
CANopen implementation Guide Elmo Motion Control

CANopen
Implementation Guide

for
“SAXOPHONE, CLARINET”

Servo Drives

Rev 01/02

CANopen implementation Guide Elmo Motion Control

Rev 01/02 2

Revision Description

01/02 Modified Commands:

• Correction in XC,XQ commands object 0x2074.

Manufacture new objects:

• 0x2031 – Binary Upload and Download object

• 0x2041 – The latched timer

• 0x2051 – Unsynchronized erupt instruction

• 0x2052 – Unsynchronized homing done message.

• 0x208A – Synchronized Begin on Time object.

• 0x2090 – Download Firmware.

• 0x2F0A – System Internal 32 bit timer.

• 0x2F11 – PVT Head Pointer.

• 0x2F12 – PVT Tail Pointer.

05/01 Manufacture new objects:

• 0x206A – Error Code value according to EC command.

• 0x2F00 – IA array.

• 0x2F0B – Status Object

• DS402 objects:

• 0x6402 - Motor Type

• 0x6403 – Motor Catalog Number

• 0x6404 – Motor manufactor

• 0x6502 – Supported dirver modes

• 0x6504 – Driver manufacturer

• 0x6505 - Driver manufacturer web site.

Modified Commands:

• Object 0x1400 is read write.

11/00 Modified Commands:

• Correction in SYNC and TIME STAMP section

• Correction in NMT emcy code.

• Correction in PDO mapping section

• Last byte in UploadProgram (0x2070) is 0x08

• Emergency code 0x3b to 0x34

• RPDO2 was corrected for default value and mapped object

Manufacture new objects:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 3

• 0x2004 – Fast ECAM entry.

• 0x20A1 – Main Position Error.

• 0x2B01 – Velocity Factor.

• 0x2B02 – Current Factor.

• 0x6071 – Torque Command.

• 0x6078 - Active Current.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 4

Table of Contents:

1 PURPOSE...9

2 RELEVANT DOCUMENTS ...10

3 GLOSSARY..11

4 INTRODUCTION...12

5 WHAT IS CANOPEN? ...13

5.1 Physical Layer..13

5.2 Standard Vs. Extended Addressing ...13

5.3 Client and Servers Relation..13

5.4 Inhibit Times..14

5.5 Object Dictionary ..14

5.6 Communication Objects ...15

5.7 Example..16

6 DATA TYPE...17

6.1 Device Specific Data Types ...17
6.1.1 PVT DataPar Object 0x60...17
6.1.2 PT DataPar Object 0x61..17
6.1.3 Binary Interpreter Inquiry Object 0x62...17
6.1.4 Binary Interpreter Command Object 0x63..18

7 REPRESENTATION OF NUMBERS ...19

8 THE OBJECT DICTIONARY ..20

9 SERVICE DATA OBJECTS (SDO)...25

9.1 Initiate SDO Download Protocol..26

9.2 Download SDO Segment Protocol..27

9.3 Initiate SDO Upload Protocol...28

CANopen implementation Guide Elmo Motion Control

Rev 01/02 5

9.4 Upload SDO Segment Protocol.. 29

9.5 Abort SDO Transfer Protocol.. 30

9.6 Uploading Data Using an SDO .. 30

9.7 Example: Expedited SDO... 31

9.8 Downloading Data Using an SDO.. 31

9.9 Error Correction... 32

9.10 SDO Abort Codes:... 33

10 PROCESS DATA OBJECTS (PDO).. 34

10.1 Receive PDO .. 34

10.2 Transmit PDO ... 35

10.3 PDO Mapping.. 35
10.3.1 The Mapping Trigger.. 36

11 EMERGENCY ... 40

11.1 Emergency Codes Related to Failure... 40

11.2 Emergency Codes for Interpreter .. 42

11.3 Emergency Codes for Motor Fault .. 42

11.4 Emergency Codes Related to PVT/PT Motion ... 44

12 NETWORK MANAGEMENT (NMT), AND SYNCHRONIZED MOTION

INITIATION ... 45

13 SYNC AND TIME STAMP ... 47

13.1 Important Note .. 47

14 BINARY INTERPRETER COMMANDS.. 49

14.1 ASCII Interpreter Commands That Are Not Supported By The Binary Interpreter 52

15 COMMUNICATION OBJECT DETAILS .. 53

15.1 Object 0x1200 SDO Server Parameter .. 53

15.2 Object 0x1400 – 0x1403 Receive PDO Communication Parameter.. 54

CANopen implementation Guide Elmo Motion Control

Rev 01/02 6

15.3 Object 0x1600 – 0x1601 Receive PDO Mapping ...55

15.4 Object 0x1800 – 0x1803 Transmit PDO Communication Parameter56

15.5 Object 0x1A00 – 0x1A03 Transmit PDO Mapping...57

16 SPECIAL TREATED OBJECT DETAILS ..58

16.1 Object 1010H – Save Parameters ...58

16.2 Object 1011H – Restore Parameters ..60

17 MANUFACTURE OBJECT DETAILS ...62

17.1 Object 0x2001 PVT Data...62

17.2 Object 0x2002 PT Data..63

17.3 Object 0x2003 Fast Position Data...64

17.4 Object 0x2012 Binary Interpreter Inquiry ..65

17.5 Object 0x2013 Binary Interpreter Command ...66

17.6 Object 0x2030 Recorder Data...67
17.6.1 Bring Data Upload Process ...71

17.7 Object 0x2031 Binary Up / Down sequence (HS) ...72

17.8 Object 0x2040 Coordinate System ID ..73

17.9 Object 0x2041 – Latched Free running Timer . ..74

17.10 Object 0x2050 MS Event Trigger ...75

17.11 Object 0x2051 EI Event Trigger...76

17.12 Object 0x2052 Main Homing Event Trigger ...77

17.13 Object 0x2060 Reference table..78

17.14 Object 0x206A Error Code Value (EC command)..79

17.15 Object 0x2070 List/Download a program ..80
17.15.1 User Program Upload Process...80
17.15.2 User Program Downloading Process...80

17.16 Object 0x2071 Upload/Download Code Status..81
17.16.1 Code Status Upload Process..81
17.16.2 Single Code Download Process...81

17.17 Object 0x2072 Program Message (MZ command)..82

CANopen implementation Guide Elmo Motion Control

Rev 01/02 7

17.18 Object 0x2073 Program Compilation .. 83

17.19 Object 0x2074 Execute User Program... 84

17.20 Object 0x2080 CPU Dump.. 86
17.20.1 CPU Dump Upload Process.. 86

17.21 Object 0x2081 CAN Controller Status .. 87

17.22 Object 0x208A - Begin Time.. 89

17.23 Object 0x2090 Firmware Download .. 90

17.24 Object 0x2091 Firmware Downloading Status ... 92

17.25 Object 0x20A0 Auxiliary Position Actual Value... 93

17.26 Object 0x20A1 MainPosition Error. .. 94

17.27 Object 0x20B1 Velocity Factor... 95

17.28 Object 0x20B1 Current Factor... 96

17.29 Object 0x2F00 Integer Array (IA). .. 97

17.30 Object 0x2F0A - Amplifier Free running Timer . .. 98

17.31 Object 0x2F0B Status Object. .. 99

17.32 Object 0x2F11 – PVT Head Pointer . .. 100

17.33 Object 0x2F12 – PVT Tail Pointer .. 101

18 ERROR CONTROL PROTOCOL .. 102

18.1 Node Guarding and Life Guarding.. 102

18.2 Node Guarding and Life Guarding.. 103

19 FIRMWARE DOWNLOADING ... 104

20 INITIAL SETUP FOR CAN COMMUNICATION.. 105

CANopen implementation Guide Elmo Motion Control

Rev 01/02 8

List of Tables:
TABLE 4-1: COMMUNICATION TYPES ...12
TABLE 5-1: COMMUNICATIOB OBJECTS..15
TABLE 5-2: COB TYPES ..16
TABLE 6-1: DATA TYPES...17
TABLE 8-1: OBJECT DICTIONARY ...24
TABLE 9-1: EXPEDITED SDO – CLIENT MESSAGE..31
TABLE 9-2: EXPEDITED SDO – SERVER RESPONSE ..31
TABLE 9-3: ABORT DOMAIN TRANSFER MESSAGE STRUCTURE ..32
TABLE 9-4: SDO ABORT CODES ...33
TABLE 10-1: PROCESS DATA OBJECTS..34
TABLE 10-2: SERVICE DATA OBJECTS ..35
TABLE 10-3: ANSWERED SDO ..35
TABLE 11-1: EMERGENCY CODE...42
TABLE 11-2: EMERGENCY CODE FOR INTERPRETER ..42
TABLE 11-3: EMERGENCY CODE (PVT/PT MOTION) ...44
TABLE 12-1: NETWORK MANAGEMENT (NMT) ...45
TABLE 12-2: SUPPORTED NMT SERVICES ..45
TABLE 14-1: BINARY INTERPRETER COMMANDS ...49
TABLE 14-2: BINARY INTERPRETER COMMANDS – SET VALUE COMMAND50
TABLE 14-3: BINARY INTERPRETER COMMANDS – GET VALUE COMMAND......................................50
TABLE 14-4: BINARY INTERPRETER COMMANDS – EXECUTE COMMAND ...50
TABLE 14-5: BINARY INTERPRETER COMMANDS – EXAMPLE QP COMMAND51
TABLE 14-6: BINARY INTERPRETER COMMANDS – EXAMPLE AC COMMAND51
TABLE 14-7: BINARY INTERPRETER COMMANDS – EXAMPLE MC COMMAND..................................51
TABLE 14-8: NOT BINARY INTERPRETER COMMANDS ...52
TABLE 17-1: UPLOAD SDO ...71
TABLE 20-1: CAN COMMUNICATION ...105

CANopen implementation Guide Elmo Motion Control

Rev 01/02 9

1 Purpose

This document details the implementation of CAN communication with the ELMO line of digital
servo drives, more specifically for the Clarinet and Saxophone models.
This implementation guide is designed to provide a familiarity with the products. It is not a
replacement for a thorough reading and understanding of the product documentation.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 10

2 Relevant Documents

Num Name Author Source

1 CAN Implementation Guidelines. Gruhler G. & Dreier B. STA Reutlingen

2 CAL Based Communication Profile
for Industrial Systems, CiA
Standard DS-301, Ver 4.01, 2000.

 CiA

3 PVT motion – an application brief. Elmo Motion Control

4 PT motion – an application brief. Elmo Motion Control

5 Big and little Endians. Http://www.carmel.co
m/pmon/pmon5/html/e
ndian.htm

6 Metronom Command reference. Elmo Motion Control

7 CMS Protocol Specification, CiA
standard DS-202-2.

 CiA

8 Metronome Software manual. Elmo Motion Control

CANopen implementation Guide Elmo Motion Control

Rev 01/02 11

3 Glossary

Item Description

CAL CAN Application Layer.

CAN Client or
CAN Master

The node in the CAN network that commands the other nodes.

CAN Server or
CAN Slave

A commanded node in the CAN network. The Elmo servo drives are CAN
servers.

CMS CAN Message Specification.

COB Communication object – A CAN message.

ID Identifier. The ID is the name by which a CAN device is addressed.

COB-ID A binary bit field that includes the ID of the server with which the master
talks, and the type of the COB.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 12

4 Introduction

The Elmo line of digital servo drives support two types of serial communication.
1. RS232
2. RS485 (Option)
3. CANopen – Full CiA DS-301 compliance.
The servo drive can simultaneously communicate using the CAN and the RS232 communication
lines. Both the RS232 line and the CAN line are always open for communication.
The parameters of the communication need to be set, as explained later in this document.
The following table compares the two supported communication methods.

Property CANopen RS-232/RS485

Baud rate 10000 – 1000000. 38400 (RS232), 19200(RS485)

Interpreter method Binary. ASCII.

Fast referencing Yes for PVT ant PT motions. No.

Multiple servo
drives

Yes. RS485 only (Future).

Multiple servo drive
synchronization

Yes. No.

Special equipment
required

CAN communication interface
(available as an Add-In ISA or
PCMCIA card for PC computers)
with appropriate software.

Direct connection to the serial port
of a PC computer.

Standardized Compliance with the CiA DS-301
standard.

No standard.

Ease of use Basic capabilities are included in
the Composer program from
ELMO.

Immediate – just type the
command using HyperTerminal or
an equivalent terminal software.

Table 4-1: Communication Types

RS232 operation is fast and simple, requiring no detailed understanding of communication
processes.
CANopen communication achieves higher rates and is able to support the following advanced
functions:
- High speed on line reference generation, required to support complex motions.
- Binary interpretation, which maximizes servo drive command throughput, by eliminating servo

drive software overhead.
- Multiple servo drive applications.
 To benefit from the advantages of CAN communication and the CiA DS-301 CANopen standard,
the user must have a good understanding of the basic programming and timing issues of a CANopen
network.

Note:

In the rest of this document, the terms “transmit” and “receive” refer to the servo drive. “Received”
data is sent from the commanding equipment to the servo drive, and “Transmitted” data is sent from
the servo drive.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 13

5 What is CANopen?

This section explains some of the CANopen communication issues that are most relevant to Elmo
servo drives. This is an overview and more detail is available in [1] and [2].

5.1 Physical Layer

CAN is a serial communication standard. It requires that the data to be transferred be coded as
electrical pulses on two wire communication lines. The device that handles the CAN physical layer
is called the CAN controller. The device that transmits data over the CAN lines is called the CAN
transceiver.
Elmo servo drives use the Intel 82527 CAN controller. The Intel 82527 CAN controller has 16
message buffers, of which Elmo controllers use several. Each message buffer is actually an
independent communication device which deals with its unique type of communication object
(message). The communication objects used will be explained later in this document.
Each message buffer stores up to 8 bytes of message body, in addition to the overhead data. The
overhead data defines the message type, attributes and address.

5.2 Standard Vs. Extended Addressing

The overhead attached to each CAN message includes an arbitration field. The arbitration field
(COB-ID) defines the type of data sent and the address.
CAN ver. 2.0A supports 11 arbitration bits. Of these 11 bits, the 7 least significant define the address
and the 4 most significant bits define the type of message sent. Note: that only 16 message types are
supported.
CAN ver. 2 .0B supports 29 arbitration bits. Of these, the seven least significant define the addressee
and 21 bits define the message type.
CAN communication is prioritized – messages with higher priority are transmitted first. The
arbitration field determines the priority of a message. The lower the number in the arbitration field,
the higher the message priority . The ID 0 grants the highest available priority.
Elmo products only support the CAN ver. 2.0A addressing method.This means that bit 29 in the
arbitration field MUST BE zero, with the 11 ID bits transmitted immediately after that.
A setup parameter (PP[15]) selects the CAN object identification version to use. This parameter is
presently reserved , and must be set to zero. Future software versions may support 2.0B object
identification mode.

5.3 Client and Servers Relation

A CAN Client, or Master, is a node that asks other nodes to respond to its command.
A CAN Server, or Slave, responds to the commands issued by the CAN master.
The CAN protocol permits multiple master networks as well as single master networks.
Elmo servo drives assume a single-master network arrangement. The servo drives are the servers and
the machine controller or PLC is the master.
Every servo drive has a unique ID in the range 1-127. The network master does not need an ID.
A servo drive never sends un-asked-for messages, other then Emergencies.
A servo drive responds only to messages addressed to its ID, or to broadcast messages, which have
the ID of 0. All the messages sent by a servo drive are marked with its own ID.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 14

Please Note: that if two servo drives have the same ID, then the CAN network may freeze until reset.

5.4 Inhibit Times

The inhibit time for a given message type, is the minimal time that must elapse from the transmission
of a message of that type, until the next time transmission of this message is allowed again.
Inhibit times are meant to prevent high priority messages from flooding the bus, eliminating the
ability to service messages of lower priority.
The inhibit times of Elmo servo drives are not programmable. The inhibit times for the client to
eliminate flooding of the servo drive, are 0.5msec for PDO1, 1 msec for SDO. Inhibit-times for NMT
messages are not defined as NMT messages are considered infrequent.

5.5 Object Dictionary

An object dictionary (OD) is a naming system that gives a unique identifier to every data item that
needs to be communicated over the CAN bus.
A data item that is referenced in the dictionary is called an object.
An object is identified by an index and if it is a complex object, also by a sub-index.
A CANopen client can manipulate an object of a CANopen server by referring to its identifier,
according to the access permission of the object (The access permission to an object may be read
only, write only, or read-write).
CiA DS-301 requires that a set of mandatory data items be supported by any CANopen devices.
Other OD items are predefined by CiA DS-301 to have fixed identifiers, if supported. There is also
room in the OD for manufacturer specific items.

1 See definitions of COB types in Communication Objects.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 15

5.6 Communication Objects

The combination of useful data bytes with their accompanied overhead is called a Communication

object (COB). Elmo servo drives use the following COB types:

COB type Explanation

SDO (Service Data Object) SDO messages are used to manipulate OD objects using their
identifier. The server receive SDO specifies in its message body
which object is to deal with.
SDO messages can be chained to form a “domain transfer”.
Domain transfers are useful for large data items such as long
strings.
Domain transfers pay with speed for safety. In the process of
message download, for every downloaded data segment a full
sized data segment is uploaded for verification. Similarly, in the
process of message upload, for every uploaded data segment a
full sized data segment is downloaded for verification. This takes
its time, since the CAN bus is half-duplex.

PDO (Process Data Object) PDO messages are used to manipulate OD objects without
explicit reference to their identifier, eliminating the need to
communicate the object identifier. This is possible if there is a-
priory (?) convention about the OD item referred.
A convention that relates a PDO to an OD object is called PDO
mapping.
PDO mappings by themselves are OD objects, so they may be
defined and manipulated using an SDO.

EMCY (Emergency) Emergency messages are used by the servo drives to warn of an
exception. The EMCY is the only COB type that a servo drive
may transmit without being explicitly asked.
EMCY objects are like “interrupts” from the servo drive – they
eliminate the need to poll the servo drive continuously for its
status.

NMT (Network
management)

NMT objects are used by a client to initialize a servo drive as a
server.

Table 5-1: Communicatiob Objects

The CANopen CiA DS-301 standard also defines other objects that Elmo servo drives do not
implement, such as DBT (Distribution). All these COB types are not mandatory for compliance with
the CiA DS-301 standard.
The type of a COB is resolved by the arbitration field of the message, and therefore determines its
priority. The relation between bits 8-11 of the arbitration field (COB ID) and the type of the COB is
presented in the table below.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 16

COB type Bits 8-11 of COB

ID

ID range

NMT 0000 0-127 (0-7fh)

SYNC 0001 128 (80h)

EMERGENCY 0001 129-255 (81h-ffh)

Unused (Reserved for PDO1 –
Transmit)

0011 385-511 (181h-1ffh)

PDO1 – Receive 0100 513-639 (201h-27fh)

PDO2 Transmit 0101 641-767 (281h-2ffh)

PDO2-Receive 0110 769-895 (301h-37fh)

PDO3 – Transmit 0111 897-1023 (381h – 3ffh)

PDO3 – Receive 1000 1025-1151 (401h – 47fh)

PDO 4 – Transmit 1001 1153-1279 (481h – 4ffh)

PDO 4 -Receive 1010 1281-1407 (501h – 57fh)

SDO-Transmit 1011 1409-1535 (581h-5ffh)

SDO-Receive 1100 1537-1663 (601h-67fh)

Error Control (node guarding) 1110 1793-1919 (701h-77fh)

Table 5-2: COB Types

5.7 Example

The COB ID of PDO1, when received by node #2, will be binary 0100 0000010 which is decimal
514 or 202 hexadecimal.

The IDs of the servo drives are set in the range 1-127.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 17

6 Data Type

Elmo CAN controller’s support the following data types as shown in /2/ Table 10-4:

Index Object Name

0001 DEFTYPE Boolean

0002 DEFTYPE Integer8

0003 DEFTYPE Integer16

0004 DEFTYPE Integer32

0005 DEFTYPE Unsigned8

0006 DEFTYPE Unsigned16

0007 DEFTYPE Unsigned32

0008 DEFTYPE Floating Point (Float)

0009 DEFTYPE Visible String

0020 DEFSTRUCT PDO CommPar

0021 DEFSTRUCT PDO Mapping

0022 DEFSTRUCT SDO Parameter

0060 DEFTYPE PVT DataPar

0061 DEFTYPE PT DataPar

0062 DEFTYPE Binary Interpreter Inquiry.

0063 DEFTYPE Binary interpreter Command

Table 6-1: Data Types

6.1 Device Specific Data Types

Device Profile Specific Types:

6.1.1 PVT DataPar Object 0x60

MSB LSB

Time(Unsigned8) Velocity (Singed24) Position (Signed32 bits)

6.1.2 PT DataPar Object 0x61

MSB LSB

Position 2 (Signed32 bit) Position 1 (Signed 32 bit)

6.1.3 Binary Interpreter Inquiry Object 0x62

MSB
7

6

5

4

3

2

1

LSB
0

 Attribute
high

Attribute low Letter
high

Letter low

For more details about getting refer to Binary Interpreter Commands.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 18

6.1.4 Binary Interpreter Command Object 0x63

MSB
7

6

5

4

3

2

1

LSB
0

Data high data data data low Attribute
high

Attribute low Letter
high

Letter low

For more details about setting values please refer to Binary Interpreter Commands.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 19

7 Representation of Numbers

CAN communication may also be used to send numerical data. The numerical data is stored in
binary form. Integers are stored by their binary representation and floating-point numbers are stored
by their IEEE representation. Elmo servo drives support 3 types of data – short integer (2 bytes),
long integer (4 bytes) or floating point numbers (4 bytes). These multiple-byte numbers are stored in
the CAN messages, according to CAN standards, using the “Little Endian” (Intel type) convention.
In this convention, the number is “inverted” before storage – the most significant byte of the number
receives the least address, while the least significant byte receives the highest address. A good
explanation of big and little endians is given in [5].
Example, suppose we want to construct the following eight-bytes CAN message.

Bytes 0-1 0x1234

Bytes 2-3 0x5678

Bytes 4-7 0x9abcdef0

The data field of the CAN message will be

Byte Contents

0 0x34

1 0x12

2 0x78

3 0x56

4 0xf0

5 0xde

6 0xbc

7 0x9a

Note:

The Elmo servo drives support remote frames only for Node Guarding.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 20

8 The Object Dictionary

The object dictionary supports:
- Objects that are mandatory by the CiA DS-301 standard
- Elmo specific objects
The object dictionary for Elmo servo drives is defined below. All the OD items may be accessed via
SDO.

Name Index,

Subindex

Comment Access Mappable

CAN Controller
Type.

0x1000 Constant value = 0x20191, stands for
Intel 82527.

R N

Error reg. 0x1001 Contains error information.
Any write to object 0x1001 resets the
communication error register.

R N

Manufacturer
Status register.

0x1002 Returns the status similar to the SR
command in [6].

R N

Pre defined error
field.

0x1003 Returns previous emergency History. R N

Number of
supported PDO.

0x1004 Supported PDO are returned for
synchronous and asynchronous PDO
with Tx and Rx difference.

R N

COB ID for
SYNC message.

0x1005 32 bit DWORD, Pre defined. R N

Communication
cycle period.

0x1006 The spacing, in µsec, between
consecutive SYNC signals.

This parameter is included for

compatibility with the standard OD,

but it is ignored.

R/W N

Synchronize
window length.

0x1007 Contains the length of time for
synchronize messages in µsec.
This parameter is included for

compatibility with the standard OD,

but it is ignored.

R/W N

Manufacturer
device name.

0x1008 String, returns Saxophone, Clarinet,
Melody, etc.

R N

Hardware
version.

0x1009 A string that conveys the information in
WS[30]. Please refer [6].

R N

Software
version.

0x100a String, returns the value of the VR
command, please refer [6].

R N

Node ID. 0x100b R N

Guard Time. 0x100c R/W N

Life time factor. 0x100d Life time factor. R/W N

Node guarding
identifier.

0x100e Always 700H + Node ID. R N

Number of SDO
supported.

0x100f Always 0x00000001 for single server
SDO.

R N

CANopen implementation Guide Elmo Motion Control

Rev 01/02 21

Name Index,

Subinde

x

Comment Access Mappable

Store parameters. 0x1010 Stores parameters in FLASH. Please
Refer Object 1010H – Save

Parameters.

R/W N

Restore parameters. 0x1011 Restore parameters from FLASH.
Please Refer to Object 1011H –

Restore Parameters.

R/W N

COB-ID for time
stamp message.

0x1012 Specified the COB ID of time stamp
message.

R N

High resolution time
stamp.

0x1013 Set the value of client time stamp
according to the time stamp protocol
specified in /2/.7.1.

W Yes
Transmit

Sync

SDO 1 Server. 0x1200 SDO 1 server parameter. R N

PDO 1 Rx Comm. 0x1400 PDO 1 receive communication
parameter.

R/W N

PDO 2 Rx Comm. 0x1401 PDO 2 receive communication
parameter.

R N

PDO 3 Rx Comm. 0x1402 PDO 3 receive communication
parameter.

R N

PDO 3 Rx Comm. 0x1403 PDO 4 receive communication
parameter.

R N

PDO 1 Rx Map. 0x1600 PDO 1 receive mapping parameter. R/W N

PDO 2 Rx Map. 0x1601 PDO 2 receive mapping parameter. R N

PDO 1 Tx Comm. 0x1800 PDO 1 transmit communication
parameter.

R/W N

PDO 2 Tx Comm. 0x1801 PDO 2 transmit communication
parameter.

R N

PDO 3 Tx Comm. 0x1802 PDO 3 transmit communication
parameter.

R/W N

PDO 4 Tx Comm. 0x1803 PDO 4 transmit communication
parameter.

R/W N

PDO 1 Tx Map. 0x1A00 PDO 1 transmit mapping parameter. R/W N

PDO 2 Tx Map. 0x1A01 PDO 2 transmit mapping parameter. R N

PDO 3 Tx Map. 0x1A02 PDO 3 transmit mapping parameter. R/W N

PDO 4 Tx Map. 0x1A03 PDO 4 transmit mapping parameter. R/W N

PVT data. 0x2001 Bytes describing the PVT command
as explained in [3].

W Yes
Recived
Unsync

PT data. 0x2002 Bytes describing the PT command
as explained in [4].

W Yes
Received
Unsync

Reserved. 0x2003 Reserved for future real time
positioning modes.

ECAM data 0x2004 Fast, auto increment entry to the
ECAM table.

W Yes
Received
Unsync

CANopen implementation Guide Elmo Motion Control

Rev 01/02 22

Name Index,

Subinde

x

Comment Access Mappable

Binary Interpreter
input.

0x2012 PDO 2 receive that is mapped to this
object and is the only one for this
purpose.

W Yes
Static

mapping

Binary interpreter
output.

0x2013 PDO 2 transmit that is mapped to
this object and is the only one for
this purpose.

R Yes
Static

mapping

Recorded data
output.

0x2030 Contains the recorded data
according to request in RC binary
command.

R N

FLASH Upload 0x2031 Used for upload and Download
binary process

R N

Coordinate system
ID.

0x2040 Identifier used to address a
synchronized command.

R/W N

Latched clock. 0x2041 The microsecond clock, as latched
upon the last sync. This clock is
modulo 65536.

R Yes
Transmit

Sync

MS Event trigger 0x2050 Motion done event object. When
being mapped this object is
transmitted upon motion done.

R Yes
Transmit
Unsync

EI Event trigger 0x2051 Erupt Instruction event object. Can
be used to transmit PDO at any
event or location in User Program.

 Yes
Transmit
Unsync

HM Event trigger 0x2052 Homing done event trigger. Used to
mark that a main homing process
was completed.

 Yes
Transmit
Unsync

Reference vector. 0x2060 Used only by the Wizard in the
process of system tuning.

R/W N

Program download
& list.

0x2070 Download user program.
Upload user program list (refer to
[8]).

R/W N

Code status/Single
Code.

0x2071 Upload similar to CS command.
Download similar to SC command.
Uploads the current line from the
user program.
Download performs the current
command in user program and
advance to the next command. (refer
to [8]).

R/W N

Program exception
message.

0x2072 Similar to MZ command.
This object contains messages from
user program. Messages can be run
time errors or result of MG
command (refer to [8])..

R N

Program compiler . 0x2073 Download, performs user program
compilation.
Upload, reads a listing of compiler

R/W N

CANopen implementation Guide Elmo Motion Control

Rev 01/02 23

Name Index,

Subinde

x

Comment Access Mappable

errors after compilation.

Program execution. 0x2074 Execute user program. Similar to
XQ command. Please refer to .

W N

CPU Dump. 0x2080 Similar to CD command.
Object contains the status of the
CPU.

R N

CAN controller
Dump

0x2081 Dumping the CAN controller (Intel
82527)

R Yes
Transmit

Sync

Begin On Time 0x208A Used to start a synchronized motion
according to the internal free
running timer.

Firmware
downloading.

0x2090 Similar to the DF command.
Applicable only if working
firmware is installed. Will not work
after a previous DF failure – in that
case DF must be applied by the
RS232 communication.
Please read section on firmware
downloading using CAN.

W N

Firmware
downloading status.

0x2091 Please read section on firmware
downloading using CAN.

R N

Position actual
auxiliary value.

0x20A0 Actual position as taken from the
auxiliary sensor input. (PY).

R Yes
Transmit

Sync

Position Error 0x20A1 The position error as calculated
from command and actual position
value. (PE)

R Yes
Transmit

Sync

Velocity Factor 0x2B01 The factor between the internal
representative of speed to cnt/sec.

R N

Current Factor 0x2B02 The tactor btween the internal
representative of current unit to mA

R N

Integer Array 0x2F00 General purpose array R Yes
Transmit

Sync

Free running Timer 0x2F0A The system 32 bits free running
timer.

R Yes
Transmit

Sync

Status Object 0x2F0B General status information R Yes
Transmit

Sync

Abort connection
option code

0x6007 Function to perform on node
guarding event.

R/W N

Position demand
value.

0x6062 Output of the profiler. Position
command.

R Yes
Transmit

Sync

CANopen implementation Guide Elmo Motion Control

Rev 01/02 24

Name Index,

Subinde

x

Comment Access Mappable

Position actual
value.

0x6064 Actual position as taken from the
position sensor (PX).

R Yes
Transmit

Sync

Velociy sensor
actual value.

0x6069 Actual velocity as calulated from
the position sensor (VX).

R Yes
Transmit

Sync

Velocity actual
value.

0x606C Velocity command as an input to
the velocity controller.

R Yes
Transmit

Sync

Torque Command 0x6071 R Yes
Transmit

Sync

Motor actual current 0x6078 Motor current (IM,IQ) R Yes
Transmit

Sync

Motor Type 0x6402 Rw N

Motor Catalog
Number

0x6403 32 characters Rw N

Motor Manufacture 0x6404 32 characters Rw N

Supported Driver
Mode

0x6502 R N

Driver Manufacture 0x6504 R N

Driver Manufatcure
Web Site

0x6505 R N

Table 8-1: Object Dictionary

CANopen implementation Guide Elmo Motion Control

Rev 01/02 25

9 Service Data Objects (SDO)

A single transmit server SDO and a single receive server SDO are used.
According to CiA definitions and priority allocations, no more than single transmit and receive
SDOs are available if extended addressing (29 bit) is not supported.
The SDO used by the system is COB 581h-6ffh for transmit and 600h-67fh for receive.

Care should be exercised when using SDOs:
- An SDO has lower priority then a PDO
- An SDO session is not complete until confirmed.

For example, if an SDO is used to change a PDO mapping, then:
- Issue the SDO only after the last session using this PDO is completed
- Don’t use the newly mapped PDO until the SDO mapping change is confirmed.

SDOs implement the CMS multiplexed domain protocols.
It is strongly recommended that Section 6 of /7/ be thoroughly read and understood before using
SDOs.

Notes:

1. An SDO data exchange requires that any client message is backed by one and only one server
message.

2. An SDO caries a toggle bit. In a domain transfer, every consecutive message varies the toggle
bit, so that the loss of a single message can be tracked.

3. An SDO transfer can be broken using the special “Abort Domain Transfer” message.
4. An SDO message carries at most 7 bytes of data. One byte (the header byte) is always dedicated

for overhead data.
5. The length of an SDO message is always 8, even if some of the bytes are unused. Unused data

bytes are marked in the message header.
6. An expedited SDO has no place for data length indication. As a result, the length of the data field

must be exactly 4 bytes.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 26

9.1 Initiate SDO Download Protocol

This protocol is used to implement the Initiate SDO Download service for SDOs.
Client to Server:
0 1 4 8

7..5 4 3..2 1 0

ccs = 1 x n e s m D

Server to Client:
0 1 4 8

7..5 4…0

scs=3 x m Reserved

• ccs: client command specifier
1: initiate download request

• scs: server command specifier
3: initiate download response

• n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of bytes in d that do
not
contain data. Bytes [8-n, 7] do not contain data.

• e: transfer type
0: normal transfer
1: expedited transfer

• s: size indicator
0: data set size is not indicated
1: data set size is indicated

• m: multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.

• d: data
e = 0, s = 0: d is reserved for further use.
e = 0, s = 1: d contains the number of bytes to be downloaded.
Byte 4 contains the lsb and byte 7 contains the msb.
e = 1, s = 1: d contains the data of length 4-n to be downloaded,
the encoding depends on the type of the data referenced
by index and sub-index
e = 1, s = 0: d contains unspecified number of bytes to be downloaded

• X: not used, always 0

• reserved: reserved for future use, always 0.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 27

9.2 Download SDO Segment Protocol

This protocol is used to implement the Download SDO Segment service.

Client to Server:
0 1 8

7..5 4 3..1 0

ccs = 0 t n c seg-data

Server to Client:
0 1 8

7..5 4 3..0

scs=1 t x reserved

• ccs: client command specifier
0: download segment request

• scs: server command specifier
1: download segment response

• seg-data: at most 7 bytes of segment data to be downloaded. The encoding depends on the type of
the data referenced by index and sub-index

• n: indicates the number of bytes in seg-data that do not contain segment data. Bytes [8-n, 7] do not
contain segment data. n = 0 if no segment size is indicated.

• c: indicates whether there are still more segments to be downloaded.
0 more segments to be downloaded
1: no more segments to be downloaded

• t: toggle bit. This bit must alternate for each subsequent segment that is downloaded. The first
segment will have the toggle-bit set to 0. The toggle bit will be equal for the request and the response
message.

• X: not used, always 0

• reserved: reserved for future use, always 0

CANopen implementation Guide Elmo Motion Control

Rev 01/02 28

9.3 Initiate SDO Upload Protocol

This protocol is used to implement the Initiate SDO Upload service.
Client to Server:
0 1 4 8

7..5 4…0

ccs=2 X m reserved

Server to Client:
0 1 4 8

7..5 4 3..2 1 0

scs = 2 x n e s m d

• ccs: client command specifier
2: initiate upload request

• scs: server command specifier
2: initiate upload response

• n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of bytes in d that do
not
contain data. Bytes [8-n, 7] do not contain segment data.

• e: transfer type
0: normal transfer
1: expedited transfer

• s: size indicator
0: data set size is not indicated
1: data set size is indicated

• m: multiplexor. It represents the index/sub-index of the data to be transfer by the SDO.

• d: data
e = 0, s = 0: d is reserved for further use.
e = 0, s = 1: d contains the number of bytes to be uploaded.
Byte 4 contains the lsb and byte 7 contains the msb.
e = 1, s = 1: d contains the data of length 4-n to be uploaded,
the encoding depends on the type of the data referenced
by index and sub-index
e = 1, s = 0: d contains unspecified number of bytes to be uploaded.

• X: not used, always 0

• reserved: reserved for future use , always 0

CANopen implementation Guide Elmo Motion Control

Rev 01/02 29

9.4 Upload SDO Segment Protocol

This protocol is used to implement the Upload SDO Segment service.
Client to Server:
0 1 8

7..5 4 3..0

ccs=1 t x Reserved

Server to Client:
0 1 8

7..5 4 3..1 0

scs = 0 t n c Seg-data

• ccs: client command specifier
3: upload segment request

• scs: server command specifier
0: upload segment response

• t: toggle bit. This bit must alternate for each subsequent segment that is uploaded. The first
segment will have the toggle-bit set to 0. The toggle bit will be equal for the request and the
response message.

• c: indicates whether there are still more segments to be uploaded.
0: more segments to be uploaded
1: no more segments to be uploaded

• seg-data: at most 7 bytes of segment data to be uploaded. The encoding depends on the type of the
data referenced by index and sub-index

• n: indicates the number of bytes in seg-data that do not contain segment data. Bytes [8-n, 7] do not
contain segment data. n = 0 if no segment size is indicated.

• X: not used, always 0

• reserved: reserved for further use, always 0.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 30

9.5 Abort SDO Transfer Protocol

This protocol is used to implement the Abort SDO Transfer Service.
Client to Server or Server to Client:

0 1 4 8

7..5 4…0

cs=4 x m d

• cs: command specifier
4: abort transfer request

• X: not used, always 0

• m: multiplexor. It represents index and sub-index of the SDO.

• d: contains a 4 byte abort code about the reason for the abort.
The abort code is encoded as UNSIGNED32 value.

9.6 Uploading Data Using an SDO

Uploading data has two basic formats. Loading a short (up to 4 bytes) data item is handled by one
message conversation called an expedited SDO.
Longer data items are called segmented transfers. Segmented transfers require a longer conversation.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 31

9.7 Example: Expedited SDO

In this example, we use an SDO to read the number of SDO s supported by the servo drive. The
result is in object 0x100f in the OD. The result (One transmit SDO and one receive SDO) is
formatted as the 32 bit word 0x00010001.
The client message body is described in the following table (% means a binary number):

Byte Value Description Comment

0 %01000000 Header Leading %010 is the client command
specifier (ccs) for initiate domain upload.

1 0x0f Index(LO)

2 0x10 Index(HI) Use Little Endian.

3 0 Sub-index No sub index, so set to 0.

4-8 0 Reserved

Table 9-1: Expedited SDO – Client Message

The server responds as follows:

Byte Value Description Comment

0 %01000011 Header Bits 7..5 - %010 is the client command
specifier (ccs) for initiate domain upload.
Bits 3..2 are the n bits that means all of data
bytes are relevant.
Bits 1..0 %11 is for expedite transfer and d

contains information.

1 0x0f Index(LO)

2 0x10 Index(HI) Use little endian.

3 0 Sub-index No sub index, so set to 0.

4 1 Data: 0x00010001 in
little endian format

If bit 0.3 is 1, bytes 4 to 7 carry an error
code.

5 0

6 1

7 0

Table 9-2: Expedited SDO – Server Response

9.8 Downloading Data Using an SDO

Data downloading with SDO is very similar to data uploading. Data downloading can be handled in
a single message conversation (expedited transfer), or in a segmented conversation. A detailed
example for an expedited download transfer may be found below in the PDO mapping.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 32

9.9 Error Correction

An SDO transaction has features that enable error detection and correction.
Error detection is possible both with software and hardware.
Hardware error conditions relate to overrun, excessive line noise, broken line or other malfunctions
of the physical layer.
Software detection is possible by monitoring the toggle bit, which correlates each domain segment
with its previous and its next. An unexpected toggle bit signals an error.
An SDO transaction may be theoretically completed successfully in spite of errors. The slave that
received a corrupted message may confirm it with an active “fault” bit (Byte 1, bit 3). The response
to the fault bit should be a re-transmission of the faulty message.
Elmo servo drives do not try to save a corrupted transaction.
If the servo drive detects an error, by hardware or by software, the servo drive aborts the transaction
immediately using the “Abort domain transfer” protocol.
If the servo drive uploads data and the server issues a confirmation message with the “fault” bit on,
then the servo drive responds with an immediate “Abort domain transfer” message.
The “Abort domain transfer” message is structured as follows:

Byte Description

0 0x82

1-2 Index

3 Sub-index

4 Additional code

5 Error code

6-7 Error class

Table 9-3: Abort Domain Transfer Message Structure

Fields 4-7 are described precisely in Section 8 of [1].

CANopen implementation Guide Elmo Motion Control

Rev 01/02 33

9.10 SDO Abort Codes:

Please refer to Abort SDO Transfer Protocol:

Abort code Description

0503 0000h Toggle bit not alternated.

0504 0001h Client/server command specifier not valid or unknown.

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h The number and length of the objects to be mapped would exceed PDO
length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to an hardware error.

0607 0010h Data type does not match, length of service parameter does not match.

0607 0012h Data type does not match, length of service parameter too high.

0607 0013h Data type does not match, length of service parameter too low.

0609 0011h Sub-index does not exist.

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h General error. – Refer to object 0x206A for more details

0800 0000h General error.

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h Data cannot be transferred or stored to the application because of local
control.

0800 0022h Data cannot be transferred or stored to the application because of the present
device state.

0800 0023h Object dictionary dynamic generation fails or no object dictionary is present
(e.g. object dictionary is generated from file and generation fails because of a
file error).

Table 9-4: SDO Abort Codes

CANopen implementation Guide Elmo Motion Control

Rev 01/02 34

10 Process Data Objects (PDO)

10.1 Receive PDO

Two Receive PDOs are used.
The first PDO is a high priority PDO.
This PDO is used for high-speed motion mode, to avoid the overhead of the use of the standard
interpreter.
Its mapping is dynamic, according to the setting of its PDO mapping at index 0x1601 by an
appropriate SDO.
The objects that may be mapped to the first PDO are:

Index Meaning Access

2001h PVT motion command Write

2002h PT motion command Write

2003h Fast position command (Reserved) Write

2004h ECAM entry Write

Table 10-1: Process Data Objects

By default, the first PDO is mapped to object 0x2001, which is PVT.

The second receive PDO is used for accessing the command interpreter via binary commands.
The mapping to the second PDO is fixed - its PDO mapping is read only.

Example

In order to switch PDO1 to program PT type motion command (Object 0x2002), set the object at
index 0x1600 (PDO mapping, type defined by object 0x21, please refer to [2] page 9-86 and 9-87 for
more understanding of this procedure)

Sub-index
0

Unsigned 8 1

Sub-index
1

Unsigned3
2

(0x2002<<16)2 +0+2 = (index<<16) + (sub-index<<8) + data
length

Note: that the number of objects mapped to this PDO is always 1.
For this reason it is not required to write to sub-index 0 of the PDO mapping and it is only required
to program sub-index 1 of object 0x1600.

2 The notation << denotes the bit shift operator. For example 4 is 100 binary, 4<<2 is 10000 binary
which is 16

CANopen implementation Guide Elmo Motion Control

Rev 01/02 35

The PDO mapping may be set using a single expedited SDO.
The SDO will be

Byte Value Description

0 0x27 Initiate download, expedited, index valid, data valid.

1 0 Index to store at.

2 0x16 Index to store at.

3 1 Sub-index to store at.

4 0 The value to be inserted at sub index 1, according to the little endian
convention.

5 2

6 02

7 0x20

Table 10-2: Service Data Objects

The SDO must be answered by

Byte Value Description

0 0x67 Initiate download, expedited, index valid, data valid, no failure.

1 0 Index to store at.

2 0x16 Index to store at.

3 1 Sub-index to store at.

4 0 Reserved. Bytes 4-7 are error code if bit 0.3 is 1 (failure indication).

5 0

6 0

7 0

Table 10-3: Answered SDO

10.2 Transmit PDO

Only Transmit PDO2 is used.
This transmit PDO is used to return binary answers from the standard string command interpreter.
This PDO cannot be mapped, as its content is indirectly mapped by the mapping of the second
received PDO.

10.3 PDO Mapping

PDO mapping is a procedure that enables you to transmit and receive information from and to the
node in efficient way.
Nodes parameters are available through CAN objects (COB). All the CAN objects are defined in the
object dictionary (Please refer to The Object Dictionary in this manual). You can require or set any
COB (according to the object definition and limitation) by the mean of SDO (Please refer to Service
Data Objects (SDO) in this manual). SDO provides a confirmed message process that usually
increases busload. It can serve you very well for setup and background operations. However in order
to be able to communicate with the amplifier in a more intensive way without increasing the busload,
COB can be mapped into a PDO. The mapped PDO is used as a carrier to these objects and it will be

CANopen implementation Guide Elmo Motion Control

Rev 01/02 36

transmitted or received according to a predefined trigger. PDO has several advantages. It is an
unconfirmed message and it can carry more then one object. In some cases a PDO can carry up to 64
different objects, it depends upon the granularity definition. Elmo’s amplifier granularity is 8 thus
up to 8 objects can be mapped to a single PDO each in the size of 1 byte.

10.3.1 The Mapping Trigger

Trigger is the event in which a PDO is received into the amplifier or transmitted from the amplifier.
The trigger must be predefined. Please refer to pages 9-83 and 9-84 in CiA DS301 for more
comprehensive understanding about transmission types. Here is a short summarized of the subject.
The exact mechanism of mapping is described in CiA DS301 version 4.01 under objects 0x1400 to
0x1800.

There are several triggers available:

1. Synchronized Trigger – Received or transmitted when number of predefined SYNC
messages was received

2. Unsynchronized Trigger – Also known as event trigger. Received or transmitted
according to a predefined event. Event can be interpreter reception, motion done and more.

3. Event Timer Trigger – Received or transmitted when predefined time was elapsed.

10.3.1.1 The Synchronized Trigger

These types of trigger depend upon the reception of the SYNC message. You must define how many
SYNC messages should arrive before the specified PDO will be transmitted or received.

Note:

For synchronized trigger, Elmo’s amplifiers support only the transmitted PDO (TPDO).

Values of SYNC messages can be defined from 1-240. When this value is set to 0 the trigger is
considered as an acyclic and will be transmitted only once upon the receiving of the first SYNC.
Other values are cyclic and will transmitted each time the define amount of SYNC messages arrived.

Note:

Acyclic trigger must be redefined (sub index 0 of the relevant object 0x1400+node ID or
0x1600+ndoe ID set to 1).

In order to map a synchronized TPDO please follow these steps:
The example in this case maps the system status (object 0x2F0A) and current position (object
0x6064) to TPDO1 that will be transmitted each 3rd SYNC message.

Object Sub-

Object

Value Meaning

0x1802 2 3 Set transmission type to 3

0x1A02 0 0 Reset all entries before new mapping

0x1A02 1 0x2F0A0020 1st entry object 0x2F0A is 32 bits

0x1A02 2 0x60640020 2nd entry object 0x6064 is 32 bits

0x1A02 0 2 Activate mapping of TDPO3 with 2 entries

CANopen implementation Guide Elmo Motion Control

Rev 01/02 37

After the last object was sent each 3 SYNC messages TPDO3 will be transmitted with the status
word and the current position (PX).
If the position was PX=10000 the result should be:

Byte1
LSB

 MSB
Byte 8

0x10 0x27 00 00 00 00 0x20 0x50

10.3.1.2 The Unsynchronized Trigger

Unsynchronized triggers are triggers that can be set at any time. It also called event trigger. The
event triggers in Elmo’s amplifiers are predefined to specific objects that actually describe the event.

10.3.1.2.1 Transmit Event Trigger

For example: object 0x2050 is an object that points out to end-of-motion event in point-to-point
motion modes. When mapping this event to a PDO, the PDO will be transmitted whenever the
motion was done. This saves from the host the need to poll the motion status.

• The amplifier supports up to 8 Events Trigger in one TPDO.

• Second object can be mapped into the same PDO – one map able object to one event
trigger.

• If PDO was already mapped with event trigger and another non-event object no
more objects can be mapped into this PDO.

• The data length (DLC) of a transmitted PDO in case of event trigger is always 8.

• Long (32 nits) and short (16 bits) objects are supported.

Note:

Only one PDO can be used to each event object - the last PDO that was mapped will be transmitted
when event occurred.

Note:
The transmission type of an event trigger is always 254.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 38

The following steps should be taken in order to use event trigger. In the example 3 events are
mapped:
Erupt instruction (object 0x2051) with integer array (IA[4]) is mapped to TPDO1.
MS command (object 0x2050) to TPDO4 and HM (object 0x2052) event is mapped to the same
TPDO4.

Object Sub-

Object

Value Meaning

Mapping TPDO1 to event trigger and none event trigger

0x1800 2 254 Transmission type to manufacture

0x1A00 0 0 Reset all entries before new mapping

0x1A00 1 0x20510020 1st entry object 0x2051, 32 bits

0x1A00 2 0x2F000420 2nd entry object IA[10] is 32 bits

0x1A00 0 2 Start event trigger on TPDO1

Mapping TPDO4 to 2 events trigger

0x1803 2 254 Transmission type to manufacture

0x1A03 0 0 Reset all entries

0x1A03 1 0x20510020 1st entry object for EI trigger event

0x1A03 2 0x20520020 2nd entry object for homing event

0x1A03 0 2 Start event trigger on TPDO4

After the events were mapped TPDO1 will be transmitted whenever EI=<VALUE>. Please refer to
Object 0x2051 EI Event Trigger for more details. Each message includes the VALUE according to
EI and the value of IA[4]. In the case that EI=4 and IA[4]=6 the message should look:

Byte1
LSB

 MSB
Byte 8

0x6 00 00 00 04 00 0x51 0x20

When ever motion status will be steady (Please refer to Object 0x2050 MS Event Trigger in this
manual) or HM[1] value will be reset from 1 to 0, TPDO4 will be transmitted with information
according to the mapped event.

For motion status event:

Byte1
LSB

 MSB
Byte 8

00 00 00 00 00 00 0x50 0x20

For main homing event:

Byte1
LSB

 MSB
Byte 8

00 00 00 00 00 00 0x52 0x20

CANopen implementation Guide Elmo Motion Control

Rev 01/02 39

Note:

TPDO2 and RPDO2 are statically mapped to the interpreter transmits and receive object. These
objects 0x2012 and 0x20123 are virtual objects and can be accessed through the object dictionary.
PDO2 is reserved for these objects and cannot be used for any other purpose. Please refer to Binary
Interpreter Commands for more details.

10.3.1.2.2 Receive Event Trigger

We distinguish between two types of unsynchronized received event trigger.
1. The VIP messages are messages that mapped in to RPDO1 (receive PDO) that is reserved

for this purpose. These messages are for tabulated motion modes (PVT, PT and ECAM) fast
updating. They are activated directly from the real time in order to perform fast motion
modes. Please refer to Tabulated Motion Modes in the Software Manual.

2. The binary interpreter message. RPDO2 is dedicated to this purpose and is statically mapped
with this object.

In order to change the VIP messages object please follow the following step. The example in this
case maps object 0x2002 (PT) to RPDO1.

Object Sub-

Object

Value Meaning

0x1400 2 255 Reception trigger upon message receive.

0x1600 0 0 Reset all entries before new mapping

0x1600 1 0x20020040 1st entry object 0x2002 is 64 bits

0x1600 0 1 Activate mapping of RPDO1 with 1 entry.

When this sequence is done, any RPDO1 will be treated as reception of object 0x2002.

10.3.1.3 The Timer Trigger

Time trigger are events that are time depended. They are not applicable with Elmo’s amplifier at this
stage.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 40

11 Emergency

Emergency is COB 80 to ff.
Emegencies object usage is defined in [2] page 9-38.
The structure of the manufacturer specific emergency message is:

0

1

Error code.

2 Error register.

3 Elmo Error code. Please refer to EC command in the Cmmand Reference.

4

5

Error code data field 1.

6

7

Error code data field 2.

The following table lists the supported CAN emergencies:

11.1 Emergency Codes Related to Failure

The servo drive issues an emergency code when:
- Motion is stopped due to a motor failure.
- The CPU encounters a fatal exception.
- Communication error .

CANopen implementation Guide Elmo Motion Control

Rev 01/02 41

The following table details the emergency object attached to failures:

Error code/

Error register/

Elmo error code

Symbolic name Reason Data field

0x8100/0x10/9 CAN_MESSAGE_LOST CAN message
overrun.

Data field 1:
1: Lost NMT
2: Lost SYNC
3: Lost
PDO1/PDO2/SDO1 -
Overrun
4: Lost PDO2-Queue full
5: Lost SDO1-Queue full
6: Missed sync3.

0x8100/0x10/14 CANT_DO_NMT NMT command
cannot be done.

Data field 1:
1: Communication reset
command with motor on.

0x8100/0x10/0xa PDO_NOT_CONFIGURED Attempt to use a
PDO that does not
have a valid
mapping.

None.

0x8100/0x10/0xb BAD_COB_ID Cannot identify
COB ID although
the device ID
matched.

None.

0x6100/01/0x32 STACK_OVERFLOW CPU encountered
fatal exception.

Data field 1:
1: Stack overflow.
2: CPU exception.

0x8000/0x20/0x33 USER_PROGRAM_EMCY User program
encountered an
error.

Run time error.

0x2300/0x2/ Short circuit.

0x3300/0x4/ Over voltage.

0x3300/0x4/ Under voltage.

0x4000/0x8/ Over temperature.

0xff00/0x80/ Motor fault-other.
(Inhibit is not a
fault).

Data field 1:
(Please refer the MF
command in [6]).
1 – main encoder.
2 – aux encoder.
0x40-Hall sensor.
0x80-Speed error.
0x100-Pos error.
0x1000-Bridge failure.
0x10000-Commutation
seek failure.

3 A lost Sync is not a lost message, but a message that its exact timing could not be determined. See
section on SYNC below.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 42

0x20000-Over speed.
0x400000 – Pos limits.
0x800000 – Ref error.
0x10000000 – Cant tune
current offsets.

Table 11-1: Emergency Code

Important Note:

A CAN_MESSAGE_LOST emergency may indicate an overrun – a condition in which a CAN
message has not been retrieved from the receiver on time. The next message to the same buffer
crashed with the as yet unread message. Both the messages may have been lost in the crash.
There may also be more lost messages that were not detected, since they may have been sent while
the message loss indication was already on.
The CAN_MESSAGE_LOST emergency tells where a crash occurred – it does not tell how many
messages have actually been lost.

11.2 Emergency Codes for Interpreter

The interpreter issues an emergency object when a program command cannot be executed, because:
- It is not understood (e.g. the non existing command XX)
- It is not properly formatted (e.g. data length = 5)
- It cannot be executed in the present context (e.g. BG command while the motor is OFF)
- It has an index or a parameter out of range.

The emergency error code for all the interpreter-generated emergencies is Error code = 0x6200 and
error register = 0x20

Error

code

Symbolic name Reason Data field

5 CAN_STRING_MESSA
GE

An MG program command
prepared a message – please read.

Field 1:
Number of messages
in queue.

Table 11-2: Emergency Code For Interpreter

11.3 Emergency Codes for Motor Fault

The following table describes emergencies that are related to motor disable.
Please refer to MF command in [6].

Error code

(Hex)

MF value

(Hex)

Meaning Detail

2311 8000 Current Limit ASIC fault – Current limit exceeded.

2341 B000 Short ASIC fault – A short was sensed on motor
power outputs.

3100 7000 SVP ASIC fault – Internal power supply
problem.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 43

3120 3000 Under Voltage ASIC fault – Input voltage is under the
minimum.

3311 5000 Over Voltage ASIC fault – Input voltage exceed
maximum permitted.

4310 D000 Temperature ASIC fault – Amplifier temrerature high.

5280 20 FPGA Digital hardware failure.

5281 100000 Timing Error Programmable logic exception.

5282 F000 Commutation ASIC fault – Illegal combination for
DHALL.

5283 800 Node Guarding Event This error occurs if the Metronome is set to
operate under life guarding in a CANopen
network.

5441 10 External Inhibit An abort from a condition of the input logic.
(IL command)

5480 1000 Power Up Reset

6180 40000 Stack Overflow This may happen if the CPU had been
subject to a load it can’t handle.

6181 80000 Null Interrupt A fatal error. (like divided by 0).

6320 200 Bad Data Base Cannot start because of inconsistent
database.

7121 200000 Motor Blocked Motor is blocked according to CL[2],CL[3]
restrictions.

7305 1 Main Encoder Error A and B main encoder channel s fault.

7306 2 Auxiliary Encoder Error A and B aux encoder channels fault.

7380 4 Feedback Loss No match between encoder and hall
location.

7381 40 Digital Hall Sensor Two digital Hall sensors had been changed
at the same time.

8311 8 Peak Over Current The peak current has been exceeded.

8312 10000000 Can Not Tune Current
Offsets

During motor enable process, A/D for
current gets unreasonable values.

8380 10000 Can not find zero Dhall Failed to find the electrical zero of the
motor in an attempt to start a motor with an
incremental encoder and no digital Hall
sensors.

8480 80 Speed Tracking Error The speed tracking error DV[2]-VX
exceeded the speed error limit ER[2].

8481 20000 Over Speed Speed limit exceeded: VX<LL[2] or
VX>HL[2].

8611 100 Position Tracking Error The position tracking error DV[3]-PX
(UM=5) or DV[3]-PY (UM=4) exceeded
the position error limit ER[3].

8680 400000 Out Of Position Limit Position limit exceeded: PX<LL[3] or
PX>HL[3] (UM=5), or PY<LL[3] or
PY>HL[3] (UM=4).

Table 11-3: Emergency Code For Motor Fault.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 44

11.4 Emergency Codes Related to PVT/PT Motion

In the course of PT/PVT motion, the servo drive may issue emergency objects, to signal an error, or
to signal the immediate need of additional data to prevent data queue underflow (please refer [3] and
[4]).
The emergency error code for all the messages below is 0xff00, and the error register is 0x80.

Error

code

Symbolic name Reason Data field

86
0x56

PVT_QUEUE_LOW The rows for the entire left
valid PVT program has
dropped below the value
stated in MP[4].

Field 1: Write pointer.
Field 2: Read pointer.

91
0x5b

BAD_HEAD_POINTER Write pointer out of the
physical [1,64] range of the
PVT table.The reason may
be a bad setting of MP[6].

The value of MP[6].

92
0x5c

PDO_NOT_CONFIGUR
ED

The PDO 0x3xx is not
configured for a type of
motion.

59
0x34

PVT_QUEUE_FULL An attempt has been made
to program more PVT
points then supported by
the queue.

The index of the PVT table
entry that could not be
programmed.

7
0x7

BAD_MODE_INIT_DAT
A

Cannot initialize motion
due to bad setup data.
Reasons:
- The write pointer is
outside the range specified
by the start pointer and the
end pointer.

8
0x8

MOTION_TERMINATE
D

Mode terminated, and the
motor has been
automatically stopped (In
MO=1).

Data field 1: Write pointer.
Data field 2:
1 for End of trajectory in
non cyclic mode.
2 for A zero or negative
time specified for a motion
interval.
3 for Read pointer reached
write pointer.

9
0x9

CAN_MESSAGE_LOST A CAN message has been
lost. The servo drive did
not fetch a message before
it was overwritten by a
new message.

Table 11-3: Emergency Code (PVT/PT Motion)

CANopen implementation Guide Elmo Motion Control

Rev 01/02 45

12 Network Management (NMT), and
Synchronized Motion Initiation

Only a minimal set of network management (NMT) services is supported, as required by the
CANopen minimum capability network management services.
NMT commands are used to control the communication-state of the servo drive, and to broadcast
manufacturer messages that are targeted to all the listening servo drives.
The following network communication states are supported.

State Description

Un powered /
Initialization

Servo drive is not ready, or performing the boot sequence. It will not respond
to communication and it will not transmit anything.

Pre-operational Servo drive boot sequence completed, but no command has been received to
enter operational mode. The servo drive will respond to SDO and NMT
messages, but not to PDO.

Operational The servo drive is fully operational, responding to PDO SDO and NMT
messages.

Prepared The servo drive received a stop-node command. It responds only to NMT
services.

Table 12-1: Network Management (NMT)

The Initialization-state is entered when the servo drive is powered. After completing the boot
sequence the pre-operational state is entered automatically.
The transition between the Operational, Pre-operational, and Prepared states is according to NMT
messages. The COB-ID of an NMT command is always 0.
An NMT message is always 2 bytes long.
The first byte is the command specifier.
The second byte is the ID of the units that are to respond to the message. If the ID is 0, the NMT
message will be executed by all the listening servo drives.

The following NMT services are supported:

Command

specifier

Service

1 Start remote node (go to operational).

2 Stop remote node (go to prepared).

128 Enter pre operational state.

129 Reset node (Perform the full software reset).

130 Reset communication (Reload the communication parameters from the
flash, reset the CAN software, and enter pre-operational).
Note: NMT service 130 is available only in MOTOR OFF.

192 Synchronized BG (Begin) command.

193 Synchronized ST (Stop) command.

194 Reset clock on next sync.

Table 12-2: Supported NMT Services

CANopen implementation Guide Elmo Motion Control

Rev 01/02 46

The BG and the ST commands (command specifier 192) are applicable only when the network is
operational, and when the motor is ON.
The Reset clock command is applicable only when the network is operational.
The reset clock (command specifier 194) zeroes the microsecond counter that serves to synchronize
PVT and other complex motions. The reset clock command will become active upon the next SYNC.
The value of the microsecond clock can is latched every SYNC, and is readable via object 0x2041.
Reading object 0x2041 helps to synchronize PT motions, which are specified relative to the sampling
time of the controller.

For the BG, the ST, and the reset clock commands, The ID specifies to whom the command is
applicable.
A servo drive will respond to a BG/ST/Reset clock command if the identifier is:
- 0.
- The servo drive ID.
- The coordinate systems ID (object 0x2040 in the OD).

CANopen implementation Guide Elmo Motion Control

Rev 01/02 47

13 Sync and Time Stamp

The sync message has two uses.
The first use is to synchronize the operation of synchronous PDOs

• Synchronous receive PDOs are not supported by Elmo servo drives.

• Synchronous transmit PDOs can be used to transmit data from the servo drive upon
receiving a sync signal.

 The second use is to synchronize the motion clock of the servo drive with a clock in the network
master. The synchronization is made in conjunction with the time stamp message.
The motion clock of the servo drive counts microseconds (regardless of the sampling time of the
servo drive). The motion clock is cyclic, and has 32 bits. This means that the motion clock completes
a full cycle in 4295 seconds (approx. 72 minutes). When the motion clocks of all the servo drives are
synchronized to the motion clock of the master, then multiple servo drives can do complex
synchronized motion with exact timing set by the network master.

Amplifier synchronization is made by transmission of a SYNC message, whose arrival time is
captured by the amplifier. Upon SYNC reception the amplifier latches its internal timer.
A Time Stamp is a 32 bit message which contains the master internal clock as it was generate upon
reception of the client own SYNC. A Time Stamp causes a clock synchronization cycle to be
executed . The amplifier uses the Time Stamp as an absolute timer and adjust its internal timer4 with
relation to the time that was latched in the last SYNC. A synchronization cycle does not imply that
after that the clocks of the master and the amplifier are synchronized. To ensure that the timing jitter
of the time stamping process will not adversely affect motion smoothness, the synchronization
process is filtered. It takes about 200 SYNC-Time stamp pairs to ensure that the clocks of the master
and amplifier are fully synchronized. This process can be considerably shortened by referring to
NMT service 194 (SYNC on next). The next SYNC-Time stamp pair after an NMT 194 service, will
lock the time of the stamp to the amplifier as accurately as possible in a single step, without any
filtering.

The Time Stamp is object 0x1013 of the object dictionary. COB-ID 256 (0x100) is (a constant)
dedicated ID for this purpose. The master can send Time Stamps at any moment.
A time stamp always refers to the previous SYNC message. Interval between Time Stamp to
previous SYNC must not exceed 5 second.
The initial synchronization of a master to its amplifiers is recommended at the pre-operational state.

13.1 Important Note

The 82527 CAN controller used by Elmo servo drives cannot mark the time of the sync.
Consequently, the exact timing of a sync signal can be measured accurately only if at that time, no
other communication object has been serviced5. For optimum synchronization, be sure that a time-
stamped Sync is transmitted after at least 1msec no other client COB has been issued.

4 The higher value to adjust in single time stamp message is 250mSec.
5 The Elmo servo drives actually measure the time at which the 82527 issued an interrupt request. If
the Sync is accepted when the 85257 were requesting service or being serviced, its acceptance time
cannot be resolved. This condition is easily detected and the unresolved sync is ignored. An
emergency will be set if 5 consecutive sync signals are rejected.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 48

! The priority of the SYNC message is higher then all COB-ID (beside the NMT). Events which are

SYNC depended like TPDO mapping , Time Stamp or synchronized RPDO should be carefully
handled. The needed triggerd event must be handled by the amplifier before the next SYNC is.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 49

14 Binary Interpreter Commands

The interpreter commands are sent in binary form (CAN only). The commands used by the binary
interpreter are very similar to commands of the ASCII interpreter that is used for RS232
communication.
The binary interpreter may be used for setting and retrieving all the numerical data of the servo drive
setup.
The binary interpreter does not support string operations.
Getting and setting strings may be done by accessing the appropriate messages via SDO.
Expressions (such as AC=2*DC+1000) are not supported by the binary interpreter.

The following table summarizes the main differences between the binary interpreter used for CAN
communication and the ASCII interpreter used for RS-232.

Feature ASCII interpreter Binary interpreter

Command length. Depends on data. Fixed: 8 bytes for Set commands, 4 bytes
for Get commands.

Delimiter. Commands and servo drive
responses are delimited by ‘;’
or <CR>.

No delimiters.

Servo drive response
to set commands.

Always. Servo drive does not respond to Set
commands. An emergency object is sent
if the command execution fails.

Long response
strings.

Some commands like LS and
BH return long strings.

No interpreter support for returned long
strings. Long strings can be read via
SDO.

Table 14-1: Binary Interpreter Commands

The binary interpreter supports 3 types of commands:
- Set value. These commands have a data length of 8. They are normally answered by an identical

reflection of the set command.
- Get value. These commands have the data length of 4. An 8-byte response includes an echo of

the command and the resulting numerical value.
- Execute command. This command has a data length of 4. An 8 byte response includes an echo of

the command.

If an interpreter command could not be serviced for any reason, bit 3.6 is set on, and byte 7 of the
response contains the Elmo error code – please refer the EC command.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 50

The interpreter binary command has the following fixed structure:
Set value command:
Data length = 8.

Byte Description

0 First command character. For example, ‘C’ for the CA command. Must be

uppercase.

1 Second command character. For example, ‘A’ for the CA command. Must be

uppercase.

2-
[3.0:3.5]

Index for vectored commands, 0 for scalar commands. Use little endian (Intel) word

format.

3.6:3.7 Flags.
Bit 3.7 is 1 if the number in bytes 4-7 is written in floating point format.
Bit 3.7 is 0 if the number in bytes 4-7 is written in long integer format.
Bit 3.6 has 2 cases:
When TPDO it is denotes a fault indications in response messages.When ‘1’ then
bytes 4-7 of the response are to be interpreted as an error code, NOT as a valid value.
When RPDO it is denotes an inquiry request. When value is ‘1’ the received message
is an inquiry regardless to the amount of bytes (DLC) in the received PDO. Response
will inclued 8 bytes.

4-7 Parameter for command, long or float. Use little endian (Intel) word format.

Table 14-2: Binary Interpreter Commands – Set Value Command

Get value command: (inquiry)
Data length = 4.

Byte Description

0 First command character. For example, ‘C’ for the CA command. Must be

uppercase.

1 Second command character. For example, ‘A’ for the CA command. Must be

uppercase.

2-
[3.0:3.5]

Index for vectored commands, 0 for scalar commands. Use little endian (Intel) word

format.

3.6:3.7 Flags.
Bit 3.9 is 1 if the number in bytes 4-7 is written in floating point format.
Is 0 if the number in bytes 4-7 is written in long integer format.

Table 14-3: Binary Interpreter Commands – Get Value Command

Exec command:

Byte Description

0 First command character. For example, ‘B’ for the BG command. Must be

uppercase.

1 Second command character. For example, ‘B’ for the BG command. Must be

uppercase.

2-3 0

Table 14-4: Binary Interpreter Commands – Execute Command

CANopen implementation Guide Elmo Motion Control

Rev 01/02 51

Note: that the client determines a Get command from its corresponding Set command by the data
length.
The length of a data request is 4 bytes, whereas the length of data assignment message is 8.

For example, the command QP[1000]=0x12345678 is (1000 decimal is 0x3e8).

Byte Value

0 ‘Q’

1 ‘P’

2 0xe8

3 0x3

4 0x78

5 0x56

6 0x34

7 0x12

Table 14-5: Binary Interpreter Commands – Example QP Command

The command AC (data request) is:

Byte Value

0 ‘A’

1 ‘C’

2 0

3 0

Table 14-6: Binary Interpreter Commands – Example AC Command

The command MC=1.0 is (given that the IEEE representation of 1.0 is 0x3f800000).

Byte Value

0 ‘M’

1 ‘C’

2 0x0

3 0x80

4 0x0

5 0x0

6 0x80

7 0x3f

Table 14-7: Binary Interpreter Commands – Example MC Command

Set value commands are not answered, unless an exception occurred.

Get value commands are answered in a format similar to the set command: The first four bytes are a
reflection of the data request and the last four bytes contain the information, long or float. The flag
bit in byte 2 signals whether the numerical field is to be interpreted as a long integer, or as an IEEE
floating point number.

Important Note:

Always use the data type bit (3.7) in the returned interpreter message, even though the numerical
data type is known in advance and given in the reference manual. This is because Elmo cannot

CANopen implementation Guide Elmo Motion Control

Rev 01/02 52

guarantee that the type of numerical data returned for any given interpreter command will remain
unchanged in future versions.

14.1 ASCII Interpreter Commands That Are Not Supported
By The Binary Interpreter

Some commands deal with strings. These commands are not accessible by the binary interpreter. In
most cases, these strings may be accessed as objects from the OD using the SDO.

Command Description Alternative

VR Detailed software version string. Use SDO to read object 0x100a.

CD CPU dump for the case of a fatal exception. Use SDO to read object 0x2080.

CS Code status and Single code for program. Use SDO to read object 0x2071.

LS/DL List/Download a program. Use SDO to read/write object
0x2070.

MZ Program message. Use SDO to read object 0x2072.

CC Program compilation. Program compilation is
made automatically upon program loading.

Use SDO to read object 0x2073.

IN Manual input to program. Available for RS-232 only.

DF Down load firmware version. Use SDO to write object 0x2090.
If a previous DF failed, DF is
available for RS-232 only.

BH Bring recorded value. Use SDO to read object 0x2030.

SC Single code for user program. Use SDO 0x2074 to advance the
program counter by a single step
while uploading the same line.

Table 14-8: Not Binary Interpreter Commands

The binary interpreter cannot handle expressions. In order to deal with expressions, use the
programming feature.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 53

15 Communication Object Details

Elmo CAN products support communication objects as follows:

15.1 Object 0x1200 SDO Server Parameter

Object Description:

INDEX 1200H

Name Server SDO 1 Parameter

Object Code RECORD

Number Of Elements 3

Data Type SDOPar (Object 0x22)

Values Description:

Sub-Index 0

Description Number of entries

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2

Default Value No

Sub-Index 1

Description COB ID Client->Server (rx)

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 600H + Node ID

Sub-Index 2

Description COB_ID Server -> Client (tx)

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range No

Default Value 580 + Node ID

CANopen implementation Guide Elmo Motion Control

Rev 01/02 54

15.2 Object 0x1400 – 0x1403 Receive PDO Communication
Parameter

Object Description:

INDEX 1400H – 1403H

Name Receive PDO parameter

Object Code RECORD

Number Of Elements 2

Data Type PDOCommPar (Object 0x20)

Values Description:

Sub-Index 0

Description Number of entries

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2-4

Default Value No

Sub-Index 1

Description COB ID used by PDO

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value Index 1400H: 200H + Node ID
Index 1401H: 300H + Node ID
Index 1402H: 400H + Node ID
Index 1403H: 500H + Node ID

Sub-Index 2

Description Transmission type

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8 ([2] Table 55 page9-84)

Mandatory Range No

Default Value 255

Note:
PDO 1 receive is used for fast position mode please refer [3],[4].
PDO 2 receive is used for binary interpreter please refer Binary Interpreter Commands.
PDO 3 receive for user specific application usage.
PDO 4 receive for user specific application usage.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 55

15.3 Object 0x1600 – 0x1601 Receive PDO Mapping

Object Description:

INDEX 1600H – 1601H

Name Receive PDO mapping

Object Code RECORD

Number Of Elements 1 (granularly 64)

Data Type PDOMapping (Object 0x21)

Values Description:

Sub-Index 0

Description Number of mapped application object in PDO.

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range 1

Default Value 1

Sub-Index 1

Description PDO mapping for the 1st and last application object
to be mapped

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value Object 1600H – 0x20010040 (PVT)
Object 1601H – 0x20120040

Note:
PDO 1 receive mapping is possible only to objects 2001H, 2002H and 2003H.
PDO 2 receive mapping is controller usage for binary interpreter input.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 56

15.4 Object 0x1800 – 0x1803 Transmit PDO Communication
Parameter

Object Description:

INDEX 1800H – 1803H

Name Transmit PDO parameter

Object Code RECORD

Number Of Elements 2

Data Type PDOCommPar (Object 0x20)

Values Description:

Sub-Index 0

Description Number of entries

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 2-4

Default Value No

Sub-Index 1

Description COB ID used by PDO

Object Class Optional

Access Object 1800H – RW
Object 1801H – R
Object 1802H – RW
Object 1803H – RW

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value Index 1800H: 180H + Node ID
Index 1801H: 280H + Node ID
Index 1802H: 380H + Node ID
Index 1803H: 480H + Node ID

Sub-Index 2

Description Transmission type

Object Class Optional

Access Object 1800H – RW
Object 1801H – R
Object 1802H – RW
Object 1803H – RW

PDO Mapping No

Value Range 0-240 ([2] Table 55 page9-84)

Mandatory Range No

Default Value 0

CANopen implementation Guide Elmo Motion Control

Rev 01/02 57

Note:
PDO 1-transmit is for user general purpose.
PDO 2-transmit is used for binary interpreter please refer Binary Interpreter Commands.
PDO 3-transmit is for user general purpose.
PDO 4-transmit is for user general purpose.

15.5 Object 0x1A00 – 0x1A03 Transmit PDO Mapping

Object Description:

INDEX 1A00H – 1A03H

Name Transmit PDO mapping

Object Code RECORD

Number Of Elements 8 (granularity 8)

Data Type PDOMapping (Object 0x21)

Values Description:

Sub-Index 0

Description Number of mapped application object in PDO

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 8

Default Value 0

Sub-Index 1 – 8

Description PDO mapping for the nth application object to be
mapped

Object Class Optional

Access Object 1A00H – Rw
Object 1A01H – Ro
Object 1A02H – Rw
Object 1A03H – Rw

PDO Mapping No

Value Range Unsigned32.

Mandatory Range No

Default Value

Note:
PDO 1-transmit mapping is for user general purpose.
PDO 2-transmit mapping is used for binary interpreter please refer Binary Interpreter Commands.
PDO 3-transmit mapping is for user general purpose.
PDO 4-transmit mapping is for user general purpose.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 58

16 Special Treated Object Details

This section provides more information about objects that are CiA DS-301 standard and has device
specific details.

16.1 Object 1010H – Save Parameters

Purpose:
This object supports the saving of parameters in non volatile memory. By read access the amplifer
provides information about its saving capabilities. The groups that are distinguished are:
Sub-index 0: The largest supported sub index.
Sub-index 1: Save all parameters.
Sub-index 2,3: not supported.
Sub-index 4: Save user program.
In order to avoid storage by mistake, storage is only executed when a specific signature is written to
he appropiate sub-index. The signature is “save”.

MSB LSB

‘e’ ‘v’ ‘a’ ‘s’

65H 76H 61H 73H

Object Description:

INDEX 1010H

Name Store parameters

Object Code RECORD

Number Of Elements 4 (2 supported)

Data Type Unsigned32

Values Description:

Sub-Index 0

Description Largest supported Sub Index

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 4

Default Value 4

CANopen implementation Guide Elmo Motion Control

Rev 01/02 59

Sub-Index 1

Description Save all parameters

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value No

Sub-Index 2

Description (N/A)Save communication parameters

Object Class -Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range 0

Default Value 0

Sub-Index 3

Description (N/A)Save application parameters

Object Class -Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range 0

Default Value 0

Sub-Index 4

Description Save User program

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 1

Note:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 60

16.2 Object 1011H – Restore Parameters

This object supports the restoring of parameters from non volatile memory. By read access the
amplifer provides information about its restoring capabilities. The groups that are distinguished are:
Sub-index 0: The largest supported sub index.
Sub-index 1: Restore all parameters.
Sub-index 2,3: not supported.
Sub-index 4: Restore user program.
In order to avoid storage by mistake, restoring is only executed when a specific signature is written
to he appropiate sub-index. The signature is “load”.

MSB LSB

‘d’ ‘a’ ‘o’ ‘l’

64H 61H 6FH 6CH

Object Description:

INDEX 1011H

Name Store parameters

Object Code RECORD

Number Of Elements 4 (2 supported)

Data Type Unsigned32

Sub-Index 0

Description Largest supported Sub Index

Object Class Optional

Access Ro

PDO Mapping No

Value Range Unsigned8

Mandatory Range 4

Default Value 4

CANopen implementation Guide Elmo Motion Control

Rev 01/02 61

Sub-Index 1

Description Restore all parameters

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value No

Sub-Index 2

Description (N/A)Restore communication parameters

Object Class -Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range 0

Default Value 0

Sub-Index 3

Description (N/A)Restore application parameters

Object Class -Optional

Access Ro

PDO Mapping No

Value Range Unsigned32

Mandatory Range 0

Default Value 0

Sub-Index 4

Description Restore User program

Object Class Optional

Access Rw

PDO Mapping No

Value Range Unsigned32

Mandatory Range No

Default Value 1

CANopen implementation Guide Elmo Motion Control

Rev 01/02 62

17 Manufacture Object Details

17.1 Object 0x2001 PVT Data

Purpose:
Set PVT data for PVT motion mode.

Object Description:

INDEX 2001H

Name PVT data

Object Code VAR

Number Of Elements 1

Data Type PVT DataPar (Object 0x60)

Values Description:

Sub-Index -

Description -

Object Class Optional

Access Wo

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Byte Stream:
According to [3].

Note:
Transmission type (0bject 0x1400[2]) for mapping this object must be 255. An abort message will be
transmitted otherwise (0604 0043h)

CANopen implementation Guide Elmo Motion Control

Rev 01/02 63

17.2 Object 0x2002 PT Data

Purpose:
Set PT data for PT motion mode.

Object Description:

INDEX 2002H

Name PT data

Object Code VAR

Number Of Elements 1

Data Type PT DataPar (Object 0x61)

Values Description:

Sub-Index -

Description -

Object Class Optional

Access Wo

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Byte Stream:
According to [4].

Note:
Transmission type (0bject 0x1400[2]) for mapping this object must be 255. An abort message will be
transmitted otherwise (0604 0043h)

CANopen implementation Guide Elmo Motion Control

Rev 01/02 64

17.3 Object 0x2003 Fast Position Data

Purpose:
Set Position Absolute data for fast position motion mode.

Object Description:

INDEX 2002H

Name PA data

Object Code VAR

Number Of Elements -

Data Type PT DataStruct (Object 0x61)

Values Description:

Sub-Index -

Description -

Object Class Optional

Access Wo

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Byte Stream:
According to [4].

Note:
This object is reserved for future use.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 65

17.4 Object 0x2012 Binary Interpreter Inquiry

Purpose:
Binary interpreter object

Object Description:

INDEX 2012H

Name Binary interpreter

Object Code VAR

Number Of Elements -

Data Type Binary Interpreter inquiry (Object 0x62)

Values Description:

Sub-Index -

Description -

Object Class M

Access Ro

PDO Mapping Yes – static maping

Value Range No

Mandatory Range No

Default Value No

Byte Stream:
Please refer to Binary Interpreter Commands for details regarding this object.

Note:
This object is for computability with commands according to [2]. Therefore mapping this object to
PDO 2 is a mandatory need and cannot be accessed by the user.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 66

17.5 Object 0x2013 Binary Interpreter Command

Purpose:
Binary interpreter object

Object Description:

INDEX 2013H

Name Binary interpreter

Object Code RECORD

Number Of Elements 1

Data Type Binary Interpreter Command(Object 0x63)

Values Description:

Sub-Index -

Description -

Object Class M

Access Wo

PDO Mapping NO

Value Range NO

Mandatory Range NO

Default Value NO

Byte Stream:
Please refer to Binary Interpreter Commands for details regarding this object.

Note::
This object is for compatibility with commands according to [2]. Therefore mapping to PDO 2 is
mandatory and cannot be accessed by the user.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 67

17.6 Object 0x2030 Recorder Data

Purpose:
Getting recorded parameters according to RC and the Sub-Index field.
The 0x1 Sub-Index will draw the parameter, which was recorded in RC=(1<<Sub-Index).

Object Description:

INDEX 2030H

Name Bring Recorded Data

Object Code RECORD

Number Of Elements 16

Data Type UNSIGNED32

Values Description:

Sub-Index 0H

Description Number of supported elements

Object Class M

Access Ro

PDO Mapping No

Value Range UNSIGNED8

Mandatory Range 16

Default Value 16

Sub-Index 1H

Description Main Speed

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 2H

Description Main Position

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

CANopen implementation Guide Elmo Motion Control

Rev 01/02 68

Sub-Index 3H

Description Position Command

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 04H

Description Digital Input

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 05H

Description Position Error for UM=4,UM=5

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 06H

Description Torque Command

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 07H

Description Reserved to Bus Voltage

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

CANopen implementation Guide Elmo Motion Control

Rev 01/02 69

Sub-Index 08H

Description Auxiliary Position

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 09H

Description Auxiliary Speed

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 0AH

Description Active Current (IQ or IM)

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 0BH

Description Reactive Current (ID value - Sax Only)

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 0CH

Description Analog input 1

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

CANopen implementation Guide Elmo Motion Control

Rev 01/02 70

Sub-Index 0DH

Description Analog input 2

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 0EH

Description Current phase A (IA value)

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 0FH

Description Current phase B (IB value)

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Sub-Index 10H

Description Speed Command

Object Class M

Access Ro

PDO Mapping No

Value Range please refer to ‘Header byte sequence’

Mandatory Range No

Default Value -

Bytes stream:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 71

17.6.1 Bring Data Upload Process

Initiate SDO Upload protocol according to [2]. After confirmation a character stream is transmitted.
Each octet has to be answered according to Upload SDO segmented Protocol, except sub index 0,
which returns object supported entries in expedite SDO format.

Segmented response is built from the header and data stream.
Note: that Sub-Index in this object is a value of the RC bit field.

Header byte sequence:

Byte [bit] Stream Example

1[0-3]

Sample Time multiplier

1 = recorded each Ts * 1 * RG
4 = recorded each Ts * 4 * RG

1[4-5] Variable type 0 = integer type
1 = float type

1[6-7] Internal representation of
characters

0 = 2 bytes are 1 item (short value)
1 = 4 bytes are 1 item (long value)
2 = 4 bytes are 1 float (future)

2 – 3 Data length

4 – 7 Floating factor

Table 17-1: Upload SDO

Rest of byte sequence is the data stream.
All bytes are transfered according to ‘ Representation of numbers’ sector.

Sub index 0 will upload the supported object entries.

Note:
In the event of a change in the recorder variables while uploading, the process will be aborted.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 72

17.7 Object 0x2031 Binary Up / Down sequence (HS)

Purpose:
Uploading and downloading parameters to the RAM.

This object is used as a carrier to the data the is downloaded to the amplifier RAM memmory and
then to the FLASH.

The Binary Upload and Download sequence is described in the Software Manual Appedndix B in
details.

Object Description:

INDEX 2031H

Name

Object Code DOMAIN

Number Of Elements

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class Optional

Access WR

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 73

17.8 Object 0x2040 Coordinate System ID

Purpose:
A 7 bit identifier used to address a synchronized command like BG or ST to a pre-defined set of
servo drives.

Object Description:

INDEX 2040H

Name ID for synchronized commands

Object Code VAR

Number Of Elements -

Data Type Unsigned8

Values Description:

Sub-Index -

Description -

Object Class -

Access Rw

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Note:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 74

17.9 Object 0x2041 – Latched Free running Timer .

Purpose:

This object transmits the accurate 32 bits timer of the amplifier.
The 32 bits timer is a timer with 1 usec resolution that is updated once in a real time cycle.
The accuracy of the report is 1 microsecond and the resolution is real time resolution.
Real time resolution can be detected using WS[29] command.

Typical usage of this object is when the host wants to use a node as the system SYNC master. The
amplifier can transmit this object upon a SYNC message that came from the host (or SYNC
manager). The timer value can be transmitted to the whole bus nodes as the Time Stamp of the
SYNC message. The nodes in the bus can adjust the internal timer to this value according to the
previous SYNC message received time.

Please refer to Sync and Time Stamp in this manual.

Object Description:

INDEX 2041H

Name Amplifier free running timer

Object Code VAR

Number Of Elements -

Data Type UNSIGNED32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 75

17.10 Object 0x2050 MS Event Trigger

Purpose:
This object is used as trigger event (transmission type 254) when motion is done. Note that this
object will be sent when motion is enabled.

Object Description:

INDEX 2050H

Name Motion Done Event

Object Code VAR

Number Of Elements -

Data Type Unsigned32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Note:
When object is transmitted the expected message should be:

Byte 1 Byte 8

 00 00 0x50 0x20

CANopen implementation Guide Elmo Motion Control

Rev 01/02 76

17.11 Object 0x2051 EI Event Trigger

Purpose:
This object is used as trigger event (transmission type 254) when EI command is sent to the
interpreter though the RS232 or User Program.

When the object is mapped to a TPDO, each time the interpreter receives EI=<VALUE> the TPDO
is sent in the following format:

Byte 1 Byte 8

 VALUE 00 0x51 0x20

VALUE can be any number from 0 to 255. Different VALUES may help the user to transmit the
object from a known locations or events with in the User Program.

Please refer to PDO Mapping in this manual for more information about unsynchronized event
mapping.

Object Description:

INDEX 2051H

Name Event instruction trigger

Object Code VAR

Number Of Elements -

Data Type Unsigned32

Values Description:

Sub-Index -

Description -

Object Class -

Access RW

PDO Mapping Yes

Value Range [0,255]

Mandatory Range No

Default Value No

Note:

• EI is a volatile with default value of 0.

• When requiring EI value either by RS232 or CAN the mapped PDO will not be transmitted.
The user will get the last value that was set to EI.

• When this object is downloaded with a value, EI parameter is updated but the mapped PDO
will not be transmitted.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 77

17.12 Object 0x2052 Main Homing Event Trigger

Purpose:
This object is used as trigger event (transmission type 254) when homing sequence is finished.

Please refer to the Command Reference for more information about the HM command.

When this object is mapped to TPDO, the TPDO will be transmitted each time that HM[1] decreases
from 1 to 0.

The format of the message:

Byte 1 Byte 8

 00 00 0x52 0x20

Please refer to PDO Mapping for more information about unsynchronized event mapping.

Object Description:

INDEX 2052H

Name Main Homing Done event trigger

Object Code VAR

Number Of Elements -

Data Type Unsigned32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Note:

This object is valid when used in mapping procedure. The object returns no value when upload SDO
is required.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 78

17.13 Object 0x2060 Reference table

Purpose:
Used only by Elmo Composer Wizard in the process of system tuning.

Object Description:

INDEX 2060H

Name Reference table

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -

Access W

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Note:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 79

17.14 Object 0x206A Error Code Value (EC command)

Purpose:
Read the error code.

Object Description:

INDEX 206AH

Name Error Code

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Note:

Please refer to the Command reference – EC Command for more information about the available
error codes.
When receiving a general abort message (080000h) an extra information regarding this error will be
given with 0x206A object.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 80

17.15 Object 0x2070 List/Download a program

Purpose:
Uploading this object will list the current user program.
Downloading this object will place a user program into RAM memory.

Object Description:

INDEX 2070H

Name Read / Write user program

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -

Access RW

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

17.15.1 User Program Upload Process

Initiate SDO Upload protocol according to [2]. After confirmation, a character stream is transmitted.
Each octet has to be answered according to Upload SDO segmented Protocol.
The last byte in the last octet will be 0x08.

17.15.2 User Program Downloading Process

Initiate SDO Download protocol according to [2]. After confirmation, a character stream lead by
‘D’,’L’ according to the user program, is received. Each octet must be answered according to
Download SDO segmented Protocol.
Download of a new program must start with the CP command (binary interpreter) that clears
porgram counter.
In case that a stop durring downloading is required ‘\’ (ASCII 0x5C) is used to the terminate
transmission.

Note:
Before executing program a compilation must be issued. (object 0x2073).
Upload and download are from and to the RAM memory of the controller.
Use binary interpreter SG command to save the program to FLASH memory and LG command to
load from FLASH to RAM.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 81

17.16 Object 0x2071 Upload/Download Code Status

Purpose:
Uploading this object will return user program current line number and code.
Downloading this object will perform the current command and advance to the next one.

Object Description:

INDEX 2071H

Name Code status/Step single

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -

Access Rw

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

17.16.1 Code Status Upload Process

Initiate SDO Upload protocol according to [2]. After confirmation a character stream is transmitted.
Each octet must be answered according to Upload SDO segmented Protocol.
Segmented upload stream will include line number and code.

17.16.2 Single Code Download Process

Initiate SDO Download protocol using the expedite format according to [2]. One command of a user
program will be performed and a confirmation will be sent.

Note:
One program line may include several commands separated by ‘;’. Upload transmits a whole line and
download performs 1 command.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 82

17.17 Object 0x2072 Program Message (MZ command)

Purpose:
Upload this object to fetch on-the-fly program messages.
The program message buffer can be used on 2 occasions:
1. Run time errors.
2. Run time messages (after MG)

Object Description:

INDEX 2072H

Name Get program message.

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Initiate SDO Upload protocol according to [2]. After confirmation a characterstream is being
transmitted. Each octet must be answered according to Upload SDO segmented Protocol.
If no message or errors are found in the buffer, an expedite confirmation will be transmitted with the
data 0x1A (^Z) , ‘O’, ‘K’.

In case of a message the following format will be use:

Line
number

Space
(ASCII
0x20)

Message String ‘;’
(ASCII
0x3B)

All characters are visible string.

In case of an error the following format will be use:

Line
number

Space
(ASCII
0x20)

Command
string

Space
(ASCII
0x20)

‘$’
(ASCII0x2
4)

Elmo
error
code.

‘;’
(ASCII
0x3B)

All characters are visible string.
Note:

Object might report up to 50 errors.
Last character in a message or error line is 0x3B (;).
Last character in a message and/or error list is 0x1A (^Z).

CANopen implementation Guide Elmo Motion Control

Rev 01/02 83

17.18 Object 0x2073 Program Compilation

Purpose:
Compile and upload error list.

Object Description:

INDEX 2073H

Name Compile user’s program.

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class Mandatory-

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Initiate SDO Upload protocol according to [2]. After confirmation a characterstream is transmitted.
Each octet must be answered according to Upload SDO segmented Protocol.
If no error is detected in the last compilation, only an expedite confirmation will be transmitted with
the data 0x1A (^Z) , ‘O’, ‘K’.
In case of an error the following format will be use:

Line
number

Space
(ASCII
0x20)

Command
string

Space
(ASCII
0x20)

‘$’
(ASCII
0x24)

Elmo
error
code.

‘;’
(ASCII
0x3B)

All characters are visible string.

Note:
No program execution is allowed without prior compilation.
This object may report up to 50 errors.
The last character in an error line is 0x3B (;).
The last character in an error list is 0x1A (^Z).

CANopen implementation Guide Elmo Motion Control

Rev 01/02 84

17.19 Object 0x2074 Execute User Program.

Purpose:
Execute user program.

Object Description:

INDEX 2074H

Name Executes user’s program.

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class Mandatory-

Access Wo

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

Initiate SDO Download protocol according to [2].
Execution format is according to Software Manual.

The usage with expedite format execution will start the program from the first command.
The format for an expedite data should be:

Byte 1 Byte 5 Byte 8

0x22 0x74 0x20 0x00 0x00 0x00 0x00 0x00

Byte 5 – byte 8: Reserved for future usage – considered as 0.

The bit of the size indicator is not significant for this object. In that manner 0x22 or 0x23 give the
same results.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 85

In order to start from a referenced label use the segmented format.

! Up to 68 characters can be used for total labeling of a segmented data format. This includes 2
messages of 32 characters and the ‘##’ signs.

Please refer to Program Development and Execution in the Software Manual.

Example:
We want to execute XQ##FIRST_LAB

The format for segmented data should be:

First the host initiates SDO sequence download:

Byte 1 Byte 5 Byte 8

0x20 0x74 0x20 0 0 0 0 0

After the reply from the amplifier the host transmits:

Byte 1 Byte 5 Byte 8

00 ‘#’ ‘#’ ‘F’ ‘I’ ‘R’ ‘S’ ‘T’

After the replay from the amplifier the final host transmission is:

Byte 1 Byte 5 Byte 8

0x17 ‘_’ ‘L’ ‘A’ ‘B’ 0 0 0

The execution of a program can abort due to run time error. Please refer to XQ command in the
command reference for more details.
Note:

• Execution is available after uploading object 0x2073 that is actually the compilation
command..

• Run time error can be drawn using object 0x2073.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 86

17.20 Object 0x2080 CPU Dump

Purpose:

This object holds the CPU status.

Object Description:

INDEX 2080H

Name Dump CPU status

Object Code VAR

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:

17.20.1 CPU Dump Upload Process

Initiate SDO Upload protocol according to [2]. After confirmation character stream is transmitted.
Each octet must be answered according to Upload SDO segmented Protocol.
Segmented upload stream will include:
Null Address – Address that caused a NULL interrupt
Failure Address – Address that caused a failure for stack overflow
Called handler – Exception handler after a failure.
Database Fail – Cause of failure in database tests.
Digital in – Status of digital input.

Note:
Recroder must be invalidate before using this object.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 87

17.21 Object 0x2081 CAN Controller Status

Purpose:

This object informs the CAN controller status register.

Object Description:

INDEX 2081H

Name CAN Controller Status

Object Code VAR

Number Of Elements -

Data Type UNSIGNED8

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

The CAN controller status register bits:

7 6 5 4 3 2 1 0

Bus Off Warning Wake Up Reserved Reserved L. Error 2 L. Error 1 L. Error 0

Bus Off:

When this bit is set (“1”):
There is an abnormal rate of occurences of errors on the CAN bus. The error counter of the controller
has reached 256 error frames. During bus off the controller can nither receive nor transmits
messages. The CPU starts a recovery sequence automatically, however the bus off state will be
recovered after the controller has sensed 128 packages of 11 consecutive recessive bits (“1”). After
recovary the controller resume to a normal operation.

Warning Level:
When this bit is set (“1”):
There is an abnormal rate of occurences of errors on the CAN bus. The error counter of the controller
has count 96 error frames. The controller stays in normal operation.

Wake:

For sleeping mode – not implemented.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 88

Last Error0-2:
This field contains a code which includes the first error to occur in a frame on the CAN bus.
0 – No errors
1 – Stuff Error:
 More then 5 bits in a sequence have occurred in a part of a received message.
2 – Form Error:

Result from a violation of the fixed form in the following bit field:
- end of frame.
- interframe space.
- acknowladge field
- CRC

3 – ACK:
 Message that was sent by this controller was not acknowladged by any other node.
4- Bit 1 Error:
 Dominate bit was sensed while recesive one was sent.
5 – Bit 0 Error:
 Recessive bit was sensed while dominate one was sent.
6 – CRC:
 The CRC checksum was incorrect in the received message.
7 – Initiation value set by the CPU.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 89

17.22 Object 0x208A - Begin Time

Purpose:

This object receives an absolute time for synchronized Motion Begin (BG).
Please refer to BT command in the Command Reference.

Please refer to Sync and Time Stamp in this manual for more information about the synchronization
process.

Object Description:

INDEX 208AH

Name Begin Time

Object Code VAR

Number Of Elements -

Data Type UNSIGNED32

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access RW

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 90

17.23 Object 0x2090 Firmware Download

Purpose:

Download controller firmware using S-records format.

Please refer to Firmware Downloading in this manual.

Object Description:

INDEX 2090H

Name Download firmware

Object Code DOMAIN

Number Of Elements -

Data Type Visible String

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Wo

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:
The characters should be sent according to the S Record format. Status of downloading process can
be read by object 0x2091 when the process failed or finished.

Format of the Messages:

After the final character of the each S Record line, the host must be send the character ‘0x0A’ for
end of line indication. Next S Record line can be sent immediately after ‘0xA’.

Example:

First the host initiates SDO segmented sequence:

Byte 1 Byte 5 Byte 8

20 0x90 0x20 0x00 0x00 0x00 0x00 0x00

After the reply from the amplifier, the host transmits:

Byte 1 Byte 5 Byte 8

00 ‘S’ ‘3’ ‘6’ ‘A’ ‘3’ ‘9’ ‘1’

CANopen implementation Guide Elmo Motion Control

Rev 01/02 91

The end-of-line format and the beginning of new S Record line:

Byte 1 Byte 5 Byte 8

10 ‘8’ ‘5’ 0x0A ‘S’ ‘6’ ‘0’ ‘B’

Note:
Applicable only if working firmware is installed.
In case of a failure, download can only be performed with RS232.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 92

17.24 Object 0x2091 Firmware Downloading Status

Purpose:

Gives the status of firmware while and after downloading.

Object Description:

INDEX 2091H

Name Status of firmware download

Object Code VAR

Number Of Elements -

Data Type Unsigned8

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Byte stream:
This object returns a single ASCII character, which refers to the status of firmware download.
Please refer to Firmware Downloading in this manual.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 93

17.25 Object 0x20A0 Auxiliary Position Actual Value.

Purpose:

Return the actual position of the auxiliary axis (PY).

Object Description:

INDEX 20A0H

Name Auxiliary position.

Object Code VAR

Number Of Elements -

Data Type Signed32

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping Yes

Value Range ±2^31

Mandatory Range No

Default Value No

Note:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 94

17.26 Object 0x20A1 MainPosition Error.

Purpose:

Returns the error between the postion command and the actual position (PE).

Object Description:

INDEX 20A1H

Name Position Error.

Object Code VAR

Number Of Elements -

Data Type Signed32

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping Yes

Value Range ±2^31

Mandatory Range No

Default Value No

Note:

CANopen implementation Guide Elmo Motion Control

Rev 01/02 95

17.27 Object 0x20B1 Velocity Factor.

Purpose:

The value for translating the velocity internal units to cnt/sec.

Object Description:

INDEX 20B1H

Name Velocity factor

Object Code VAR

Number Of Elements -

Data Type float

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Note:
Velocity factor depends upon the TS values of the controller.
The result of mapped position objects like 0x6064 (PX) is in internal units, user should multiplie this
value with the factor to get a counts / sec values.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 96

17.28 Object 0x20B1 Current Factor.

Purpose:

The value for translating the current internal units to Ampere.

Object Description:

INDEX 20B2H

Name Current factor

Object Code VAR

Number Of Elements -

Data Type Float

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Ro

PDO Mapping No

Value Range No

Mandatory Range No

Default Value No

Note:
Current factor depends on the maximum current of the amplifier (MC).
The result of mapped current objects like 0x6078 (IM) is in internal units, user should multiplie this
value with the factor to get values in ampere.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 97

17.29 Object 0x2F00 Integer Array (IA).

Purpose:

Gets the value of integer array. The IA[] is a general purpose array. Values can be set to this array
using the binary interpreter or with user program.

Object Description:

INDEX 2F00H

Name Integer Array

Object Code ARRAY

Number Of Elements -

Data Type Signed32

Values Description:

Sub-Index -

Description -

Object Class -Optional

Access Rw

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Example:

For IA[1]= 12345678 ; (decemal value)

Note:
This object may be useful when mapping TPDO to MS trigger (0x2050). The object 0x2050 will be
transmit each time the motion ends in position mode. The problem is that the user can not tell the
reason to the end-of-motion. This may be after a homing was done, or a switch was detected or a real
target was reached. Mapping IA[] to the same object, can give indication for the reason that 0x2050
was launched.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 98

17.30 Object 0x2F0A - Amplifier Free running Timer .

Purpose:

This object transmits the accurate 32 bits timer of the amplifier.
This data can be used in order to synchronized a time begin motion.

Please refer to Object 0x208A - Begin Time in this maual.

Please refer to Sync and Time Stamp in this manual.

Object Description:

INDEX 2F0AH

Name Amplifier free running timer

Object Code VAR

Number Of Elements -

Data Type UNSIGNED32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 99

17.31 Object 0x2F0B Status Object.

Purpose:

Status information of the following:
Bit 0 : Motor On . (MO=1)
Bit 1: Motor fault (MF > 0)
Bit 2: Program is running (PS > 0)
Bit 3: PTP in place.
Bit 4: Position profiler done.

Object Description:

INDEX 2F0BH

Name Status Object

Object Code VAR

Number Of Elements -

Data Type Signed32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

Note:
Status information is available in object 0x1002 (SR command).

CANopen implementation Guide Elmo Motion Control

Rev 01/02 100

17.32 Object 0x2F11 – PVT Head Pointer .

Purpose:

This object informs the host the index location of the last updated PVT message in the PVT table.
According to that and with object 0x2F12the host can know the rate and the location in which the
PVT table should be updated.
This object can be only used when mapped into a synchronized TPDO. It cannot be read or write
with SDO protocol.

Please refer to PVT and PT – Tabulated Motion Modes in the Software Manual.

Object Description:

INDEX 2F11H

Name PVT head pointer

Object Code VAR

Number Of Elements -

Data Type UNSIGNED32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 101

17.33 Object 0x2F12 – PVT Tail Pointer .

Purpose:

This object informs the host the index of the next read PVT message in the PVT table. According to
that and with object 0x2F11 the host can know the rate and the location in which the PVT table
should be updated.
This object can be only used when mapped into a synchronized TPDO. It cannot be read or write
with SDO protocol.

Please refer to PVT and PT – Tabulated Motion Modes in the Software Manual.

Object Description:

INDEX 2F12H

Name PVT Tail pointer

Object Code VAR

Number Of Elements -

Data Type UNSIGNED32

Values Description:

Sub-Index -

Description -

Object Class -

Access Ro

PDO Mapping Yes

Value Range No

Mandatory Range No

Default Value No

CANopen implementation Guide Elmo Motion Control

Rev 01/02 102

18 Error Control Protocol

18.1 Node Guarding and Life Guarding

(CiA DS-203-2 5)
Elmo amplifiers support node guarding and life factor.
The network master must issue an RTR (Remote transmission request) for the COB ID
(0x700+device ID). That means that the first amplifier with the unit ID of 1 will have the node
guarding COB ID of 1793.
The amplifier will respond with the single byte message of which bit 7 is a toggle (varies with each
transmission) and the other 6 bits reflect the communication state of the amplifier.
Toggle bit reset value is 0.

The states read:

1 Disconnected

4 Prepared

5 Operational.

The amplifier can be programmed to shut itself off when the master fails to ask for the node guard
object in time. If the amplifier waits (Guard time * Life time factor) milliseconds without detecting
node guarding activity, it shuts itself off. This means that an automatic ST command is issued the
communication resets and goes to the prepared state. The guard time is object 0x100c in the OD, and
the life time factor is object 0x100d in the OD.
If either the guard time or the life time factor are zero, the auto shut off feature of the amplifier (the
life guarding) is disabled.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 103

18.2 Node Guarding and Life Guarding

(CiA DS-203-2 5)
Elmo servo drives support node guarding and life factor.
The network master must issue an RTR (Remote transmission request) for the COB ID
(0x700+device ID). That means that the first servo drive with the unit ID of 1 will have the node
guarding COB ID of 1793.
The servo drive will respond with the single byte message of which bit 7 is a toggle (varies with each
transmission) and the other 6 bits reflect the communication state of the servo drive.
Toggle bit reset value is 0.

The states read:

1 Disconnected

4 Prepared

5 Operational.

The servo drive can be programmed to shut itself off when the master fails to ask for the node guard
object in time. If the servo drive waits (Guard time * Life time factor) milliseconds without detecting
node guarding activity, it shuts itself off. This means that an automatic ST command is issued the
communication resets and goes to the prepared state. The guard time is object 0x100c in the OD, and
the life time factor is object 0x100d in the OD.
If either the guard time or the life time factor are zero, the auto shut off feature of the servo drive (the
life guarding) is disabled.

CANopen implementation Guide Elmo Motion Control

Rev 01/02 104

19 Firmware Downloading

New firmware versions can be loaded via the CAN communications by writing the new firmware as
S-Records to object 0x2090. Note: that unlike, RS232, firmware downloading by CAN
communication may only be used to download firmware if the servo drive firmware is not
corrupted6. Since RS232 communications are supported by the BIOS, CAN downloading require the
existing firmware to run.
Firmware loading is protected – the parameter TP[6] must be set to 1 before firmware downloading
can be done. The S records are written as string SDO s to object 0x2090. After each completed S
Record, the status may be read via object 0x2091.

Object 0x2091 reads:

O.k ‘A’

Not completed ‘B’ S record transfer in process.
This state is set after download initiation.

General download
failure

‘C’ Download failure due to unknown failure.
‘Abort SDO Transfer’ according to [2] will be transmitted.

Flash error ‘D’ Download failure due to error in the flash.
‘Abort SDO Transfer’ according to [2] will be transmitted.

Programming complete ‘F’ Complete download successfully. This state is set after a
complete message was arrived. This state will remain until
NMT application or controller reset.

After firmware downloading, the servo drive continues to communicate using the old firmware. If
the downloading fails, it is possible to retry the downloading. In order to flag that the firmware
loading should start from the beginning, set TP[6]=1.
After a successful firmware loading, the NMT command reset application (129) must be issued to
reboot the servo drive. Power reset will provide the same result.

6 This means that if a firmware download is interrupted prematurely, we must reload the firmware to
the servo drive using RS232 communication

CANopen implementation Guide Elmo Motion Control

Rev 01/02 105

20 Initial Setup for CAN Communication

All the communication parameters, such as the CAN baud rate for the targets, are programmed via
the PP[N] command – please see [6]. In order to program the communication parameters, we need
to first communicate with the servo drive. The CAN communication parameters may be set using
the RS232 communication channel, which is always active. In the case where the servo drive is
programmed to RS232 parameters that are different from the default, there is a way to force the
servo drive to its default RS232 communication parameters – please see the user manual [6].It is
also possible to try all the supported CAN baud rates until the unit responds.

The following parameters affect CAN communication:

 Description Range

PP[13
]

Servo drive CAN ID. 1 – 127

PP[14
]

CAN baud rate. 1 – 7
7 for 10000
6 for 20000
5 for 50000
4 for 100000
3 for 125000
2 for 250000
1 for 500000

PP[15
]

Standard/Extended arbitration field. Must be zero.
(Only standard arbitration is supported by
the software at present).

Table 20-1: CAN Communication

Setting the PP[13] and the PP[14] parameters does not change anything immediately. In order to
activate the new communication parameters, an NMT reset communication command is required, or
the servo drive must be re- booted.
If the servo drive is to be re-booted, either by the NMT reset application command or by a power-on
sequence, the SV (Save parameters) command must be used so that the communication parameters
will become permanent.

In order to start CAN PDO communication, an NMT network start command must be issued – please
refer the above section on NMT.

After the net start command, the servo drive is in the CAN operational state.

