
AIS

A graph-based immune-inspired constraint satisfaction search

Marı́a-Cristina Riff • Marcos Zúñiga •

Elizabeth Montero

Received: 31 August 2007 / Accepted: 19 November 2008 / Published online: 30 June 2010

� Springer-Verlag London Limited 2010

Abstract We propose an artificial immune algorithm to

solve constraint satisfaction problems (CSPs). Recently,

bio-inspired algorithms have been proposed to solve CSPs.

They have shown to be efficient in solving hard problem

instances. Given that recent publications indicate that

immune-inspired algorithms offer advantages to solve

complex problems, our main goal is to propose an efficient

immune algorithm which can solve CSPs. We have cali-

brated our algorithm using relevance estimation and value

calibration (REVAC), which is a new technique recently

introduced to find the parameter values for evolutionary

algorithms. The tests were carried out using randomly

generated binary constraint satisfaction problems and

instances of the three-colouring problem with different

constraint networks. The results suggest that the technique

may be successfully applied to solve CSPs.

1 Introduction

Constraint satisfaction problems (CSPs) involve finding

values for problem variables, subject to constraints which

must be satisfied. Many real-world tasks can be expressed as

CSPs. Somewell-knownCSPs include the graph k-colouring

problem, the satisfiability problem, the scene-labelling

problem, temporal reasoning, resource allocation, planning,

scheduling and graph matching. Over the past few years,

many algorithms and heuristics have been developed to solve

CSPs. Following trends from the constraint research com-

munity, the bio-inspired computation community has pro-

posed some other approaches to tackle CSPs, such as

evolutionary algorithms [2, 6, 7, 10, 12, 16] and ants algo-

rithms [15]. Given that recent publications indicate that

artificial immune systems offer advantages in solving com-

plex problems [3, 5], our main goal is to propose an efficient

immune-inspired algorithm which can solve CSPs. We

restrict our attention to binary CSPs, where the constraints

involve two variables. If a variable i has a domain of potential

valuesDi and a variable j has a domain of potential valuesDj,

the constraint on i and j, Rij, is a subset of the Cartesian

product of Di and Dj. A pair of values (a, b) is called con-

sistent, if (a, b) satisfies the constraint Rij between i and j.

A binary CSP is associated with a constraint graph, where

nodes represent variables and arcs represent constraints.

Artificial immune systems, as well as evolutionary algo-

rithms, are very sensitive to their parameter values. Garrett in

[8] proposed a parameter-free clonal selection using adaptive

changes. In this paper, we use a recently proposedmethod for

tuning [11]. This method uses statistical properties to deter-

mine the best set of parameter values for an evolutionary

algorithm. The contributions of this paper are the following:

• An immune-inspired algorithm guided by the con-

straints graph which can solve hard CSPs,

• A new application of the tuning method relevance

estimation and value calibration (REVAC) proposed

for evolutionary algorithms [11].

Marcos Zúñiga has been financed as Scientific Assistant DGIP,

UTFSM.

Supported by Fondecyt Project 1080110.

M.-C. Riff (&) � M. Zúñiga � E. Montero

Department of Computer Science,

Technical University Federico Santa Marı́a,

Valparaı́so, Chile

e-mail: mcriff@inf.utfsm.cl

M. Zúñiga

e-mail: mzuniga@inf.utfsm.cl

E. Montero

e-mail: emontero@inf.utfsm.cl

123

Neural Comput & Applic (2010) 19:1133–1142

DOI 10.1007/s00521-010-0390-8

The first steps of this research have been presented in [13].

This paper is structured as follows. In the next section, we

describe the framework to be used to design our approach. In

Sect. 3, we define the binary constraint satisfaction problem.

In Sect. 4, we introduce our new approach: CD-NAIS. The

results of tests and a comparison with other incomplete

methods are presented in Sect. 5. In the last sections, we

present conclusions and future work.

2 Artificial immune systems

Artificial immune systems (AIS) are adaptive systems

inspired by immunological theory [3]. From the informa-

tion processing point of view, an AIS is a parallel and a

distributed adaptive system. It uses learning, memory and

associated recovery to do recognition and classification

tasks. Roughly speaking, the principal function of an

immune system is to protect the individual from the repe-

ated attacks of external agents. The system recognises and

discards doing an immune answer coming from one of the

two levels: the innate immune system or the adaptive

immune system. The cells of the innate immune system are

immediately able to take action against external attacks. In

the adaptive immune level, the antibodies are produced as

an answer to specific infections. These cells can develop a

memory, thus they will be able to recognise a future similar

attack. L. de Castro [3] proposed a framework to design an

AIS with the following components:

1. A representation to create abstract models of organs,

cells and immune molecules (antigen, antibody).

A molecule can, in general, be represented by a shape

space S like an attribute chain (set of coordinates) of

size L. Thus, an attribute chain m = \m1, m2, ...,

mL[corresponds to a point in the shape space.

2. A set of functions called affinity functions to quantify

the interactions between the AIS components (organs,

cells and molecules).

3. A set of algorithms to simulate the immune behav-

iour. In this work, we use two of the most known

models: the clonal selection and the immune network.

The clonal selection manages the interaction of the

immune system components. The immune network is

used to simulate both the dynamic and meta-dynamic

behaviour.

This framework is a general guide used to design arti-

ficial immune systems. When using this framework to

design an immune algorithm for a specific problem, the

main research task consists of defining all of its compo-

nents, the same way that this is done for other techniques

like genetic algorithms. To help the immune algorithm’s

search, this design process must take into account the

knowledge of the problem, and as far as possible, some

knowledge coming from other techniques. The effort of the

constraints research community has been traditionally

focused on developing methods to improve the perfor-

mance of the algorithm using the knowledge of the con-

straints, like pruning the search space. In order to use the

knowledge about constraints in immune algorithms, we

focus on the constraints graph that is defined in the fol-

lowing section.

3 Binary constraint satisfaction problems

We consider a CSP as defined by Mackworth [9], which

can be stated briefly as follows: given a set of variables, a

domain of possible values for each variable, and a con-

junction of constraints, each constraint is a relation defined

over a subset of the variables, limiting the combination of

values that the variables in this subset can take. The goal is

to find a consistent assignment of values to the variables so

that all the constraints are satisfied simultaneously. CSPs

are, in general, NP-complete problems and some are

NP-hard [1]. Thus, a general algorithm designed to solve

any CSP will, in the worst case, require exponential time

in problem solving. A CSP is composed of a set of

variables V = {X1, ..., Xn}, their related domain set D =

{D1, ..., Dn} and a set h containing g constraints on these

variables. The domain of a variable is a set of values to

which the variable may be instantiated. Each variable Xj is

relevant to a subset of constraints Cj_1, ..., Cj_k, where

{j1, ..., jk} is some subsequence of {1, 2, ..., g}. A con-

straint which has exactly one relevant variable is called a

unary constraint. Similarly, a binary constraint has exactly

two relevant variables. If two values assigned to variables

that share a constraint are not among the acceptable value-

pairs of that constraint, this is an inconsistency or con-

straint violation. We can represent a binary CSP by a

constraint graph defined as follows:

Definition 1 (Constraint Graph) The constraint graph of a

CSP (V, D, h) is a graph, in which each node represents a

variable in V, and each edge represents a constraint in h.

4 CD-NAIS: a constraint-directed network artificial

immune system

We have called our algorithm CD-NAIS which stands for

constraint-directed network artificial immune system. The

algorithm uses three immune components: antigen, anti-

body, and B-cells. Basically, the antigen represents the

information for each variable given by the constraint graph.

This information is related to the number of connections of

1134 Neural Comput & Applic (2010) 19:1133–1142

123

each variable, that is, the number of constraints where each

variable is a relevant variable. Thus, it is fixed information

and does not depend on the state of the search of the

algorithm. On the contrary, the antibody does strongly

depend on the state of the search of the algorithm. It has

two kinds of information: the variable values and the

constraints violated under this instantiation. Lastly, a B-cell

has all the antibody information required by the algorithm

for its evolution.

4.1 Immune components for a CSP

The immune components in our approach are defined as

follows:

Definition 2 (Antigen) For a CSP and its constraint

graph, we define the antigen Ag of the n-tuple of variables

(Ag1, ..., Agn), such that the Agi value is the number of

constraints where Xi is a relevant variable, Vi, i = 1, ..., n.

Thus, the antigen represents the maximal number of

inconsistencies for each variable. The algorithm needs to

know, for each pre-solution, its variable values and the

constraints satisfied under this instantiation. For this rea-

son, the antibody has two segments: a structural and a

conflicting segment.

Definition 3 (Structural Antibody) A Structural Antibody

Abs is a mapping from a n-tuple of variables (X1, ..., Xn)

?D1 9 _ 9 Dn, such that it assigns to each variable in V

a value from its domain. The structural antibody corre-

sponds to an instantiation of the CSP.

Definition 4 (Conflicting Antibody) For a CSP and its

constraints graph we define the Conflicting Antibody Abc of

the n-tuple of variables (Abc1, ..., Abcn), such that the Abci
value is the number of violated constraints, where Xi is a

relevant variable, Vi, i = 1, ..., n.

A solution consists of a structural antibody which does

not violate any constraint, that is, whose conflicting anti-

body complements the antigen. Before defining the B-cell,

we need to introduce the idea of affinity in the context of

our problem.

4.2 Affinity measure

For artificial immune systems, affinity is a measurement of

the interaction between two immune components. In our

approach, we are interested in two kinds of affinity. The

affinity between the antigen and a conflicting antibody, and

the affinity between two structural antibodies.

• Interaction between Ag $ Abc:

It is an estimation of how far the antibody is from being

a CSP solution. The key idea is that a solution of the

CSP corresponds to the largest value of the affinity

function between Abc and Ag. This occurs when all the

constraints are satisfied. We define the function Acsp to

measure this affinity as:

AcspðAg;AbcÞ ¼

ffi

X

n

i¼1

Agi � Abci þ Fdið Þ2

s

ð1Þ

where n is the number of variables of the CSP problem, Fdi
is called the dispersion factor defined by:

Fdi ¼
di

ðn� 1Þ � Agi
ð2Þ

with di equal to:

di ¼
X

n

i6¼j;j¼1

jAbci � Abcj j ð3Þ

The function Acsp does not only prefer a pre-solution with

a minimal number of violated constraints, but it also takes

into account how hard for the algorithm to repair this pre-

solution could be. This is done by including the function Fdi
as a conflict dispersion measure. Thus, given two pre-

solutions which satisfy the same number of constraints, the

algorithm prefers the one with the smallest number of

variables (nodes) involved in the constraints violations. The

value of the dispersion factor Fdi belongs to [0, 1). The Fdi
value is equal to 0, either when any of the variables are in

conflict (it is a solution) or when all the variables are

involved in the same number of conflicts. The following

examples illustrate how these functions are used. Consider

n = 3, Ag = {5, 5, 5}, and two pre-solutions to compare,

Ab1 = {5, 1, 5} and Ab2 = {5, 2, 5}. They differ in one

conflict less for Ab1 compared to Ab2, in variable 2. For

Ab1, Fd1 = 0.4, Fd2 = 0.8, Fd3 = 0.4, giving as result

Acsp = 2.227. For Ab2, Fd1 = 0.3, Fd2 = 0.6, Fd3 = 0.3,

giving as result Acsp = 1.881. Then, Ab1 is preferred,

demonstrating that, even with just one conflict of difference,

the number of conflicts is mandatory over the dispersion

factor to determine the best pre-solution.

Now consider the example in Fig. 1. It is a three-col-

ouring problem with five variables whose domains are the

three colours red (R), yellow (Y) and green (G) and the

constraints are that two connected nodes cannot have

the same colour. Given the instantiations Abs1 =

{R, Y, R, G, G} and Abs2 = {R, Y, Y, Y, R} both having

Fig. 1 Example: three-colouring problem

Neural Comput & Applic (2010) 19:1133–1142 1135

123

two conflicts, the function used in our algorithm prefers the

second instantiation. This is because there are just three

variables involved in the constraints violation (2, 3, 4) in

the second instantiation, instead of the four variables

(1, 3, 4, 5) involved in the first instantiation. The disper-

sion factor allows the algorithm to discriminate between

these instantiations. The affinity values are Acsp = 3.17 for

Abs1 and Acsp = 3.82 for Abs2.

• Interaction between Absi $ Absj:

The idea of using this measure, called HAs(Absi, Absj), is

to quantify how similar two pre-solutions are. To

compute this interaction, our algorithm uses the Ham-

ming distance, normalised by the number of variables n.

The algorithm prefers to have a diversity of pre-

solutions. This affinity measure will allow the antibody

network to keep the diversity of its elements.

4.3 B-cell representation

A B-cell is a structure with the following components:

• An antibody Ab = (Abc, Abs).

• The number of clones of Ab to be generated for the

clonal expansion procedure. This number is directly

proportional to the Acsp value.

• The hypermutation ratio used in the affinity maturation

step. This ratio is inversely proportional to theAcsp value.

4.4 The algorithm: constraint-directed network

artificial immune system

The CD-NAIS algorithm is shown in Fig. 2. The algorithm

works with a set of B-cells, following an iterative

maturation process. First, the Antigen Presentation proce-

dure calculates the affinity Ag $ Abc. The returned affinity

value corresponds to the result of Acsp(Ag, Abc), presented

in Eq. 1. Some of these B-cells are selected performing a

Clonal Selection, which prefers those B-cells with higher

affinity values Acsp, considering the B-cells selection rate

n1. It uses a Roulette Wheel selection procedure. The

algorithm generates clones of the B-cells selected. This is

done by the Clonal Expansion procedure, where a fixed

size population of clones is generated proportionally to the

Acsp affinity of the selected B-cells (for more details, see

Sect. 4.5.1). These clones follow a hypermutation process

in the Affinity Maturation step, which performs a local

search procedure that tries to repair the structural antibody

Abs. It is explained in Sect. 4.5.2. The new set of B-cells is

composed of a selected set of hypermutated clones. This

selection is done in the Build Network procedure, using the

Hamming Distance HAs between the structural antibodies

of the hypermutated clones in order to have a diversity of

new B-cells. The best antigen affinity hypermutated clones

will have priority to be included in the set of new B-cells.

This procedure is detailed in Sect. 4.5.3. The algorithm

adds new B-cells randomly generated by the Meta-dynamic

procedure to this set of B-cells, suppressing the lower

affinity B-cells, by a pre-defined new B-cells insertion rate

n2. Thus, the algorithm does exploration and exploitation.

This process is repeated until a pre-defined number of

iterations or until a solution is found.

4.5 Other immune processes involved with CD-NAIS

Several CD-NAIS procedures involving important immune

processes will be reviewed in more detail. The following

sections will present these procedures.

Fig. 2 CD-NAIS pseudocode

1136 Neural Comput & Applic (2010) 19:1133–1142

123

4.5.1 Clonal expansion

The clonal expansion procedure, presented in Fig. 3, gen-

erates a set of clones using the set of B-cells, previously

selected by the clonal selection procedure. The constant

parameter clones_number represents the total number of

clones to be generated. The hypermutation rate of a B-cell

belongs to the interval [min_rate, max_rate], and it is

inversely proportional to the affinity of the B-cell. This

procedure generates the clones directly proportionally to

the affinity of each B-cell, in order to generate a fixed size

set of clones_number clones. This procedure also sets the

hypermutation rate for each clone as the hypermutation rate

of the spawning B-cell, used by the Affinity Maturation,

which is detailed in the following section.

4.5.2 Affinity maturation

The affinity maturation procedure, presented in Fig. 4, per-

forms a hypermutation process to a set of CLONES, modi-

fying the variable values represented in the structural

antibody Abs. This procedure uses the information given by

the conflicting antibodies Abc, guiding the hypermutation to

the variables involved in more conflicts. Given a clone, the

algorithm computes the number of conflicts where each

variable is involved. This value is normalised according to

the variable which is involved in the highest number of

conflicts. The value obtained is called conflicts_rate and

belongs to the interval [0, 1]. A weighted rate mod_rate is

computed using both the hypermutation rate of the clone and

conflicts_rate, to guide the hypermutation procedure to

Fig. 3 Pseudo-code for clonal

expansion procedure, used by

CD-NAIS algorithm

Fig. 4 Pseudo-code for affinity

maturation procedure, used by

CD-NAIS

Neural Comput & Applic (2010) 19:1133–1142 1137

123

variables that are involved in a greater number of conflicts.

In Fig. 4, constants a and b represent the weights for the

conflicts_rate and hypermutation rate, respectively. The

computed weighted rate mod_rate is used to randomly

determine whether a variable will be mutated or not. If a

variable is selected to be mutated, the new value for a vari-

able is randomly chosen from its domain. The variable value

is changedwhen the new chosen value reduces the number of

conflicts of the clone. If this new value does not improve the

clone affinity, it can still be selected according to a pre-

defined probability exploration_rate. Thus, this procedure

performs exploration and exploitation of the search space.

Exploitation is performed by the hypermutation which is

focused on repairing the variables involved in more con-

flicts. For exploration, the algorithm allows acceptance of

pre-solutions with worse affinity, instead of the current one.

4.5.3 Immune network construction

The build network procedure uses the immune network

concepts to generate a set of diverse memory B-cells. This

procedure, described in Fig. 5, uses a set of hypermutated

clones ordered from the highest to the lowest affinity Acsp

to generate a set of memory B-cells.

Fig. 5 Pseudo-code for build

network procedure, used by

CD-NAIS

1138 Neural Comput & Applic (2010) 19:1133–1142

123

A suppression counter is defined in order to evaluate

how similar a clone is to the clones in memory. The key

idea is the diversity. The selection process is done by

including clones that are quite different from the clones

that are already in memory. It begins by the clones with a

suppression counter equal to zero. At each step, the sup-

pression counter is re-computed considering the new clone

included in memory. The suppression counter of the clones

that are similar to the new one in memory will be incre-

mented if HAs(Absi, Absj)\ �, where i is the clone cur-

rently added to the memory B-cells set. Therefore, the �

value is used by the algorithm to manage the minimal

degree of diversity. The � value is known as the threshold

of crossing reactivity. When no more clones with a sup-

pression counter equal to zero are available, the clones with

the lowest suppression counters are incorporated, until the

number of B-cells in memory has been completed.

5 Experimental results

We have used a collection of two different types of prob-

lems to evaluate the performance of our algorithm. The

first type of problems is a set of randomly generated binary

CSPs, [14], and the second one is a set of hard instances of

the well-known three-colouring problem. We describe both

types of problems in the following sections.

5.1 Random binary CSPs

For random binary CSPs, we compared CD-NAIS with

GSA [6], which is a sophisticated evolutionary algorithm

used to solve CSPs and strongly uses knowledge derived

from the constraints research community. We also com-

pared CD-NAIS with SAW [2]. SAW has been compared

with both complete and incomplete well-known algorithms

for CSPs obtaining better results in most of the cases tested.

The idea of these tests was to study the behaviour of the

algorithm when solving hard problems. We used two

models to generate binary CSPs. That is because GSA has

been reported using model B proposed in [14], and SAW

has been reported using model E [2].

5.1.1 Model B

The binary CSPs belonging to the hard zone are randomly

generated using the model proposed by B. Smith in [14].

This model considers four parameters to obtain a CSP. That

is, the number of variables (n), the domain size for each

variable (m), the probability p1 that a constraint exists

between two variables, and the probability p2 of compati-

bility values. This model exactly determines the number of

constraints and the number of consistent instantiations for

the variables that are relevant for a given constraint. Thus,

for each set of problems randomly generated, the number of

constraints is
p1nðn�1Þ

2
, and for a given constraint the number

of consistent instantiations is m2p2. Given (n, m, p1) B.

Smith defines a function to compute critical p2 values (p̂2crit
values, defined in Eq. 4). These values allow obtaining CSPs

in the transition phase, which correspond to problems that

are harder to be solved.

p̂2critðn;m; p1Þ ¼ m
� 2

ðn�1Þp1 ð4Þ

5.1.2 Model E

This model also considers four parameters (n, m, p, k). The

parameters n and m have the same interpretation than in

model B. For binary CSPs whose constraints have two

relevant variables, k = 2 in model E. The p parameter

corresponds to the probability that a pair of values for a

pair of variables is valid. The higher p the more difficult, on

average, the problem instances will be.

5.2 3-Colouring problem

The goal of this test is to evaluate the performance of

CD-NAIS in front of real-world cases as the well-known

three-colouring problem. Applications of the 3-colouring

problem are scheduling, frequency assignment, or register

allocation. We have used the Joe Culberson library1 to

generate random graphs to be coloured. These graphs have

at least one solution.

5.3 Hardware

The hardware platform for the experiments was a PC

Pentium IV Dual Core, 3.4Ghz with 512 MB RAM under

the Linux Mandriva 2006 operating system. The algorithm

has been implemented in C. The code for CD-NAIS is

available on a website2. The tests allowed to evaluate the

performance of CD-NAIS when it was calibrated using the

REVAC technique for tuning. In the following section, we

describe the tuning process for CD-NAIS.

5.4 REVAC

The relevance estimation and value calibration (REVAC)

has recently been proposed in [11]. The goal of this algo-

rithm is to determine the parameter values for evolutionary

algorithms. It is also able to identify which parameters are

not relevant for the algorithm. Roughly speaking, REVAC

is a steady-state evolutionary algorithm for tuning another

1 http://www.web.cs.ualberta.ca/joe/.
2 http://www.sop.inria.fr/orion/personnel/Marcos.Zuniga/CSPsolver.

zip

Neural Comput & Applic (2010) 19:1133–1142 1139

123

evolutionary algorithm. REVAC uses a real-value repre-

sentation, where each value corresponds to a parameter

value of the algorithm to be tuned. Each chromosome in

REVAC is evaluated by the performance obtained by the

algorithm (to be tuned) using its parameter values. It uses

recombination and mutation operators. In order to apply

REVAC to calibrate CD-NAIS, we have selected 14

problems, two from each category\10, 10, p1, p2[using

model B. The performance for each chromosome is com-

puted as the number of satisfied constraints by the solution

obtained by CD-NAIS using the parameter values of the

chromosome. The parameter values found by this tuning

procedure were as follows:

• n1 = 0.3, rate of cells to be expanded

• n2 = 0.4, rate of cells to be incorporated on the

memory

• � = 0.40, reactivity threshold between clones

• Number of B-cells = 5

• Number of clones = 100

This means that CD-NAIS requires doing more explo-

ration than it does using a hand-made calibration. In the

hand-made calibration, the hypermutated cell is accepted if

it differs at least by 54% (� = 0.46) from the memory cells.

Now, it must differ at least by 60% to be accepted. Fur-

thermore, the number of cells to be expanded has been

reduced by 0.2. The procedure required around 14 h,

computational time, to determine these parameter values.

5.5 Comparison between CD-NAIS and GSA

using model B

Because the reported results of GSA [6] have been evalu-

ated with the problems in the hardest zone, as they were

generated in [14], we ran the calibrated CD-NAIS using

problems generated with the parameters (n, m, p1, p2). We

considered the problems with n = m, where n = 10. The

p1 and p2 values are those belonging to the hardest zone.

The table in Fig. 6 shows the percentage of problems

solved and the time required for GSA, and those obtained

by CD-NAIS considering 10, 000, 50, 000 and 75, 000

evaluations. In this table, the category c0.3_t0.7 means

p1 = 0.3 and p2 = 0.7, and so on.

CD-NAIS has a higher satisfaction rate than GSA;

moreover, it converges very quickly to good solutions.

Furthermore, in considering just 10,000 evaluations, the

average success rate for CD-NAIS was around 83% instead

of 72% for GSA. However, in some categories, GSA out-

performs CD-NAIS. In order to be more exact in our

comparison, we wanted to also use REVAC for tuning

GSA. However, the GSA code is not available and some

designing considerations lack precise specification in the

original publication.

5.6 Comparison between CD-NAIS and SAW

using Model E

We have generated 250 problem instances in the hard zone

using Model E. Figure 7 shows the success rate and the

time in seconds for both algorithms. We can observe that

CD-NAIS outperforms SAW in both time and success rate.

Moreover, the average success rate for SAW is 40.6%

instead of a 69.2% for CD-NAIS, in just considering

10,000 iterations. CD-NAIS has just required 4.1 s, on

average, for this number of iterations. Figure 8 shows the

results for CD-NAIS and SAW. We can observe the tran-

sition phase in p = 0.31 for CD-NAIS.

We have also tuned SAW using REVAC. The parame-

ters found by REVAC are different from the reported in the

original work. The results obtained by SAW using the

parameters values found by REVAC are shown in Fig. 9.

For most of the tested problems, we have obtained better

results with SAW using hand-made tuning than using the

parameter values found by REVAC. Therefore, REVAC

Fig. 6 Success rate and CPU

time for CD-NAIS and GSA

Fig. 7 Success rate and CPU time for CD-NAIS and SAW

1140 Neural Comput & Applic (2010) 19:1133–1142

123

does not significantly improve the results obtained with

SAW. In only one case (p = 0.27), REVAC has allowed an

improvement of 1.2% of the SAW results.

5.7 Tests for 3-colouring problems

The idea of these tests is just to show that CD-NAIS can

solve real-world cases. For these tests, we have generated

graphs with a sparse topology, as they are known to be the

most difficult ones to solve. For each number of constraints

from {90, 120, 150, 180, 210, 240, 360}, we have gener-

ated 100 random 3-colouring graph problems. In order to

discard the easy problems, we have applied DSATUR [4].

DSATUR is one of the best algorithms to solve this kind of

problems. Finally, the problems used for testing are 50

problems, for each category, selected from those that

DSATUR cannot solve. Figure 10 shows the percentage of

graphs solved by CD-NAIS using 10,000 iterations. We

have also included the percentage of graphs solved by

CD-NAIS using other parameter configurations with just

10 B-cells and 3 clones found by tuning. It shows that the

algorithm performance is sensitive to the parameter values.

CD-NAIS is able to solve some hard instances of the

three-colouring problems. Furthermore, like for all other

known solvers, the problems in the transition phase are also

the most difficult ones for CD-NAIS.

6 Conclusions

Artificial immune systems have some interesting charac-

teristics from the computational point of view: pattern

recognition, affinity evaluation, immune networks, and

diversity. All of these characteristics have been included in

our algorithm. The B-cell structure is useful to determine

both the solution of the problems and also to identify

conflicts. The conflicting antibody is used by the algorithm

to guide the reparation of the solutions (hypermutation

process), giving more priority to the variables involved in a

higher number of conflicts. For the problems in the hardest

zone CD-NAIS solved, on average, 28% more problems

than SAW (one of the best known evolutionary algo-

rithms), just using 10,000 iterations (avg. 4.1 s). The cali-

brated CD-NAIS solved more problems than GSA, which

is a sophisticated genetic algorithm that incorporates many

constraint concepts to solve a CSP. Artificial immune

systems are promising techniques to solve constrained

combinatorial problems.

7 Future work

The use of parameter control strategies into the algorithm

is a promising research area. This is mainly because the

tuning process used to define the parameter values for

CD-NAIS is a time-consuming task. Moreover, the pro-

cess of changing the parameter values during the search

has shown to be a key idea in helping evolutionary

algorithms converge to find near-optimal solutions. We

expect that CD-NAIS would benefit from using similar

strategies.

References

1. Cheeseman P, Kanefsky B, Taylor W (1991) Where the really

hard problems are. In: proceedings of the international joint

conferences on artificial intelligence (IJCAI91), pp 163–169

2. Craenen BGW, Eiben AE, van Hemert JI (2003) Comparing

evolutionary algorithms on binary constraint satisfaction prob-

lems. IEEE Trans Evol Comput 7(5):424–444

3. de Castro LN, Timmis J (eds) (2002) Artificial immune systems:

a new computational intelligence approach. Springer, London,

UK

 0

 20

 40

 60

 80

 100

 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

 Comparison between CD−NAIS and SAW

CD−NAIS − 10.000 it.
CD−NAIS − 50.000 it.
CD−NAIS − 75.000 it.

SAW − 100.000 ev.

Fig. 8 Different problems tested, comparison of % successful runs

Fig. 9 SAW success rate tuned using REVAC

Fig. 10 Percentage of graphs solved for the three-colouring problem

Neural Comput & Applic (2010) 19:1133–1142 1141

123

4. Brelaz D (1979) New methods to color the vertices of a graph.

Commun ACM 22:251–256

5. Dasgupta D. (eds) (2000) Artificial immune systems and their

applications. Springer, Berlin

6. Dozier G, Bowen J, Homaifar A (1998) Solving constraint sat-

isfaction problems using hybrid evolutionary search. IEEE Trans

Evol Comput 2(1):23–33

7. Eiben AE, van Hemert JI, Marchiori E, Steenbeek AG (1998)

Solving binary constraint satisfaction problems using evolution-

ary algorithms with an adaptive fitness function. In: Proceedings

of the 5th international conference on parallel problem solving

from nature (PPSN-V), LNCS 1498, pp 196–205

8. Garrett SM (2004) Parameter-free, adaptive clonal selection. In:

Proceedings of the IEEE congress on evolutionary computation

(CEC04), vol 1, pp 1052–1058

9. Mackworth AK (1977) Consistency in network of relations.

Artificial Intelligence 8:99–118

10. Marchiori E (1977) Combining constraint processing and genetic

algorithms for constraint satisfaction problems. In: Proceedings

of the 7th international conference on genetic algorithms

(ICGA97), pp 330–337

11. Nannen V, Eiben A (2007) Relevance estimation and value cal-

ibration of evolutionary algorithm parameters. Proceedings of the

joint international conference for artificial intelligence (IJCAI),

pp 975–980 (2007)

12. Riff MC (1998) A network-based adaptive evolutionary algo-

rithm for csp. In: metaheuristics: advances and trends in local

search paradigms for optimisation, chap 22. Kluwer Academic

Publisher, Dordecht, pp 325–339

13. Riff MC, Zuniga M (2007) Towards an immune system to solve

csp. Proceedings of the IEEE congress on evolutionary compu-

tation Singapur(In Press.)

14. Smith BM, Dyer ME (1996) Locating the phase transition in

binary constraint satisfaction problems. Artificial Intelligence

81(1–2):155–181

15. Solnon C (2002) Ants can solve constraint satisfaction problems.

IEEE Trans Evol Comput 6(4):347–357

16. Tsang EPK, Wang CJ, Davenport A, Voudouris C, Lau TL

(1999) A family of stochastic methods for constraint satisfaction

and optimization. In: Proceedings of the 1st international con-

ference on the practical application of constraint technologies and

logic programming (PACLP), London, pp 359–383

1142 Neural Comput & Applic (2010) 19:1133–1142

123

