
The R System – An Introduction and Overview

J H Maindonald

Centre for Mathematics and Its Applications

Australian National University. http://www.maths.anu.edu.au/˜johnm

c� J. H. Maindonald 2007, 2008, 2009. Permission is given to make copies for personal study and class use.

Current draft: October 28, 2010

Languages shape the way we think, and determine what we can think about.

[Benjamin Whorf.]

S has forever altered the way people analyze, visualize, and manipulate data... S is an elegant, widely

accepted, and enduring software system, with conceptual integrity, thanks to the insight, taste, and

effort of John Chambers.

[From the citation for the 1998 Association for Computing Machinery Software award.]

2

Contents

1 Preliminaries 11

1.1 Installation of R and of R Packages . 11

1.2 The R Commander Graphical User Interface, and Alternatives 12

1.2.1 The R Commander GUI – A Guided to Getting Started 12

2 An Overview of R 15

2.1 Use of the console (i.e., command line) window . 15

2.2 A Short R Session . 16

2.3 Data frames – Grouping together columns of data . 19

2.4 Input of Data from a File . 20

2.5 Demonstrations, & Help Examples . 21

2.6 Summary . 22

2.7 Exercises . 23

3 The R Working Environment 25

3.1 The Working Directory and the Workspace . 25

3.2 Saving and retrieving R objects . 26

3.3 Installations, packages and sessions . 27

3.3.1 The architecture of an R installation – Packages 27

3.3.2 The search path: library() and attach() . 28

3.4 Summary . 29

3.5 Exercises . 29

4 Worked Examples 31

4.1 World record times for track and field events . 31

4.1.1 The model object . 34

4.2 Time series – Australian annual climate data . 35

4.3 Regression with two explanatory variables . 36

4.3.1 A Note on Scatterplot Matrices . 38

4.4 Exercises . 39

5 Data Objects and Functions 41

5.1 Column Data Objects – Vectors and Factors . 41

5.1.1 Vectors . 41

5.1.2 Factors . 43

5.1.3 Missing Values, Infinite Values and NaNs . 44

5.2 Functions . 45

5.2.1 Built-In Functions . 45

3

4 CONTENTS

5.2.2 Functions for data manipulation . 46

5.2.3 Utility functions . 47

5.2.4 User-defined functions . 47

5.2.5 Functions for Working with Dates (and Times) 48

5.2.6 *Classes and Methods (Generic Functions) 49

5.2.7 Example – a class with a very simple structure 50

5.2.8 Functions in different packages with the same name 52

5.3 Option Settings . 52

5.4 Common Sources of Surprise or Difficulty . 52

5.5 Summary . 53

5.6 Exercises . 53

6 Entry, Manipulation and Management of Data 55

6.1 Data Frames and Lists . 55

6.1.1 Subsets of data frames . 56

6.1.2 Data frames – Lists of Columns . 56

6.1.3 Inclusion of character vectors in data frames 56

6.1.4 Identifying and processing rows that include missing values 57

6.1.5 Lists . 57

6.1.6 Model objects are lists . 58

6.2 Matrices – Vectors with a Dimension Attribute . 58

6.2.1 Matrix Manipulations . 59

6.2.2 Data frames versus matrices . 59

6.3 Functions that are Useful for Data Summary . 61

6.3.1 User-defined functions . 61

6.3.2 The apply family of functions . 61

6.4 Tables of Counts . 62

6.4.1 Categorization of continuous data . 64

6.4.2 Summaries of Information in Data Frames . 65

6.4.3 Table margins . 66

6.5 A Grammar for Data Summary – the plyr package 67

6.6 ∗Data Input and Storage . 70

6.6.1 Entry of data using read.table() and scan() . 70

6.6.2 Accessing Data from the Internet – An Example 71

6.6.3 Creating and Using Databases . 71

6.7 Notes on Workspace Management . 72

6.8 Computations with Large Datasets . 73

6.9 Summary . 74

7 Graphics – Base, Lattice, Ggplot, . . . 75

7.1 Base Graphics . 75

7.1.1 plot() and allied base graphics functions . 75

7.1.2 Fine control – Parameter settings . 76

7.1.3 Adding points, lines and text – examples . 77

7.1.4 Identification and Location on the Figure Region 79

7.1.5 Plots that show the distribution of data values 79

7.2 Formatting & Plotting of Text & Equations . 82

7.3 Lattice Graphics . 83

CONTENTS 5

7.3.1 Groups within data, and/or columns in parallel 86

7.3.2 Lattice parameter settings . 88

7.3.3 Lattice plots that show distributions . 90

7.3.4 Detailed control of panel contents – panel functions, and layering 91

7.3.5 ∗Modification of strip labels . 94

7.3.6 Interaction with lattice (and other) plots – the playwith and latticist packages . 95

7.3.7 *Interaction with lattice plots – focus, interact, unfocus 97

7.4 The ggplot2 Implementation of Wilkinson’s Grammar of Graphics 97

7.4.1 Florence Nightingale’s Wedge Graph, and An Alternative 103

7.5 Dynamic Graphics – the rgl and rggobi packages . 104

7.6 Graphics – Additional Points . 105

7.6.1 Multiple graphs on a single graphics page . 105

7.6.2 Inclusion of Graphs in Other Documents . 105

7.7 Summary . 105

7.8 Exercises . 106

8 Linear Statistical Models and Extensions 107

8.1 Factor Terms in Regression Models – Contrasts . 108

8.1.1 Example – sugar weight . 108

8.1.2 Different choices for the model matrix when there are factors 110

8.2 Smoothing Methods . 112

8.2.1 Methods where the smoothness of the curve is under user control 112

8.2.2 Methods that make an automatic choice of roughness penalty 114

8.3 Generalized Additive Models for Binomial and Poisson Data 116

8.4 Hierarchical Multi-level Models . 119

8.4.1 Analysis of the Antiguan corn yield data . 120

8.4.2 Additional Calculations . 122

8.5 Models & methods – a more complete list . 122

8.6 Exercises . 123

9 Regular Time Series in R 125

9.1 Key Theoretical Concepts and Associated Graphical Tools 126

9.1.1 The stationarity assumption . 126

9.2 The Box-Jenkins ARIMA Approach to Time Series Modeling 127

9.3 Regression with Time Series Errors . 129

10 Classification and Ordination 133

10.1 Linear Methods for Classification . 133

10.1.1 Interpretation of the output information . 135

10.1.2 Two groups – comparison with logistic regression 135

10.2 Tree-based methods and random forests . 136

10.3 Ordination . 138

10.3.1 Distance measures . 139

10.3.2 From distances to a configuration in Euclidean space 140

10.3.3 Non-metric scaling . 141

10.3.4 Example – Australian road distances . 141

6 CONTENTS

11 Spatial Display, Modeling and Interpolation 143

11.1 Reading and Processing Raster (Image) Files . 143

11.1.1 Overlaying information on plots . 145

12 Leveraging R Language Abilities 149

12.1 Manipulation of Language Constructs . 149

12.1.1 Manipulation of Formulae . 149

12.2 Functions . 150

12.2.1 Use of a list to pass parameter values . 150

12.2.2 Function environments . 151

12.3 Creation of R Packages . 152

12.4 S4 Classes and Methods – the methods package . 154

12.5 Summary . 155

13 Some Further GUIs, and User Creation of GUIs 157

13.1 The rattle GUI . 157

13.2 The Creation of Simple GUIs – the fgui Package . 158

14 R System Configuration 159

14.1 R system information . 159

14.2 Running R in Batch Mode (i.e., from the command line) 159

14.3 The R Windows installation directory tree . 160

14.4 Library directories . 160

14.5 The Startup mechanism . 161

A Comments on Selected R Packages 163

A.1 Base and Recommended Packages (R-2.8.1) . 163

A.1.1 Graphics packages: graphics, lattice, grid, ggplot, rgl, etc. 164

A.1.2 Other Packages . 164

B References and Bibliography 165

B.1 Books and Papers on R . 165

B.1.1 Graphics . 166

C Color Versions of Selected Graphs 167

C.1 Australian and NZ Alcohol Consumption . 167

C.2 Florence Nightingale’s Wedge Graph . 167

C.3 A Better Alternative to the Wedge Graph? . 169

C.4 Use of parameter settings to control various graphical features 171

C.5 A Playwith GUI Window . 172

CONTENTS 7

Introduction

Note the following web sites:

CRAN (Comprehensive R Archive Network): http://cran.r-project.org

To obtain R and associated packages, use the nearest mirror.

http://mirror.aarnet.edu.au/pub/CRAN or http://cran.ms.unimelb.edu.au/.

R homepage: http://www.r-project.org/

Wikipedia: http://en.wikipedia.org/wiki/R_(programming_language)

R-downunder: http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder

For other useful web pages, click on the menu item R help, and look under Resources on the

browser window that pops up.

Commentary on R

General

R runs on many types of system – Windows, Mac, Unix and Linux. It is free. Obtain it from a CRAN

site (see above). It has extensive graphical abilities that are tightly linked with its analytic abilities.

Much of the power of R for statistical analysis and for specialist graphics comes from the extensive

enhancements that the packages build on top of the base system.

Other points are:

Although now relatively mature, the system gets continuing scrutiny, with improvements and

enhancements appearing with each new release, i.e., every few months.

Though not perfect in this respect (!), the system has been developed with a keen regard to

notions of good statistical practice.

Users should expect to encounter demands to improve their statistical knowledge, in order to use

R effectively. The R community expects users to be serious about data analysis, to want more

than a quick cook-book fix!

Statistical and allied professionals who wish to develop or require access to cutting edge tools

find R especially attractive. It is also finding wide use among working scientists who have

substantial and continuing data analysis problems that justify time spent in the mastery of R.

The base system and the recommended packages get unusually careful scrutiny. Nevertheless,

there are traps. Take particular care with newer abilities, which may not have been much tested

in regular use. Some of the contributed packages may not have been much tested, unless by

their developers. The greatest risks arise from inadequate understanding of the statistical issues.

[Such warnings apply, of course to any statistical system.]

Getting help

Although there is no official support for R, the r-help mailing list serves as an informal support net-

work that can be highly effective. Details of this and other lists are on the home page for the R

project: http://www.r-project.org. Note also the R-downunder list; for details go to http:

//www.stat.auckland.ac.nz/mailman/listinfo/r-downunder. Be sure to check the avail-

able documentation before posting to r-help. Archives are available that can be searched for questions

that have been previously answered.

8 CONTENTS

Use of an editor as a run-time environment

The Windows implementation, and the Cocoa based GUI for Mac OS X, now offer a simple script

editor that has a Run Line or Selection feature. There are various editors and associated interfaces to

R that allow editing of code, again offering a single click Run Line or Selection. On Windows sys-

tems, the Tinn-R editor (http://www.sciviews.org/Tinn-R/) is an excellent option. ESS (Emacs

Speaks Statistics), now fully operational for Windows as well as for Unix, is attractive for users who

relish the power of the Emacs editor.

The development model, and development strategies

The R system uses an open source development model that is broadly similar to that of Linux.1 Its

developer skill base is impressive.

A large effort has gone into the providing interfaces into other systems – Python, SQL and other

databases, parallel computing using MPI, and Excel using the DCOM software.

Unifying ideas

Generic functions for common tasks – print, summary, plot, etc. (the Object-oriented idea; do

what that “class” of object requires)

Formulae, for specifying graphs, models and tables.

Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Language structures can be manipulated, just like any other object (Manipulate formulae, ex-

pressions, argument lists for functions, . . .)

Trellis (lattice) graphics – graphs whose layout reflects data structure

There are many unifying computational features, e.g.

Any ‘linear’ model (lm, lme, etc) can use spline basis functions to fit spline terms. This

extends to any other system of basis functions.

These ideas are not uniformly implemented right through R, reflecting the incremental manner in

which R has developed.

Retrospect, prospect and alternatives to R

Ross Ihaka and Robert Gentleman, both at that time from the University of Auckland, developed the

initial version of R, for use in teaching tool. It implements a dialect of the S language that was de-

veloped at AT&T Bell Laboratories for use as a general purpose scientific language, but with especial

strengths in data manipulation, graphical presentation and statistical analysis. Since mid-1997, de-

velopment has been overseen by a ‘core team’ of about a dozen people, drawn from many different

institutions worldwide.

The commercial S-PLUS implementation of S popularized the S language, giving it a large user

base among statistical professionals and skilled scientific users. The existence of a large user base

into which R could tap was helpful in getting a critical mass of R users in the early stages of its

1Observe that, whereas Linux competes in the shadow of Microsoft, R is not obviously in the shadow of any other

system!

CONTENTS 9

development. Its continuing success has come a development model that has fostered cooperative

effort between statistical computing experts from many different parts of the world.

Other roughly comparable systems that might potentially have been the basis for an R-like project

include the commercial Matlab system, Scilab, Octave, Gauss, Python and Lisp-Stat. Note the popu-

larity of Matlab in the signal and image processing community.

Although with a syntax that looks superficially like that of C, the implementation of R has been

heavily influenced by LISP. The R interpreter uses a model that is based on the Scheme dialect of LISP.

Luke Tierney, and several others who had previously had a heavy involvement with Luke Tierney’s

Lisp-Stat system, are now actively involved in the ongoing development of R. See Tierney (2005), and

other papers in the same volume of the Journal of Statistical Software

With the release of version 1.0 in early 2000, R became a serious tool for professional use. Since

that time, the pace of development has been frenetic, with a new package appearing every week or

two. There are now more than 800 packages available through the CRAN (Comprehensive R Archive

Network) sites. Books that were specifically devoted to R began to appear in 2002.

Novice users will notice small but occasionally important differences between R and S-PLUS.

Writers of substantial functions and (especially) packages will find larger differences. R’s packages

are now more wide-ranging in scope than S-PLUS libraries. Some specialised S-PLUS abilities may

not be available in R or in R packages.

The R system uses a language model that dates from the 1980s. The body of code that has been

build on top of base R is now so large that any change to a more modern language model will be

difficult. Progress is likely to be evolutionary, building on and extending present abilities and high level

R language constructs. Details of the underlying computer implementation will inevitably change,

perhaps at some point radically.

Data set size, and databases

R’s evolving technical design has allowed it, taking advantage of advances in computing hardware, to

steadily improve its handling of large data sets. An important step was the move, with the release of

version 1.2, to a dynamic memory model. The flexibility of R’s memory model does however have a

cost for some computations, relative to systems that are highly efficient in the processing of data from

file to file. The difference in cost may however be small or non-existent for systems that have a 64-bit

address space.

The R system has packages that provide links into a variety of types databases. An SQLite database

can be created from within R, as shown in Subsection 6.6.3.

The statistics of data collection

The scientific context, which includes available statistical methodology, has crucial implications for

the experiments that it is useful to do, and for the analyses that are meaningful. There are, in addition,

constraints and opportunities that arise from computing software and hardware.

Statistics of data collection encompasses statistical experimental design, sampling design, and

more besides. At base, the same issues arise in field, industrial, medical, biological and laboratory

experimentation. The aim, as always, is to get maximum value from the use of all resources. The

planning that is required will be most effective if based on sound knowledge of the materials and

procedures used by experimenters. As we learn more about these issues, we gain the knowledge

needed to design better experiments.

10 CONTENTS

Documentation

Official Documentation: Users who are working through these notes on their own should have

available for reference the document

“An Introduction to R”, written by the R Development Core Team. To download an up-to-date copy,

go to CRAN.

Web-based Documentation: See Documentation on the web page http://www.r-project.org

Note the R Wiki (http://wiki.r-project.org/rwiki/doku.php) and the extensive collec-

tion of help information that is listed under Other (http://www.r-project.org/other-docs.

html).

For examples of R graphs, see http://addictedtor.free.fr/graphiques/.

R News: Successive issues of R News contain much useful information. These can be copied down

from one of the CRAN sites.

Contributed Documentation: There is an extensive collection of user-written documents on R that

can be accessed by going to this same mirror site, and clicking (under Documentation) on Contributed.

See also the links that John Fox gives on the web page for his book that is noted under the reference

for his book.

Books: Appendix B includes references to a number of books. Recently, a number of new books

on R have appeared. See http://www.R-project.org/doc/bib/R.bib for a list that is updated

regularly.

There will be occasional reference to

DAAGUR: Maindonald, J. H. & Braun, J. B. 2007. Data Analysis & Graphics Using R. An Example-

Based Approach. Cambridge University Press, Cambridge, UK, 2007.

http://www.maths.anu.edu.au/˜johnm/r-book.html

Chapter 1

Preliminaries

1.1 Installation of R and of R Packages

Installation of R First download and install R from a CRAN site. In Australia, go to:

http://cran.ms.unimelb.edu.au/

Windows and MacOS X users should download the relevant executable,

(e.g. R-2.12.0-win32.exe for Windows, or R-2.12.0.dmg for MacOS X).

Click on the downloaded file to start installation

Installation of R Packages (Windows & MacOS X)

Start R (e.g., click on the R icon). Then use the relevant menu item

to install packages via an internet connection.

This is (usually) easier than downloading, then installing.

Command line instructions can alternatively be used to install packages. See below.

Locating packages The CRAN task views may be a good first place to go.

For installation, follow the instructions in the text box. For installing packages, users may need to

specify a mirror site. In Australia, specify the Australian mirror.

A fresh install is typically required to take advantage of new major releases (e.g. moving from

a 2.11 series release to a 2.12 series vrelease) when they appear. For working through these notes,

version 2.11.0 or later should be installed.

Installation of packages from the command line

For packages where there are dependencies, installation from the command line may be an attractive

way to go. First, start R, perhaps by clicking on an R icon. Make sure that you have a live internet

connection.

To install the R Commander from the comamnd line, enter:

install.packages("Rcmdr", dependencies=TRUE)

Among the dependencies are the graphics packages rgl (3D dynamic graphics), scatterplot3d, vcd

(visualization of categorical data) and colorspace (for generation of color palettes, etc).

11

12 CHAPTER 1. PRELIMINARIES

1.2 The R Commander Graphical User Interface, and Alternatives

This section will describe use of the R Commander. The rattle GUI will be discussed briefly in

Subsection 13.1. Subsection 13 also makes brief mention of JGR (Java Graphics for R) and pmg (Poor

Man’s GUI). Note also the abilities that the playwith and latticist provide for interaction with graphs.

These are both discussed in Subsection 7.3.6. See also Figure 7.12

1.2.1 The R Commander GUI – A Guided to Getting Started

The R commander gives access to a wide range of abilities, in the base R system and in R packages.

Novices may find it especially helpful for data entry, and for graphics. It has interfaces to key abilities

from the lattice and rgl packages, as well as from base graphics.

To start the R commander, start R and enter:1

library(Rcmdr)

This opens an R Commander script window, with the output window underneath. This window can be

closed by clicking on the × in the top left corner. If thus closed, enter Commander() to reopen it again

later in the session.

From GUI to writing code: The R commander displays the code that it generates. Users can take

this code, modify it, and re-run it. The code can be run either from the R Commander script window

or from the R console window (if open).

The active data set: The R Commander has, at any one time, a single “active” data set. Start by

clicking on the Data drop-down menu. Here are alternative ways to select or create or change the

active data set:

• Click on Active data set, and pick from among data sets, if any, in the workspace.

• Click on Import data, and follow instructions, to read in data from a file. The data set is read

into the workspace, at the same time becoming the active data set.

• Click on New data set . . . , then entering data via a spreadsheet-like interface.

• Click on Data in packages, then on Read Data from Package, then select an attached package

and choose a data set from among those included with the package.

• A further possibility is to load data from an R image (.RData) file; click on Load data set . . .

Creating graphs: To draw graphs, click on the Graphs drop-down menu. Then

• Click on Scatterplot . . . to obtain a scatterplot. This uses scatterplot() from the car package,

which is an option rich interface to functions that are in base graphics.

• Click on X Y conditioning plot . . . for lattice scatterplots and panels of scatterplots.

• Click on 3D graph to obtain a 3D scatterplot, using the R Commander function scatter3d()

that is an interface to functions in the rgl package.

1At startup, the R Commander checks whether all the suggested packages, needed to use all its features, are available.

If some are missing, then upon starting up, the R commander offers to install them. For installing such packages, there must

be a live internet connection.

1.2. THE R COMMANDER GRAPHICAL USER INTERFACE, AND ALTERNATIVES 13

Statistics (& fitting models): Click on the Statistics drop down menu to get submenus that give

summary statistics and/or carry out various statistical tests. This includes (under Contingency tables)

tables of counts and (under Means) One-way ANOVA. Also, click here to get access to the Fit models

submenu.

*Models: Click here to extract information from model objects once they have been fitted. (NB: To

fit a model, go to the Statistics drop down menu, and click on Fit models).

14 CHAPTER 1. PRELIMINARIES

Chapter 2

An Overview of R

Command Enter commands following the prompt, e.g.

prompt (>) > 2 + 2 # Calculate 2 + 2

Quitting To quit from R type

q() # NB q(), not q

Case matters volume is different from Volume

Assignment The assignment symbol is <-, e.g.

volume <- c(351, 955, 662, 1203, 557)

Store the column of numbers in volume

c = concatenate

Help The main help function is help(). Note help(help) and, e.g., help(plot)

Other topics Simple arithmetic operations; simple plots; input of data from a file.

2.1 Use of the console (i.e., command line) window

The command line prompt, i.e. the >, is an invitation to start entering commands. For example, type

2+2 and press the Enter key. The following appears on the screen:

> 2+3

[1] 5

>

The result is 5. The [1] says, a little strangely, “first requested element will follow”. Here, there is

just one element. The > indicates that R is ready for another command.

Try also:

> result <- 2+5

> result # Check the contents of ’result’

[1] 7

>

The value 7 is now stored in an object with the name result. Objects such as result that have been

created by the user go into what is called the workspace,

Note that:

15

16 CHAPTER 2. AN OVERVIEW OF R

• The assignment symbol is <-

• Typing the name of an object causes the printing of its contents, as above when result was

typed on the command line. This applies to functions as well as data objects. For example, try

typing q, or mean.

• The # symbol indicates that what follows, on that line, is comment.

• Multiple commands may appear on a line, with the semicolon (;) as the separator.

The exit or quit command is

> q()

NB: Typing q on its own, without the parentheses, displays the text of the function on the screen.

A message will ask whether to save the workspace image. Clicking Yes (usually the safest option)

will save the objects that remain in the workspace – any that were there at the start of the session

(unless removed or overwritten) and any that have been added since. Assuming that the very short

session above started with an empty workspace, the only object in the workspace will be result. The

workspace is automatically reloaded when the R session is restarted.1

Commands may continue over more than one line. By default, the continuation prompt is

+

As with the > prompt, this is generated by R. Including it when code is entered will give an error!

For the names of R objects or commands, case is significant. Thus Myr (millions of years) differs

from myr. (Myr is a column in the data frame molclock, used in Exercise 1 in Section 3.5).

On Windows systems, the Microsoft Windows conventions apply, and case does not distinguish

file names. On Unix systems (the Mac OS X version of Unix is a partial exception) case in file names

is significant.

Practice with R commands

Try the following

1:5 # The numbers 1, 2, 3, 4, 5

mean(1:5)

sum(1:5) # Apply the sum function to the vector

of numbers 1, 2, 3, 4, 5

(1:5) > 2 # Returns FALSE FALSE TRUE TRUE TRUE

Other relational operators are: >=, <, <=, ==, !=

(2:5)ˆ10 # 2 to the power of 10, 3 to the power of 10, ...

log2(c(0.5, 1, 2, 4, 8)) # Values that differ by a factor of 2

are, on this scale, one unit apart.

The R language has the standard types of abilities for evaluating arithmetic and logical expressions.

A wide variety of functions extends these basic arithmetic and logical abilities. Common functions

include print(), plot() and help(). Type help(plot) to get help on the function plot().

2.2 A Short R Session

We will work with the data set shown in Table 2.1:

1If more than one working directory has been created, any workspace that is reloaded will for the working directory for

the new session.

2.2. A SHORT R SESSION 17

Volume (mm3) Weight (g) type

Aird’s Guide to Sydney 351.00 250.00 Guide

Moon’s Australia handbook 955.00 840.00 Guide

Explore Australia Road Atlas 662.00 550.00 Roadmaps

Australian Motoring Guide 1203.00 1360.00 Roadmaps

Penguin Touring Atlas 557.00 640.00 Roadmaps

Canberra - The Guide 460.00 420.00 Guide

Table 2.1: Weights and volumes, for six Australian travel books.

Entry of columns of data from the command line

Data may be entered from the command line, thus:

volume <- c(351, 955, 662, 1203, 557, 460)

weight <- c(250, 840, 550, 1360, 640, 420)

Read the symbol c as “concatenate”. It joins elements together into a vector, here numeric vectors.

Now store the descriptions in the character vector description:

description <- c("Aird’s Guide to Sydney",

"Moon’s Australia handbook",

"Explore Australia Road Atlas", "Australian Motoring Guide",

"Penguin Touring Atlas", "Canberra - The Guide")

The end result is that objects volume, weight and description are stored in the workspace.

Listing the workspace contents

Use the function ls() to examine the current contents of the workspace:

> ls()

[1] "description" "volume" "weight"

> ls(pattern="ume") # All objects whose names include "ume"

[1] "volume"

> ls(pattern="ˆdes") # All objects whose names start with "des"

[1] "description"

Operations with vectors

Here are the values of volume

> volume

[1] 351 955 662 1203 557 460

Here are various arithmetic operations:

> # Final element of volume

> volume[6]

[1] 460

> ## Ratio of weight to volume, i.e., density

18 CHAPTER 2. AN OVERVIEW OF R

> round(weight/volume ,2)

[1] 0.71 0.88 0.83 1.13 1.15 0.91

A simple plot

Figure 2.1 plots weight against volume, for the six Australian travel books. Note the use of the

graphics formula weight ˜ volume to specify the x− and y−variables. It takes a similar from to the

“formulae” that are used in specifying models, and in the functions xtabs() and unstack().

●

●

●

●

●

●

400 600 800 1200

4
0
0

8
0
0

1
2
0
0

volume

w
e
ig
h
t

Figure 2.1: Weight versus volume, for six Australian travel books.

Code

plot(weight ˜ volume, pch=16, cex=1.5)

pch=16: use solid blob as plot symbol

cex=1.5: point size is 1.5 times default

Alternative

plot(volume, weight, pch=16, cex=1.5)

The axes can be labeled:

plot(weight ˜ volume, pch=16, cex=1.5, xlab="Volume (cubic mm)",

ylab="Weight (g)")

Labeling of points (e.g., with species names) can be done interactively, using identify():2

identify(weight ˜ volume, labels=description)

Then click the left mouse button above or below a point, or on the left or right, depending on where

you wish the label to appear. Repeat for as many points as required.

On most systems, the labeling can be terminated by clicking the right mouse button. On the

Windows GUI, an alternative is to click on the word “Stop” (then on “Stop locator”) that appears at

the top left of the screen, just under “Rgui” on the left of the blue panel header of the R window.

Formatting and layout of plots

There are extensive abilities that may be used to control the formatting and layout of plots, and to add

features such as special symbols, fitted lines and curves, annotation (including mathematical annota-

tion), colors and so on. A later chapter (Chapter 7) is devoted to graphics.

2A non-interactive alternative is to use text() to place labels on all the points.

2.3. DATA FRAMES – GROUPING TOGETHER COLUMNS OF DATA 19

2.3 Data frames – Grouping together columns of data

Data Frames

Data frames Data frames are the preferred way to make data available to modeling functions.

Creating 1: Enter from the command line,

data frames 2: Use read.table() to input from a file.

Accessing travelbooks$weight or travelbooks[, "weight"] or travelbooks[, 4]

columns of Or: Use the data parameter, if available, in a function call

data frames Or: Use with(), e.g. with(travelbooks, plot(weight volume))

Use attach(), e.g., attach(travelbooks), and detach() when finished.

Data frames are pervasive in R. Most datasets that are included with R packages are supplied as

data frames. The following demonstrates the use of a data frame to group together, under the name

travelbooks, the several columns of Table 1. It is tidier to have matched columns of data grouped

together into a data frame, rather than separate objects in the workspace.

Group columns together into a data frame

travelbooks <- data.frame(

thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),

width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),

height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4),

weight = weight, # Include values of weight, entered earlier

volume = volume, # Include values of volume, entered earlier

type = c("Guide", "Guide", "Roadmaps", "Roadmaps", "Roadmaps",

"Guide"),

row.names = description

)

Remove objects that are not now needed.

rm(volume, weight, description)

The vectors volume, weight and description had already been entered, and it was not necessary

to re-enter them. It is a matter of convenience whether the description information is used to label the

rows, or alternatively placed in a column of the data frame.

Vectors of character, such as type, are by default stored as factors. In the data as stored, "Guide"

is replaced by 1 and "Roadmaps" by 2. Stored with the factor is the information that 1 is "Guide"

and 2 is "Roadmaps". In many contexts, factors are equivalent to character data. There are however

situations where the difference is important.

Accessing the columns of data frames

The following all refer directly to the name of the data frame:

travelbooks[, 4]

travelbooks[, "weight"]

travelbooks$weight

travelbooks[["weight"]] # This treats the data frame as a list.

However there are several mechanisms that avoid repeated reference to the name of the data frame.

The following all plot weight against volume:

20 CHAPTER 2. AN OVERVIEW OF R

1: Use the data parameter in the function call

plot(weight ˜ volume, data=travelbooks)

#

2: Use with(); take columns from the specified data frame

with(travelbooks , plot(weight ˜ volume))

#

3: Use attach() to include the column names in the search list

attach(travelbooks)

plot(weight ˜ volume)

detach(travelbooks) # Detach when no longer required

Approaches 2 and 3 are always available. Most, but not all, plotting and modeling functions accept a

data argument.

Subsection 3.3.2 will discuss the attaching of packages and image files.

2.4 Input of Data from a File

The function read.table() is designed for input from a file into a data frame. As an example,

observe input of the data in Table 2.1. The DAAG package has a function datafile() that can be

conveniently used to place into the working directory this and/or several other files that are intended

for use for demonstrating input of data from a file.3

The first two lines (column headings and first row of data) are:

thickness width height weight volume type

Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide

. . .

Notice that the first column has no header information.

First store the file in the working directory, using the function noted above:

Place the file in the working directory

library(DAAG) # DAAGxtras has the needed function

datafile("travelbooks") # Place file in the working directory

dir() # List files in the working directory

file.show("travelbooks.txt") # Display travelbooks.txt

Using datafile() to place the file in the working directory is purely a convenience for teaching pur-

poses. Because the file is stored in the working directory the same command can be used, independent

of the setup on individual computers, to read its contents into R.

For reading it into R, a suitable command is:

Now input the file, to the data frame travelbooks

travelbooks <- read.table("travelbooks.txt", header=TRUE,

row.names=1)

Row 1 of the file gives column names. Column 1 gives row names

The assignment places the data frame in the workspace, with the name travelbooks. The row names

are optional. The first seven columns are numeric. Because the final column holds character data, it is

stored as a factor.

3DAAG must be installed.

2.5. DEMONSTRATIONS, & HELP EXAMPLES 21

Data input – points to note

Consider use or the R Commmander GUI. This displays entry boxes for input settings that users

may find it expedient to change.

Use the parameter heading to control whether (heading=TRUE) or not (heading=FALSE) the

first column of input is used for row names.

Section 6.6.1 comments on parameter settings that may need to be changed to match the data

format. It also comments on what can go wrong, and makes suggestions on how to deal with

various different types of input errors.

Character vectors that are included as columns in data frames become, by default, factors. For

many purposes, character vectors and factors can be treated as equivalent.

2.5 Demonstrations, & Help Examples

Help in R

demo() # List available demonstrations

demo(graphics) # Demonstration of R’s graphics abilities

##

example(plot) # Run examples from help page for plot()

Note also help.search() and apropos().

To get a list of available demonstrations, type:

demo()

Visually interesting demonstrations are:

demo(image)

demo(graphics)

demo(persp)

demo(plotmath) # Mathematical symbols can be visually interesting

library(lattice)

demo(lattice) # Demonstrates lattice graphics

library(vcd) # The vcd package must of course be installed.

demo(mosaic)

Especially for demo(lattice), it pays to stretch the graphics window to cover a substantial part of

the screen. Place the cursor on the lower right corner of the graphics window, hold down the left mouse

button, and pull.

The following gives a list of available demonstrations:

demo(package = .packages(all.available = TRUE))

Examples that are included on help pages

All functions have help pages. Most help pages include examples, which can be run using the function

example().

22 CHAPTER 2. AN OVERVIEW OF R

help() # help on use of the help function

help(plot) # the help page for the plot function

example(plot) # Run the examples from the help page for plot()

par(ask=FALSE) # Do not now ask, before displaying a new plot.

To work through the code for an example, look on the screen for the code that was used, and copy or

type it following the command line prompt.

Be warned that, even for relatively simple functions, some of the examples may illustrate non-

trivial technical detail.

Access to help resources from a browser screen

Type help.start() to display a screen that gives a browser interface to R’s help resources. Note

especially the listings under Frequently Asked Questions and Packages. Under Packages, click on

base to get information on base R functions. Standard elementary statistics functions are likely to be

found under stats, and base graphics functions under graphics.

Note the official R manuals. There is An Introduction to R, a manual on Writing R Extensions,

and so on.

Many packages have vignettes; these are typically pdf files that give information on the package

or on specific aspects of the package. Click on the package name, then on overview, to see links to

any vignettes. Alternatively, note the function vignette().4

Searching for key words or strings

Use help.search() to look for functions that include a specific word in their alias or title. For

example, in order to look for a function for bar plots, try

help.search("bar")

This draws attention to the function barplot(). Type in help(barplot) to see the help page, and/or

example(barplot) to run the examples.

Functions for operating on character strings are likely to have “str” or “char” in their name. Try

help.search("str", package="base")

help.search("char", package="base")

The function RSiteSearch() searches web-based resources, including R mailing lists, for the

text that is given as argument.

2.6 Summary

One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be carried

out in parallel, across all elements of a vector at once.

Use q() to quit from R. To retain objects created during the session, accept the offer to save the

workspace.

Data frames collect together columns that all have the same length, as a single R object.

4Specify, e.g. vignette(package="grid") to get details of the vignettes that are available for the grid package. Then,

to display the vignette, call vignette() with the package name (in character string form) as argument.

2.7. EXERCISES 23

Attachment of a data frame (use the function attach()) can be convenient where a number of

lines of code require access to its columns. Give the name without quotes.

The function with() attaches a data frame temporarily, for the duration of the call to with().

Where access to the dataframe columns is required for one or for a few lines only, this can be a

good alternative to attach().

For simple forms of scatterplot, use plot() and associated functions.

Useful help functions are help() (for getting information on a known function), help.search()

(for searching for a word that is used in the header for the help file), and apropos() (for identi-

fying functions that include a particular text string as part of their names). Note also the use of

help.start(), to start a browser window from which R help information can be accessed.

read.table() is the function of first recourse for inputting rectangular files. As an alternative,

consider use of the R Commander GUI.

2.7 Exercises

1. Use the function datafile() (DAAG or DAAGxtras), with the argument file=bestTimes, to

place the file bestTimes.txt into the working directory.5

(a) Examine the file. (Include the path if the file is not in the working directory.)

file.show("bestTimes.txt") # Assumes file in working directory

bestTimes <- read.table("bestTimes.txt")

(b) The bestTimes file has separate columns that show hours, minutes and seconds. Use the

following to add the new column Time, then omitting the individual columns as redundant

bestTimes$Time <- with(bestTimes, h*60 + min + sec/60)

Time in minutes

names(bestTimes)[2:4] # Check that these are the columns

that can be omitted

bestTimes <- bestTimes[, -(2:4)] # Use "-" to omit these columns

(c) Here are alternative ways to plot the data

plot(Time ˜ Distance, data=bestTimes)

Now use a log scale

plot(log(Time) ˜ log(Distance), data=bestTimes)

plot(Time ˜ Distance, data=bestTimes, log="xy")

(d) Now save the data into an image file in the working directory

save(bestTimes, file="bestTimes.RData")

For further explanation of the function save(), see the next chapter.

5Alternatively, copy it from the web page http://www.maths.anu.edu.au/˜johnm/datasets/text/ and place it

in the working directory.

24 CHAPTER 2. AN OVERVIEW OF R

Chapter 3

The R Working Environment

The Working Environment of an R Session:

Working directory Files are by default read from this directory, or written to it

Workspace This is the user’s “database”, where the user can make

additions or changes, or delete objects, as desired.

Object Objects include data, functions, formula objects, expression objects, . . .

Use ls() to list contents of current workspace.

Image files Use to store R objects, e.g., workspace contents.

(The expected file extension is .RData or .rda)

save.image() Use to store or back up workspace congtents.

Alternatively, use the relevant menu item. Make frequent saves!

Search list Use search() to list the “databases” where R searches for objects.

Use library() to add packages to the search list

Use attach() to add a data frame or image file to the search list.

3.1 The Working Directory and the Workspace

The working directory is the directory where, in the current session, R by default looks for user files,

and saves files that the user outputs. It pays to have a separate working directory, and associated

workspace or workspaces, for each major project.

The workspace is, in R technical language, a “database” that holds all the objects that are under

direct user control. The workspace holds, in the current session, objects that the user has created or

input, or that were there at the start of the session and not later removed. The workspace is at the

base of a list of “databases”, known as the search list, that gives access to packages, objects in other

directories, etc.

The workspace changes as objects are added or deleted or modified. It disappears at the end of

the session, but a copy or “image” can and usually should be kept. Upon quitting from R (type q(),

or use the relevant menu item), users are asked whether they wish to save the current workspace. The

workspace is reloaded next time an R session is started in the same working directory.

25

26 CHAPTER 3. THE R WORKING ENVIRONMENT

Setting the Working Directory

When a session is started by clicking on a Windows icon, the icon’s Properties specify the Start In

directory. The default choice, usually an R installation directory, is not satisfactory for long-term use,

and should be changed.1

It is good practice to use a separate working directory for each different project. On Windows

systems, copy an existing R icon, rename it as desired, and change the Start In directory to the new

working directory.2

3.2 Saving and retrieving R objects

Cautious users will from time to time save (back up) the current workspace image. The command

save.image()) saves everything in the workspace, by default into a file named .RData in the working

directory. Or, depending on the implementation, click on the relevant menu item.

Before making major changes in the workspace, it may be sensible to archive the contents of the

current workspace, e.g., into a file with the name archive.RData. Specify

save.image(file="archive.RData")

Before exiting a session and saving the workspace, consider use of rm() to remove objects that

are no longer required. Saving the workspace image will then save everything that remains.

Use save() to save one or more named objects into an image file. The following demonstrate the

explicit use of save() and load() commands:3

save(volume, weight, file="books.RData")

Can save many objects in the same file

load("books.RData") # Recover the saved objects

Actually, the function save.image() uses save() to perform a major part of its task.

An alternative to load("books.RData") is attach("books.RData"). This makes the objects

available, but in a database that is separate from the user’s workspace.

Writing data frames to text files

Use the function write.table() to write a data frame to a text file. More generally, to save several

objects (data frames or any other R object) in the one file, use dump() (to save in a text format) or

save.image(), as noted above.

1When a Unix or Linux command starts a session, the default is to use the current directory.
2The working directory can be changed once a session has started, either from the menu (if available) or from the

command line. If the intention is change to a new workspace, you may first want to save the existing workspace, then typing

rm(list=ls() to remove its contents. Then, once the working directory has been changed, load the new workspace.
3Objects may alternatively be “dumped” in a more human-readable dump format. See Subsection 6.7.

3.3. INSTALLATIONS, PACKAGES AND SESSIONS 27

3.3 Installations, packages and sessions

Packages & the Search List

Packages Packages are collections of R functions and/or data.

Most users install R from a binary on CRAN. Recommended

packages are then installed along with R.

Install other packages, as required, prior to their use.

library() Use library() to attach a package, e.g., library(DAAG)

Once attached, a package is added to the search list, i.e., to the

list of “databases” that R searches for functions and/or data.

attach() Use attach() to attach data frames or image (.RData) files.

The data frame or image file is added to the search list,

usually in position 2, i.e., following the workspace (.Globalenv)

3.3.1 The architecture of an R installation – Packages

An R installation is structured as a library of packages.

• All installations should have the base packages (one of them is called base) , which provide the

infrastructure for other packages.

• Binaries that are available from CRAN sites include, also, all the recommended packages.

• Other packages can be installed as required.

A number of packages are by default attached at the start of a session. Other packages can be

attached (use library()) as required. To discover which packages have been attached, enter:

sessionInfo()

Installation of R packages

From a Windows or MacOS X GUI, it is usually easiest to use the menu to install packages. This

calls the function install.packages(). Alternatively, this function can be invoked directly. See

help(install.packages)

Note also download.packages() (this takes a list of package names and a destination directory,

downloads the newest versions of the package sources and saves them in ‘destdir’), as zip or (under

MacOS X) .tar.gz files. The menu, or install.packages(), can then be used to install the packages

from the local directory.

For command line installation of packages that are in a local directory, call install.packages()

with pkgs giving the files (with path, if necessary), and with the argument repos=NULL. If for example

the binary DAAG 1.00.zip has been downloaded to D:\tmp\, it can be installed thus

install.packages(pkgs="D:/DAAG_1.00.zip", repos=NULL)

In the R command line, be sure to replace the usual Windows backslashes by forward slashes.

On Unix and Linux systems, the relevant gzipped tar files, once downloaded to a storage device,

can be installed using the shell command:

28 CHAPTER 3. THE R WORKING ENVIRONMENT

R CMD INSTALL <package (.tar.gz file)>

Note also the function update.packages(). This identifies packages for which updates are avail-

able, in each case offering the user the option to proceed with the update.

Use .path.package() to get the path of a currently attached package (by default for all attached

packages).

3.3.2 The search path: library() and attach()

The search path determinines where and in what order R looks for objects (functions or data), required

in an R session, that cannot be found in the workspace.

At any time in a session, the R system has a search path (or list) that determines where it looks for

objects. To get a snapshot of the search path, type:

> search()

[1] ".GlobalEnv" "package:MASS" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Technically, these are called “databases”. R looks first in database 1 (".GlobalEnv", which is the

user workspace), then (if the object has not been found) in database 2, and so on.

Attachment of R packages

Use library() to attach an R package. This extends the search list. The system can then look in the

package database for objects that are not in the user workspace.

If at some point (often the end of the session) the workspace is saved, and objects that were added

have not been explicitly removed, they will be saved as part of the workspace. If saved in the default

.RData image file in the working directory, they will be automatically loaded when a new session is

next started in that working directory.

Attachment of image files

As noted earlier, the function attach() can be used to simplify access to

• columns of a data frames or elements of a list object

• objects that are stored in an image file.

The data frame or list object is added to the search list. Thus, columns of a data frame can be referred

to by name, without explicit reference to the data frame. Be careful however not to double up on names

that are already in the workspace.

The following demonstrates the attaching of an R image file:

attach("books.RData")

The session then has access to objects in the file books.RData. The file becomes a further “database”

on the search list, separate from the workspace. Note however that if the object is modified, the

modified copy becomes part of the workspace.

In order to detach such a database, proceed thus:

detach("file:books.RData")

3.4. SUMMARY 29

Alternatively type search(), note the number that gives the position of the database on the search

list, and supply that number as an argument to detach().

3.4 Summary

Each R session has a working directory. This is the directory where R will by default look for

files or store files that are external to R.

User-created R objects are added to the workspace, which is at the base of a search list, i.e., a

list of “databases” that R will search when it looks for objects.

• At the end of a session an image of the workspace will typically (respond “y” when asked) be

saved into the working directory. Additionally, it is good practice to save the workspace from

time to time during a session. Before making big changes to the workspace, a useful precaution

is to save the existing workspace under a name (e.g., aug27.RData that is different from the the

default .RData

It is usually best to keep a separate workspace and associated working directory, for each major

project.

The search path determines the order of search for objects that are accessed from the command

line, or that a function requires and are not in the functions environment.

Note also the use of attach() to give access to objects in an image (.RData) file. Include the

name of the file (optionally preceded by a path) in quotes.

R has an extensive help system. Use it!

3.5 Exercises

1. Read the data that is stored in the file molclock1.txt into the data frame molclock.4. Use the

function save() to save the data into an R image file. Delete the data frame molclock, and

check that you can recover the data by loading the image file.

4With the package DAAGxtras attached, typing datafile() will store molclock1.txt, molclock2.txt, and also travel-

books.txt, in your working directory

30 CHAPTER 3. THE R WORKING ENVIRONMENT

