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SUMMARY 

The present work can be regarded as a first step toward an integrated modeling of mold 

filling during injection molding of industrial polymer composite parts and the resulting 

mechanical response under service loading condition. To this end, a set of experiments 

which captures the mechanical behavior of a short fiber reinforced thermoplastic under 

different strain histories is described and a three-dimensional simple phenomenological 

model to represent experimentally-observed response is developed. The emphasis is laid 

on the account of local fiber orientation in the ground matrix on the prediction of the 

mechanical response of the composite. The model is based on assumption that the strain 

energy function of the composite is given by a linear mixture of the strain energy of 

each constituent: an isotropic part representing the Phase 1 which is essentially related 

to the ground matrix and an anisotropic part describing the Phase 2 which is mainly 

related to the fibers and the interphase as a whole. The efficiency of the model is 

assessed and perspectives are drawn. 

Keywords: Short fiber reinforced thermoplastic, constitutive modeling, continuum 

mechanics, injection molding, mechanical behavior 

 

1. INTRODUCTION 

High corrosion resistance, ease of processing, reduced weight for high fuel efficiency 

and low-cost tooling are among the major driving forces behind the growing use of 

short fiber reinforced thermoplastics in many industrial sectors, particularly in the 

automotive industry such as bumper beam, dashboard and sunroof frame. Therefore, it 

is of great interest to have knowledge of the mechanical performances of these 

materials. At the macroscopic level, fiber reinforced thermoplastics exhibit strong 

directional dependencies. Recently, a considerable effort has been devoted to the 

modeling of the mechanical behavior of polymer composites. Among the earlier 

investigations are the works of Schapery (1968), Chan (1988), Suvorova (1985) which 

focused on linear viscoelastic models to describe the creep behavior and Spencer (1984) 

who investigated the use of invariants in the description of anisotropic response. More 

recently, thermodynamically consistent models for elasto-plastic, viscoelastic and 

viscoplastic behavior were developed. For details, the reader can consult a recent review 

in Andriyana et al. (2009a, 2009b).   



There exist at least two different approaches in the modeling of the mechanical response 

of composites: Micromechanics and Continuum Mechanics approaches. In the former, 

knowledge of the mechanics of the constituents of the microstructure of the composite, 

together with knowledge of their interactions are considered in order to develop a 

theoretical framework that would describe the mechanics of the whole composite. A 

second approach is based on the macroscopic description of the material as a whole and 

how the composite evolves under change in the mechanical environment. Such models, 

referred to as phenomenological models, are a powerful and effective tool to explain 

various physical phenomena successfully without detailed knowledge of the complexity 

of the internal microstructure of biological tissues in question. We will focus on the 

latter throughout the present paper. Moreover, we will restrict our study to the 

mechanical theory, and hence only isothermal processes are considered and thermal 

variables such as temperature and entropy are neglected. 

In the present work, the mechanical behavior of an injection molded short fiber 

reinforced thermoplastic is addressed. A detailed experimental investigation which 

probes the mechanical behavior under different loading conditions is presented in 

Section 2. The continuum mechanical framework of the model is presented in Section 3. 

In Section 4, the efficiency of the model is assessed by comparison with experimental 

data. Finally, concluding remarks are given in Section 5. 

 

2. EXPERIMENTAL OBSERVATION 

Material and procedure 

360 x 100 x 3 mm3 plates of a thermoplastic reinforced by 30 wt% of short glass fibers 

were injection molded with a 40°C mold temperature. Its linear viscoelastic properties 

in the injection flow direction was investigated by means of Dynamic Mechanical 

Analysis (DMA) in flexion loading mode. It was found that the  transition temperature 

is located around 60 to 70°C and the storage modulus varies from 3.8 to 7.8 GPa 

depending on temperature and frequency. At this point, it is concluded that the material 

exhibits a macroscopic viscoelastic behavior at small strain: the storage modulus 

depends on strain rate and temperature. 

In an attempt to gain additional insight into the time-dependent anisotropic behavior of 

this composite, experiments probing the mechanical behavior, i.e. uniaxial tension tests, 

were conducted. The tests were performed using a computer controlled Instron 

servohydraulic uniaxial testing machine operated in strain rate control mode using a 

video extensometer. The specimens were obtained by tooling the plates to get geometry 

as illustrated in Fig. 1.  

 

Figure 1. Specimen geometry for uniaxial tension tests. 



During the tests, the specimens were subjected to various strain histories. All tests were 

carried out at room temperature. It is to note that all stresses in this work are presented 

in normalized values unless otherwise specified. 

 

Testing results 

Fig. 2 (left) presents the material behavior when subjected to a uniaxial tension at a 

constant strain rate of 10
-4

 s
-1

 for different specimen orientations with respect to 

injection flow. As expected, the material exhibits strong anisotropic and non-linear 

responses. For a given strain level, the highest stress is obtained for the specimen whose 

orientation is parallel to injection flow. The corresponding result suggests that most of 

the fibers in plate thickness are oriented in the flow direction. In Fig. 2 (right), a weak 

rate-dependence of mechanical responses is highlighted. The graph indicates that the 

stress increases non-linearly with increasing strain rate during the uploading. 

Furthermore, this dependence rises with applied strain level. This low but significant 

dependence on strain rate is consistent with DMA analysis. 

 

Figure 2. Mechanical response under monotonous tension test illustrating anisotropic 

(left) and rate dependent (right) behavior.  

 

The time-dependence of the material can also be probed with experiments of the type 

illustrated in the inset of Fig. 3 (left) where at constant strain rate, the uploading and the 

unloading are interrupted by several relaxation segments (as also performed by Lion 

(1996) or Bergström and Boyce (1998) among others). The results show that during 

relaxation, the stress decreases in the uploading and increases in the unloading. At strain 

of 0.01, the time dependence is higher during the unloading than that during the 

uploading. An opposite trend is found at strain of 0.02 where the time-dependence 

during the uploading is higher than during the unloading. The evolutions of the stress 

during relaxation are presented in Figs. 3 (right) where stress is plotted at strain of 0.02 

during the uploading and the unloading. It is shown that after 20 min of relaxation, the 

stress approached what appears to be an equilibrium state. Furthermore, the rate of 

approach towards this relaxed state is a decreasing function of the relaxation duration. It 

is to note that according to Lion (1996), the behavior of elastomers is characterized by a 

so-called equilibrium hysteresis. Thus, no unique equilibrium state, where the stress 

response is controlled solely by strain state, exists and consequently hysteresis may be 



associated with viscoplasticity. Nevertheless, Bergström and Boyce (1998) inferred the 

existence of a unique equilibrium state which can be reached in the limite of in¯ nite 

relaxation duration. In this case, the authors attributed hysteresis to viscoelasticity. 

 

 

Figure 3. Left: Uploading and unloading test interrupted by several relaxations at strains 

of 0.01 and 0.02. Strain rate of 10
-4

 s
-1

, relaxation duration is 1200 s. Right: Evolution of 

stress as a function of relaxation duration during relaxation test. Strain is 0.02. 

 

The discussion of the experimental data has now been completed. In summary, the 

experimental investigation has shown that: 

1. The material responses are strongly anisotropic and non-linear. 

2. The time-dependent behavior is clearly marked. At relatively small strain, the 

dependence during the unloading is higher than during the uploading. An 

opposite trend is observed for higher strain. 

3. The existence of a unique equilibrium state cannot be verified using our 

experimental time scale. Instead, the relaxed state is characterized by an 

equilibrium hysteresis. Further investigation by the same authors (to be 

published in another paper) showed that the corresponding hysteresis depends 

on the fiber content and orientation. 

 

 

3.   CONSTITUTIVE MODELING 

3.1 Choice of the model 

The experimental data presented in the previous section clearly demonstrated the 

complex behavior of this short fiber reinforced thermoplastic. The observations suggest 

that the mechanical response (stress) can be decomposed into two parts: an equilibrium 

response and a time-dependent deviation from equilibrium. The equilibrium response is 

decomposed into two terms as well: a non-linear elastic response and an equilibrium 

hysteresis which depends in a rate-independent manner on the strain history. The total 

stress is then simply given by the sum of these components. To address these 



observations, a three-dimensional phenomenological model is developed. As 

highlighted in the Introduction, our approach is based on a continuum approach within 

the framework of multiplicative decomposition of the deformation gradient into elastic 

and inelastic parts. Thus, excluding micromechanical considerations. 

In a continuum approach, the Representative Volume Element (RVE) has to be defined 

such that mechanical quantities, e.g. mass, density, stress or strain, can be represented 

by continuous fields. The number of phases in RVE to be accounted for in the modeling 

is linked to the level of complexity of the material. Mélé et al. (2002) defined three 

phases in a silica filled SBR: rubber matrix, silica and interphase. In fact, in the context 

of polymer composites, the presence of the latter phase, which is a consequence of 

changes in the microstructure of the ground matrix at the vicinity of the fibers 

(Theocaris, 1986; Alberola et al., 1999), could affect their overall mechanical response 

(Vendramini et al., 2000). Motivated by this observation, in the present study, the RVE 

is assumed to consist of two phases: Phase 1 essentially related to the ground matrix 

having isotropic viscoelastic behavior and Phase 2 mainly related to the fibers and the 

interphase as a whole having anisotropic elasto-plastic behavior. From a physical 

viewpoint, this means that inelasticity can occur at the vicinity of the fibers due to stress 

redistribution. From a modeling viewpoint, it allows the account of fiber orientation to 

the modeling of anisotropic equilibrium hysteretic response. To this end, it is postulated 

that the strain energy function of the composite W is given by a linear mixture of the 

strain energy of each constituent, i.e. 

 
ffmf WWW    1      

where f is the fiber volume fraction. Wm and Wf are the strain energy of the Phases 1 

and 2 respectively.  The form of Wm and Wf are chosen so they respect the objectivity 

principle (see for example in Holzapfel (2000)) and the integrity bases advocated by 

Spencer (1984).  

Remark 1. Fibers embedded in the ground matrix induce anisotropy due to their 

orientation. In the present work, the mechanical anisotropy is only related to fiber 

orientation. Hence, other phenomena which could generate anisotropy are not 

considered. 

Remark 2. In fact, by writing the strain energy in the form presented above, f should 

represent the volume fraction of the Phase 2, i.e. fibers and interphase as a whole. 

Nevertheless, as no experimental measurement concerning the interphase content is 

available, for the first approximation, it is assumed here that f denotes the fiber 

content only. 

 

3.2 Kinematics 

Let (C0) be a reference configuration of the continuous body of interest. To simplify the 

discussion, the reference configuration is assumed to correspond to a vanishing stress 

and strain, stable configuration of minimum energy. Under mechanical loading, the 

body deforms and occupies a time sequence of physical configuration. Let (Ct) be the 

body configuration at time t defined by the mapping x (X; t) and by its gradient F(X; t). 

Furthermore, let J (X; t) = det F > 0 denotes the local volume ratio. Following Flory 



(1961), Lee (1969), Sidoroff (1974) and Lubliner (1985), we consider the multiplicative 

decompositions of the deformation gradient 

pepvev FFFFF   

into elastic and inelastic parts where Fv and Fp are the deformation gradient which 

locally transform the body from the reference configuration to the intermediate 

configurations (Cv) and (Cp) associated respectively with the time-dependence in Phase 

1 and the anisotropic equilibrium hysteresis in Phase 2. The inelastic velocity gradients 

Lv and Lp along with their symmetric parts Dv and Dp are defined by 
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3.3 Continuum representation of distributed fiber orientation 

As emphasized previously, the only cause of mechanical anisotropy considered in the 

present work is the fiber orientation. Moreover, due to the nature of injection molding 

processes, the orientation of the short fibers embedded in the matrix at final solid state 

is dispersed. In order to account for distributed fiber orientations in a continuum sense, 

a (symmetric) generalized structural tensor (tensor of orientation) of second order is 

introduced and defined by (see for example Advani and Tucker (1987) for details) 

  dV
V
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where  (a0) is an orientation density function characterizing the distribution of fibers in 

the reference configuration with respect to the referential orientation a0.  The latter is an 

arbitrary unit vector which can be written in terms of two Eulerian angles    [0; ] 

and    [0; 2] as follow (see Fig. 4) 

  3210  cos  sinsin  cossin, eeea    

with (ei)i=1;2;3 denote the axis of a rectangular Cartesian coordinate system.  

 

Figure 4. Characterization of an arbitrary unit direction vector a0 by means of Eulerian 

angles in a three-dimensional Cartesian coordinate system.  



In injection molded plates, the fiber orientation state is nearly planar and no out-of-

plane rotation is observed (Mlekusch, 1999; Vincent et al., 2005; Dray, 2006). Call e3 

the axis of the plate thickness direction and e1 the axis of the flow direction, the tensor 

of orientation in this case reduces to 


















000

0

0

2212

1211

00

00

0 AA

AA

A . 

 

3.4 Stress response and evolution equations 

In order to describe the stress response, we postulate the existence of a strain energy 

function W, defined per unit volume of the reference configuration, which depends on 

the strain measure C along with its elastic parts Cev and Cep as internal variables, and 

the fiber direction in the reference configuration A0. Moreover, as previously 

emphasized, the function W is given by a linear mixture of the strain energy of each 

constituent. Hence,  

     
0epev ,,, 1 ACCCC ffmf WWW    

Considering the second law of thermodynamics, standard arguments of Coleman and 

Gurtin (1967) gives the Cauchy stress tensor for incompressible materials as follow 

  






































 T

ep

ep

ep

T

ev

ev

ev

TT

ev

ev

ev

T 212 F
C

FF
C

FF
C

FF
C

FF
C

FIσ fff

f
mm

f

WWWWW
p  . 

In the above expression, p is an indeterminate Lagrange multiplier, a consequence of 

incompressibility. It may only be determined from the equilibrium equations and the 

boundary conditions. 

To complete the formulation, the model must be complemented by a kinetic relation 

which describes the evolution of the involved internal variables and the associated 

dissipation mechanism. Consequently, suitable evolution equations (rate equations) are 

required in order to describe the way irreversible process evolves. In our case, the rates 

of inelastic deformations have to be defined: one related to the time-dependent behavior 

(viscous deformation of the Phase 1) and the other associated with the equilibrium 

hysteresis (plastic deformation of the Phase 2).  

Following Lion (1997a,b), Huber and Tsakmakis (2000) and Miehe and Keck (2000) 

among others, a simple fully non-linear evolution equation consistent with the second 

law of thermodynamics is adopted to describe evolution of the viscous deformation in 

the Phase 1. It is given by 
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where Mev is a stress tensor defined in the intermediate configuration (Cv) having the 

structure analogous to the so-called Mandel stress tensor in the plasticity theory 



(Lubliner, 1986). v is the viscosity of the Phase 1 which is supposed to follow an 

exponential form. 

The evolution of the rate-independent anisotropic plastic deformation in the Phase 2 is 

assumed to be given by the following relation 
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where p is material parameter. The non-negative quantity  : CC  z is the time rate 

of the kinematic arclength (time rate of accumulated strain) so that the permanent strain 

depends in a rate-independent manner on the history of the total deformation (see for 

example Valanis (1971); Haupt and Lion (1995); Lion (1997b) for details). In contrast 

to classical theories of elasto-plasticity, no yield surface is introduced. Note that the 

structure of the above flow rule is similar to that proposed by Nguyen et al. (2007) and 

Nedjar (2007). 

 

4. SIMULATIONS AND DISCUSSION 

In order to determine the parameters of the model, curve fitting algorithms in 

combination with the trial and error method were employed. The following parameters 

are used throughout the simulation 

 

Table 1. Material parameters. 

 

The results from applying the proposed model to a uniaxial tension experiment with 

different strain rates is shown in Fig. 5. As illustrated, the model provides good 

agreements with experimental data. The rate-dependent response is well described for 

the strain rates of 10
-5

 s
-1

 and 10
-4

 s
-1

. In Fig. 6, the predictions of the stress-strain 

response for different tensile orientations with respect to injection flow direction are 

presented. The applied strain rate was 10
-4

 s
-1

. Generally, fairly good results are 

obtained even though the stresses are slightly underestimated. The anisotropic response 

is thus well described by the model. 

 



 

Figure 5. Numerical simulation of uniaxial tension test at orientation of 0°: strain rate of 

10
-5

 s
-1

(left) and strain rate of 10
-4

 s
-1

 (right). 

 

 

Figure 6. Numerical simulation of uniaxial tension test at strain rate of 10
-4

 s
-1

. 

Orientation of 30° (left) and 90° (right). 

 

The simulations of upload-unload interrupted with relaxations is shown in Fig. 7 (left).  

The model seems to give a good prediction. Furthermore, the equilibrium hysteretic 

response is also well represented and two opposite tendencies during relaxation are well 

visualized: the stress decreases in the uploading and increases in the uploading. 

Nevertheless, the stress response in the uploading between two segments of relaxation is 

slightly underestimated. Finally, the predicted rate of stress relaxation during both 

uploading and unloading at strain of 0.02 is shown in Fig. 7 (right). It is demonstrated 

that the predicted stress relaxation rate is also in good agreement with experimental 

data: the stress approached what appears to be an equilibrium state. 



 

Figure 7. Numerical simulation of upload-unload test at strain rate of 10
-4

 s
-1

 interrupted 

by several segments of relaxation (left). Stress evolution during relaxation segment at 

strain of 0.02 (right). 

 

5. CONCLUSIONS 

In the present paper which is divided into two parts, the mechanical response of an 

injection molded short fiber reinforced thermoplastic was presented. A detailed 

experimental investigation which probes the mechanical behavior under different 

loading conditions was described and a three-dimensional phenomenological model to 

capture experimentally-observed response was derived. Considering experimental 

observation, the material is assumed to consist of two phases: Phase 1 essentially related 

to the ground matrix having isotropic viscoelastic behavior and Phase 2 mainly related 

to the fibers and the interphase as a whole having anisotropic elasto-plastic behavior. 

The main feature of the model is that the strain energy function of the composite is 

postulated as a linear mixture of the strain energy of each constituent. Comparison with 

experimental data showed that this simple model gives good agreements for different 

strain histories. 

To close this paper, it is to note that specimens represent the entire thickness of the 

plates. Thus, the measured mechanical quantities during DMA and tension tests 

correspond to the average values throughout the usual skin-core layer of the material 

microstructure. In order to highlight the local skin-core effect, the specimens should be 

tooled from various locations at the plate thickness. Consequently, the question of how 

to tool properly the corresponding specimens arises. 
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