(2014-2015)

Name:

- This packet is designed to help you retain the information you learned in Advanced Math 6 or Math 7 and realize what skills are essential for you to have as you enter Math 7 Honors or Math 8.
- The packet <u>will not be collected by your teacher</u>, this is only for your practice and to keep your math skills fresh as you enjoy some time off from school this summer. Should you need to review or get assistance please try your online textbook <u>http://www.bigideasmath.com</u> or other helpful math sites like <u>https://www.khanacademy.org/math/cc-seventh-grade-math</u>.
- The most important topics to review for next year are **INTEGERS** (know your rules!) and **ALGEBRA**.
- Use websites and online games to help you strengthen your multiplication table skills! It is expected that you know <u>ALL</u> your multiplication tables (0 through 12) by heart!

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Examples:

Addition	Subtraction	Multiplication	Division
Same signs:	Keep–Change-Opposite	Same signs:	Same signs:
Add & keep sign		Positive product	Positive quotient
$^{+}6 + ^{+}5 = ^{+}11$	(+10) - (-8) = (+10) + (+8) = 18	$(^{+}7)(^{+}8) = 56$	$^{+}42 \div ^{+}6 = 7$
(-8)+(-2)=-10		(-2)(-6) = 12	$(-24) \div (-8) = 3$
	(-5)-(+12)=(-5)+(-12)=-17		
Different signs:		Different signs:	Different signs:
Subtract & take sign	(-20) - (-8) - (-20) + (+8)12	Negative product	Negative quotient
of larger value	(20) $(0) = (20)$ $(10) = 12$	(3)(-9) = -27	$56 \div (-7) = -8$
$^{+}9 + ^{-}5 = ^{+}4$		(-5)(4)20	$(-50) \div 225$
(-6) + 1 = -5		(3)(7) = -20	$(50) \cdot 2 = -25$

Recall the order of operations:

- $1 \underline{\mathbf{P}}$ arentheses (or grouping symbols)
- 2 Exponents
- 3 Multiplication and/or Division (left to right)
- 4 Addition and/or Subtraction (left to right)

1)
$$(-12)+(-7) =$$

- 3) 2+(-25) = _____
- 5) 11-(-5) = _____
- 7) (-9)(-8) = _____
- 9) $(-35) \div (-7) =$ _____
- 11) (-2)(6)(-5) = _____

10) $(-48) \div (8) =$ _____

2) (-25)+18 = _____

4) (-28) - (-8) =_____

6) (-21)-4 = _____

8) (2)(-12) =_____

- 12) $(-30) + 24 \div 6 \bullet (-2) =$ _____
- 13) $16 \div 4 + 2 \bullet (-8) =$ _____

¹⁴⁾ $-3(1-8)+2^3 =$

^{**} Practice your INTEGER RULES using websites and online games!! You MUST know these!! ** (ex. www.math.com or www.mathguide.com/lessons/Integers.html)

Scientific Notation A number written as a number that is at least 1, but less than 10 m Ex. $7.16 \times 10^5 = 716,000$ (in standard form) $9.2 \times 10^{-3} = 0.0092$ (in standard form)	ultiplied by a power of 10.
Write each of the following in standard form.	Answers:
15) 8.2×10^5	15)
16) 2.45×10^{-4}	16)
17) 7.28×10 ³	17)
18) 9.1×10^{-2}	18)
Write each of the following in scientific notation.	
19) 25,900	19)
20) 0.039	20)

22)	3,207,000,000
,	5,207,000,000

Rounding

Rounding a numerical value means replacing it by another value that is approximately equal but has a shorter, simpler, or more explicit representation. We round numbers to a specific place value. UNDERLINE the place value you're rounding to. Then check the place to the right and decide whether to keep it the same or round up.

21)_____

22)

Round each of the following decimals to the <u>nearest tenth</u>. Write your answer on the blank.

23)	87.46	 24)	8.862	
25)	13.4395	 26)	654.839	
27)	23.648	 28)	32.971	

Round each of the following decimals to the **<u>nearest hundredth</u>**. Write your answer on the blank.

29)	26.879	 30)	429.76492	
31)	675.495132	 32)	3.8961	

Complete the t-chart below. <u>MEMORIZE these perfect squares!</u>

square root of a perfect square	integer value
$\sqrt{1}$	
$\sqrt{4}$	
$\sqrt{9}$	
$\sqrt{16}$	
$\sqrt{25}$	
$\sqrt{36}$	
$\sqrt{49}$	
$\sqrt{64}$	
$\sqrt{81}$	
$\sqrt{100}$	
$\sqrt{121}$	
$\sqrt{144}$	
$\sqrt{169}$	
$\sqrt{196}$	
$\sqrt{225}$	

To **approximate** square roots that are <u>not perfect squares</u>, determine the **perfect squares** which the radicand lies between.

Example: To approximate $\sqrt{32}$, think of the perfect squares 32 is between (25 and 36). $\sqrt{25} < \sqrt{32} < \sqrt{36}$ $5 < \sqrt{32} < 6$ therefore, $\sqrt{32}$ is between 5 and 6. (Because 32 is closer to 36 than 25, we may estimate that $\sqrt{32} \approx 5.7$.)

Find each square root. DO <u>NOT</u> USE A CALCULATOR.

2) $\sqrt{36}$ = _____ 3) $\sqrt{121}$ = _____ 1) $\sqrt{16} =$ _____ 5) $\sqrt{169}$ = _____ 6) $\sqrt{81}$ = _____ 4) $\sqrt{225} =$ _____ State which integers the square root lies between. DO NOT USE A CALCULATOR!! Ex: $\sqrt{81} < \sqrt{85} < \sqrt{100}$ therefore $\sqrt{85}$ is between the integers <u>9</u> and <u>10</u>. 7) _____ < $\sqrt{37}$ < _____ therefore $\sqrt{37}$ is between the integers _____ and ____. 8) _____ < $\sqrt{26}$ < _____ therefore $\sqrt{26}$ is between the integers _____ and ____. 9) _____ < $\sqrt{61}$ < _____ therefore $\sqrt{61}$ is between the integers _____ and ____. 10) _____ < $\sqrt{119}$ < _____ therefore $\sqrt{119}$ is between the integers _____ and ____. 11) _____ < $\sqrt{68}$ < _____ therefore $\sqrt{68}$ is between the integers _____ and ____. 12) _____ < $\sqrt{50}$ < _____ therefore $\sqrt{50}$ is between the integers _____ and ____. 13) _____ < $\sqrt{40}$ < _____ therefore $\sqrt{40}$ is between the integers _____ and ____. 14) _____ < $\sqrt{18}$ < _____ therefore $\sqrt{18}$ is between the integers _____ and ____. 15) _____ < $\sqrt{32}$ < _____ therefore $\sqrt{32}$ is between the integers _____ and ____.

Topic: Algebra

Combining like terms and applying the Distributive Property

In algebraic expressions, <u>like terms</u> are terms that contain the same variables raised to the same power. Only the <u>coefficients</u> of like terms may be different.

> In order to **combine like terms**, we add or subtract the numerical coefficients of the like terms using the Distributive Property: ax+bx = (a+b)x

Examples:

1) 2x+9x=(2+9)x=11x

- 2) 12y-7y = (12-7)y = 5y
- 3) 5x+8-2x+7=(5x-2x)+(8+7)=3x+15

Here, the like terms are: 5x and -2x which simplifies to 3x and 8+7 which is equal to 15.

The **Distributive Property** of multiplication over addition/subtraction is frequently used in Algebra:

Examples: 1) $7(2x+9) = 7 \cdot 2x + 7 \cdot 9 = 14x + 63$ 2) $4(6-5x) = (4) \cdot (6) - (4) \cdot (5x) = 24 - 20x$

Simplify each expression by combining like terms.

Answers:

1)	8y + 2y =	1				
2)	10 - 6y + 4y + 9 =	2				
3)	3x + 7 - 2x =	3				
4)	8n - 7y - 12n + 5 - 3y =	4				
Ap	Apply the distributive property and write your answer in simplest form.					
5)	7(x-4) =	5				
6)	5(4n-3) =	6				
7)	-6(3y+5) =	7				
0)		8				
8)	-4(8-9x) =	9				
9)	8(3n+7) =					
10)	-4(5+7y) =	10				

Topic: Algebra

Solving equations by using the Addition, Subtraction or Multiplication Property of Equality. Check the solution.

Ex 1: $x - 6 = 10$	Ex 2: $\frac{x}{2} + 5 = 9$
+6 = +6	-5 = -5
x = 16	$\frac{2}{1} \cdot \frac{x}{2} = 4 \cdot 2$
	<i>x</i> = 8
Check: $x - 6 = 10$	Check: $\frac{x}{2} + 5 = 9$
16 - 6 = 10	$\frac{8}{2} + 5 = 9$
10 = 10	4 + 5 = 9 :
	9 = 9

Solve the following equations. Show your work and <u>check</u> your solution.

1)
$$2x = 18$$
 2) $\frac{x}{3} = -12$ 3) $x + 8 = -12$

Check:

Check:

Check:

4)
$$x+8=32$$
 5) $\frac{x}{4}=20$ 6) $x-7=8$

Check:	Check:	Check:
7) $3x-5=7$	8) $6x + 3 = -15$	9) $\frac{x}{4} + 8 = 20$

Check:

Check:

Check:

Translate each sentence to an algebraic equation. Then use mental math to find the solution.

	Equation	Solution
10. One-half of a number is -12 .		
11. 6 more than 7 times a number is 41.		
12. 5 less than three times a number is 10.		
13. 16 increased by twice a number is -24 .		

Topic: Geometry

You should know the following formulas and be able to use them to find the area or perimeter of a geometric figure.

Perimeter of a polygon = the sum of the sides

Rectangle:	P = 2l + 2w	A = lw
Square:	P = 4s	$A = s^2$
Parallelogram:	$P = s_1 + s_2 + s_3 + s_4$	A = bh
Triangle:	$P = s_1 + s_2 + s_3$	$A = \frac{1}{2} bh$
Trapezoid:	$P = s_1 + s_2 + s_3 + s_4$	$A = \frac{1}{2} (b_1 + b_2)h$
Circle:	Circumference = πd	$A = \pi r^2$

Find the **perimeter** and **area** of each figure. Use $\pi \approx 3.14$ and **show your work**.

ANSWERS

Integers	Square Roots
119	Chart integer values
217	1
323	2
420	3
5. 16	4
625	5
7. 72	6
824	7
9. 5	8
106	9
11. 60	10
1238	11
1312	12
14. 29	13
	14
Scientific Notation	15
15. 820,000	
16. 0.00024	1. 4
17. 7,280	2. 6
18. 0.091	3. 11
19. 2.59×10^4	4. 15
20. 3.9×10^{-2}	5. 13
21. 7.0×10^{-4}	6. 9
22. 3.2×10^9	7. $\sqrt{36} \& \sqrt{49}$
	8. $\sqrt{25}$ & $\sqrt{36}$
Rounding	9. $\sqrt{49}$ & $\sqrt{64}$
23. 87.5	$10 \sqrt{100} & \sqrt{12}$
24. 8.9	$10. \sqrt{100} \text{c} \sqrt{12}$
25. 13.4	11. √64 & √81
26. 654.8	12. √49 & √64
27. 23.6	13. $\sqrt{36}$ & $\sqrt{49}$
28. 33.0	14 ,16 & 125
29. 26.88	14. $\sqrt{10} \propto \sqrt{23}$
30. 429.67	15. √25 & √36
31. 6/5.50	
32. 3.90	

,6&7 ,5&6 ,7&8 <u>21</u>, 10 & 11 ,8&9 ,7&8 ,6&7 ,4&5 , 5 & 6

Distributive Property

1. 10y 2. 19-2y 3. x + 7 4. -4n - 10y + 55. 7x - 286. 20n – 15 7. -18y - 30 8. -32 + 36x9. 24n + 5610. -20 – 28y

Solving Equations

- 1. x = 92. x = -363. x = -20
- 4. x = 24
- 5. x = 80
- 6. x = 15
- 7. x = 4
- 8. x = -3
- 9. x = 48

Translate and solve

10.
$$\frac{1}{2}x = -12$$
 $x = -24$
11. $6+7x = 41$ $x = 5$
12. $3x-5=0$ $x = 5$
13. $16+2x = -12$ $x = -14$

Geometry

- 1. P = 60cm
 - $A = 35 \text{ cm}^2$
- 2. P = 180 cm
- $A = 20.25 \text{ cm}^2$
- 3. P = 60 cm
 - $A = 160 \text{ cm}^2$
- 4. P = 21.5 in $A = 18 \text{ in}^2$
- 5. P = 28 cm
- $A = 36 \text{ cm}^2$
- 6. P = 31.4 ftA = 78.5 ft²