DNA Replication Cornell Notes

Chapter 12 & 13

Main Ideas	Details
	 James Watson and Francis Crick - Called the Fathers of DNA determined the structure of DNA molecules. In 1953 they used Rosalind Franklin's DNA x- ray pictures to determine structure of DNA. X-ray showed a wide, tightly coiled molecule with a helix shape.
	 Shape - double helix with 2 strands "Backbone" made of phosphate groups and 5 carbon sugar deoxyribose "Rungs" made of nitrogen bases (A,T,G,C)
	 Chromosomes contain DNA Found in nucleus of eukaryotic cells prokaryotes have no nucleus DNA is in middle of cell
	 Eukaryotes contain DNA packed with chromatin Chromatin consists of DNA that is coiled around proteins called histones DNA and histone molecules form beadlike structures called a nucleosome Nucleosomes help fold enormous lengths of DNA
Summary	 Nucleotide monomer of nucleic acids consists of: 5-carbon sugar - deoxyribose Phosphate group One of 4 nitrogen bases Adenine Thymine Guanine Cytosine
Summary	o Cytosine

	Base pair rule - Chargaff's rule
	 Adenine always pairs with thymine with 2
	hydrogen bonds .
	 Guanine always pairs with cytosine with 3
	hydrogen bonds.
	 Thymine and Cytosine are pyramidines.
	 Adenine and Guanine are purines.
	 Purine always bonds to pyramidine.
å	
5'	DNA Replication - Process by which DNA is copied
3' e f	Steps (initiate-elongate-terminate)
5' 3' a	 DNA double helix unwinds.
	The helix unzips when enzymes called
	helicases break hydrogen bonds between
	bases, separating the 2 strands creating
A template strand	replication fork.
B leading strand	Each parent strand of DNA serves as a
C lagging strand	template for each new strand.
D replication fork	New strands are assembled from free
E RNA primer	nucleotides 5' to 3' on the anti-parallel strands.
F Okazaki fragment	DNA polymerase matches the bases on parent
	strand creating new double helixes.
	Replication process is said to be semi conservative - two new strands are made, two template strands are conserved.
	This process is initiated at particular points in the DNA, known as origins .
	The leading strand is the template strand so that the replication fork moves along it in the 3' to 5' direction. This allows the newly synthesized strand complementary to the original strand to be synthesized 5' to 3' in the same direction as the movement of the replication fork.
Summary	

	The lagging strand is the strand of the template that is oriented so that the replication fork moves along it in a 5' to 3' manner. Replication of the lagging strand is more complicated than that of the leading strand.
	Okazaki fragments are short, newly synthesized DNA fragments that are formed on the lagging template strand during DNA replication. Ligase is the enzyme that "glue" fragments back together.
	Sequence of nitrogen bases determines proteins eventually made by cell and therefore the trait s an organism will express.
Summary	

· · · · ·	
Main Ideas	Details

Main Ideas	Details
Main Ideas	Details