
The Quadratic-Chi Histogram Distance Family

Ofir Pele and Michael Werman

School of Computer Science

The Hebrew University of Jerusalem

{ofirpele,werman}@cs.huji.ac.il

Abstract. We present a new histogram distance family, the Quadratic-Chi (QC).

QC members are Quadratic-Form distances with a cross-bin χ2-like normaliza-

tion. The cross-bin χ2-like normalization reduces the effect of large bins having

undo influence. Normalization was shown to be helpful in many cases, where the

χ2 histogram distance outperformed the L2 norm. However, χ2 is sensitive to

quantization effects, such as caused by light changes, shape deformations etc. The

Quadratic-Form part of QC members takes care of cross-bin relationships (e.g.

red and orange), alleviating the quantization problem. We present two new cross-

bin histogram distance properties: Similarity-Matrix-Quantization-Invariance

and Sparseness-Invariance and show that QC distances have these properties. We

also show that experimentally they boost performance. QC distances computation

time complexity is linear in the number of non-zero entries in the bin-similarity

matrix and histograms and it can easily be parallelized. We present results for im-

age retrieval using the Scale Invariant Feature Transform (SIFT) and color image

descriptors. In addition, we present results for shape classification using Shape

Context (SC) and Inner Distance Shape Context (IDSC). We show that the new

QC members outperform state of the art distances for these tasks, while having a

short running time. The experimental results show that both the cross-bin prop-

erty and the normalization are important.

1 Introduction

Histograms are ubiquitous tools in numerous computer vision tasks. It is common prac-

tice to use bin-to-bin distances such as the L1 and L2 norms for comparing histograms.

This practice assumes that the histogram domains are aligned. However this assump-

tion is violated in many cases due to quantization, shape deformation, light changes, etc.

Bin-to-bin distances depend on the number of bins. If it is low, the distance is robust,

but not discriminative, if it is high, the distance is discriminative, but not robust. Dis-

tances that take into account cross-bin relationships (cross-bin distances) can be both

robust and discriminative.

There are two kinds of cross-bin distances. The first is the Quadratic-Form distance

[1]. Let P and Q be two histograms and A the bin-similarity matrix. The Quadratic-

Form distance is defined as:

QF
A(P, Q) =

p

(P − Q)T A(P − Q) (1)
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QCN(our) (a) 0.35 (b) 0.62 (c) 0.86

QCS(our) (a) 0.31 (b) 0.41 (c) 0.43

QF (c) 0.20 (a) 0.28 (b) 0.28

EMD (c) 3.20 (a) 4.00 (b) 4.00

L1 (c) 0.32 (a) 0.40 (b) 0.40

χ2 (a) 0.05 (c) 0.09 (b) 0.11

Fig. 1. This figure should be viewed in color, preferably on a computer screen. A toy

example showing the behavior of distances that reduce the effect of large bins and

the behavior of distances that take cross-bin relationships into account. We show four

color histograms, each histogram has four colors: red, blue, purple, and yellow. The

Quadratic-Form (QF), the Earth Mover Distance (EMD) and the L1 norm do not re-

duce the effect of large bins. Thus, they rank (query) to be more similar to (c) than to

(a). χ2 considers (a) to be more similar, but as it does not take cross-bin relationships

into account it fails with (b). Our proposed members of the Quadratic-Chi histogram

distance family, QCN and QCS consider (a) to be most similar, (b) the second and (c)

the least similar as they take into account cross-bin relationships and reduce the effect

of large bins, using an appropriate normalization.

When the bin-similarity matrix A is the inverse of the covariance matrix, the

Quadratic-Form distance is called the Mahalanobis distance. If the bin-similarity ma-

trix is positive-definitive, then the Quadratic-Form distance is a metric. In this case the

Quadratic-Form distance is the L2 norm between linear transformations of P and Q. If

the bin-similarity matrix is positive-semidefinite, then the Quadratic-Form distance is a

semi-metric.

The second type of distance that takes into account cross-bin relationships is the

Earth Mover’s Distance (EMD). EMD was defined by Rubner et al. [2] as the minimal

cost that must be paid to transform one histogram (P ) into the other (Q):

EMD
D(P, Q) = ( min

{Fij}

X

i,j

FijDij)/(
X

i,j

Fij) s.t Fij ≥ 0

X

j

Fij ≤ Pi

X

i

Fij ≤ Qj

X

i,j

Fij = min(
X

i

Pi,
X

j

Qj)
(2)

where {Fij} denotes the flows. Each Fij represents the amount transported from the
ith supply to the jth demand. We call Dij the ground distance between bin i and bin
j. If Dij is a metric, the EMD as defined by Rubner is a metric only for normalized

histograms. Recently Pele and Werman [3] suggested ÊMD:

ÊMD
D

α (P, Q) = ( min
{Fij}

X

i,j

FijDij) + |
X

i

Pi −
X

j

Qj |α max
i,j

Dij

s.t EMD constraints

(3)
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If Dij is a metric and α ≥ 1
2 , ÊMD is a metric for all histograms [3]. For normalized

histograms ÊMD and EMD are equal (e.g. Fig. 1).

In many natural histograms the difference between large bins is less important than

the difference between small bins and should be reduced. See for example Fig. 1. The

Chi-Squared (χ2) is a histogram distance that takes this into account. It is defined as:

χ2(P, Q) =
1

2

X

i

(Pi − Qi)
2

(Pi + Qi)
(4)

The χ2 histogram distance comes from the χ2 test-statistic [4] where it is used

to test the fit between a distribution and observed frequencies. In this paper the his-

tograms are not necessarily normalized, and thus not probabilities vectors. χ2 was suc-

cessfully used for texture and object categories classification [5,6,7], near duplicate

image identification[8], local descriptors matching [9], shape classification [10,11] and

boundary detection [12]. The χ2, like other bin-to-bin distances such as the L1 and the

L2 norms, is sensitive to quantization effects.

2 Our Contribution

In this paper we present a new cross-bin histogram distance family: Quadratic-Chi

(QC). Like the Quadratic-Form, its members take cross-bin relationships into account.

Like the χ2, its members reduce the effect of differences caused by bins with large

values. We discuss QC members’ properties, including a formalization of a two new

cross-bin histogram distance properties: Similarity-Matrix-Quantization-Invariance

and Sparseness-Invariance. We show that all QC members and the EMD have these

properties. We also show importance experimentally.

For full histograms QC distances computation time is linear in the number of non-

zero entries in the bin-similarity matrix. In this case, QC distances can be implemented

with 5 lines of Matlab code (see Algorithm 1). For two sparse histograms (for exam-

ple bag-of-words histograms) with a total of S non-zeros entries and an average of K

non-zeros entries in each row of the similarity matrix, a QC distance computation time

complexity is O(SK). See code (C++ and Matlab wrappers) at:

http://www.cs.huji.ac.il/˜ofirpele/QC/. Finally, QC distances’ paralleliza-

tion is trivial.

We present results for image retrieval on the Corel dataset using the SIFT descrip-

tor [13] and small color images. We also present results for shape classification using

Shape Context (SC) [10] and Inner Distance Shape Context (IDSC) [11]. QC mem-

bers performance is excellent. They outperform state of the art distances including χ2,

QF, L1, L2, ÊMD[14], SIFTDIST[3], EMD-L1[15], Diffusion[16], Bhattacharyya [17],

Kullback-Leibler[18] and Jensen-Shannon[19] while having a short running time. We

have found that the normalization is very important. Surprisingly, excellent performance

was achieved using a new bin-to-bin distance from the QC family, that has a large nor-

malization factor. Its cross-bin version yielded an additional improvement, outperform-

ing all other distances for SIFT, SC and IDSC.

http://www.cs.huji.ac.il/~ofirpele/QC/
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3 The Quadratic-Chi Histogram Distance Family

In this section we first define the Quadratic-Chi (QC) histogram distance family. Then,

we discuss when it is a metric. That is, when a QC histogram distance is non-negative,

symmetric and subadditive (triangle inequality).

3.1 The Quadratic-Chi Histogram Distance Definition

Let P and Q be two non-negative bounded histograms. That is, P, Q ∈ [0, U ]N . Let

A be a non-negative symmetric bounded bin-similarity matrix such that each diagonal

element is bigger or equal to every other element in its row (this demand is weaker than

being a strongly dominant matrix). That is, A ∈ [0, U ]N × [0, U ]N and ∀i, j Aii ≥ Aij .

Let 0 ≤ m < 1 be the normalization factor. A Quadratic-Chi (QC) histogram distance

is defined as:

QCA
m(P, Q) =

√

√

√

√

∑

ij

(

(

Pi − Qi

)

(
∑

c(Pc + Qc)Aci

)m

)(

(

Pj − Qj

)

(
∑

c(Pc + Qc)Acj

)m

)

Aij (5)

where we define 0
0 = 0. If A is positive-semidefinite, the argument inside the square

root (the sum) is non-negative. If A is not positive-semidefinite we can get non-real

(complex) distances. This is true also for the Quadratic-Form (Eq. 1). We prefer not to

restrict ourselves to positive-semidefinite matrices. On the other hand, we don’t want

non-real distances. So, we define a complex distance as zero. In practice, this was never

needed, even with non-positive-semidefinite matrices. This is due to the fact that the

eigenvectors of the similarity matrices corresponding to negative eigenvalues were very

far from smooth, while the difference vector for natural histograms P and Q is usually

very smooth, see Fig. 2.

Each addend’s denominator inside the square root is zero if and only if the addend’s

numerator is zero. A QCA
m(P, Q) distance is continuous. In particular, if the addend’s

denominator tends to zero, the whole addend tends to zero. Proofs are in [20].

The Quadratic-Chi distance family generalizes both the Quadratic-Form (QF) and

a monotonic transformation of χ2. That is, QCA
0 (P, Q) =QFA(P, Q) and if I is the

identity matrix, QCI
0.5(P, Q) =

√

2χ2(P, Q).

Algorithm 1 Quadratic-Chi Matlab Code for Full Histograms

function dist= QC(P,Q,A,m)

Z= (P+Q)*A;

% 1 can be any number as Z_i==0 iff D_i=0

Z(Z==0)= 1;

Z= Z.ˆm;

D= (P-Q)./Z;

% max is redundant if A is positive-semidefinite

dist= sqrt( max(D*A*D’,0) );
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(P ) (Q) (Z) (E)

Fig. 2. This figure illustrates why it is not likely to get negative values in the square

root argument of a QC distance for natural histograms and a typical similarity ma-

trix. P and Q are two SIFT histograms. Z is the normalized difference vector. That is:

Zi = Pi

(
P

c(Pc+Qc)Aci)m − Qi

(
P

c(Pc+Qc)Aci)m . Negative values are represented with red,

positive values are represented with black. E is one of the eigenvectors of the similarity

matrix that we used in the experiments which correspond to a negative eigenvalue. Z is

very smooth while E is very non-smooth. This is typical of eigenvectors with negative

values with typical parameters.

3.2 Metric Properties

There are three conditions for a distance function, D, to be a semi-metric. The first is

non-negativity (i.e. D(P, Q) ≥ 0), the second is symmetry (i.e. D(P, Q) = D(Q, P ))
and the third is subadditivity (i.e. D(P, Q) ≤ D(P, K)+D(K, Q)). D is a metric if it is

a semi-metric and it also has the property of identity of indiscernibles (i.e. D(P, Q) = 0
if and only if P = Q).

A QCA
m distance without the square root, is non-negative if the bin-similarity matrix,

A, is positive-semidefinite. If A is positive-definitive, then it also has the property of

identity of indiscernibles. This follows directly from the fact that the argument inside

the square root in a QC histogram distance is a quadratic-form between two vectors. A

QC histogram distance is symmetric if the bin-similarity matrix, A, is symmetric.

We now discuss subadditivity (i.e. D(P, Q) ≤ D(P, K) + D(K, Q)) for several

distances. The χ2 histogram distance is not subadditive. For example let i = 0, k = 1,

j = 2 we get χ2(i, j) = 1 > χ2(i, k) + χ2(k, j) = 2
3 . However,

√

χ2 is subadditive

for one and two dimensional non-negative histograms (verified by analysis). Experi-

mentally it appears that
√

χ2 is subadditive for an N -dimensional non-negative his-

tograms. Experimentally, QC members with the identity matrix seems to be subadditive

for non-negative histograms. However, QC members with some positive-definitive bin-

similarity matrices are not subadditive. The question when the QC histogram distances

are subadditive is currently unresolved. An additional discussion about triangle inequal-

ity can be found in Jacobs et al. [21].

4 Cross-Bin Histogram Distance Properties

In this section we formalize and discuss two new cross-bin histogram distance proper-

ties which all QC members have. We conclude with a discussion about their importance.
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4.1 The Similarity-Matrix-Quantization-Invariance Property

The Similarity-Matrix-Quantization-Invariance property ensures that if two bins in the

histograms have been erroneously quantized, this will not affect the distance. Mathe-

matically we define this as:

Definition 1. Let D be a cross-bin histogram distance between two histograms P and
Q and let A be the bin-similarity/distance matrix. We assume P , Q and A are non-
negative and that A is symmetric. Let Ak,: be the kth row of A. Let V = [V1, . . . , VN ]
be a non-negative vector and 0 ≤ α ≤ 1. We define V α,k,b = [. . . , αVk, . . . , Vb + (1−
α)Vk, . . .]. That is, V α,k,b is a transformation of V where (1 − α)Vk mass has moved
from bin k to bin b. We define D to be Similarity-Matrix-Quantization-Invariant if:

Ak,: = Ab,: ⇒ ∀ 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 DA(P, Q) = DA(P α,k,b, Qβ,k,b) (6)

We prove that EMD, ÊMD and all the Quadratic-Chi histogram distances are

Similarity-Matrix-Quantization-Invariant in the appendix [20].

4.2 The Sparseness-Invariance Property

The Sparseness-Invariance property ensures that distances between sparse histograms

will be equal to distances between full histograms. Mathematically we define this as:

Definition 2. Let D be a cross-bin histogram distance between two histograms P ∈
RN and Q ∈ RN and let A be the N × N bin similarity/distance matrix. Let A′ be
any (N + 1) × (N + 1) matrix whose upper-left sub-matrix equals A. We define D to
be Sparseness-Invariant if:

DA([P1, . . . , Pn], [Q1, . . . , Qn]) = DA′

([P1, . . . , Pn,0], [Q1, . . . , Qn,0]) (7)

QC members, EMD and the ÊMD are Sparseness-Invariant directly from their def-

initions. A stronger property called Extension-Invariance was proposed by D’Agostino

and Dardanoni for bin-to-bin distances [22]. This property requires that, if both his-

tograms are extended by concatenating each of them with the same vector (not nec-

essarily zeros), the distance is left unaltered. Cross-bin distances assumes dependence

between histogram bins, thus this requirement is too strong for them.

4.3 Cross-Bin Histogram Distance Properties Discussion

A Sparseness-Invariant cross-bin histogram distance does not depend on the specific

representation of the histograms (full or sparse). A Similarity-Matrix-Quantization-

Invariant cross-bin histogram distance encompass its cross-bin relationships only in

the bin-similarity matrix. Intuitively such properties are desirable. In the appendix [20],

we compare experimentally distances which resembles QC distances, but are either not

Similarity-Matrix-Quantization-Invariant or not Sparseness-Invariant. The comparison

shows that these properties considerably boost performance (especially for sparse color

histograms).
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Rubner et al. [2,23] claim that one of the key advantages of the Earth Mover’s

Distance is that each compared object may be represented by an individual (possibly

with a different number of bins) binning that is adapted to its specific distribution. The

Quadratic-Form is regarded as not having this property (see for example, Table 1 in

[23]). Since all the Quadratic-Chi histogram distances (including the Quadratic-Form)

are both Similarity-Matrix-Quantization-Invariant and Sparseness-Invariant there is no

obstacle to using them with individual binning; i.e. to use them to compare histograms

that were adapted to each object individually.

Similarity-Matrix-Quantization-Invariant and Sparness-Invariant can contradict.

For example, any distance applied to the transformed vectors P ′

i =
∑

c(Pc)Aci and

Q′

i =
∑

c(Qc)Aci is Similarity-Matrix-Quantization-Invariant. However the χ2 dis-

tance between P ′ and Q′ is not Sparseness-Invariant (with respect to P and Q).

5 Implementation Notes

5.1 The Similarity Matrix and The Normalization Factor

It is desirable to have a transformation from a distance matrix into a similarity matrix,
as many spaces are equipped with a useful distance (e.g. color space [24]). Hafner et al.
[1] proposed this transformation:

Aij = 1 −
Dij

maxij(Dij)
(8)

Another possibility for choosing a similarity matrix is by using cross validation.

However, we think that like for the Quadratic-Form, learning the similarity matrix (and

for QC also the normalization factor) will be the best way to adjust them. This is left

for future work. Currently we suggest to use thresholded ground distances as was used

in [2,25,3,14] and choosing the normalization factor by cross validation.

5.2 Efficient Online Bin-Similarity Matrix Computation

For a fixed histogram configuration (e.g. SIFT, SC and IDSC) the bin-similarity matrix

can be pre-computed once. Then, each distance computation is linear in the number of

non-zero entries in the bin-similarity matrix.

There are cases where the bin-similarity matrix can not be pre-computed. For ex-

ample, in our color experiments (Section 6.1), we used N × M color images as sparse

histograms. That is, the query histogram was: [1, . . . , 1, 0, . . . , 0] and each image being

compared to the query was represented by the histogram: [0, . . . , 0, 1, . . . , 1]. Note that

the full histogram dimension is M ×N × 2563, computing an (M ×N × 2563)2 sim-

ilarity matrix offline is not feasible. We can compute the similarity online for each pair

of sparse histograms in O((NM)2) time. We now discuss how to do it more efficiently.

If we are comparing two images (as in Section 6.1) we can use a similarity matrix

that gives far-away pixels zero similarity (see Eq. 10). Then, we can simply compare

each pixel in one image to its corresponding T × T spatial neighbors in the second

image. This reduces running time to O(NMT 2). Using this technique, it is important

to use a sparse representation for the bin-similarity matrix.
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6 Results

We present results using the newly defined distances and state of the art distances, for

image retrieval using SIFT-like descriptors and color image descriptors. In addition,

we present results for shape classification using Inner Distance Shape Context (IDSC).

More results for shape classification using SC, can be found in the appendix [20].

6.1 Image Retrieval Results

In this section we present results for image retrieval using the same benchmark as Pele

and Werman [14]. We employed a database that contained 773 landscape images from

the COREL database that were also used in Wang et al. [26]. The dataset has 10 classes1:

People in Africa, Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephants, Flowers,

Horses, Mountains and Food. The number of images in each class ranges from 50 to

100. From each class we selected 5 images as query images (images 1, 10, . . . , 40).

Then we searched for the 50 nearest neighbors for each query image. We computed the

distance of each image to the query image and its reflection and took the minimum. We

present results for two types of image representations: SIFT-like descriptors and small

L*a*b* images.

SIFT-like Descriptors The first representation - SIFT is a 6 × 8 × 8 SIFT descriptor

[13] computed globally on the whole image. The second representation - CSIFT is a

SIFT-like descriptor on a color-edge image. See [14] for more details.

We experimented with two new types of QC distances. The first is QCA
0.5, which is

a cross-bin generalization of
√

2χ2, which we call Quadratic-Chi-Squared (QCS). The

second is QCA
0.9, which has a larger normalization factor, which we call Quadratic-Chi-

Normalized (QCN). We do not use QCA
m with m ≥ 1 due to discontinuity problems,

see appendix [20] (practically, QCA
1 had slightly poorer results compared to QCA

0.9).

We also experimented with the Quadratic-Form (QF) distance which is QCA
0 . For all

of these distances we used the bin-similarity matrix in Eq. 8. Let M = 8 be the num-
ber of orientation bins, as in Pele and Werman [14], the ground distance between bins
(xi, yi, oi) and (xj , yj, oj) is:

dT (i, j) = min
“

`

||(xi, yi) − (xj , yj)||2 + min(|oi − oj |, M − |oi − oj |)
´

, T
”

(9)

We also used the identity matrix as a similarity matrix for all the above distances. We

also compared to L2 and χ2. QFI = L2, and nearest neighbors of χ2 and QCSI are the

same.

We also compared to four EMD variants. The first was ÊMD
D

1 with D = dT (Eq.

9) as in Pele and Werman [3]. The second was the L1 norm which is equal to ÊMD
D

0.5

with D equals to the Kronecker delta multiplied by two. The third is SIFTDIST[3] which is

1 The original database contains some visually ambiguous classes such as Africa that also con-

tains images of beaches in Africa. We used the filtered image dataset that was downloaded

from: http://www.cs.huji.ac.il/˜ofirpele/FastEMD/

http://www.cs.huji.ac.il/~ofirpele/FastEMD/


The Quadratic-Chi Histogram Distance Family 9

the sum of ÊMD over all the spatial cells (each spatial cell contains one orientation his-

togram). The ground distance for the orientation histograms is: min(|oi−oj |, M−|oi−
oj |, 2) (M is the number of orientation bins). The fourth was the EMD-L1[15] which is

EMD with L1 as the ground distance. We also tried non-thresholded ground distances

(which produce non-sparse similarity matrices). However, the results were poor. This

is in line with Pele and Werman’s findings that cross-bin distances should be used with

thresholded ground distances [14]. Finally, we compared to the Diffusion distance pro-

posed by Ling and Okada [16] and to three probabilistic based distances: Bhattacharyya

[17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19] (we added Matlab’s ep-

silon to all histogram bins when computing KL and JS throughout the paper, as they are

not well defined if there is a zero bin, without doing so accuracy was very low).

For each distance measure, we present the descriptor (SIFT/CSIFT) with which

it performed best. The results for all the pairs of descriptors and distance measures

can be found in the appendix[20]. The results are presented in Fig. 3(a) and show that

QCN1−
dT=2

2 (QCN with the similarity matrix: Aij = 1 − dT=2(i,j)
2 ) outperformed all

other methods. ÊMDdT=2

1 ranked second. The computation of QCN1−
dT=2

2 was 266

times faster than ÊMDdT=2

1 , see Table 2 in page 12. QCNI ranked third, which shows

the importance of the normalization factor.

All cross-bin distances that use thresholded ground distances outperformed their

bin-by-bin versions. The figure also shows that χ2 and QF improve upon L2. QCN and

QCS which are mathematically sound combinations of χ2 and QF outperformed both.

L*a*b* Images Our second type of image representation is a small L*a*b* image. We

resized each image to 32× 48 and converted them to L*a*b* space. The state of the art

color distance is ∆00 - CIEDE2000 on L*a*b* color space[24,27]. As it is meaningful

only for small distances we threshold it (as in [2,25,14]).
Again, we experimented with QCS, QCN and QF distances using the bin-similarity

matrix in Eq. 8. The ground distance between two pixels (xi, yi, Li, ai, bi),
(xj , yj, Lj , aj, bj):

s(i, j) = ||(xi, yi) − (xj , yj)||2

dcT1,T2
(i, j) =

(

min ((s(i, j) + ∆00((Li, ai, bi), (Lj , aj , bj))), T1) if s(i, j) ≤ T2

T1 otherwise

(10)

This distance is similar to the one used by [14], except that distances with spatial
difference larger than the threshold T2 are set to the maximum threshold T1. This was
done to accelerate the online computation of the bin-similarity matrix. The accuracy
using this distance is the same as using the distance from Pele and Werman [14]. See

appendix [20]. We also used ÊMD with dcT1,T2
(Eq. 10) as a ground distance. Let I1, I2

be the two L*a*b* images. We also used the following distances:

L1∆00 =
X

x,y

(∆00(I1(x, y), I2(x, y))) L1∆
T
00 =

X

x,y

(min(∆00(I1(x, y), I2(x, y)), T ))

L2∆00 =
X

x,y

(∆00(I1(x, y), I2(x, y)))2 L2∆
T
00 =

X

x,y

(min(∆00(I1(x, y), I2(x, y)), T ))2
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Fig. 3. Results for image retrieval.

(a) SIFT-like descriptors. For each distance measure, we present the descriptor

(SIFT/CSIFT) with which it performed best. The results for all the pairs of descriptors

and distance measures can be found in the appendix[20]. There are several key obser-

vations. First, the QC members performance is excellent. QCN1−
dT=2

2 (QCN with the

similarity matrix: Aij = 1 − dT=2(i,j)
2 ) outperformed all other distances. ÊMDdT=2

1

ranked second, but its computation was 266 times slower than QCN1−
dT=2

2 computa-

tion (see Table 2). Second, all cross-bin versions of the distances (with dT or a transfor-

mation of it) performed better than their bin-by-bin versions (with the identity matrix

or the Kronecker delta function). Third, QCNI ranked third, although its a bin-to-bin

distance. This shows the importance of the normalization factor. Finally, χ2 and QF

improve upon L2. However, χ2 does not take cross-bin relationships into account and

QF does not reduce the effect of large bins. QCS and QCN histogram distances, which

are mathematically sound combinations of χ2 and QF have the two properties and out-

performed both.

(b) L*a*b* images results. QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15],

Diffusion[16], Bhattacharyya[17], KL[18] and JS[19] distances are not applicable here.

QCS1−
dcT1=20,T2=5

20 and ÊMD
dcT1=20,T2=5

1 [14] ranked first. QCS1−
dcT1=20,T2=5

20 compu-

tation is 300 times faster than ÊMD
dcT1=20,T2=5

1 without taking the bin-similarity matrix

computation into account and 17 times faster when it is taken into account (see Table 2).

QF1−
dcT1=20,T2=5

20 ranked last, which shows the importance of the normalization factor

in QC members.
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QCNI , χ2, L2, L1, SIFTDIST[3], EMD-L1[15], the Diffusion[16], Bhattacharyya [17],

KL [18] and JS [19] distances cannot be applied to L*a*b* images as they are either

bin-to-bin distances or applicable only to Manhattan networks.

We present results in Fig. 3. As shown, QCS1−
dcT1=20,T2=5

20 and ÊMD
dcT1=20,T2=5

1

[14] distances ranked first. QCS1−
dcT1=20,T2=5

20 ran 300 times faster (see Table 2). How-

ever, since the computation of the bin-similarity matrix cannot be offline here, the real

gain is a factor of 17. The QF1−
dcT1=20,T2=5

20 distance ranked last, which shows the im-

portance of the normalization factor of the QC histogram members.

Although a QC distance alleviates quantization problems, EMD does it better, in-

stead of matching everything to everything it finds the optimal matching. EMD however,

does not reduce the effect of large bins. We conjecture that a variant of EMD which will

reduce the effect of large bins will have an excellent performance.

6.2 Shape Classification Results

In this section we present results for shape classification using the same framework as

Ling et al. [11,15,28]. We test for shape classification with the Inner Distance Shape

Context (IDSC) [11]. The original Shape Context (SC) descriptor was proposed by

Belongie et al. [10]. Belongie et al. [10] and Ling and Jacobs [11] used the χ2 distance

for comparing shape context histograms. Ling and Okada [15] showed that replacing

χ2 with EMD-L1 improves results. We show that QC members yields the best results.

We tested on the articulated shape data set [11,28], that contains 40 images from 8

different objects. Each object has 5 images articulated to different degrees. The dataset

is very challenging because of the similarity between different objects. The original SC

had a very poor performance on this dataset, see appendix [20].

Again, we experimented with QCS, QCN and QF distances with the bin-similarity
matrix in Eq. 8. The ground distance between two bins (ri, oi), (ri, oi) was (M is the
number of orientation bins):

dscT (i, j) = min ((|di − dj | + min(|oi − oj |, M − |oi − oj |), T ) (11)

We also used the identity matrix as a similarity matrix, and thus we also compare to L2.

χ2 and QCSI distances are not equivalent here as the distance is not used for nearest

neighbors. We refer the reader to Belongie et al. paper to see its usage [10]. Practically,

QCSI slightly outperformed χ2 in this task, see Table 1.

We also compared to four EMD variants: ÊMD
D

1 with D = dscT (Eq. 11), the

L1 norm, SIFTDIST[3] and EMD-L1[15]. Finally, we compared to the Diffusion distance

proposed by Ling and Okada [16] and to three probabilistic based distances: Bhat-

tacharyya [17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19].

To evaluate results, for each image, the four most similar matches are chosen from

other images in the dataset. The retrieval result is summarized as the number of 1st,

2nd, 3rd and 4th most similar matches that come from the correct object. Table 1 shows

the retrieval results. The QCN1−
dscT=2

2 outperformed all the other methods. QCNI per-

formance is again excellent, which shows the importance of the normalization factor.
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Top 1 Top 2 Top 3 Top 4 AUC%

QCN
1−

dscT=2
2 39 38 38 34 0.950

QCNI 40 37 36 33 0.940

QCS
1−

dscT=2

2 39 35 38 28 0.912

QCSI 40 34 37 27 0.907

χ2 40 36 36 21 0.902

QF
1−

dscT=2

2 40 34 39 19 0.897

L2 39 35 35 18 0.873

Top 1 Top 2 Top 3 Top 4 AUC%

ÊMD
dscT=2

1
39 36 35 27 0.902

L1 39 35 35 25 0.890

SIFTDIST[3] 38 37 27 22 0.848

EMD-L1[15] 39 35 38 30 0.917

Diffusion[16] 39 35 34 23 0.880

Bhattacharyya[17] 40 37 32 23 0.895

KL[18] 40 38 36 29 0.938

JS[19] 40 35 37 21 0.900

Table 1. Shape classification results. QCN1−
dscT=2

2 outperformed all other distances.

Again all cross-bin distances outperformed their bin-by-bin versions. Again, χ2 and

QF improved upon L2. QCN and QCS which are mathematically sound combinations

of χ2 and QF outperformed both.

6.3 Running Time Results

All runs were conducted on a Pentium 2.8GHz. A comparison of the practical running

time of all distances is given in Table 2. Clearly QCN and QCS distances are fast to

compute. This is consistent with their linear time complexity. The only non-linear time

distances are ÊMD [14] and EMD-L1[15] which are also practically much slower than

the other methods. Our method can be easily parallelized, taking advantage of multi-

core computers or the GPU.

7 Conclusions

We presented a new cross-bin distance family - the Quadratic-Chi (QC). QC distances

have many desirable properties. Like the Quadratic-Form histogram distance they take

into account cross-bin relationships. Like χ2 they reduce the effect of large bins. We for-

malized two new cross-bin properties, Similarity-Matrix-Quantization-Invariance and

Sparseness -Invariance. QC members were shown to have both. Finally, QC distance

computation time is linear in the number of non-zero entries in the bin-similarity ma-

trix. Experimentally, QC outperformed state of the art distances, while having a very

short run-time.

There are several open questions that we still need to explore. The first is for which

QC distances does the the triangle inequality holds for. The second is whether we can

change the Earth Mover’s Distance so that it will also reduce the effect of large bins.

Concave-cost network flow [29] seems to be the right direction for future work although

it presents two major obstacles. First, the concave-cost network flow optimization is NP-

hard [29]. However, there are available approximations [29,30]. Second, simply using

concave-cost flow networks will result in a distance which is not Similarity-Matrix-

Quantization-Invariant. We would also like to explore whether metric learning methods

such as [31,32,33,34,35,36,37,38] can be generalized for the Quadratic-Chi histogram

distance. Assent et al. [39] have suggested methods that accelerate database retrieval
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Descriptor QCNA2 QCNI QCSA2 QCSI χ2 QFA2 L2 ÊMDD2 [14] L1 SIFTDIST[3]

(SIFT) 0.15 0.1 0.07 0.014 0.013 0.05 0.011 40 0.011 0.07

(IDSC) 6.41 2.99 2.32 0.35 0.34 1.25 0.14 133.75 0.32 0.31

Descriptor EMD-L1[15] Diffusion[16] JS[19] KL[18] Bhattacharyya[17]

(SIFT) 40 0.27 0.088 0.048 0.015

(IDSC) 20.57 3.15 1.40 8.53 17.17

Descriptor QCNA20 QCSA20 QFA20 ÊMDD20 [14] L1∆T =20

00
L1∆00 L2∆T =20

00
L2∆00

(L*a*b*) 20 (370) 19 (369) 11 (361) 6000 (6350) 3.2 3.2 3.2 3.2

Table 2. (SIFT) 384-dimensional SIFT-like descriptors matching time (in milliseconds).

The distances from left to right are the same as the distances in Fig. 3 (a) from up to

down.

(IDSC) 60-dimensional IDSC histograms matching time (in microseconds). The dis-

tances from left to right are the same as the distances in Table 1 from up to down.

(L*a*b*) 32 × 48 L*a*b* images matching time (in milliseconds). The distances from

left to right are the same as the distances in Fig. 3 (b) from up to down. In parentheses

is the time it takes to compute the distance and the bin-similarity matrix as it cannot be

computed offline.

that uses Quadratic-Form distances. Generalizing these methods for the Quadratic-Chi

distances is of interest. Finally, other computer vision applications such as tracking

can use the QC distances. The project homepage, including code (C++ and Matlab

wrappers) is at: http://www.cs.huji.ac.il/˜ofirpele/QC/.
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