |
|                                                                | nitrite             |  |
|                                                                | phosphite           |  |
|                                                                | acetate             |  |
|                                                                | chlorite            |  |
| $Na_3PO_4$                                                     |                     |  |
| $K_2SO_3$                                                      |                     |  |
| Pb(OH) <sub>2</sub>                                            |                     |  |
| CoClO <sub>2</sub>                                             |                     |  |
| $Ca(NO_3)_2$                                                   |                     |  |
|                                                                | iron(III) carbonate |  |
|                                                                | copper(I) sulfite   |  |
|                                                                | cesium nitrite      |  |
|                                                                | aluminum chlorate   |  |

### **Unit VD: Nomenclature of Oxohalo Anions**

These are the anions that contain a halogen and various number of oxygen atoms. In this unit we will focus on the chlorine series. Note that all have the charge of 1—. Starting with chlorate which is one of our "Basic Eight" from Unit VA, when we lose one oxygen, we get the one with the —ite ending. When we lose *another* oxygen, the name picks up the prefix *hypo*. When we lose *yet another* oxygen, there is no oxygen left and we have the simple monatomic ion with the —ide ending (from Unit III). Returning to chlorate as the base, if we *add* one extra oxygen, the name picks up the prefix *per*.

| ClO <sub>4</sub>     | perchlorate  |
|----------------------|--------------|
| $ClO_3^-$            | chlorate     |
| <br>ClO <sub>2</sub> | chlorite     |
| ClO <sup>-</sup>     | hypochlorite |
| Cl¯                  | chloride     |

**Drill J: Nomenclature of Oxohalo Anions and Compounds:** 

| FORMULA          | NAME                |  |
|------------------|---------------------|--|
| ClO <sup>-</sup> |                     |  |
| ClO <sub>2</sub> |                     |  |
| ClO <sub>4</sub> |                     |  |
|                  | hypochlorite        |  |
|                  | chlorate            |  |
|                  | perchlorate         |  |
|                  | chlorite            |  |
|                  | chloride            |  |
|                  | sodium chlorite     |  |
|                  | magnesium chlorite  |  |
|                  | ferrous perchlorate |  |

Note that once you have learned the above oxo*chloro* anions, you are just one step away from learning the corresponding oxo*bromo* and oxo*iodo* anions. Your instructor may require you to learn these as well:

perbromate, bromate, bromite, hypobromite, bromide

$$\mathbf{BrO_4}^ \mathbf{BrO_3}^ \mathbf{BrO_2}^ \mathbf{BrO}^ \mathbf{Br}^-$$

periodate, iodate, iodite, hypoiodite, iodide

 $\mathbf{IO_4}^ \mathbf{IO_3}^ \mathbf{IO_2}^ \mathbf{IO}^ \mathbf{I}^-$ 

Drill K: Nomenclature of "-ate", "-ite", oxohaloanions & Their Compounds

| FORMULA                           | NAME                    |  |
|-----------------------------------|-------------------------|--|
| ClO <sub>4</sub>                  |                         |  |
| ClO <sub>3</sub>                  |                         |  |
| ClO <sub>2</sub>                  |                         |  |
| ClO <sup>-</sup>                  |                         |  |
| Cl                                |                         |  |
|                                   | nitrite                 |  |
|                                   | nitrate                 |  |
|                                   | nitride                 |  |
|                                   | hydroxide               |  |
| Ca(ClO) <sub>2</sub>              |                         |  |
| $Ca_3(PO_3)_2$                    |                         |  |
| Sc(OH) <sub>2</sub>               |                         |  |
| Ti(NO <sub>3</sub> ) <sub>3</sub> |                         |  |
| $Hg(ClO)_2$                       |                         |  |
| $K_3N$                            |                         |  |
|                                   | potassium perchlorate   |  |
|                                   | potassium sulfite       |  |
|                                   | aluminum sulfide        |  |
|                                   | sodium sulfate          |  |
|                                   | barium hydroxide        |  |
|                                   | ammonium carbonate      |  |
|                                   | copper(I) hypochlorite  |  |
|                                   | tin(IV) acetate         |  |
|                                   | chromium(III) phosphite |  |
|                                   | magnesium chlorate      |  |
|                                   | zinc(II) phosphide      |  |
|                                   | calcium nitrite         |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Unit VI: Nomenclature of Acids**

The system of naming acids presented in this unit relies on how well you know the formulas of the polyatomic ions. If necessary review all of the above units.

Starting with a polyatomic ion (such as  $SO_4^{2-}$ ), add as many  $\mathbf{H}^+$  as necessary to neutralize the charge. For sulfate, with a charge of 2–, you would have to add two  $\mathbf{H}^+$ . Generally the hydrogen is placed at the front of the formula ( $H_2SO_4$ ). For phosphate, you would have to add three  $H^+$ , and the acid has the formula of  $H_3PO_4$ .

The name of the acid depends on the ending of the anion. If the ending is –ate, the corresponding acid has the ending –ic acid. If the ending is –ite, the corresponding acid has the ending –ous acid. If the ending is –ide, the acid has the *prefix* of hydro– and an ending of –ic acid.

| Ending of Anion | Name of Corresponding Acid |  |
|-----------------|----------------------------|--|
| -ate            | –ic acid                   |  |
| -ite            | -ous acid                  |  |
| -ide            | hydroic acid               |  |

Thus, sulfate becomes sulfuric acid; sulfite becomes sulfurous acid and sulfide becomes hydrosulfuric acid.

**Drill L: Nomenclature of Acids** 

| ANIONS                        |             | CORRESPONDING ACIDS |             |  |
|-------------------------------|-------------|---------------------|-------------|--|
| Formula<br>ClO <sub>4</sub>   | <u>Name</u> | <u>Formula</u>      | <u>Name</u> |  |
| ClO <sub>3</sub>              |             |                     |             |  |
| $ClO_2^-$                     |             |                     |             |  |
| ClO <sup>-</sup>              |             |                     |             |  |
| Cl¯                           |             |                     |             |  |
| Br <sup>-</sup>               |             |                     |             |  |
| I <sup>-</sup>                |             |                     |             |  |
| $C_2H_3O_2^-$                 |             |                     |             |  |
| NO <sub>3</sub>               |             |                     |             |  |
| $NO_2^-$                      |             |                     |             |  |
| OH <sup>-</sup>               |             |                     |             |  |
| ClO <sub>3</sub>              |             |                     |             |  |
| $CO_3^{2-}$                   |             |                     |             |  |
| SO <sub>4</sub> <sup>2-</sup> |             |                     |             |  |
| SO <sub>3</sub> <sup>2-</sup> |             |                     |             |  |
| PO <sub>4</sub> <sup>3-</sup> |             |                     |             |  |
| PO <sub>3</sub> <sup>3-</sup> |             |                     |             |  |
|                               |             |                     |             |  |

**Drill continues on following page** 

| Name               | Formula | Formula                                       | Name |
|--------------------|---------|-----------------------------------------------|------|
| sulfuric acid      |         | HNO <sub>3</sub>                              |      |
| nitrous acid       |         | H <sub>2</sub> CO <sub>3</sub>                |      |
| hydrochloric acid  |         | H <sub>3</sub> PO <sub>3</sub>                |      |
| carbonic acid      |         | HCIO                                          |      |
| phosphorous acid   |         | H <sub>2</sub> SO <sub>4</sub>                |      |
| chlorous acid      |         | HC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> |      |
| sulfurous acid     |         | HNO <sub>2</sub>                              |      |
| hypochlorous acid  |         | HClO <sub>4</sub>                             |      |
| chloric acid       |         | HBr                                           |      |
| phosphoric acid    |         | H <sub>2</sub> SO <sub>3</sub>                |      |
| nitric acid        |         | H <sub>2</sub> Se                             |      |
| acetic acid        |         | H <sub>3</sub> PO <sub>4</sub>                |      |
| hydrotelluric acid |         | НОН                                           |      |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Unit VII: Nomenclature of Acid Anions**

In Unit VI you learned that acids generally have one or more H at the front of the formula. It does not have a charge because we have added as many  $\mathbf{H}^+$  as necessary to keep it neutral. An "acid anion", however, by definition must have a H in front (to be called an *acid*), as well as a negative charge (to be called an *anion*). It is derived from having added *less* than the necessary number of  $\mathbf{H}^+$ .

For example, if we add only one  $\mathbf{H}^+$  to the sulfate ion (SO<sub>4</sub><sup>2-</sup>), we would have the acid anion, HSO<sub>4</sub><sup>-</sup>. If we add only one  $\mathbf{H}^+$  to the phosphite ion (PO<sub>3</sub><sup>3-</sup>), we would have the acid anion HPO<sub>3</sub><sup>2-</sup>. If we added two, we would have the acid anion H<sub>2</sub>PO<sub>3</sub><sup>-</sup>. Note that the negative charge of the anion is reduced by each additional  $\mathbf{H}^+$ .

Study the following names and formulas and then test yourself using flash cards:

| $\mathrm{CO_3}^{2-}$          |
|-------------------------------|
| carbonate                     |
| $HCO_3^-$                     |
| hydrogen carbonate            |
| or bicarbonate                |
| $\mathrm{SO_4}^{2-}$          |
| sulfate                       |
| HSO <sub>4</sub>              |
| hydrogen sulfate              |
| or bisulfate                  |
| SO <sub>3</sub> <sup>2-</sup> |
| sulfite                       |
| HSO <sub>3</sub>              |
| hydrogen sulfite              |
| or bisulfite                  |

| PO <sub>4</sub> <sup>3-</sup> phosphate                          | PO <sub>3</sub> <sup>3-</sup> phosphite                          |
|------------------------------------------------------------------|------------------------------------------------------------------|
| HPO <sub>4</sub> <sup>2-</sup> hydrogen phosphate                | HPO <sub>3</sub> <sup>2-</sup> hydrogen phosphite                |
| H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> dihydrogen phosphate | H <sub>2</sub> PO <sub>3</sub> <sup>-</sup> dihydrogen phosphite |

**Drill M: Nomenclature of Acid Anions** 

|    | Formula                                          | Stock Name                          | Common Name<br>(when appropriate) |
|----|--------------------------------------------------|-------------------------------------|-----------------------------------|
| 1  | Ca(HCO <sub>3</sub> ) <sub>2</sub>               |                                     |                                   |
| 2  | Fe(HCO <sub>3</sub> ) <sub>2</sub>               |                                     |                                   |
| 3  | Pb(HPO <sub>4</sub> ) <sub>2</sub>               |                                     | xxxxxxxxxxxxx                     |
| 4  | AgHSO <sub>3</sub>                               |                                     |                                   |
| 5  | Bi(H <sub>2</sub> PO <sub>3</sub> ) <sub>3</sub> |                                     | xxxxxxxxxxxxx                     |
| 6  |                                                  | barium hydrogen phosphate           | xxxxxxxxxxxxx                     |
| 7  |                                                  | magnesium hydrogen sulfite          |                                   |
| 8  |                                                  | aluminum hydrogen phosphate         | xxxxxxxxxxxxx                     |
| 9  |                                                  | mercury(II) dihydrogen<br>phosphite | xxxxxxxxxxxxx                     |
| 10 |                                                  | zinc(II) hydrogen carbonate         |                                   |
| 11 |                                                  |                                     | barium bisulfite                  |
| 12 |                                                  |                                     | iron(III) bicarbonate             |
| 13 |                                                  |                                     | copper(I) bisulfate               |
| 14 |                                                  |                                     | copper(II) dihydrogen phosphite   |
| 15 |                                                  | tin(IV) hydrogen phosphate          | xxxxxxxxxxxxx                     |
| 16 |                                                  | antimony(III) hydrogen phosphite    | xxxxxxxxxxxxx                     |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Unit VIII: Nomenclature of Other Common Polyatomic Ions**

We began with a small set of polyatomic ions, the "Basic Eight" (see Unit V). All the subsequent units were based on solely those eight. Now it is time to expand our base to a few more ions that we often come across. The nomenclature rules you have learned will apply to these as well.

| 2+                   | 1-               | 2-                                                      |
|----------------------|------------------|---------------------------------------------------------|
| $\mathrm{Hg_2}^{2+}$ | CN <sup>-</sup>  | $C_2O_4^{2-}$                                           |
| mercury(I) ion       | cyanide          | oxalate                                                 |
|                      | MnO <sub>4</sub> | $O_2^{2-}$                                              |
|                      | permanganate     | peroxide                                                |
|                      |                  | $\operatorname{CrO_4}^{2-}$                             |
|                      |                  | chromate                                                |
|                      |                  | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> dichromate |
|                      |                  | dichromate                                              |

**Drill N: Nomenclature of Other Polyatomic Ions and Compounds** 

| FORMULA                          | NAME                   |
|----------------------------------|------------------------|
| FeCr <sub>2</sub> O <sub>7</sub> |                        |
| Na <sub>2</sub> O <sub>2</sub>   |                        |
| HgO                              |                        |
|                                  | calcium cyanide        |
|                                  | ammonium oxalate       |
|                                  | silver(I) permanganate |
|                                  | mercury(I) chloride    |
|                                  | mercury(II) chloride   |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Unit IX: Nomenclature of Molecular Binary Compounds**

Units III through VIII dealt with *ions* and *ionic* compounds. In this unit we will deal with *molecular* compounds. In particular, the molecular *binary* compounds, compounds containing only two *nonmetals*. They involve a completely different set of rules. Since there are no ions, there are no charges and no Roman numerals.

The number of atoms of each element is specified by a Greek *prefix* (see table below). The second element has the ending "-ide". For example, N<sub>2</sub>F<sub>4</sub> is named dinitrogen tetrafluoride.

When two vowels are adjacent to each other, one is dropped. For example  $P_2O_5$  is named diphosphorus *pentoxide* rather than *pentaoxide*.

When the <u>first</u> element has only one atom, the prefix *mono* is often omitted. For example, NO<sub>2</sub> is often referred to as nitrogen dioxide rather than mononitrogen dioxide.

When the <u>second</u> element has only one atom, the prefix *mono* is retained. For example, CO is carbon monoxide rather than monocarbon monoxide.

| Number | Prefix |
|--------|--------|
| 1      | mono   |
| 2      | di     |
| 3      | tri    |
| 4      | tetra  |
| 5      | penta  |

| Number | Prefix |
|--------|--------|
| 6      | hexa   |
| 7      | hepta  |
| 8      | octa   |
| 9      | nona   |
| 10     | deca   |

**Drill O: Nomenclature of Molecular Binary Compounds** 

| FORMULA                       | NAME               |
|-------------------------------|--------------------|
| CBr <sub>4</sub>              |                    |
| PCl <sub>5</sub>              |                    |
| $S_2Br_2$                     |                    |
| N <sub>2</sub> O <sub>4</sub> |                    |
|                               | sulfur dioxide     |
|                               | diiodine trioxide  |
|                               | dibromine monoxide |

Remember that the rules stated here for using prefixes (mono, di, tri, etc.) are for <u>molecular</u> binary compounds. That excludes <u>ionic compounds</u>! For ionic compounds you follow the rules

you have learned from Units III through VIII earlier in this tutorial. Thus PCl<sub>3</sub> is phosphorus trichloride, but AlCl<sub>3</sub> is aluminum chloride and MnCl<sub>3</sub> is manganese(III) chloride. You have already learned all the rules (when to use prefixes, when to use Roman numerals and when not to use either). The drill below is to help you practise choosing the appropriate rules to follow.

The key is to first determine whether a compound is molecular or ionic. That is easily done by seeing whether the first element shown is a metal or nonmetal. There are exceptions to this rule, but for now, let us consider only the usual cases. If the compound is molecular, you use prefixes. If it is ionic, you must decide whether the cation has fixed or variable charges in order to determine whether or not to use Roman numerals (Unit III).

Drill P: Drill in Determining When to Use Prefixes and Roman Numerals

| FORMULA                        | NAME |
|--------------------------------|------|
| PbCl <sub>2</sub>              |      |
| SCl <sub>2</sub>               |      |
| MgCl <sub>2</sub>              |      |
| Co <sub>2</sub> S <sub>3</sub> |      |
| Al <sub>2</sub> O <sub>3</sub> |      |
| N <sub>2</sub> Br <sub>4</sub> |      |
| K <sub>3</sub> P               |      |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Unit X: Nomenclature of Hydrates**

A hydrate is a compound with a fixed number of water molecules as an integral part of its structure. An example is CuSO<sub>4</sub>·5H<sub>2</sub>O, a blue crystalline material. As the formula indicates, it has five water molecules for each unit of CuSO<sub>4</sub>. Although it contains water molecules, it is a solid.

Note that a hydrate is not simply a sample that is wet! A wet sample would have a variable amount of water and would not have the fixed ratio of water attached.

In naming hydrates, you would name the compound with the rules that you have learned previously, followed by specifying how many water molecules are attached with a prefix.

Thus, CuSO<sub>4</sub>·5H<sub>2</sub>O is named copper(II) sulfate pentahydrate, and cobalt(II) chloride tetrahydrate has the formula CoCl<sub>2</sub>·4H<sub>2</sub>O.

Note that the dot in front of the formula  $H_2O$  does <u>not</u> represent a multiplication sign! It merely separates out the  $H_2O$  from the rest of the formula and the coefficient in front of the  $H_2O$  tells you how many water molecules are present.  $CoCl_2\cdot 4H_2O$ , therefore, contains one  $Co^{2+}$  ion, two  $Cl^-$  ions and four water molecules. It has a total of one cobalt, two chlorine, eight hydrogen and four oxygen atoms.

**Drill Q: Drill on Naming Hydrates** 

| Formula                                                                           | Name | Name                             | Formula |
|-----------------------------------------------------------------------------------|------|----------------------------------|---------|
| Ca(ClO <sub>3</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                             |      | cobalt(II) fluoride tetrahydrate |         |
| Sn(SO <sub>4</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                              |      | zinc(II) acetate dihydrate       |         |
| NiSO <sub>4</sub> ·7H <sub>2</sub> O                                              |      | copper(II) nitrate trihydrate    |         |
| Co(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> ·4H <sub>2</sub> O |      | iron(III) bromide hexahydrate    |         |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **End of Nomenclature Tutorial** (See the following pages for the answers to the drills.)

If you have questions or comments you may contact me at cyau@ccbcmd.edu

## Answers to "Nomenclature: A Tutorial"

**Drill A: Nomenclature of Elements** 

| Name    | Symbol |
|---------|--------|
| hlorine | Cl     |
| alcium  | Са     |

| Symbol |
|--------|
|--------|

| 1 | V | 9 | n | 16 |  |
|---|---|---|---|----|--|
|   |   | 4 |   | 15 |  |

| chlorine | Cl |
|----------|----|
| calcium  | Ca |
| arsenic  | As |
| mercury  | Hg |
| copper   | Cu |

| S  | sulfur     |
|----|------------|
| K  | potassium  |
| Fe | iron       |
| Na | sodium     |
| P  | phosphorus |

**Drill B: Formulas and Physical States of Pure Elements** 

| chlorine | $\operatorname{Cl}_2(g)$ |
|----------|--------------------------|
| argon    | Ar (g)                   |
| nitrogen | $N_2(g)$                 |
| chromiu  | Cr (s)                   |
| strontiu | Sr (s)                   |

| bromine    | $\operatorname{Br}_{2}(l)$ |
|------------|----------------------------|
| phosphorus | $P_4(s)$                   |
| krypton    | Kr (g)                     |
| mercury    | Hg ( <i>l</i> )            |
| iodine     | $I_2(s)$                   |

| sulfur       | S <sub>8</sub> (s) |
|--------------|--------------------|
| lead         | <b>Pb</b> (s)      |
| element #112 | Uub (s)            |
| gold         | Au (s)             |
| hydrogen     | $H_2(g)$           |

**Drill C: Nomenclature of Monatomic Ions** 

| FORMULA                                   | NAME           |
|-------------------------------------------|----------------|
| $\mathbf{Rb}^{+}$                         | rubidium ion   |
| Ba <sup>2+</sup>                          | barium ion     |
| $\frac{\mathbf{P}^{3-}}{\mathbf{P}^{3-}}$ | phosphide      |
| Br <sup>-</sup>                           | bromide        |
| $N^{3-}$                                  | nitride        |
| $\mathbf{S}^{2-}$                         | sulfide        |
| $V^{3+}$                                  | vanadium(III)  |
| Cu <sup>2+</sup>                          | copper(II) ion |
| Ca                                        | calcium        |

| <b>FORMULA</b>        |
|-----------------------|
| $N^{3-}$              |
| $I^-$                 |
| ${oldsymbol{o}}^{2-}$ |
| Cr <sup>3+</sup>      |
| $K^{+}$               |
| $Al^{3+}$             |
| Mg                    |
| $Fe^{2+}$             |
| Cu <sup>+</sup>       |
|                       |

**Drill D: Formulas of Ionic Compounds of Monatomic ions** 

| NAME                  | FORMULA           |
|-----------------------|-------------------|
| magnesium fluoride    | $MgF_2$           |
| lithium sulfide       | Li <sub>2</sub> S |
| calcium selenide      | CaSe              |
| nickel(II) fluoride   | $NiF_2$           |
| cupric bromide        | CuBr <sub>2</sub> |
| chromium(III) sulfide | $Cr_2S_3$         |
| tin(II) phosphide     | $Sn_3P_2$         |

**Drill E: Writing Names of Compounds with Cations of Fixed Charges** 

| KBr                             | potassium bromide  |  |  |
|---------------------------------|--------------------|--|--|
| Li <sub>2</sub> O               | lithium oxide      |  |  |
| Mg <sub>3</sub> As <sub>2</sub> | magnesium arsenide |  |  |
| Na <sub>3</sub> P               | sodium phosphide   |  |  |

Drill F: Determining the Charge and Name of the Cation First, Then Name of Compound

| Formula                        | Charge of Cation | Name of Cation    | Name of Compound    |
|--------------------------------|------------------|-------------------|---------------------|
| MnO <sub>2</sub>               | 4+               | manganese(IV) ion | manganese(IV) oxide |
| PbS                            | 2+               | lead(II) ion      | lead(II) sulfide    |
| Cr <sub>2</sub> O <sub>3</sub> | 3+               | chromium(III) ion | chromium(III) oxide |
| Rb <sub>2</sub> Se             | 1+               | rubidium ion      | rubidium selenide   |
| CuCl <sub>2</sub>              | 2+               | copper(II) ion    | copper(II) chloride |
| CuO                            | 2+               | copper(II) ion    | copper(II) oxide    |
| Cu <sub>2</sub> O              | 1+               | copper(I) ion     | copper(I) oxide     |

Drill G: Nomenclature of Ionic Compounds of Monatomic Ions (Both Fixed & Variable Charges)

| FORMULA           | NAME                 |
|-------------------|----------------------|
| Na <sub>2</sub> O | sodium oxide         |
| $Mg_3N_2$         | magnesium nitride    |
| $Cu_2S$           | cuprous sulfide      |
| $MnI_2$           | manganese(II) iodide |
| FeP               | ferric phosphide     |
| СиО               | cupric oxide         |
| $Sn_3N_2$         | tin(II) nitride      |
| SrO               | strontium oxide      |
| SnO <sub>2</sub>  | tin(IV) oxide        |

| FORMULA                        | NAME                  |  |
|--------------------------------|-----------------------|--|
| RbBr                           | rubidium bromide      |  |
| FeBr <sub>2</sub>              | iron(II) bromide      |  |
| PbS                            | lead(II) sulfide      |  |
| BaO                            | barium oxide          |  |
| K <sub>2</sub> O               | potassium oxide       |  |
| SbBr <sub>3</sub>              | antimony(III) bromide |  |
| Fe <sub>3</sub> P <sub>2</sub> | iron(II) phosphide    |  |
| Li <sub>2</sub> Se             | lithium selenide      |  |
| CuCl <sub>2</sub>              | copper(II) chloride   |  |

Extra Drill H: Nomenclature of Ionic Compounds of Monatomic Ions (Both Fixed & Variable Charges)

| FORMULA                        | NAME                            |  |
|--------------------------------|---------------------------------|--|
| RaCl <sub>2</sub>              | radium chloride                 |  |
| BiCl <sub>3</sub>              | bismuth(III) chloride           |  |
| Fe <sub>2</sub> O <sub>3</sub> | iron(III) oxide or ferric oxide |  |
| CdBr <sub>2</sub>              | cadmium(II) bromide             |  |
| MnO                            | manganese(II) oxide             |  |
| MnO <sub>2</sub>               | manganese(IV) oxide             |  |

Drill I - 1: Nomenclature of the "Basic Eight" Polyatomic Ions

| NAME      | FORMULA         | FORMULA                       | NAME      |
|-----------|-----------------|-------------------------------|-----------|
| sulfate   | $SO_4^{2-}$     | OH <sup>-</sup>               | hydroxide |
| acetate   | $C_2H_3O_2^-$   | SO <sub>4</sub> <sup>2-</sup> | sulfate   |
| chlorate  | $ClO_3^-$       | $NH_4^+$                      | ammonium  |
| ammonium  | $NH_4^{+}$      | NO <sub>3</sub>               | nitrate   |
| phosphate | $PO_4^{\ 3-}$   | ClO <sub>3</sub>              | chlorate  |
| carbonate | $CO_3^{2-}$     | PO <sub>4</sub> <sup>3-</sup> | phosphate |
| hydroxide | OH <sup>-</sup> | CO <sub>3</sub> <sup>2-</sup> | carbonate |
| nitrate   | $NO_3^-$        | $C_2H_3O_2^-$                 | acetate   |

Drill I - 2: Nomenclature of Compounds of the "Basic Eight" Polyatomic Ions With Cations of Fixed Charges:

| NAME                | FORMULA                                | FORMULA                                        | NAME                |
|---------------------|----------------------------------------|------------------------------------------------|---------------------|
| sodium carbonate    | $Na_2CO_3$                             | K <sub>3</sub> PO <sub>4</sub>                 | potassium phosphate |
| strontium carbonate | SrCO <sub>3</sub>                      | Ca(NO <sub>3</sub> ) <sub>2</sub>              | calcium nitrate     |
| aluminum sulfate    | $Al_2(SO_4)_3$                         | $(NH_4)_2SO_4$                                 | ammonium sulfate    |
| ammonium            | $(NH_4)_3PO_4$                         | Al(OH) <sub>3</sub>                            | aluminum hydroxide  |
| phosphate           |                                        |                                                |                     |
| aluminum chlorate   | <i>Al(ClO<sub>3</sub>)<sub>3</sub></i> | LiC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | lithium acetate     |
| potassium sulfate   | $K_2SO_4$                              | MgCO <sub>3</sub>                              | magnesium carbonate |
| calcium acetate     | $Ca(C_2H_3O_2)_2$                      | Ba(ClO <sub>3</sub> ) <sub>2</sub>             | barium chlorate     |

Drill I - 3: Nomenclature of Compounds of the "Basic Eight" Polyatomic Ions With Cations of Variable Charges:

| NAME                      | FORMULA                                         | NAME                                            | FORMULA                           |
|---------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------|
| ferrous carbonate         | FeCO <sub>3</sub>                               | CuCO <sub>3</sub>                               | (stock name) copper(II) carbonate |
| ferric carbonate          | Fe <sub>2</sub> (CO <sub>3</sub> ) <sub>3</sub> | CuCO <sub>3</sub>                               | (common name) cupric carbonate    |
| cuprous sulfate           | $Cu_2SO_4$                                      | SnSO <sub>4</sub>                               | tin(II) sulfate                   |
| cobalt(II) phosphate      | $Co_3(PO_4)_2$                                  | Fe <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> | (stock name) iron(II) phosphate   |
| chromium(III)<br>chlorate | Cr(ClO <sub>3</sub> ) <sub>3</sub>              | $Hg(C_2H_3O_2)_2$                               | mercury(II) acetate               |
| tin(IV) sulfate           | $Sn(SO_4)_2$                                    | BiPO <sub>4</sub>                               | bismuth(III) phosphate            |
| antimony(III) acetate     | $Sb(C_2H_3O_2)_3$<br>or<br>$Sb(CH_3CO_2)_3$     | Mn(ClO <sub>3</sub> ) <sub>2</sub>              | manganese(II) chlorate            |

Drill I - 4: Compounds of the "Basic Eight" Polyatomic Ions and –ide ions With Cations of Both Fixed and Variable Charges: (learning to distinguish between those that require Roman numerals and those that do not)

| Roman namerals and those t | mac ao motj                        |                                    |                                    |
|----------------------------|------------------------------------|------------------------------------|------------------------------------|
| NAME                       | FORMULA                            | FORMULA                            | NAME                               |
| calcium phosphate          | $Ca_3(PO_4)_2$                     | Na <sub>3</sub> N                  | sodium nitride                     |
| chromium(III) sulfide      | $Cr_2S_3$                          | NaNO <sub>3</sub>                  | sodium nitrate                     |
| potassium carbonate        | $K_2CO_3$                          | K <sub>2</sub> SO <sub>4</sub>     | potassium sulfate                  |
| magnesium acetate          | $Mg(CH_3CO_2)_2$                   | CdCO <sub>3</sub>                  | cadmium(II) carbonate              |
| chromium(III) hydroxide    | Cr(OH)3                            | FeCl <sub>2</sub>                  | (stock name) iron(II) chloride     |
| aluminum chlorate          | Al(ClO <sub>3</sub> ) <sub>3</sub> | FeCl <sub>2</sub>                  | (common name) ferrous chloride     |
| lead(IV) selenide          | $PbSe_2$                           | NH <sub>4</sub> NO <sub>3</sub>    | ammonium nitrate                   |
| cupric nitride             | $Cu_3N_2$                          | Mn(ClO <sub>3</sub> ) <sub>2</sub> | manganese(II) chlorate             |
| ferrous nitrate            | Fe(NO <sub>3</sub> ) <sub>2</sub>  | Cu <sub>3</sub> PO <sub>4</sub>    | (common name)<br>cuprous phosphate |

Drill I-5: Nomenclature of "-ate" and "-ite" ions and compounds

| FORMULA                                | NAME                |
|----------------------------------------|---------------------|
| $SO_4^{2-}$                            | sulfate             |
| SO <sub>3</sub> <sup>2-</sup>          | sulfite             |
| $NO_2^-$                               | nitrite             |
| $PO_3^{3-}$                            | phosphite           |
| $C_2H_3O_2^-$                          | acetate             |
| ClO <sub>2</sub> -                     | chlorite            |
| Na <sub>3</sub> PO <sub>4</sub>        | sodium phosphate    |
| $K_2SO_3$                              | potassium sulfite   |
| Pb(OH) <sub>2</sub>                    | lead(II) hydroxide  |
| CoClO <sub>2</sub>                     | cobalt(I) chlorite  |
| $Ca(NO_3)_2$                           | calcium nitrate     |
| $Fe_2(CO_3)_3$                         | iron(III) carbonate |
| $Cu_2SO_3$                             | copper(I) sulfite   |
| CsNO <sub>2</sub>                      | cesium nitrite      |
| <i>Al(ClO<sub>3</sub>)<sub>3</sub></i> | aluminum chlorate   |

**Drill J: Nomenclature of Oxohalo Ions and Compounds:** 

| FORMULA            | NAME                |
|--------------------|---------------------|
| ClO <sup>-</sup>   | hypochlorite        |
| ClO <sub>2</sub>   | chlorite            |
| ClO <sub>4</sub>   | perchlorate         |
| ClO <sup>-</sup>   | hypochlorite        |
| ClO <sub>3</sub> - | chlorate            |
| ClO <sub>4</sub>   | perchlorate         |
| ClO <sub>2</sub> - | chlorite            |
| Cl <sup>-</sup>    | chloride            |
| NaClO <sub>2</sub> | sodium chlorite     |
| $Mg(ClO_2)_2$      | magnesium chlorite  |
| $Fe(ClO_4)_2$      | ferrous perchlorate |

Drill K: Nomenclature of "-ate", "-ite", oxohaloanions & Their Compounds:

| FORMULA                           | NAME                     |
|-----------------------------------|--------------------------|
| ClO <sub>4</sub>                  | perchlorate              |
| ClO <sub>3</sub>                  | chlorate                 |
| ClO <sub>2</sub>                  | chlorite                 |
| ClO <sup>-</sup>                  | hypochlorite             |
| Cl¯                               | chloride                 |
| $NO_2^-$                          | nitrite                  |
| $NO_2^ NO_3^ N^{3-}$              | nitrate                  |
| $N^{3-}$                          | nitride                  |
| ОН                                | hydroxide                |
| Ca(ClO) <sub>2</sub>              | calcium hypochlorite     |
| $Ca_3(PO_3)_2$                    | calcium phosphite        |
| Sc(OH) <sub>2</sub>               | scandium(II) hydroxide   |
| Ti(NO <sub>3</sub> ) <sub>3</sub> | titanium(III) nitrate    |
| Hg(ClO) <sub>2</sub>              | mercury(II) hypochlorite |
| K <sub>3</sub> N                  | potassium nitride        |
| KClO <sub>4</sub>                 | potassium perchlorate    |
| $K_2SO_3$                         | potassium sulfite        |
| $Al_2S_3$                         | aluminum sulfide         |
| $Na_2SO_4$                        | sodium sulfate           |
| $Ba(OH)_2$                        | barium hydroxide         |
| $(NH_4)_2CO_3$                    | ammonium carbonate       |
| CuClO                             | cuprous hypochlorite     |
| $Sn(C_2H_3O_2)_4$                 | tin(IV) acetate          |
| CrPO <sub>3</sub>                 | chromium(III) phosphite  |
| $Mg(ClO_3)_2$                     | magnesium chlorate       |
| $Zn_3P_2$                         | zinc(II) phosphide       |
| $Ca(NO_2)_2$                      | calcium nitrite          |

**Drill L: Nomenclature of Acids** 

| AN                            | NIONS .                    | CORRES                          | PONDING ACIDS           |
|-------------------------------|----------------------------|---------------------------------|-------------------------|
| Formula<br>ClO <sub>4</sub>   | <u>Name</u><br>perchlorate | <u>Formula</u><br><i>HClO</i> ₄ | Name<br>perchloric acid |
| ClO <sub>3</sub>              | chlorate                   | HClO <sub>3</sub>               | chloric acid            |
| $ClO_2^-$                     | chlorite                   | HClO <sub>2</sub>               | chlorous acid           |
| ClO <sup>-</sup>              | hypochlorite               | <i>HClO</i>                     | hypochlorous acid       |
| Cl                            | chloride                   | HCl                             | hydrochloric acid       |
| Br <sup>-</sup>               | bromide                    | HBr                             | hydrobromic acid        |
| Γ                             | iodide                     | HI                              | hydroiodic acid         |
| $C_2H_3O_2^-$                 | acetate                    | $HC_2H_3O_2$                    | acetic acid             |
| NO <sub>3</sub>               | nitrate                    | $HNO_3$                         | nitric acid             |
| $NO_2^-$                      | nitrite                    | $HNO_2$                         | nitrous acid            |
| OH-                           | hydroxide                  | НОН                             | water                   |
| ClO <sub>3</sub>              | chlorate                   | $HClO_3$                        | chloric acid            |
| $CO_3^{2-}$                   | carbonate                  | $H_2CO_3$                       | carbonic acid           |
| $SO_4^{2-}$                   | sulfate                    | $H_2SO_4$                       | sulfuric acid           |
| $SO_3^{2-}$                   | sulfite                    | $H_2SO_3$                       | sulfurous acid          |
| PO <sub>4</sub> <sup>3-</sup> | phosphate                  | $H_3PO_4$                       | phosphoric acid         |
| PO <sub>3</sub> <sup>3-</sup> | phosphite                  | $H_3PO_3$                       | phosphorous acid        |

| Name               | Formula           | Formula                                       | Name              |
|--------------------|-------------------|-----------------------------------------------|-------------------|
| sulfuric acid      | $H_2SO_4$         | HNO <sub>3</sub>                              | nitric acid       |
| nitrous acid       | $HNO_2$           | H <sub>2</sub> CO <sub>3</sub>                | carbonic acid     |
| hydrochloric acid  | HCl               | H <sub>3</sub> PO <sub>3</sub>                | phosphorous acid  |
| carbonic acid      | $H_2CO_3$         | HCIO                                          | hypochlorous acid |
| phosphorous acid   | $H_3PO_3$         | H <sub>2</sub> SO <sub>4</sub>                | sulfuric acid     |
| chlorous acid      | HClO <sub>2</sub> | HC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | acetic acid       |
| sulfurous acid     | $H_2SO_3$         | HNO <sub>2</sub>                              | nitrous acid      |
| hypochlorous acid  | <i>HClO</i>       | HClO <sub>4</sub>                             | perchloric acid   |
| chloric acid       | HClO <sub>3</sub> | HBr                                           | hydrobromic acid  |
| phosphoric acid    | $H_3PO_4$         | H <sub>2</sub> SO <sub>3</sub>                | sulfurous acid    |
| nitric acid        | $HNO_3$           | H <sub>2</sub> Se                             | hydroselenic acid |
| acetic acid        | $HC_2H_3O_2$      | H <sub>3</sub> PO <sub>4</sub>                | phosphoric acid   |
| hydrotelluric acid | $H_2Te$           | НОН                                           | water             |

### **Drill M: Nomenclature of Acid Anions**

| 1. calcium hydrogen carbonate,                              | 9. $Hg(H_2PO_3)_2$                                               |
|-------------------------------------------------------------|------------------------------------------------------------------|
| calcium bicarbonate                                         | 10. Zn(HCO <sub>3</sub> ) <sub>2</sub> , zinc(II) bicarbonate    |
| 2. iron(II) hydrogen carbonate,                             | 11. Ba(HSO <sub>3</sub> ) <sub>2</sub> , barium hydrogen sulfite |
| ferrous bicarbonate                                         | 12. $Fe(HCO_3)_3$ ,                                              |
| 3. lead(IV) hydrogen phosphate                              | iron(III) hydrogen carbonate                                     |
| 4. silver(I) hydrogen sulfite,                              | 13. CuHSO <sub>4</sub> , copper(I) hydrogen sulfate              |
| silver(I) bisulfite                                         | 14. $Cu(H_2PO_3)_2$ ,                                            |
| 5. bismuth(III) dihydrogen phosphite                        | copper(II) dihydrogen phosphite                                  |
| 6. BaHPO <sub>4</sub>                                       | 15. $Sn(HPO_4)_2$                                                |
| 7. Mg(HSO <sub>3</sub> ) <sub>2</sub> , magnesium bisulfite | 16. $Sb_2(HPO_3)_3$                                              |
| 8. Al <sub>2</sub> (HPO <sub>4</sub> ) <sub>3</sub>         |                                                                  |

**Drill N: Nomenclature of Other Polyatomic Ions and Compounds** 

| FORMULA                          | NAME                   |
|----------------------------------|------------------------|
| FeCr <sub>2</sub> O <sub>7</sub> | iron(II) dichromate    |
| Na <sub>2</sub> O <sub>2</sub>   | sodium peroxide        |
| HgO                              | mercury(II) oxide      |
| Ca(CN) <sub>2</sub>              | calcium cyanide        |
| $(NH_4)_2C_2O_4$                 | ammonium oxalate       |
| AgMnO <sub>4</sub>               | silver(I) permanganate |
| Hg <sub>2</sub> Cl <sub>2</sub>  | mercury(I) chloride    |
| HgCl <sub>2</sub>                | mercury(II) chloride   |

**Drill O: Nomenclature of Molecular Binary Compounds** 

| FORMULA                        | NAME                     |
|--------------------------------|--------------------------|
| CBr <sub>4</sub>               | carbon tetrabromide      |
| PCl <sub>5</sub>               | phosphorus pentachloride |
| S <sub>2</sub> Br <sub>2</sub> | disulfur dibromide       |
| N <sub>2</sub> O <sub>4</sub>  | dinitrogen tetroxide     |
| $SO_2$                         | sulfur dioxide           |
| $I_2O_3$                       | diiodine trioxide        |
| Br <sub>2</sub> O              | dibromine monoxide       |

**Drill P: Drill in Determining When to Use Prefixes and Roman Numerals** 

| FORMULA                        | NAME                                                      |
|--------------------------------|-----------------------------------------------------------|
| PbCl <sub>2</sub>              | lead(II) chloride (ionic, cation with variable charges)   |
| SCl <sub>2</sub>               | sulfur dichloride (molecular)                             |
| MgCl <sub>2</sub>              | magnesium chloride (ionic, cation with fixed charges)     |
| Co <sub>2</sub> S <sub>3</sub> | cobalt(III) sulfide (ionic, cation with variable charges) |
| Al <sub>2</sub> O <sub>3</sub> | aluminum oxide (ionic, cation with fixed charges)         |
| N <sub>2</sub> Br <sub>4</sub> | dinitrogen tetrabromide (molecular)                       |
| K <sub>3</sub> P               | potassium phosphide (ionic, cation with fixed charges)    |

## **Drill Q: Drill on Naming Hydrates**

| Formula                                                                           | Name                               | Name                                | Formula                              |
|-----------------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| Ca(ClO <sub>3</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                             | calcium chlorate<br>dihydrate      | cobalt(II) fluoride<br>tetrahydrate | CoF <sub>2</sub> ·4H <sub>2</sub> O  |
| Sn(SO <sub>4</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                              | tin(IV) sulfate dihydrate          | zinc(II) acetate dihydrate          | $Zn(C_2H_3O_2)_2\cdot 2H_2O$         |
| NiSO <sub>4</sub> ·7H <sub>2</sub> O                                              | nickel(II) sulfate<br>heptahydrate | copper(II) nitrate<br>trihydrate    | $Cu(NO_3)_2\cdot 3H_2O$              |
| Co(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | cobalt(II) acetate<br>tetrahydrate | iron(III) bromide<br>hexahydrate    | FeBr <sub>3</sub> ·6H <sub>2</sub> O |

| End of Answers to the Nomenclature Tutorial Drills |  |
|----------------------------------------------------|--|
| *************************                          |  |