- This packet is designed to help you retain the information you learned in Advanced Math 6 or Math 7 and realize what skills are essential for you to have as you enter Math 7 Honors or Math 8.
- The packet will not be collected by your teacher, this is only for your practice and to keep your math skills fresh as you enjoy some time off from school this summer. Should you need to review or get assistance please try your online textbook http://www.bigideasmath.com or other helpful math sites like https://www.khanacademy.org/math/cc-seventh-grade-math.
- The most important topics to review for next year are INTEGERS (know your rules!) and ALGEBRA.
- Use websites and online games to help you strengthen your multiplication table skills! It is expected that you know ALL your multiplication tables (0 through 12) by heart!

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

## Topic: Integers



Examples:

| Addition | Subtraction | Multiplication | Division |
| :---: | :---: | :---: | :---: |
| Same signs: <br> Add \& keep sign $\begin{aligned} & +6+{ }^{+} 5={ }^{+} 11 \\ & (-8)+(-2)=-10 \end{aligned}$ | Keep-Change-Opposite $\begin{aligned} & (+10)-(-8)=(+10)+(+8)=18 \\ & (-5)-(+12)=(-5)+(-12)=-17 \end{aligned}$ | Same signs: <br> Positive product $\begin{aligned} & \left({ }^{+} 7\right)\left({ }^{+} 8\right)=56 \\ & (-2)(-6)=12 \end{aligned}$ | Same signs: Positive quotient $\begin{aligned} & +42 \div+6=7 \\ & (-24) \div(-8)=3 \end{aligned}$ |
| Different signs: Subtract \& take sign of larger value $\begin{aligned} & +9+-5=+4 \\ & (-6)+{ }^{+} 1=-5 \end{aligned}$ | $(-20)-(-8)=(-20)+(+8)=-12$ | Different signs: <br> Negative product $\begin{aligned} & (3)(-9)=-27 \\ & (-5)(4)=-20 \end{aligned}$ | Different signs: <br> Negative quotient $\begin{aligned} & 56 \div(-7)=-8 \\ & (-50) \div 2=-25 \end{aligned}$ |
| Recall the order of operations: <br> $1-\underline{\text { Parentheses }}$ (or grouping symbols) <br> 2 - Exponents <br> 3 - Multiplication and/or Division (left to right) <br> 4 - Addition and/or Subtraction (left to right) |  |  |  |

1) $(-12)+(-7)=$ $\qquad$
2) $(-25)+18=$
3) $2+(-25)=$ $\qquad$ 4) $(-28)-(-8)=$ $\qquad$
4) $11-(-5)=$ $\qquad$ 6) $(-21)-4=$ $\qquad$
5) $(-9)(-8)=$ $\qquad$
6) $(-35) \div(-7)=$ $\qquad$ 10) $(-48) \div(8)=$ $\qquad$
7) $(-2)(6)(-5)=$ $\qquad$ 12) $(-30)+24 \div 6 \bullet(-2)=$ $\qquad$
8) $16 \div 4+2 \bullet(-8)=$
9) $-3(1-8)+2^{3}=$ $\qquad$
** Practice your INTEGER RULES using websites and online games!! You MUST know these!! ** (ex. www.math.com or www.mathguide.com/lessons/Integers.html)

## Scientific Notation

A number written as a number that is at least 1 , but less than 10 multiplied by a power of 10 .
Ex. $\quad 7.16 \times 10^{5}=716,000$ (in standard form)
$9.2 \times 10^{-3}=0.0092 \quad$ (in standard form)

Write each of the following in standard form.
15) $8.2 \times 10^{5}$
16) $2.45 \times 10^{-4}$
17) $7.28 \times 10^{3}$
18) $9.1 \times 10^{-2}$

Write each of the following in scientific notation.
19) 25,900
20) 0.039
21) 0.0007
22) $3,207,000,000$

Answers:
15) $\qquad$
16) $\qquad$
17) $\qquad$
18) $\qquad$
19) $\qquad$
20) $\qquad$
21) $\qquad$
22) $\qquad$

## Rounding

Rounding a numerical value means replacing it by another value that is approximately equal but has a shorter, simpler, or more explicit representation. We round numbers to a specific place value. UNDERLINE the place value you're rounding to. Then check the place to the right and decide whether to keep it the same or round up.

Round each of the following decimals to the nearest tenth. Write your answer on the blank.
23) 87.46 $\qquad$ 24) 8.862
25) 13.4395 $\qquad$ 26) 654.839
27) 23.648 $\qquad$ 28) 32.971

Round each of the following decimals to the nearest hundredth. Write your answer on the blank.
29) 26.879 $\qquad$ 30) 429.76492
31) 675.495132 $\qquad$ 32) 3.8961

## Topic: Square roots

The square of 5 is $\mathbf{2 5}$.
$5 \cdot 5=5^{2}=25$


The square root of 25 is 5 because $5 \bullet 5=25$ OR $5^{2}=25$.
The square of an integer is called a perfect square. The square root of a perfect square is an integer.

Complete the t-chart below. MEMORIZE these perfect squares!

| square root of a <br> perfect square | integer value |
| :---: | :---: |
| $\sqrt{1}$ |  |
| $\sqrt{4}$ |  |
| $\sqrt{9}$ |  |
| $\sqrt{16}$ |  |
| $\sqrt{25}$ |  |
| $\sqrt{36}$ |  |
| $\sqrt{49}$ |  |
| $\sqrt{64}$ |  |
| $\sqrt{81}$ |  |
| $\sqrt{100}$ |  |
| $\sqrt{121}$ |  |
| $\sqrt{144}$ |  |
| $\sqrt{169}$ |  |
| $\sqrt{196}$ |  |
| $\sqrt{225}$ |  |

To approximate square roots that are not perfect squares, determine the perfect squares which the radicand lies between.

Example: To approximate $\sqrt{32}$, think of the perfect squares $\mathbf{3 2}$ is between ( 25 and 36 ). $\sqrt{25}<\sqrt{32}<\sqrt{36}$
$5<\sqrt{32}<6$ therefore, $\sqrt{32}$ is between 5 and 6 .
(Because 32 is closer to 36 than 25 , we may estimate that $\sqrt{32} \approx 5.7$.)

## Find each square root. DO NOT USE A CALCULATOR.

1) $\sqrt{16}=$
2) $\sqrt{36}=$
3) $\sqrt{121}=$ $\qquad$
4) $\sqrt{225}=$ $\qquad$
5) $\sqrt{169}=$ $\qquad$
6) $\sqrt{81}=$ $\qquad$

State which integers the square root lies between. DO NOT USE A CALCULATOR!!
Ex: $\underline{\sqrt{81}}<\sqrt{85}<\underline{\sqrt{100}}$ therefore $\sqrt{85}$ is between the integers $\underline{9}$ and $\underline{\mathbf{1 0}}$.
7) $\qquad$ $<\sqrt{37}<$ $\qquad$ therefore $\sqrt{37}$ is between the integers $\qquad$ and $\qquad$ .
8) $<\sqrt{26}<\ldots$ therefore $\sqrt{26}$ is between the integers $\qquad$ and $\qquad$ .
9) $\qquad$ $<\sqrt{61}<$ $\qquad$ therefore $\sqrt{61}$ is between the integers $\qquad$ and $\qquad$ .
10) $<\sqrt{119}<$ $\qquad$ therefore $\sqrt{119}$ is between the integers $\qquad$ and $\qquad$ .
11) $<\sqrt{68}<\ldots$ therefore $\sqrt{68}$ is between the integers $\qquad$ and $\qquad$ .
12) $\qquad$ therefore $\sqrt{50}$ is between the integers $\qquad$ and $\qquad$ .
13) $<\sqrt{40}<\ldots$ therefore $\sqrt{40}$ is between the integers $\qquad$ and $\qquad$ .
14) $<\sqrt{18}<\ldots$ therefore $\sqrt{18}$ is between the integers $\qquad$ and $\qquad$ .
15) $ـ<\sqrt{32}<$ therefore $\sqrt{32}$ is between the integers $\qquad$ and $\qquad$ .

## Topic: Algebra

## Combining like terms and applying the Distributive Property

In algebraic expressions, like terms are terms that contain the same variables raised to the same power. Only the coefficients of like terms may be different.

In order to combine like terms, we add or subtract the numerical coefficients of the like terms using the Distributive Property: $a x+b x=(a+b) x$

Examples: 1) $2 x+9 x=(2+9) x=11 x$
2) $12 y-7 y=(12-7) y=5 y$
3) $5 x+8-2 x+7=(5 x-2 x)+(8+7)=3 x+15$

Here, the like terms are: $5 x$ and $-2 x$ which simplifies to $3 x$ and $8+7$ which is equal to 15 .
The Distributive Property of multiplication over addition/subtraction is frequently used in Algebra:
Examples: 1) $7(2 x+9)=7 \bullet 2 x+7 \bullet 9=14 x+63$
2) $4(6-5 x)=(4) \cdot(6)-(4) \bullet(5 x)=24-20 x$

Simplify each expression by combining like terms.

1) $8 y+2 y=$
2) $10-6 y+4 y+9=$
3) $3 x+7-2 x=$
4) $8 n-7 y-12 n+5-3 y=$

## Apply the distributive property and write your answer in simplest form.

5) $7(x-4)=$
6) $5(4 n-3)=$
7) $-6(3 y+5)=$
8) $-4(8-9 x)=$
9) $8(3 n+7)=$
10) $-4(5+7 y)=$
2. $\qquad$
3. $\qquad$
4. $\qquad$
5. $\qquad$
6. $\qquad$
Answers:
7. $\qquad$
8. $\qquad$
9. $\qquad$
10. $\qquad$
11. $\qquad$

## Topic: Algebra

Solving equations by using the Addition, Subtraction or Multiplication Property of Equality. Check the solution.

$$
\text { Ex 1: } \begin{aligned}
x-6 & =10 \\
+6 & =+6 \\
x & =16
\end{aligned}
$$

$$
\text { Ex 2: } \frac{x}{2}+5=9
$$

$$
\begin{aligned}
-5 & =-5 \\
\frac{2}{1} \cdot \frac{x}{2} & =4 \cdot 2 \\
x & =8
\end{aligned}
$$

Check: $x-6=10$
$16-6=10$
$10=10$
Check: $\frac{x}{2}+5=9$
$\frac{8}{2}+5=9$
$4+5=9$

$$
9=9
$$

Translate and evaluate the following equations.

Ex 3: The product of 4 and a number is 28 .

$$
\begin{aligned}
4 \cdot n & =28 \\
\frac{4 n}{4} & =\frac{28}{4} \\
n & =7
\end{aligned}
$$

Ex 4: The quotient of a number and 3 is 15.

$$
\begin{aligned}
& \frac{n}{3}=15 \\
& n=45
\end{aligned}
$$

Key words:

Addition: sum, more than, increased by Multiplication: product

Subtraction: difference, less than Division: quotient

Solve the following equations. Show your work and check your solution.

1) $2 x=18$
2) $\frac{x}{3}=-12$
3) $x+8=-12$
4) $x+8=32$
5) $\frac{x}{4}=20$
6) $x-7=8$

## Check:

Check:
Check:
7) $3 x-5=7$
8) $6 x+3=-15$
9) $\frac{x}{4}+8=20$

Check:
Check:
Check:

Translate each sentence to an algebraic equation. Then use mental math to find the solution.
Solution
10. One-half of a number is -12 .
11. 6 more than 7 times a number is 41 .
12. 5 less than three times a number is 10 .
13. 16 increased by twice a number is -24 .

## Topic: Geometry

You should know the following formulas and be able to use them to find the area or perimeter of a geometric figure.

Perimeter of a polygon $=$ the sum of the sides

| Rectangle: | $P=2 l+2 w$ | $A=l w$ |
| :--- | :--- | :--- |
| Square: | $P=4 s$ | $A=s^{2}$ |
| Parallelogram: | $P=s_{1}+s_{2}+s_{3}+s_{4}$ | $A=b h$ |
| Triangle: | $P=s_{1}+s_{2}+s_{3}$ | $A=1 / 2 b h$ |
| Trapezoid: | $P=s_{1}+s_{2}+s_{3}+s_{4}$ | $A=1 / 2\left(b_{1}+b_{2}\right) h$ |
| Circle: | Circumference $=\pi d$ | $A=\pi r^{2}$ |

Find the perimeter and area of each figure. Use $\pi \approx 3.14$ and show your work.
1)

2)

3)

4)


6)


## ANSWERS

Integers

1. -19
2. -17
3. -23
4. -20
5. 16
6. -25
7. 72
8. -24
9. 5
10. -6
11. 60
12. -38
13. -12
14. 29

Scientific Notation
15. 820,000
16. 0.00024
17. 7,280
18. 0.091
19. $2.59 \times 10^{4}$
20. $3.9 \times 10^{-2}$
21. $7.0 \times 10^{-4}$
22. $3.2 \times 10^{9}$

Rounding
23. 87.5
24. 8.9
25. 13.4
26. 654.8
27. 23.6
28. 33.0
29. 26.88
30. 429.67
31. 675.50
32. 3.90

Square Roots
Chart integer values
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1. 4
2. 6
3. 11
4. 15
5. 13
6. 9
7. $\sqrt{36} \& \sqrt{49}, 6 \& 7$
8. $\sqrt{25} \& \sqrt{36}, 5 \& 6$
9. $\sqrt{49} \& \sqrt{64}, 7 \& 8$
10. $\sqrt{100} \& \sqrt{121}, 10 \& 11$
11. $\sqrt{64} \& \sqrt{81}, 8 \& 9$
12. $\sqrt{49} \& \sqrt{64}, 7 \& 8$
13. $\sqrt{36} \& \sqrt{49}, 6 \& 7$
14. $\sqrt{16} \& \sqrt{25}, 4 \& 5$
15. $\sqrt{25} \& \sqrt{36}, 5 \& 6$

Distributive Property

1. 10 y
2. $19-2 \mathrm{y}$
3. $\mathrm{x}+7$
4. $-4 n-10 y+5$
5. $7 \mathrm{x}-28$
6. $20 \mathrm{n}-15$
7. $-18 y-30$
8. $-32+36 x$
9. $24 n+56$
10. $-20-28 y$

Solving Equations

1. $\mathrm{x}=9$
2. $x=-36$
3. $x=-20$
4. $x=24$
5. $x=80$
6. $x=15$
7. $x=4$
8. $x=-3$
9. $x=48$

Translate and solve
10. $\frac{1}{2} x=-12 \quad x=-24$
11. $6+7 x=41 \quad x=5$
12. $3 x-5=0 \quad x=5$
13. $16+2 x=-12 \quad x=-14$

## Geometry

1. $P=60 \mathrm{~cm}$
$\mathrm{A}=35 \mathrm{~cm}^{2}$
2. $P=180 \mathrm{~cm}$
$\mathrm{A}=20.25 \mathrm{~cm}^{2}$
3. $P=60 \mathrm{~cm}$
$\mathrm{A}=160 \mathrm{~cm}^{2}$
4. $P=21.5$ in
$\mathrm{A}=18 \mathrm{in}^{2}$
5. $\mathrm{P}=28 \mathrm{~cm}$
$\mathrm{A}=36 \mathrm{~cm}^{2}$
6. $\mathrm{P}=31.4 \mathrm{ft}$ $\mathrm{A}=78.5 \mathrm{ft}^{2}$
