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ABSTRACT
Technological advances in real-time data collection,

data transfer and ever-increasing computational

power are bringing simulation assisted control and

on-line fault detection and diagnosis closer to reality

than was imagined when Building Energy Manage-

ment Systems were introduced in the 1970s. This

paper describes the development and testing of a

prototype simulation assisted controller, in which a

detailed simulation program is embedded in real-

time control decision making. Results from an

experiment in a full-scale environmental test facility

demonstrate the feasibility of predictive control

using a physically-based thermal simulation pro-

gram.

Ke ywords: Building energy management systems,

predictive control, simulation assisted control.

INTRODUCTION
The majority of recent developments in Building

Energy Management Systems (BEMS) have fol-

lowed the advances made in computer technology,

telecommunications and information technology.

Significant developments have been made in the

standardisation of communication protocols (Chap-

man 1997) and in web-enabled controllers

(McGowan 2000). There has been less focus on the

development of new concepts in control, particularly

in the built environment. Despite this, some signifi-

cant advances on the application of new building

control techniques have been made. These are out-

lined below.

The concept of predictive control, which uses a

model in addition to measured data in order to fore-

cast the optimum control strategy to be imple-

mented, could assist in the more efficient operation

of BEMS. This should result in lower energy con-

sumption and more comfortable buildings. Work

has been done on predictive controllers using

stochastic models (Loveday and Virk 1992, Loveday

et al 1994, Loveday et al 1995). Both short term

(10-20 min) and long term (days) prediction errors

lay within acceptable ranges both in terms of tem-

perature and humidity control. Prediction errors

were found to be within 1°C and 1.5% relative

humidity.

Other developments include the use of fuzzy logic

control (Fu Liu and Dexter 1999, Huang and Nelson

1994) and the use of neural networks (Caudana et al

1995, So et al 1995). The basic idea behind fuzzy

logic control is to incorporate the experience of a

human process operator in the design of the con-

troller: this unfortunately requires good quality

experiential knowledge and data about the con-

trolled system’s operating characteristics. A neural

network is a control mechanism based on the opera-

tional principles of the human brain. It can be con-

sidered as a set of linked units that connect an input

to an output. These units interact with each other by

means of weighted connections. The network

requires training by giving the related output to a

given input, resulting in certain weights being

assigned to particular connections. A clear draw-

back with the use of neural networks in control is

the requirement for extensive training data (Under-

wood 2000).

Controllers incorporating self-learning algorithms in

control systems are now quite common, for example

in optimum start of heating plant (Martin and Ban-

yard 1998). The aim is to achieve the defined zone

conditions at the desired time of arrival (DTOA) of

the occupants in the shortest possible time. How-

ev er, the International Energy Agency (IEA) Annex

17 research work (Lebrun 1992) showed that these

learning algorithms can initially take days to predict

the correct optimum start time and have difficulty

dealing with unusual conditions such as long shut-

down periods, exceptional weather conditions and

changes in building operation. Even the best trained

self-learning controller cannot extrapolate beyond its

range of experience.
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All the previously discussed methods of control

have one common feature: they hav e no underlying

physical model of the system and process being con-

trolled. The controlled entity is essentially a non-

physical "black-box model". There are inherent lim-

itations in the black box approach to control as the

controller has no knowledge of the cause and effect

relationships between the elements of the controlled

system and external excitations such as climate and

occupant interaction. With passive buildings

employing natural resources such as daylight and

free cooling, control actions become convoluted due

to these interactions between the elements of the

controlled system (e.g. glare requiring blind reposi-

tioning, causing luminaire actuation, leading to

increased cooling loads). Such interactions can best

be represented in a physically-based model in which

all the elements interact. Building simulation pro-

grams provide such a model.

SIMULATION ASSISTED CONTROL
At the present time, detailed simulation programs

are playing significant roles in two areas:

Emulators: Emulators replace a building and its

HVAC systems and use a computer program to sim-

ulate their response to the BEMS commands. Emu-

lators can also be used for control product develop-

ment, training of BEMS operators, tuning of control

equipment and imitating fault situations to see how

the BEMS would cope (Kelly et al 1994). Collabora-

tive research work on emulation was carried out by

the IEA under Annex 16 and Annex 17 (Lebrun

1992). Six different emulators were developed:

three used HVACSIM+ and three used TRYNSYS.

One of the best-known emulators developed within

the framework of Annex 17 was ’SIMBAD’ (SIMu-

lator for Buildings And Devices), which uses both

the TRNSYS and HVACSIM+ simulation software.

The early versions of SIMBAD had difficulty simu-

lating dynamic conditions, the creation of HVAC

models was tedious and the user interface was not

user friendly. In order to address these difficulties

CSTB are currently developing a "toolbox" of mod-

els of HVAC components and plant for the design

and testing of control systems (Husaunndee et al

1997). Johnson Controls and the National Institute

of Standards and Technology (NIST) in the US have

developed a low cost PC based emulator (Decious et

al 1997). The company is now using this for the

purpose of testing new control products.

Simulation models play a similar role in the devel-

opment of fault-detection and diagnosis (FDD), a

technique which aims to detect and locate faults or

predict the presence of faults in energy management

systems (Kumar and Yoshida 1999). FDD uses a

model of the correctly operating system to supple-

ment the conventional feedback loop, the model act-

ing as a reference for correct behaviour of the con-

trolled system. Test results (Salsbury 1999) on an air

handling unit serving a dual duct air conditioning

system show that the use of FDD improved the con-

trol performance and achieved good results in

detecting leakage of a control valve on a cooling coil

and the sticking of a return air damper.

Evaluators: In this role, simulation programs can be

used to test the efficacy of possible control strate-

gies. In this case a detailed model of the build-

ing/HVAC system is established, and various control

strategies are evaluated in terms of comfort accept-

ability and energy efficiency (e.g. Lebrun 1992,

Haves et al 1998).

The objective of this research was to investigate a

possible third use for simulation programs: their

encapsulation within the BEMS system in order to

provide simulation assisted control. The research,

undertaken in collaboration with Honeywell Control

Systems, involved executing the simulation program

as part of the control task in order to evaluate several

possible control scenarios and make a  selection in

terms of some relevant criteria. Although this possi-

bility had been suggested previously, it was dis-

missed at the time as being "beyond the capabilities

of the detailed simulation programs" (Kelly 1988).

The premise of the present study is that simulation

program capabilities and BEMS flexibility are now

sufficiently advanced for simulation assisted control

to be feasible.

Although there are potential difficulties associated

with simulation assisted control (e.g. the need to

make and calibrate a model of the system, particu-

larly when dynamic variations due to airflow and

solar radiation are important; the difficulty of pars-

ing from complex result-sets to simple actions),

physically-based models offer the following benefits

over "black-box" models:

• they are able to address cause and effect sce-

narios such as outlined previously;

• they can adapt to the impact of changing

building use or operation (provided that the

change is incorporated into the model);

• they potentially offer better control through

calculation of interactions and can identify the

factors that result in particular building perfor-

mance;
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• they provide the possibility of comparing

options for different control strategies by test-

ing them on the building model.

Simulation assisted control is likely to be of most

use in the following circumstances:

• when significant look-ahead times are

involved (hours, rather than minutes);

• for high-level supervisory control, e.g. load

shedding, where several alternatives and their

implications for environmental conditions

(particularly occupant comfort) may need to

be evaluated;

• where interaction is high, e.g. blinds/light-

ing/cooling; and

• where the building use varies or changes (e.g.

large variations in occupancy) and where this

variation is known in advance.

Table 1 lists those plant systems that have been iden-

tified as presenting opportunities for simulation

assisted control (extracted in part from the compre-

hensive library of BEMS control strategies in Martin

and Banyard 1998). In addition, where integrated

control is emphasised, a BEMS system would likely

benefit from explicit simulation of the interactions

within the building.

The primary objective of this pilot project was there-

fore to investigate the possibility of integrating sim-

ulation within real-time BEMS operation to provide

a prototype control decision-making capability. The

envisaged system is depicted in Figure 1. This

shows the usual BEMS control structure—inputs are

obtained from climate and building state sensors,

and an internal control algorithm decides on the

appropriate control action for switching heating,

cooling etc. The new elements are the simulator,

which models the building/HVAC using sensed data

as boundary conditions, and an evaluator, which

scans the simulation results to suggest an appropri-

ate control action to the main simulation assisted

controller.

The study investigated whether real-time simulation

could be introduced as shown in Figure 1. In view of

the many practical interface issues that would be

inherent in using a BEMS system directly, as

demonstrated in the development of the SIMBAD

emulator (Husaunndee et al 1997), it was decided to

use LabVIEW as a BEMS replacement and the

dynamic simulation program ESP-r (ESRU 2000)

for control scenario appraisal. LabVIEW is used

widely in industry for SCADA (Supervisory Control

and Data Acquisition) applications, and for proto-

type development it offered the necessary flexibility

without being tied to a particular BEMS protocol.

The ESP-r system was used as it is a detailed simu-

lation program with explicit representation of all

heat and mass transfer processes and includes an

extensive array of control capabilities.

The research had the following elements.

a) The identification of control functions of cur-

rent BEMS that might benefit from simulation

assistance.

b) The creation of LabVIEW routines for data

acquisition and control actuation.

c) The development of the real-time linking of

these routines to ESP-r to permit scenario

appraisal, selection and enactment.

d) A testing of this linked system in realistic

scale experiments.

CONTROL CAPABILITIES OF ESP-r
For simulation to be of use in the present context, it

must be possible to represent the building/HVAC

system and the imposed control as an integrated sys-

tem. Within ESP-r a control system is implemented

as a set of closed or open control loops acting jointly

or individually. Each loop comprises a sensor linked

to an actuator via an algorithm; in certain cases

loops may be cascaded. ESP-r offers an extensive

library of sensors, actuators and algorithms repre-

senting both idealised and realistic components,

ranging from basic "ideal" control, through PID con-

trol to global sequence control (MacQueen 1997).

As part of a design evaluation, the usual practice is

to firstly employ idealised components to constrain

system states (required temperatures, available heat-

ing capacity, mechanical ventilation rates etc) in

order to facilitate the intercomparison of control

options. Later, in support of detailed design, these

idealised components may be substituted by more

realistic counterparts to facilitate the study of con-

trol system stability and efficacy. By arranging that

different sets of control loops can be activated over

different periods, it is possible to implement any

conceivable control regime (even conceptual

regimes for which no actual hardware is available).
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IMPLEMENTATION
The implementation of a prototype simulation

assisted controller required the following elements:

i) A calibrated model of the building and HVAC

system.

ii) Sensors to measure all critical boundary con-

ditions (external temperature, solar radiation

etc) and internal conditions (temperature,

humidity etc); the data must be collated in the

BEMS (i.e. within LabVIEW).

(iii) A mechanism for transferring data to the sim-

ulator.

(iv) A routine within the BEMS for initiating the

simulation(s) against a predefined control

strategy.

(v) A simulator to predict internal conditions and

ascertain parameters (start time, plant output

etc) to meet some user-defined criterion.

(vi) A controller to make decisions based on mod-

elling outputs.

(vii) A mechanism for transferring control data

back to the BEMS (LabVIEW).

(viii) Actuators controlled by the BEMS to initiate

the control action.

(ix) A structure to allow iteration and updating of

control actions.

An independent software module was developed

that, together with LabVIEW and ESP-r, forms the

prototype simulation assisted controller. The soft-

ware module combines several of the elements out-

lined above. The three programs operate as shown in

Figure 2. The function of these three programs, and

the developments required in each case are summa-

rized in the following paragraphs.

ESP-r

The main use of the ESP-r system is for design deci-

sion support. Several changes were required to cope

with the novel aspects of real-time simulation. The

most important of these were the transfer of

acquired data into ESP-r databases, and the subse-

quent use of this measured data to maintain the cor-

rect model state until the current time, after which

the specified predictive controller was invoked.

LabVIEW

In its role as a surrogate BEMS, LabVIEW is the

controlling entity. Programs were therefore written

in LabVIEW’s in-built G programming language to

collect sensor data, to display and store this data in a

format suitable for import to ESP-r’s databases, to

commission simulations, to receive the suggested

control action and to initiate that action.

BEMS to ESP-r link

This new interface module operates on the basis of a

control definition file containing the following infor-

mation:

• the type of control simulation to be conducted

(e.g. winter:heating, summer:cooling);

• designated controlled spaces;

• control action type(s) to be investigated (e.g.

optimum start/stop, night ventilation);

• available plant capacity for each space;

• control strategy end time;

• target set-point for each space;

• target time at which set-point is to be attained.

The interface module is controlled by the BEMS

system (LabVIEW), and is passed a file containing

LabVIEW’s monitored climate and internal temper-

ature data. The module then performs the following

tasks:

(i) Simulation Synchronisation: The required start

and stop dates for the simulation are determined,

based on the time-stamped data contained within the

file provided by LabVIEW. The program also calcu-

lates a simulation frequency (time step) based on the

sampling rate of the monitored data.

(ii) Climate Prediction: The LabVIEW data file is

read and its climate information used to predict

weather conditions for the next 24 to 48 hours. At

this stage, only a structure for short-term climate

prediction has been implemented with a simple

algorithm: further work will be required to develop

this function.

(iii) Control Strategy Preparation: Based on the con-

trol action type specified in the control definition

file, the interface module develops a suitable control

strategy for use in the ESP-r simulation.

Firstly, the controlled space temperatures are held to

those contained in the monitored data passed by

LabVIEW until time tc, the last monitored time in

the file, after which the simulation evolves freely
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(with predicted climate data) until time tp.

Secondly, the module determines the plant action

start time: this is either advanced or retarded based

on the progress of the predictive simulation. Plant

action is made according to a defined plant control

strategy until time te, the specified shut down time.

(iv) Simulation Commissioning: Based on the calcu-

lated simulation start and stop dates, simulation fre-

quency and user defined control strategy, the inter-

face module commissions n simulations (where

n = (tstop − tstart) × 1/frequency). In each of these

simulations a control parameter (e.g. plant start

time) is changed by a fixed increment. The parame-

ters for the simulation are passed to the simulator in

the form of a control definition file and a simulation

parameter file (defining the period over which the

simulation is to be run and the time step of the simu-

lation).

(v) Results Interpretation : At each iteration, the

interface module examines the simulation output

and compares the value of the controlled space vari-

able reached at the target time with that specified in

the control definition file. If the controlled value is

not acceptable then another simulation is commis-

sioned with the plant action time tp advanced or

retarded by one time increment depending on the

type of simulation being conducted. If the controlled

value is within bounds then the sequence of simula-

tions is stopped and the time and/or value which

meets the control criteria reported back to Lab-

VIEW.

As a result of these developments, it is possible to

implement the functions listed in Table 1. For the

purposes of this project, one commonly used func-

tion was tested—optimum start control. The follow-

ing section describes one experiment that was set up

within a test room environment.

EXPERIMENT
The environmental test facility at Honeywell’s New-

house site in Scotland consists of two realistically

dimensioned rooms surrounded by temperature con-

trolled voids (Figure 3). The constructions used in

the test rooms are as would be found in a real UK

dwelling (insulated cavity walls, with double glazed

windows). Each room is heated by a central boiler,

with two low-temperature hot water radiators in

each room. Tw o dedicated PCs running LabVIEW

monitor heating system temperatures, room air tem-

peratures and void temperatures.

An ESP-r model of the test rooms was developed

(Figure 4) using geometrical and construction data

supplied by Honeywell. This model, along with

ESP-r itself, was installed on the PC monitoring test

room 1. The LabVIEW programs described previ-

ously were modified and linked to the existing test

room data acquisition program.

The ESP-r model was firstly calibrated using data

from a heating sequence conducted on test room 1:

the room was heated at full power (using one radia-

tor) for two hours and allowed to cool for 3 hours.

This sequence was repeated twice. The same heating

sequence was simulated with the ESP-r model and

predicted room temperature were deemed to be suf-

ficiently close to that of the real room for the pur-

poses of the experiment.

The main experiment involved using simulation

assisted control to predict the optimum start time for

the test room 1 heating system. Data collection was

at 1 minute intervals. At the start of the experiment,

the test rooms were left in a free-floating state for 24

hours. The surrounding voids remained uncondi-

tioned throughout the experiment, while the adjacent

test room (being used for another experiment) was

maintained at 24°C. The simulation controller was

set to determine the switch-on time required to bring

the room to a temperature of 25°C with a nominal

1200W heat input. Figure 5 shows the results of the

experiment, with the actual collected temperature

data superimposed upon the simulated values.

In the preceding 24 hours the room temperature

floated at around 21°C. Given a 25°C set-point and

target of 11:00, ESP-r predicted a heating system

switch on time of 10:20. Note that the room temper-

ature was not at exactly 25°C at this time as the sim-

ulated temperature was compared to the set-point

with a tolerance of ±0.5°C. When the test room

heating was switched on, the room reached 25°C at

11:06. The room temperature coincided with the

ESP-r room temperature prediction at 11:02. From

Figure 5, it is clear that ESP-r slightly overpredicts

the response of the test room to heating, with the

prediction leading the actual room temperature.

However, giv en the rudimentary calibration of the

model, the predictive performance of the simulation

assisted control tool was encouraging. Measured

and simulated temperatures coincided with a tempo-

ral error of 5%, maximum error in temperature pre-

diction was around 1°C and the actual set-point was

reached 6 minutes later than predicted but within the

time interval of one simulation time increment (10

minutes).
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CONCLUSIONS
This research was conducted to test the feasibility of

using simulation to enhance the control capabilities

of BEMS. Building and plant control functions

amenable to simulation assisted control were identi-

fied.

Modifications to the ESP-r system were undertaken

to allow real-time simulation (i.e. simulation using

data as it is gathered and which returns control

actions for real-time implementation). This paper

described an experiment undertaken with the proto-

type control system in full scale rooms within Hon-

eywell’s test facility, demonstrating how such a sys-

tem could be used to generate optimum start times.

On a realistic scale experiment, it was shown that it

is feasible to include simulation in control decision

making. Typically, the simulation time (for a total of

about 6 different simulations of the Honeywell test

facility) was about 1 to 2 minutes on a low-end Pen-

tium PC. Although only optimum start was demon-

strated, the structure is in place for other applica-

tions.

Further research is necessary to develop the idea fur-

ther. This should focus on testing on a full scale

building subject to external climate variation, inte-

grating improved short-term climate prediction algo-

rithms into the simulator, testing different control

strategies, replacing LabVIEW with a modern

BEMS system, developing the link to ESP-r (and/or

other simulators) with BEMS standard protocols and

developing calibration strategies.
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Table 1: Applications suitable for simulation assisted control.

Application Controlled Component Output to be optimised

Optimum start/stop Heating/ cooling system Start/stop time

Night-time cooling Fans Hours of operation

Optimum set-back temperature Heating system Set-back temperature

Boiler sequencing Boilers Heating system efficiency

Load shedding Heating system Priority for heating

Combined heat and power CHP engine Hours of operation

District heating Heating system Forecasting of heat demand

Underfloor heating Heating system Hours of operation

Mixed mode ventilation systems Fans Start/stop time

Charging of ice storage Refrigeration Hours of operation

Water pump/compressor Start timeNight operated ground water source heat pumps

Optimum control mode Various Control mode selection

Sensors

- temperature

- humidity

- light levels etc

Actuators

- switches

- valves

- dampers etc

BUILDING AND PLANT SYSTEMSEXTERNAL CONDITIONS

Weather station sensors

Suggested

control action

Simulator OutputsInputs

Control decision

CONTROL SYSTEM

Simulation

controller

assisted

Figure 1: Simulation assisted control in BEMS.
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BUILDING
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supervision
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time

series

data

control

data

control

output

LabVIEW

REAL

BUILDING

data collection

actuators

sensors

B2E Simulation/BEMS Interface

control definition

Figure 2: Overview of the interface structure.
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room 1 room 2
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door

temperature sensor

radiator

temperature controlled voids

test room dimensions (l,w,h)= 4.7x5.4x2.67m

T T
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T T
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Figure 3: Plan view of the test rooms and voids.

Figure 4: Exploded view of the ESP-r model.

pre−heat target

predicted start

~25oC @ 11 am

@10.20 am

25oC reached 
@ 11.06 am

temperature matching
period

end of temperature 
matching @ 10 am

Figure 5: Optimum start experiment - model prediction vs monitored data.

- 106 -


