
X/Open CAE Specification

Generic Security Service API (GSS-API)

Base

X/Open Company Ltd.

 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Generic Security Service API (GSS-API) Base

ISBN: 1-85912-131-4
X/Open Document Number: C441

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification (1995)

Contents

Chapter 1 Introduction... 1
 1.1 Status ... 1
 1.2 Abstract... 2
 1.3 Motivation for Security API Standardisation 3
 1.4 GSS-API and Current Standardisation Activities 4

Part 1 GSS-API ... 5

Chapter 2 GSS-API Characteristics and Concepts.................................... 7
 2.1 Purpose ... 7
 2.2 Scope.. 8
 2.2.1 Non-goals .. 8
 2.3 GSS-API (Base) — Conformance ... 9
 2.3.1 GSS-API (Base) — Minimal Implementation Conformance........... 9
 2.3.2 GSS-API (Base) — Confidentiality Conformance 9
 2.3.3 GSS-API (Base) — Non-confidentiality... 10
 2.3.4 GSS-API (Base) — Delegation Conformance..................................... 10
 2.4 GSS-API (Base) — Portable Application Conformance...................... 11
 2.5 Operational Paradigm.. 12
 2.6 Goals.. 15
 2.7 GSS-API Constructs ... 16
 2.7.1 Credentials .. 16
 2.7.2 Tokens .. 17
 2.7.3 Security Contexts ... 17
 2.7.4 Mechanism Types .. 18
 2.7.5 Naming .. 18
 2.7.6 Channel Bindings... 19
 2.8 GSS-API Features and Issues.. 21
 2.8.1 Status Reporting... 21
 2.8.2 Per-message Security Service Availability ... 22
 2.8.3 Per-message Replay Detection and Sequencing................................ 23
 2.8.4 Quality of Protection ... 24

Chapter 3 Interface Descriptions ... 27
 3.1 Credential-management Calls ... 28
 3.2 Context-level Calls ... 28
 3.3 Per-message Calls ... 28
 3.4 Support Calls ... 29

Generic Security Service API (GSS-API) Base iii

Contents

Chapter 4 Mechanism-specific Example Scenarios 31
 4.1 Kerberos V5, Single-TGT... 31
 4.2 Kerberos V5, Double-TGT... 32
 4.3 X.509 Authentication Framework ... 33

Chapter 5 Related Activities ... 35
 5.1 Identification.. 35
 5.2 Mechanism-independent Token Format.. 36
 5.3 Mechanism Design Constraints ... 37

Part 2 C-language Bindings ... 39

Chapter 6 GSS-API C-language Overview .. 41
 6.1 Using the C-language Functions ... 41
 6.2 GSS-API C-language Routines... 42

Chapter 7 Data Types and Calling Conventions.. 43
 7.1 Structured Data Types ... 43
 7.2 Integer Types.. 43
 7.3 String and Similar Data ... 44
 7.3.1 Opaque Data Types ... 44
 7.3.2 Character Strings.. 44
 7.4 Object Identifiers... 45
 7.5 Object Identifier Sets .. 45
 7.6 Credentials ... 46
 7.7 Contexts .. 46
 7.8 Authentication Tokens... 46
 7.9 Status Values.. 47
 7.9.1 GSS Status Codes ... 47
 7.9.2 Mechanism-specific Status Codes .. 49
 7.10 Names ... 50
 7.11 Channel Bindings.. 51
 7.12 Optional Arguments .. 54
 7.12.1 gss_buffer_t Types (Input, Output).. 54
 7.12.2 Integer Types (Input)... 54
 7.12.3 Integer Types (Input, Output) ... 54
 7.12.4 Pointer Types .. 54
 7.12.5 Object IDs .. 54
 7.12.6 Object ID Sets.. 54
 7.12.7 Credentials .. 54
 7.12.8 Channel Bindings... 54

Chapter 8 C-language Reference Manual Pages .. 55
 gss_accept_sec_context() .. 56
 gss_acquire_cred() ... 60
 gss_compare_name() ... 63
 gss_context_time() .. 64
 gss_delete_sec_context() ... 65

iv X/Open CAE Specification (1995)

Contents

 gss_display_name () ... 66
 gss_display_status ().. 67
 gss_get_mic() ... 69
 gss_import_name().. 71
 gss_indicate_mechs()... 72
 gss_init_sec_context ()... 73
 gss_inquire_cred() ... 78
 gss_process_context_token ()... 80
 gss_release_buffer().. 81
 gss_release_cred() .. 82
 gss_release_name() .. 83
 gss_release_oid_set() ... 84
 gss_unwrap() ... 85
 gss_verify_mic() .. 87
 gss_wrap().. 89

Appendix A Example C Header File <gssapi.h> ... 91

Part 3 Supplement ... 99

Appendix B Security... 101
 B.1 Threats... 101
 B.1.1 Basic Security Policy Requirements... 102
 B.1.2 Impact on Other Specifications... 102
 B.2 Overview of Security Solution... 103
 B.2.1 Security Goals... 103
 B.2.2 Security Framework .. 103
 B.2.3 Security Functionality and Services... 103
 B.2.4 Standards... 103
 B.2.5 Emerging Standards.. 103
 B.3 Security Specification... 104
 B.3.1 Identification... 104
 B.3.2 Authentication.. 104
 B.3.3 Authorisation and Access Control ... 104

Appendix C Future Directions ... 107
 C.1 Terminology and Function Names.. 107
 C.2 Additional major_status Codes ... 107
 C.3 Channel Bindings.. 108
 C.4 Status Values.. 108
 C.5 Support for Anonymous Security Contexts .. 108

 Glossary ... 109

 Index... 111

Generic Security Service API (GSS-API) Base v

Contents

List of Figures

2-1 GSS-API Paradigm... 12
2-2 GSS-API Used by Client and Server .. 13
2-3 Example Context Establishment with Continuation 22

List of Tables

7-1 Calling Errors.. 47
7-2 Routine Errors... 48
7-3 Supplementary Status Bits... 48

vi X/Open CAE Specification (1995)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Generic Security Service API (GSS-API) Base vii

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

viii X/Open CAE Specification (1995)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It is a merged and reformatted version of the
IETF’s RFC 1508 and RFC 1509, together with some additional material.

This document is intended for system and application programmers. Readers may find it useful
to read Appendix C first.

• Chapter 1 is an introduction to the GSS-API.

• Part 1 :

— Chapter 2 covers characteristics and concepts.

— Chapter 3 gives interface descriptions.

— Chapter 4 provides some example scenarios.

— Chapter 5 discusses related activities.

• Part 2 specifies the C-language bindings for GSS-API:

— Chapter 6 is an overview.

— Chapter 7 covers data types and calling conventions.

— Chapter 8 presents the C-language functions in reference manual pages.

— Appendix A contains the complete text of the C-language header file.

• Part 3 contains additional material that is not derived from the IETF documents RFC 1508
and RFC 1509:

— Appendix B discusses security aspects of GSS-API.

— Appendix C describes changes expected in a future version of this document.

— A glossary and index are provided.

Generic Security Service API (GSS-API) Base ix

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, and C-language keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— C-language variable names, for example, substitutable argument prototypes

— C-language functions; these are shown as follows: name().

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify a C-language return code EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font.

• Language-independent functions and arguments use bold italic font, for example, function()
and argument.

With the exception of Part 3, which is new material, additional text providing technical
enhancement of the source documents is identified by shading and placing the characters EX

EX (meaning extension) in the left margin. For example, this text is an extension. Footnotes are
extensions but are not marked. Minor editorial changes are not extensions and are not marked.

x X/Open CAE Specification (1995)

Trade Marks

KerberosTM is a trade mark of the Massachusetts Institute of Technology.

OSFTM is a trade mark of The Open Software Foundation, Inc.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Generic Security Service API (GSS-API) Base xi

Acknowledgements

X/Open gratefully acknowledges the Internet Engineering Task Force (IETF) for permitting the
use of their Generic Security Service Application Program Interface, RFC 1508 and Generic
Security Service API: C-bindings, RFC 1509.

X/Open also gratefully acknowledges the work of the X/Open Security Working Group in the
development of this specification.

Document Development

This specification is the result of merging two documents:

IETF RFC 1508
IETF RFC 1509

and adding material required by X/Open.

RFC 1508

The author of this document is John Linn of OpenVision Technologies; it is the result of a
collaborative effort. Acknowledgements are due to the many members of the IETF Security Area
Advisory Group (SAAG) and the Common Authentication Technology (CAT) Working Group
for their contributions at meetings and by electronic mail. Acknowledgements are also due to
Kannan Alagappan, Doug Barlow, Bill Brown, Cliff Kahn, Charlie Kaufman, Butler Lampson,
Richard Pitkin, Joe Tardo, and John Wray of Digital Equipment Corporation, and John Carr, John
Kohl, Jon Rochlis, Jeff Schiller, and Ted T’so of MIT and Project Athena. Joe Pato and Bill
Sommerfeld of HP/Apollo, Walt Tuvell of OSF, and Bill Griffith and Mike Merritt of AT&T,
provided inputs which helped to focus and clarify directions. Precursor work by Richard Pitkin,
presented to meetings of the Trusted Systems Interoperability Group (TSIG), helped to
demonstrate the value of a generic, mechanism-independent security service API.

RFC 1509

The author of this document is John Wray of Digital Equipment Corporation.

X/Open Security Working Group

Many members of the X/Open Security Working Group have contributed to this specification,
either by providing additional material or by reviewing drafts. In particular, thanks are due to:

Dave Bauer, Bellcore
Denis Pinkas, Groupe Bull
Peter Callaway, IBM
Piers McMahon, ICL
John Linn, OpenVision Technologies
Craig Heath, SCO
Ingo Hoffmann, Siemens-Nixdorf
Joe Brame, Unisys

xii X/Open CAE Specification (1995)

Referenced Documents

The following documents are referenced in this specification:

ACM
ECMA Draft Standard, Association Context Management — including Security Context
Management, Draft 8, May 1993.

ASN.1
ISO 8824: 1990 Information Technology — Open Systems Interconnection — Specification of
Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

Extensions
X/Open Snapshot, January 1994, Generic Security Service API (GSS-API) Security Attribute
and Delegation Extensions (ISBN: 1-85912-026-1, S307).

ISO/IEC 7498-2
ISO/IEC 7498-2: 1989, Information Processing Systems — Open Systems Interconnection —
Basic Reference Model — Part 2: Security Architecture.

RFC 1508
J.Linn, Generic Security Service Application Program Interface, September 1993.

RFC 1509
J.Wray, Generic Security Service API: C-bindings, September 1993.

RFC 1510
Internet Proposed Standard, The Kerberos Network Authentication System, John Kohl,
B.Clifford Neuman, issue 5.2, 21 April 1993.

X.509
ISO/IEC 9594-8: 1990 Information Technology — Open Systems Interconnection — The
Directory — Part 8: Authentication Framework, together with:

Technical Corrigendum 1: 1991 to ISO/IEC 9594-8: 1990.

XOM
X/Open CAE Specification, November 1991, OSI-Abstract-Data Manipulation API (XOM)
(ISBN: 1-872630-17-0, C180 or XO/CAE/91/080).

Generic Security Service API (GSS-API) Base xiii

Referenced Documents

xiv X/Open CAE Specification (1995)

Chapter 1

Introduction

With the growing awareness of network security threats, providers of distributed computing
infrastructure, applications and protocols are increasingly being required to integrate security
services into their systems to protect against unauthorised system access, and attacks against
user and system data.

This document is the result of merging two separate documents (RFC 1508 and RFC 1509) and
adding material required by X/Open.

This chapter explains the status of the source material and outlines the content of each part of
this specification. This chapter also outlines the motivation for Security API standardisation and
outlines the status of the Security API defined in this specification.

1.1 Status

RFC 1508 and RFC 1509 specify Internet standards track protocol for the Internet community,
and request discussion and suggestions for improvements.

Generic Security Service API (GSS-API) Base 1

Abstract Introduction

1.2 Abstract

Part 1 of this document is the Base Generic Security Service Application Programming Interface
(GSS-API) definition.

Typically, GSS-API callers are application protocols into which security enhancements are
EX integrated through the invocation of services provided by the GSS-API. If supported by the

underlying mechanism, the GSS-API allows a caller application to do one or more of the
following1:

• Authenticate a principal identity associated with a peer application.

• Delegate rights to a peer.

• Apply security services such as confidentiality and integrity on a per-message basis.

The interfaces provide a basic set of tools, which is sufficient in many circumstances. However,
some security features may be required that are not supported by the Base GSS-API. In
particular, the ability to support authorisation based on a subset of the caller privileges, and
more sophisticated cases of delegation may be required.

The C-language bindings in Part 2 provide details of the data types, calling conventions and
function specifications for GSS-API.

The interfaces in the supplement are currently proposals to enhance GSS-API:

• the use of PACs and Authorisation Services

• additional interfaces for security attributes and delegation.

1. See Section C.5 on page 108 for additional information.

2 X/Open CAE Specification (1995)

Introduction Motivation for Security API Standardisation

1.3 Motivation for Security API Standardisation

The priority being given to the security of computer systems and networks is growing. This is in
part due to the well-publicised exploits of hackers, and threats to systems due to viruses, but it
also reflects the increasing trend towards client-server distributed systems. The previously
centralised approach of managing corporate data on a single secure mainframe is changing to
support devolved processing on departmental servers or PCs. Consequently, the amount of
sensitive data crossing insecure networks is growing.

Therefore, there is both a perceived and actual aggravation of the threats to the confidentiality,
integrity and availability of users’ applications and data. This means that security is featuring
increasingly strongly in commercial and non-military government IT requirements. Although
the levels of software assurance, and also the security policies that need to be enforced by civil
systems differ from those in military systems, common security services such as authentication,
secure peer-to-peer communication, access control, audit and delegation are almost always
required. Developers of systems meeting these requirements need to take account of the many
different technologies being produced to support distributed security, together with the
legislative restrictions on cryptography which differ from country to country.

Consideration of these issues, together with the general move towards open systems, has caused
increased awareness of the need to isolate application logic from the details of specific security
mechanisms. The motivation to agree on a standard API to support distributed security services
stems from the real needs of current commercial and military developments. In a number of
predominantly U.S.-based industry and open systems standards bodies, activities are underway
to scope the subject of security APIs, and define standards. The work in the Internet Engineering
Task Force (IETF) has been highly influential in defining the base GSS-API, and further work
continues in the IETF both on exploiting the GSS-API, and consideration of possible extensions
supportive of distributed authorisation services. Also, in a European standards context,
following a well-attended workshop convened in late 1992, the CEN/CENELEC ITAEGV set up
a special group to consider the appropriate standardisation needed for Security APIs.

Generic Security Service API (GSS-API) Base 3

GSS-API and Current Standardisation Activities Introduction

1.4 GSS-API and Current Standardisation Activities

It looks certain that the GSS-API will form the basis of standards in distributed security APIs, for
the following reasons:

• Specifications submitted as IETF Internet-Drafts in early 1993 under Common Authentication
Technology working group jurisdiction are now Proposed Standard RFCs. This has been
based on trial implementations over Kerberos and DASS.

• OSF DCE1.1 includes an implementation of GSS-API to allow non-RPC applications access to
the DCE security services.

• The May 1992 meeting of the ISO SC21 WG6 Upper Layer Security Rapporteur’s group
produced a new work item proposal (SC21 N6998) for Authentication and Related Security
Services for Distributed Applications, which would include a mechanism-independent
abstract service interface. This was based on input from the U.K. representative derived from
GSS-API (see the GSAI paper).

• The ECMA TC36/TG9 Security in Open Systems group developing the Association Context
Management standard is defining this standard in such a way that it can support GSS-API
(see the ACM draft standard).

• The SESAME project (based on ECMA TC36/TG9 Security in Open Systems work) is
supporting and originating extensions to the GSS-API.

4 X/Open CAE Specification (1995)

X/Open CAE Specification

Part 1

GSS-API

X/Open Company Ltd.

Part 1 GSS-API 5

6 X/Open CAE Specification (1995)

Chapter 2

GSS-API Characteristics and Concepts

This chapter discusses the scope and purpose, operational paradigm and goals of GSS-API. It
also describes the constructs and features of GSS-API, and comments on design issues.

2.1 Purpose

EX The purpose of the GSS-API is to provide a standard application programming interface to
certain communication-oriented security services. An implementation of GSS-API, together
with the necessary cryptographic algorithms and protocols, permits callers portably and
interoperably2 to counter a range of vulnerabilities that may affect the security of
communication between applications in open networks.

Some specific threats addressed by GSS-API (assuming the appropriate functionality is
supported by underlying mechanisms) are given below. Note that the last three threats may
occur accidentally as well as maliciously, depending on the application environment.

• masquerade: unauthorised assertion of an identity by one peer to another peer

• disclosure: unauthorised breach of the confidentiality of a message sent between peers,
typically through interception of communications in transit

• replay: unauthorised reuse of a message sent from one peer to another (for example, a
message may be intercepted by a third party and retransmitted to a communicating peer at a
later time)

• falsification of origin: unauthorised sending of a message from one peer to another, falsely
claiming that it originated from a third peer without this being detected by the recipient

• modification: unauthorised or accidental alteration of the contents of a message in transit
between two peers

• non-delivery: unauthorised or accidental misrouting or dropping of a message in transit
without the intended recipient being aware of this

• re-ordering: unauthorised or accidental reordering of messages in transit without either peer
being aware of this.

The countermeasures to these threats are mechanism-specific. The application is insulated from
the details of how the mechanism implements security through the GSS-API.

2. Interoperability is only possible between communicating peers using GSS-API implementations that support the necessary
interoperable cryptographic algorithms and protocols. GSS-API allows peers to negotiate a common security mechanism (if they
possess one) thereby enabling interoperability.

Part 1 GSS-API 7

Scope GSS-API Characteristics and Concepts

2.2 Scope

EX The scope of GSS-API addresses protection of communication between distributed applications;
it does not comprise an interface to other non-communication oriented security facilities within
hosts. In particular:

• Use of GSS-API is relevant to communication software, and to those components of
distributed applications that implement applications protocols.

• GSS-API is designed for use between pairs of communicating peers in a direct on-line client-
server or message-passing environment (such as ftp or transaction processing systems).
GSS-API is appropriate for use with both connectionless and connection-oriented protocols,
but is not applicable to queued store-and-forward applications such as electronic mail, nor to
a broadcast environment.

The callers of the GSS-API must take responsibility for construction of application protocol
messages by combining application-specific control and data elements with the necessary
security structures generated by GSS-API.

• Generally, use of the GSS-API sequencing facilities is most appropriate when GSS-API is
called from protocol modules whose message exchanges assume ordered sequence semantics
rather than a datagram environment.

2.2.1 Non-goals

GSS-API does not:

• provide for a specific non-repudiation service but could be used as an underlying technology
to support non-repudiation

• provide time-stamping

• enforce security directly — it provides services to security enforcing applications which are
expected to use those services correctly.

8 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API (Base) — Conformance

2.3 GSS-API (Base) — Conformance

This section defines conformance criteria for implementations of the GSS-API, and also
mechanism-independent use of the GSS-API by applications.

The following GSS-API implementation conformance levels are defined:

• The minimum conformance criteria which are prescribed for implementations to meet the
Authentication and Integrity requirements of the X/Open GSS-API (Base) specification

• The conformance criteria for three optional services Confidentiality, Non Confidentiality and
Delegation which implementations may independently support. Confidentiality and Non
Confidentiality are mutually exclusive options.

• If confidentiality/non confidentiality or delegation or both are not supported then calls for
these services should fail.

In addition, for GSS-API-using applications:

• The conformance criteria for use of the GSS-API by Portable Applications.

2.3.1 GSS-API (Base) — Minimal Implementation Conformance

All conforming GSS-API (Base) implementations must support:

• unilateral and mutual authentication

• integrity protection of messages

• replay detection or out-of-sequence detection.

All conforming GSS-API (Base) implementations must:

• provide a confirmed indication of the set of services available to a peer initiating a security
context when mutual authentication is requested.

In particular, where a successfully completed call to gss_init_sec_context is made, provide a
correct indication via ret_flags of whether confidentiality or delegation is supported by the
mechanism and the context acceptor.

2.3.2 GSS-API (Base) — Confidentiality Conformance

Two interworking GSS-API (Base) implementations for a mechanism which supports the
Confidentiality option must permit a context initiator to optionally confidentiality-protect its
data sent to a context acceptor.

Hence Confidentiality option implementations must:

• accept GSS_C_CONF_FLAG in gss_init_sec_context req_flags, and return this option in
ret_flags from gss_init_sec_context and gss_accept_sec_context respectively

• support the GSS-API (Base) caller requesting confidentiality by accepting conf_req_flag ==
TRUE in gss_wrap

• return TRUE in the conf_state output from gss_wrap, and gss_unwrap when this service is
requested.

Part 1 GSS-API 9

GSS-API (Base) — Conformance GSS-API Characteristics and Concepts

2.3.3 GSS-API (Base) — Non-confidentiality

Two interworking GSS-API (Base) implementations for a mechanism which supports the Non-
confidentiality option must not permit a context initiator to confidentiality-protect its data sent
to a context acceptor.

Hence Non Confidentiality option implementations must:

• process GSS_C_CONF_FLAG in gss_init_sec_context req_flags, but not return this option in
ret_flags from gss_init_sec_context and gss_accept_sec_context respectively

• not support the GSS-API (Base) caller requesting confidentiality by not accepting
conf_req_flag == TRUE in gss_wrap

• return FALSE in the conf_state output from gss_wrap, and gss_unwrap and not providing the
requested service.

2.3.4 GSS-API (Base) — Delegation Conformance

Two interworking GSS-API (Base) implementations for a mechanism which supports the
Delegation option must permit a context initiator to optionally delegate its credential to a
context acceptor.

Hence Delegation option implementations must:

• support the GSS-API (Base) caller requesting delegation by accepting the GSS_C_DELEG bit
in req_flags

• return GSS_C_DELEG in the ret_flags output from gss_init_sec_context and
gss_accept_sec_context, and return a valid delegated_cred_handle from
gss_accept_sec_context, when this service is requested.

10 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API (Base) — Portable Application Conformance

2.4 GSS-API (Base) — Portable Application Conformance

If you use applications which use GSS-API (Base) but require no portability then you may skip
this section.

Applications which use GSS-API (Base) and are required to be portable must:

• isolate the main application logic from the syntax of the input_name_buffer which is
provided when the initiator calls gss_import_name to obtain an internal representation of the
acceptor name.

For maximal portability the default name_type GSS_C_NULL_OID should always be used to
specify the default name space, and the input name_string should be treated by the client as
an opaque name-space specific input.

• adopt maximally portable usage of credentials (which should support most GSS-API
initiators in a typical single user session or workstation).

This requires that the initiator should call gss_init_sec_context, with
GSS_C_NO_CREDENTIAL into cred_handle to specify the default credential, and
GSS_C_NULL_OID into mech_type to specify the default mechanism. For maximal
portability, the gss_accept_sec_context verifier cred_handle should be set to
GSS_C_NO_CREDENTIAL.

• use standard levels of security appropriate to distributed applications.

The context initiator must therefore specify its requirements for replay protection,
delegation, and sequence protection via the gss_init_sec_context req_flags parameter. The
context initiator should always request these service options (i.e. passes
GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | GSS_C_SEQUENCE_FLAG into
req_flags).

• in the case of a strictly conforming application, additionally use appropriate defaults

• use channel bindings for the application_data, and for the GSS_C_AF_NULL_ADDR and
GSS_C_AF_INET address types only (noting that the latter only applies to IPV4).

Conforming portable GSS-API applications must not otherwise use channel bindings for
addresses — as the syntaxes are not defined.

Part 1 GSS-API 11

Operational Paradigm GSS-API Characteristics and Concepts

2.5 Operational Paradigm

The operational paradigm in which GSS-API operates is illustrated in Figure 2-1.

Caller Protocol Caller Protocol

GSS-API Service Interface GSS-API Service Interface

Mech Mech Mech Mech Mech Mech

Figure 2-1 GSS-API Paradigm

A typical GSS-API caller is itself a communication protocol, calling on GSS-API in order to
protect its communication with authentication, integrity and confidentiality security services. A
GSS-API caller accepts tokens provided to it by its local GSS-API implementation and transfers
the tokens to a peer on a remote system; that peer passes the received tokens to its local GSS-API
implementation for processing. The security services available through GSS-API in this fashion
are implementable (and have been implemented) over a range of underlying mechanisms based
on secret-key and public-key cryptographic technologies.

This security service definition, and other definitions used in this document, correspond to that
provided in the ISO/IEC 7498-2 standard. The GSS-API separates the operations of initialising a
security context between peers, achieving peer entity authentication (the gss_init_sec_context ()
and gss_accept_sec_context () calls), from the operations of providing per-message data origin
authentication and data integrity protection (the gss_get_mic3 () and gss_verify_mic4 () calls) for
messages subsequently transferred in conjunction with that context. Per-message gss_wrap5 ()
and gss_unwrap6 () calls provide the data origin authentication and data integrity services that
gss_get_mic () and gss_verify_mic () offer, and also support selection of confidentiality services
as a caller option. Additional calls provide supporting functions to the GSS-API’s users.

EX When establishing a security context, the GSS-API enables a context initiator optionally to
permit its credentials to be delegated, meaning that the context acceptor may initiate further
security contexts on behalf of the initiating caller. Figure 2-2 on page 13 provides an example
illustrating the data flows involved in the use of the GSS-API by a client and server in a
mechanism-independent fashion: establishing a security context and transferring a protected
message. The example assumes that credential acquisition has already been completed. The

3. The old message name gss_sign() is also implemented.

4. The old message name gss_verify () is also implemented.

5. The old message name gss_seal () is also implemented.

6. The old message name gss_unseal() is also implemented.
See the note on terminology in Appendix C on page 107.

12 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts Operational Paradigm

example also assumes that the underlying authentication technology is capable of authenticating
a client to a server using elements carried within a single token, and of authenticating the server
to the client (mutual authentication) with a single returned token; this assumption holds for
certain documented mechanisms but is not necessarily true for other cryptographic technologies
and associated protocols.

Client GSS-API Client Server Server GSS-API

targ_name, mutual_req_flag

output_token
GSS_S_CONTINUE_NEEDED

gss_init_sec_context ()

token
input_token

output_token, src_name
GSS_S_COMPLETE

gss_accept_sec_context ()

token

GSS_S_COMPLETE

gss_init_sec_context ()

input_message

output_message
GSS_S_COMPLETE

gss_wrap()

message
input_message

output_message
GSS_S_COMPLETE

gss_unwrap()

output_context_token
GSS_S_COMPLETE

gss_delete_sec_context ()

token

input_context_token

GSS_S_COMPLETE

gss_process_context_token ()

Figure 2-2 GSS-API Used by Client and Server

The client calls gss_init_sec_context () to establish a security context to the server identified by
targ_name, and elects to set the mutual_req_flag so that mutual authentication is performed in
the course of context establishment. gss_init_sec_context () returns an output_token to be
passed to the server, and indicates GSS_S_CONTINUE_NEEDED status pending completion of
the mutual authentication sequence. If mutual_req_flag is not set, the initial call to
gss_init_sec_context () returns GSS_S_COMPLETE status. The client sends the output_token to
the server.

The server passes the received token as the input_token parameter to gss_accept_sec_context ().
gss_accept_sec_context () indicates GSS_S_COMPLETE status, provides the client’s
authenticated identity in the src_name result, and provides an output_token to be passed to the
client. The server sends the output_token to the client.

Part 1 GSS-API 13

Operational Paradigm GSS-API Characteristics and Concepts

The client passes the received token as the input_token parameter to a successor call to
gss_init_sec_context (), which processes data included in the token to achieve mutual
authentication from the client’s viewpoint. This call to gss_init_sec_context () returns
GSS_S_COMPLETE status, indicating successful mutual authentication and the completion of
context establishment for this example.

The client generates a data message and passes it to gss_wrap(). gss_wrap() performs data
origin authentication, data integrity, and optionally, confidentiality processing on the message,
and encapsulates the result into output_message, indicating GSS_S_COMPLETE status. The
client sends the output_message to the server.

The server passes the received message to gss_unwrap(). gss_unwrap() inverts the
encapsulation performed by gss_wrap(), deciphers the message if the optional confidentiality
feature is applied, and validates the data origin authentication and data integrity checking
quantities. gss_unwrap() indicates successful validation by returning GSS_S_COMPLETE status
along with the resultant output_message.

For the purposes of this example, the server is assumed to know by out-of-band means that this
context has no further use after one protected message is transferred from client to server. Given
this premise, the server now calls gss_delete_sec_context () to flush context-level information.
gss_delete_sec_context () returns an output_context_token for the server to pass to the client.

The client passes the returned token as input_context_token to gss_process_context_token (),
which returns GSS_S_COMPLETE status after deleting context-level information at the client
system.

14 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts Goals

2.6 Goals

The GSS-API design assumes and addresses several basic goals, including:

Mechanism independence
The GSS-API defines an interface to cryptographically-implemented strong authentication
and other security services at a generic level that is independent of particular underlying
mechanisms. For example, services provided by GSS-API can be implemented by secret-key
technologies (for example, Kerberos) or public-key approaches (for example, X.509).

Protocol environment independence
The GSS-API is independent of the communication protocol suites with which it is
employed, permitting use in a broad range of protocol environments. In appropriate

EX environments, GSS-API need not be directly invoked by applications, but may form an
intermediate layer that is indirectly invoked. For example, in an RPC environment, GSS-
API may be layered beneath RPC (or above it).

Protocol association independence
The GSS-API’s security context construct is independent of communication protocol
association constructs. This characteristic allows a single GSS-API implementation to be
utilised by a variety of invoking protocol modules on behalf of those modules’ calling
applications. GSS-API services can also be invoked directly by applications, wholly
independent of protocol associations.

Suitability to a range of implementation placements
GSS-API clients are not constrained to reside within any Trusted Computing Base (TCB)
perimeter defined on a system where the GSS-API is implemented; security services are
specified in a manner suitable to both intra-TCB and extra-TCB callers.

Part 1 GSS-API 15

GSS-API Constructs GSS-API Characteristics and Concepts

2.7 GSS-API Constructs

The basic elements comprising the GSS-API are credentials, tokens, security contexts,
mechanism types, names and channel bindings.

2.7.1 Credentials

Credentials structures provide the prerequisites enabling peers to establish security contexts
with each other. A caller may designate that its default credential be used for context
establishment calls without presenting an explicit handle to that credential. Alternatively, those
GSS-API callers that need to make explicit selection of particular credentials structures may
make references to those credentials through GSS-API-provided credential handles; a credential
handle argument is termed cred_handle.

A single credential structure may be used for initiation of outbound contexts and acceptance of
inbound contexts. Callers needing to operate in only one of these modes may designate this fact
when credentials are acquired for use, allowing underlying mechanisms to optimise their
processing and storage requirements. The credential elements defined by a particular
mechanism may contain multiple cryptographic keys, for example, to enable authentication and
message encryption to be performed with different algorithms.

A single credential structure may accommodate credential information associated with multiple
underlying mechanisms; a credential structure’s contents vary depending on the set of
mechanism types supported by a particular GSS-API implementation. Commonly, a single
mechanism type is used for all security contexts established by a particular initiator to a
particular target. The primary motivation for supporting credential sets representing multiple
mechanism types is to allow initiators on systems equipped to handle multiple types to initiate
contexts to targets on other systems that can accommodate only a subset of the set supported at
the initiator’s system.

It is the responsibility of underlying system-specific mechanisms and operating system
functions below the GSS-API to ensure that the ability to acquire and use credentials associated
with a given identity is constrained to appropriate processes within a system. This responsibility
should be taken seriously by implementors, as the ability for an entity to utilise a principal’s
credentials is equivalent to the entity’s ability to assert that principal’s identity successfully.

Once a set of GSS-API credentials is established, the transferability of that credentials set to other
processes or analogous constructs within a system is a local matter, not defined by the GSS-API.
An example local policy would be one in which any credentials received as a result of login to a
given user account, or of delegation of rights to that account, are accessible by, or transferable to,
processes running under that account.

The credential establishment process (particularly when performed on behalf of users rather
than server processes) is likely to require access to passwords or other quantities which should
be protected locally and exposed for the shortest time possible. As a result, it is often appropriate
for preliminary credential establishment to be performed through local means at user login time,
with the results cached for subsequent reference. These preliminary credentials would be set
aside (in a system-specific fashion) for subsequent use, in one of the following ways:

• to be accessed by an invocation of the GSS-API gss_acquire_cred () call, returning an explicit
handle to reference that credential

• as the default credentials installed on behalf of a process.

16 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API Constructs

2.7.2 Tokens

Tokens are data elements transferred between GSS-API callers, and are divided into two classes.
Context-level tokens are exchanged in order to establish and manage a security context between
peers. Per-message tokens are exchanged in conjunction with an established context to provide
protective security services for corresponding data messages. The internal contents of both
classes of tokens are specific to the particular underlying mechanism used to support the GSS-
API; Section 5.2 on page 36 provides a uniform recommendation for designers of GSS-API
support mechanisms, encapsulating mechanism-specific information along with a globally-
interpretable mechanism identifier.

Tokens are opaque from the viewpoint of GSS-API callers. They are generated within the GSS-
API implementation at an end system, provided to a GSS-API caller to be transferred to the peer
GSS-API caller at a remote end system, and processed by the GSS-API implementation at that
remote end system. Tokens may be output by GSS-API primitives (and are to be transferred to
GSS-API peers) independent of the status indications indicated by those primitives. Token
transfer may take place in an in-band manner, integrated into the same protocol stream used by
the GSS-API callers for other data transfers, or in an out-of-band manner across a logically
separate channel.

Development of GSS-API support primitives based on a particular underlying cryptographic
technique and protocol does not necessarily imply that GSS-API callers invoking that GSS-API
mechanism type are able to interoperate with peers invoking the same technique and protocol
outside the GSS-API paradigm. For example, the format of GSS-API tokens defined in
conjunction with a particular mechanism, and the techniques used to integrate those tokens into
callers’ protocols, may not be the same as those used by non-GSS-API callers of the same
underlying technique.

2.7.3 Security Contexts

Security contexts are established between peers, using credentials established locally in
conjunction with each peer or received by peers by means of delegation. Multiple contexts may
exist simultaneously between a pair of peers, using the same or different sets of credentials.
Coexistence of multiple contexts using different credentials allows graceful roll over when
credentials expire. Distinction between multiple contexts based on the same credentials serves
applications by distinguishing different message streams in a security sense.

The GSS-API is independent of underlying protocols and addressing structure, and depends on
its callers to transport data elements provided by GSS-API. As a result of these factors, it is a
caller responsibility to parse communicated messages, separating GSS-API-related data
elements from caller-provided data. The GSS-API is independent of connection as opposed to
connectionless orientation of the underlying communication service.

No correlation between security context and communication protocol association is dictated.
The optional channel binding facility, discussed in Section 2.7.6 on page 19, represents an
intentional exception to this rule, supporting additional protection features within GSS-API
supporting mechanisms. This separation allows the GSS-API to be used in a wide range of
communication environments, and also simplifies the calling sequences of the individual calls.
In many cases (dependent on underlying security protocol, associated mechanism, and
availability of cached information), the state information required for context set-up can be sent
concurrently with initial signed user data, without interposing additional message exchanges.

Part 1 GSS-API 17

GSS-API Constructs GSS-API Characteristics and Concepts

2.7.4 Mechanism Types

In order to establish a security context successfully with a target peer, it is necessary to identify
an appropriate underlying mechanism type supported by both initiator and target peers; a
mechanism type argument is termed mech_type. The definition of a mechanism embodies not
only the use of a particular cryptographic technology (or a hybrid or choice between possible
cryptographic technologies), but also definition of the syntax and semantics of data element
exchanges employed by that mechanism to support security services.

It is recommended that callers initiating contexts specify the default mechanism type value,
allowing system-specific functions within or invoked by the GSS-API implementation to select
the appropriate mechanism type, but callers may direct that a particular mechanism type be
employed when necessary.

The means for identifying a shared mechanism type to establish a security context with a peer
varies in different environments and circumstances; examples include (but are not limited to):

• use of a fixed mechanism type, defined by configuration, within an environment

• syntactic convention on a target-specific basis, through examination of a target’s name

• lookup of a target’s name in a naming service or other database to identify mechanism types
supported by that target

• explicit negotiation between GSS-API callers in advance of security context setup.

When transferred between GSS-API peers, mechanism type specifiers (represented as Object
Identifiers (OIDs), as described in Section 5.2 on page 36) serve to qualify the interpretation of
associated tokens. The structure and encoding of Object Identifiers is defined in the ASN.1
standard and the BER standard. Use of hierarchically structured OIDs serves to preclude
ambiguous interpretation of mechanism type specifiers. The OID representing the DASS
MechType, for example, is 1.3.12.2.1011.7.5.

2.7.5 Naming

The GSS-API avoids prescription of naming structures, treating the names transferred across the
interface in initiating and accepting security contexts as opaque octet string quantities. This
approach supports the GSS-API’s goal of implementability on top of a range of underlying
security mechanisms, recognising the fact that different mechanisms process and authenticate
names presented in different forms. Generalised services offering translation functions between
arbitrary sets of naming environments are outside the scope of the GSS-API; the availability and
use of local conversion functions to translate between the naming formats supported within a
given end system is expected.

Two distinct classes of name representations are used in conjunction with different GSS-API
parameters:

• a printable form (denoted by OCTET STRING), for acceptance from and presentation to
users; printable name forms are accompanied by OID tags identifying the name space to
which they correspond

• an internal form (denoted by INTERNAL NAME), opaque to callers and defined by
individual GSS-API implementations; GSS-API implementations supporting multiple name
space types are responsible for maintaining internal tags to remove ambiguity from the
interpretation of particular names.

Tagging of printable names allows GSS-API callers and underlying GSS-API mechanisms to
disambiguate name types and to determine whether an associated name’s type is one they are
capable of processing, avoiding aliasing problems, which could result from misinterpreting a

18 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API Constructs

name of one type as a name of another type.

In addition to providing means for names to be tagged with types, this specification defines
primitives to support a level of naming environment independence for certain calling
applications. To provide basic services oriented towards the requirements of callers, which need
not themselves interpret the internal syntax and semantics of names, GSS-API calls are defined
for:

• name comparison (gss_compare_name ())

• human-readable display (gss_display_name ())

• input conversion (gss_import_name ())

• internal name deallocation (gss_release_name ()).

It is expected that these GSS-API calls will be implemented in many end systems based on
system-specific name manipulation primitives already extant within those end systems.
Inclusion within the GSS-API is intended to offer GSS-API callers a portable means to perform
specific operations, supportive of authorisation and audit requirements, on authenticated
names.

gss_import_name () implementations can, where appropriate, support more than one printable
syntax corresponding to a given name space (for example, alternative printable representations
for X.500 Distinguished Names), allowing flexibility for their callers to select between possible
representations. gss_display_name () implementations output a printable syntax selected as
appropriate to their operational environments; this selection is a local matter. Callers desiring
portability across alternative printable syntaxes should refrain from implementing comparisons
based on printable name forms and should instead use the gss_compare_name () call to
determine whether or not one internal name format matches another.

2.7.6 Channel Bindings

The GSS-API accommodates the concept of caller-provided channel binding information, used
by GSS-API callers to bind the establishment of a security context to relevant characteristics (for
example, addresses, transformed representations of encryption keys) of the underlying
communication channel and of protection mechanisms applied to that communication channel.
Verification by one peer of channel binding information provided by the other peer to a context
serves to protect against various active attacks. The caller initiating a security context must
determine the channel binding values before making the gss_init_sec_context () call, and
consistent values must be provided by both peers to a context. Callers should not assume that
underlying mechanisms provide confidentiality protection for channel binding information.

Use or non-use of the GSS-API channel binding facility is a caller option, and GSS-API
supporting mechanisms can support operation in an environment where NULL channel
bindings are presented. When non-NULL channel bindings are used, certain mechanisms offer
enhanced security value by interpreting the bindings’ content (rather than simply representing
those bindings, or signatures7 computed on them, within tokens) and therefore depend on
presentation of specific data in a defined format. To this end, agreements among mechanism
implementors define conventional interpretations for the contents of channel binding
arguments, including address specifiers (with content dependent on the communication
protocol environment) for context initiators and acceptors. These conventions are being

7. The term signature means Message Integrity Code (MIC) or cryptographic checkvalue (see Section C.1 on page 107).

Part 1 GSS-API 19

GSS-API Constructs GSS-API Characteristics and Concepts

incorporated into related documents. For GSS-API callers to be portable across multiple
mechanisms and achieve the full security functionality available from each mechanism, it is
strongly recommended that GSS-API callers provide channel bindings consistent with these
conventions and those of the networking environment in which they operate.

20 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API Features and Issues

2.8 GSS-API Features and Issues

2.8.1 Status Reporting

Each GSS-API call provides two status return values. The major_status value provides a
mechanism-independent indication of call status (for example, GSS_S_COMPLETE,
GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within
the caller in a generic fashion. The defined major_status return codes are listed below8.

Fatal Error Codes Meaning

GSS_S_BAD_BINDINGS Channel binding mismatch.
GSS_S_BAD_MECH Unsupported mechanism requested.
GSS_S_BAD_NAME Invalid name provided.
GSS_S_BAD_NAMETYPE Name of unsupported type provided.
GSS_S_BAD_STATUS Invalid input status selector.
GSS_S_BAD_SIG Token had invalid signature.
GSS_S_CONTEXT_EXPIRED Specified security context expired.
GSS_S_CREDENTIALS_EXPIRED Expired credentials detected.
GSS_S_DEFECTIVE_CREDENTIAL Defective credential detected.
GSS_S_DEFECTIVE_TOKEN Defective token detected.
GSS_S_FAILURE Failure, unspecified at GSS-API level.
GSS_S_NO_CONTEXT No valid security context specified.
GSS_S_NO_CRED No valid credentials provided.

Informative Status Codes Meaning

GSS_S_COMPLETE Normal completion.
GSS_S_CONTINUE_NEEDED Continuation call to routine required.
GSS_S_DUPLICATE_TOKEN Duplicate per-message token detected.
GSS_S_OLD_TOKEN Timed-out per-message token detected.
GSS_S_UNSEQ_TOKEN Out-of-order per-message token detected.

The minor_status provides more detailed status information; this may include status codes
specific to the underlying security mechanism. Values for minor_status are not specified in this
language-independent specification.

GSS_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided
in gss_init_sec_context () and gss_accept_sec_context () calls so that different mechanisms’
employment of different numbers of messages within their authentication sequences need not be
reflected in separate code paths within calling applications. Instead, such cases are
accommodated with sequences of continuation calls to gss_init_sec_context () and
gss_accept_sec_context (). The same mechanism is used to encapsulate mutual authentication
within the GSS-API’s context initiation calls.

For mechanism types that require interactions with third-party servers to establish a security
context, GSS-API context establishment calls may block pending completion of such third-party
interactions. On the other hand, no GSS-API calls depend on serialised interactions with GSS-
API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or
asynchronous exceptions occurring at remote peers, and reflection of such status information is
a caller responsibility outside the GSS-API. Figure 2-3 on page 22 illustrates a GSS-API

8. A new major_status code may be included at a later date to identify a missing token (see Section C.1 on page 107).

Part 1 GSS-API 21

GSS-API Features and Issues GSS-API Characteristics and Concepts

continuation scenario.

Client Server

gss_acquire_cred () gss_acquire_cred ()

gss_init_sec_context () gss_accept_sec_context ()

gss_init_sec_context () gss_accept_sec_context ()

credentials

∗

credentials

∗

GSS_S_CONTINUE_NEEDED,
context handle

GSS_S_CONTINUE_NEEDED,
context handle

token

token

token

GSS_S_COMPLETE
GSS_S_COMPLETE,
source name

Established context Established context

∗ There may be repeated calls to gss_init_sec_context () and gss_accept_sec_context ()

Figure 2-3 Example Context Establishment with Continuation

2.8.2 Per-message Security Service Availability

When a context is established, two flags are returned to indicate the set of per-message
protection security services available on the context:

• the integ_avail flag indicates whether per-message integrity and data origin authentication
services are available

• the conf_avail flag indicates whether per-message confidentiality services are available, and
is never returned TRUE unless the integ_avail flag is also returned TRUE.

GSS-API callers desiring per-message security services should check the values of these flags at
context establishment time. Callers must be aware that a returned FALSE value for integ_avail
means that invocation of gss_get_mic () or gss_wrap() primitives on the associated context
applies no cryptographic protection to user data messages.

The GSS-API per-message protection service primitives, as the category name implies, are
oriented to operation at the granularity of protocol data units. They perform cryptographic
operations on the data units, transfer cryptographic control information in tokens, and in the
case of gss_wrap(), encapsulate the protected data unit. As such, these primitives are not
oriented to efficient data protection for stream-paradigm protocols (for example, Telnet) if
cryptography must be applied on an octet-by-octet basis.

22 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API Features and Issues

EX If only integrity protection is required, this can be provided in two ways:

• The first approach is to obtain a signature over a message using the gss_get_mic () call; then
to verify the signature against the message using the gss_verify_mic () call.

• The second approach is to obtain a single opaque object that contains both the message and
the signature using the gss_wrap() call; then to recover the message from the opaque object
with the appropriate status information using the gss_unwrap() call.

If both integrity protection and confidentiality protection are required, the gss_wrap() or
gss_unwrap() call is used to provide and respectively check or recover the opaque object.

2.8.3 Per-message Replay Detection and Sequencing

Certain underlying mechanism types are expected to offer support for replay detection or
sequencing of messages transferred on the contexts they support. These optionally-selectable
protection features are distinct from replay detection and sequencing features applied to the
context establishment operation itself. The presence or absence of context-level replay or
sequencing features is wholly a function of the underlying mechanism type’s capabilities, and is
not selected or omitted as a caller option.

The caller initiating a context provides flags (replay_det_req_flag and sequence_req_flag) to
specify whether the use of per-message replay detection and sequencing features is desired on
the context being established. The GSS-API implementation at the initiator system can
determine whether these features are supported (and whether they are optionally selectable) as a
function of the mechanism type, without the need for bilateral negotiation with the target. When
enabled, these features provide recipients with indicators as a result of GSS-API processing of
incoming messages, identifying whether those messages were detected as duplicates or out-of-
sequence. Detection of such events does not prevent a suspect message from being provided to a
recipient; the appropriate course of action on a suspect message is a matter of caller policy.

The semantics of the replay detection and sequencing services applied to received messages, as
visible across the interface provided by GSS-API to its clients, are determined by the value of
replay_det_state and sequence_state.

When replay_det_state is TRUE, the possible major_status values for well-formed and correctly
signed messages9 are as follows:

• GSS_S_COMPLETE indicates that the message is within the window (of time or sequence
space) allowing replay events to be detected, and that the message is not a replay of a
previously-processed message within that window.

• GSS_S_DUPLICATE_TOKEN indicates that the signature on the received message is correct,
but that the message is recognised as a duplicate of a previously-processed message.

• GSS_S_OLD_TOKEN indicates that the signature on the received message is correct, but that
the message is too old to be checked for duplication.

9. The term signed messages means integrity-protected messages (see Section C.1 on page 107).

Part 1 GSS-API 23

GSS-API Features and Issues GSS-API Characteristics and Concepts

When sequence_state is TRUE, the possible major_status values for well-formed and correctly
signed messages are as follows:

• GSS_S_COMPLETE indicates that the message is within the window (of time or sequence
space) allowing replay events to be detected, and that the message is not a replay of a
previously-processed message within that window.

• GSS_S_DUPLICATE_TOKEN indicates that the signature on the received message is correct,
but that the message is recognised as a duplicate of a previously-processed message.

• GSS_S_OLD_TOKEN indicates that the signature on the received message is correct, but that
the token is too old to be checked for duplication.

• GSS_S_UNSEQ_TOKEN indicates that the signature on the received message is correct, but
that it is earlier in a sequenced stream than a message already processed on the context.

Note: Mechanisms can be architected to provide a stricter form of sequencing service,
delivering particular messages to recipients only after all predecessor messages in
an ordered stream have been delivered. This type of support is incompatible with
the GSS-API paradigm in which recipients receive all messages, whether in order or
not, and provide them (one at a time, without intra-GSS-API message buffering) to
GSS-API routines for validation. GSS-API facilities provide supportive functions,
aiding clients to achieve strict message stream integrity in an efficient manner in
conjunction with sequencing provisions in communication protocols, but the GSS-
API does not offer this level of message stream integrity service by itself.

As the message stream integrity features (especially sequencing) may interfere with certain
applications’ intended communication paradigms, and since support for such features is likely
to be resource intensive, it is highly recommended that mechanism types supporting these
features allow them to be activated selectively on initiator request when a context is established.
A context initiator and target are provided with corresponding indicators (replay_det_state and
sequence_state), signifying whether these features are active on a given context.

An example mechanism type supporting per-message replay detection could (when
replay_det_state is TRUE) implement the feature as follows. The underlying mechanism inserts
timestamps in data elements output by gss_get_mic () and gss_wrap(), and maintains (within a
time-limited window) a cache (qualified by originator-recipient pair) identifying received data
elements processed by gss_verify_mic () and gss_unwrap(). When this feature is active,
exception status returns (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) are provided
when gss_verify_mic () or gss_unwrap() is presented with a message that is either a detected
duplicate of a prior message or too old to validate against a cache of recently received messages.

2.8.4 Quality of Protection

Some mechanism types provide their users with fine granularity control over the means used to
provide per-message protection, allowing callers to trade off security processing overhead
dynamically against the protection requirements of particular messages. A per-message quality-
of-protection (QOP) parameter (analogous to quality-of-service, or QOS) selects between
different QOP options supported by that mechanism. On context establishment for a multi-QOP
mechanism type, context-level data provides the prerequisite data for a range of protection
qualities.

24 X/Open CAE Specification (1995)

GSS-API Characteristics and Concepts GSS-API Features and Issues

It is expected that the majority of callers do not wish to exert explicit mechanism-specific QOP
control and therefore request selection of a default QOP. Definitions of, and choices between,
non-default QOP values are mechanism-specific, and no ordered sequences of QOP values can
be assumed equivalent across different mechanisms. Meaningful use of non-default QOP values
demands that callers be familiar with the QOP definitions of an underlying mechanism or
mechanisms, and is therefore a non-portable construct.

Part 1 GSS-API 25

GSS-API Characteristics and Concepts

26 X/Open CAE Specification (1995)

Chapter 3

Interface Descriptions

This chapter describes the GSS-API’s service interface, dividing the calls offered into four
groups. Credential-management calls are related to the acquisition and release of credentials by
principals. Context-level calls are related to the management of security contexts between
principals. Per-message calls are related to the protection of individual messages on established
security contexts. Support calls provide ancillary functions useful to GSS-API callers. The calls
are summarised below:

Credential-management Calls Function

gss_acquire_cred () acquire credentials for use

gss_release_cred () release credentials after use

gss_inquire_cred () display information about credentials

Context-level Calls Function

gss_init_sec_context () initiate outbound security context

gss_accept_sec_context () accept inbound security context

gss_delete_sec_context () flush context when no longer needed

gss_process_context_token () process received control token on context

gss_context_time () indicate validity time remaining on context

Per-message Calls Function

gss_get_mic () apply signature, receive as token separate from message
EX (generate a checkvalue token separate from message)

EX gss_verify_mic () validate signature (checkvalue) token along with message

gss_wrap() sign, optionally encrypt, encapsulate
EX (apply integrity and optionally confidentiality,
 encapsulate a message within a token)

gss_unwrap() decapsulate, decrypt if needed, validate signature
EX (recover a message from a token, verify integrity)

Support Calls Function

gss_display_status () translate status codes to printable form

gss_indicate_mechs () indicate mechanism types supported on local system

gss_compare_name () compare two names for equality

gss_display_name () translate name to printable form

gss_import_name () convert printable name to normalised form

gss_release_name () free storage of normalised-form name

gss_release_buffer() free storage of printable name

gss_release_oid_set () free storage of OID set object

Part 1 GSS-API 27

Credential-management Calls Interface Descriptions

3.1 Credential-management Calls

These GSS-API calls provide functions related to the management of credentials. Their
characterisation with regard to whether or not they may block pending exchanges with other
network entities (for example, directories or authentication servers) depends in part on issues
specific to the operating system, therefore outside the GSS-API, and not specified here.

The gss_acquire_cred () call is defined within the GSS-API in support of application portability,
EX with a particular orientation towards support of portable server applications. It is typically only

called by clients when they want to use other than the default credentials. It is recognised that
(for certain systems and mechanisms) credentials for interactive users may be managed
differently from credentials for server processes; in such environments, it is the GSS-API
implementation’s responsibility to distinguish these cases and the procedures for making this
distinction are a local matter. The gss_release_cred () call provides a means for callers to indicate
to the GSS-API that use of a credentials structure is no longer required. The gss_inquire_cred ()
call allows callers to determine information about a credentials structure.

3.2 Context-level Calls

This group of calls is devoted to the establishment and management of security contexts
between peers. A context’s initiator calls gss_init_sec_context (), resulting in generation of a
token which the caller passes to the target. At the target, that token is passed to
gss_accept_sec_context (). Dependent on the underlying mechanism type and specified options,
additional token exchanges may be performed in the course of context establishment; such
exchanges are accommodated by GSS_S_CONTINUE_NEEDED status returns from
gss_init_sec_context () and gss_accept_sec_context (). Either party to an established context
may invoke gss_delete_sec_context () to flush context information when a context is no longer
required. gss_process_context_token () is used to process received tokens carrying context-level
control information. gss_context_time () allows a caller to determine the length of time for which
an established context remains valid.

3.3 Per-message Calls

This group of calls is used to perform per-message protection processing on an established
security context. None of these calls block pending network interactions. These calls may be
invoked by a context’s initiator or by the context’s target. The four members of this group
should be considered as two pairs: the output from gss_get_mic () is properly input to
gss_verify_mic (); the output from gss_wrap() is properly input to gss_unwrap().

gss_get_mic () and gss_verify_mic () support data origin authentication and data integrity
services. When gss_get_mic () is invoked on an input message, it yields a per-message token
containing data items that allow underlying mechanisms to provide the specified security
services. The original message, along with the generated per-message token, is passed to the
remote peer; these two data elements are processed by gss_verify_mic (), which validates the
message in conjunction with the separate token.

gss_wrap() and gss_unwrap() support caller-requested confidentiality in addition to the data
origin authentication and data integrity services offered by gss_get_mic () and gss_verify_mic ().
gss_wrap() outputs a single data element, encapsulating optionally enciphered user data as well
as associated token data items. The data element output from gss_wrap() is passed to the
remote peer and processed by gss_unwrap() at that system. gss_unwrap() combines
decipherment (as required) with validation of data items related to authentication and integrity.

28 X/Open CAE Specification (1995)

Interface Descriptions Support Calls

3.4 Support Calls

This group of calls provides support functions useful to GSS-API callers, independent of the
state of established contexts. Their characterisation with regard to blocking or non-blocking
status in terms of network interactions is unspecified.

Part 1 GSS-API 29

Interface Descriptions

30 X/Open CAE Specification (1995)

Chapter 4

Mechanism-specific Example Scenarios

This chapter provides illustrative overviews of the use of various candidate mechanism types to
support the GSS-API. These discussions are intended primarily for readers familiar with specific
security technologies, demonstrating how GSS-API functions can be used and implemented by
candidate underlying mechanisms. They should not be regarded as constrictive to
implementations or as defining the only means through which GSS-API functions can be
realised with a particular underlying technology, and do not demonstrate all GSS-API features
with each technology.

4.1 Kerberos V5, Single-TGT

This example illustrates the use of the GSS-API in conjunction with Kerberos Version 5 (see RFC
1510).

Login functions specific to the operating system yield a TGT to the local realm Kerberos server;
TGT is placed in a credentials structure for the client. The client calls gss_acquire_cred () to
acquire a credential handle to reference the credentials for use in establishing security contexts.

The client calls gss_init_sec_context (). If the requested service is located in a different realm,
gss_init_sec_context () gets the necessary TGT and key pairs needed to traverse the path from
local to target realm; this data is placed in the owner’s TGT cache. After any needed remote
realm resolution, gss_init_sec_context () yields a service ticket to the requested service with a
corresponding session key; this data is stored in conjunction with the context. GSS-API code
sends KRB_TGS_REQ requests and receives KRB_TGS_REP responses (in the successful case) or
KRB_ERROR.

Assuming success, gss_init_sec_context () builds a Kerberos-formatted KRB_AP_REQ message,
and returns it in output_token. The client sends the output_token to the service.

The service passes the received token as the input_token argument to gss_accept_sec_context (),
which verifies the authenticator, provides the service with the client’s authenticated name, and
returns an output_context_handle.

Both parties now hold the session key associated with the service ticket, and can use this key in
subsequent gss_get_mic (), gss_verify_mic (), gss_wrap() and gss_unwrap() operations.

Part 1 GSS-API 31

Kerberos V5, Double-TGT Mechanism-specific Example Scenarios

4.2 Kerberos V5, Double-TGT

TGT acquisition is as described in Section 4.1 on page 31.

Note: To avoid unnecessary frequent invocations of error paths when implementing the
GSS-API on top of Kerberos V5, it seems appropriate to represent single-TGT K-V5 and
double-TGT K-V5 with separate mechanism types; this discussion makes that
assumption.

Based on the (specified or default) mechanism type, gss_init_sec_context () determines that the
double-TGT protocol should be employed for the specified target. gss_init_sec_context ()
returns GSS_S_CONTINUE_NEEDED in major_status, and its returned output_token contains a
request to the service for the service’s TGT. If a service TGT with suitably long remaining
lifetime already exists in a cache, it may be usable, obviating the need for this step. The client
passes the output_token to the service.

Note: This scenario illustrates a different use for the GSS_S_CONTINUE_NEEDED status
return facility from that used for support of mutual authentication. Both uses can
coexist as successive operations within a single context establishment operation.

The service passes the received token as the input_token argument to gss_accept_sec_context (),
which recognises it as a request for TGT.

Note: Current Kerberos V5 defines no intra-protocol mechanism to represent such a request.

gss_accept_sec_context () returns GSS_S_CONTINUE_NEEDED in major_status and provides
the service’s TGT in its output_token. The service sends the output_token to the client.

The client passes the received token as the input_token argument to a continuation of
gss_init_sec_context (). gss_init_sec_context () caches the received service TGT and uses it as
part of a service ticket request to the Kerberos authentication server, storing the returned service
ticket and session key in conjunction with the context. gss_init_sec_context () builds a
Kerberos-formatted authenticator, and returns it in output_token along with GSS_S_COMPLETE
in major_status. The client sends the output_token to the service.

The service passes the received token as the input_token argument to a continuation call to
gss_accept_sec_context (). gss_accept_sec_context () verifies the authenticator, provides the
service with the client’s authenticated name, and returns GSS_S_COMPLETE in major_status.

gss_get_mic (), gss_verify_mic (), gss_wrap() and gss_unwrap() are used as described in Section
4.1 on page 31.

32 X/Open CAE Specification (1995)

Mechanism-specific Example Scenarios X.509 Authentication Framework

4.3 X.509 Authentication Framework

This example illustrates the use of the GSS-API in conjunction with public-key mechanisms,
consistent with the X.509 Directory Authentication Framework (see the X.509 standard).

The gss_acquire_cred () call establishes a credentials structure, making the client’s private key
accessible for use on behalf of the client.

The client calls gss_init_sec_context (), which interrogates the Directory to acquire (and
validate) a chain of public-key certificates, thereby collecting the public key of the service. The
certificate validation operation determines that suitable signatures were applied by trusted
authorities and that those certificates have not expired. gss_init_sec_context () generates a secret
key for use in per-message protection operations on the context, and enciphers that secret key
under the service’s public key.

The enciphered secret key, along with an authenticator quantity signed with the client’s private
key, is included in the output_token from gss_init_sec_context (). The output_token also carries
a certification path, consisting of a certificate chain leading from the service to the client; a
different approach would defer this path resolution to be performed by the service instead of
being asserted by the client. The client application sends the output_token to the service.

The service passes the received token as the input_token argument to gss_accept_sec_context ().
gss_accept_sec_context () validates the certification path, and as a result determines a certified
binding between the client’s distinguished name and the client’s public key. Given that public
key, gss_accept_sec_context () can process the input_token argument’s authenticator quantity
and verify that the client’s private key was used to sign the input_token. At this point, the client
is authenticated to the service. The service uses its private key to decipher the enciphered secret
key provided to it for per-message protection operations on the context.

The client calls gss_get_mic () or gss_wrap() on a data message, which causes per-message
authentication, integrity, and optionally, confidentiality facilities to be applied to that message.
The service uses the context’s shared secret key to perform corresponding gss_verify_mic () and
gss_unwrap() calls.

Part 1 GSS-API 33

Mechanism-specific Example Scenarios

34 X/Open CAE Specification (1995)

Chapter 5

Related Activities

This chapter considers the additional requirements for GSS-API to be implemented on top of
existing, emerging and future security mechanisms. It also discusses design constraints.

Concrete language bindings are required for the programming environments in which GSS-API
is to be employed; such bindings for the C language are provided in Part 2.

5.1 Identification

Object identifiers must be assigned to candidate GSS-API mechanisms and the name types they
support. Concrete data element formats must be defined for candidate mechanisms. Future
versions of this specification will reference appropriate standards as they exist at the time.

Calling applications must implement formatting conventions that enable them to distinguish
GSS-API tokens from other data carried in their application protocols (see Section 5.2 on page
36).

Part 1 GSS-API 35

Mechanism-independent Token Format Related Activities

5.2 Mechanism-independent Token Format

This token format defined is a mechanism-independent level of encapsulating representation for
the initial token of a GSS-API context establishment sequence, incorporating an identifier of the
mechanism type to be used on that context. Use of this format (with ASN.1-encoded data
elements represented in BER, constrained in the interests of parsing simplicity to the
Distinguished Encoding Rule (DER) BER subset defined in X.509, clause 8.7) is recommended to
the designers of GSS-API implementations based on various mechanisms, so that tokens can be
interpreted unambiguously at GSS-API peers. There is no requirement that the mechanism-
specific innerContextToken, innerMsgToken and sealedUserData data elements be encoded in
ASN.1 BER.

-- optional top-level token definitions to
-- frame different mechanisms

GSS-API DEFINITIONS ::=

BEGIN

MechType ::= OBJECT IDENTIFIER
-- data structure definitions

-- callers must be able to distinguish among
-- InitialContextToken, SubsequentContextToken,
-- PerMsgToken, and SealedMessage data elements
-- based on the usage in which they occur

InitialContextToken ::=
-- option indication (delegation, etc.) indicated within
-- mechanism-specific token
[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType,
innerContextToken ANY DEFINED BY thisMech
-- contents mechanism-specific
}

SubsequentContextToken ::= innerContextToken ANY
-- interpretation based on predecessor InitialContextToken

PerMsgToken ::=
-- as emitted by gss_get_mic and processed by gss_verify_mic
innerMsgToken ANY

SealedMessage ::=
-- as emitted by gss_wrap and processed by gss_unwrap
-- includes internal, mechanism-defined indicator
-- of whether or not encrypted
sealedUserData ANY

END

36 X/Open CAE Specification (1995)

Related Activities Mechanism Design Constraints

5.3 Mechanism Design Constraints

The following constraints on GSS-API mechanism designs are adopted in response to observed
caller protocol requirements, and adherence thereto is expected in subsequent descriptions of
GSS-API mechanisms, to be documented in future publications:

• Use of the approach defined in Section 5.2 on page 36, applying a mechanism type tag to the
InitialContextToken, is required.

• It is strongly recommended that mechanisms offering per-message protection services also
offer at least one of the replay detection and sequencing services, as mechanisms offering
neither fail to satisfy recognised requirements of certain candidate caller protocols.

Part 1 GSS-API 37

Related Activities

38 X/Open CAE Specification (1995)

X/Open CAE Specification

Part 2

C-language Bindings

X/Open Company Ltd.

Part 2 C-language Bindings 39

40 X/Open CAE Specification (1995)

Chapter 6

GSS-API C-language Overview

This chapter explains how the C-language functions are used and provides a brief description of
each routine.

6.1 Using the C-language Functions

The GSS-API C-language functions provide security services to calling applications. A
communicating application can authenticate the entity associated with its peer, can delegate
rights to another application, and can apply security services such as confidentiality and
integrity on a per-message basis.

There are four stages to using the C-language GSS-API functions:

1. If the use of non-default credential elements is required, the application acquires a set of
credentials (gss_acquire_cred()) with which it demonstrates an associated identity to a peer.
The application’s credentials vouch for its global identity, which may or may not be related
to the local user name under which it is running.

2. A pair of communicating applications establish a joint security context using their
credentials (gss_init_sec_context () and gss_accept_sec_context()). The security context is a
pair of GSS-API data structures that contain shared state information, which is required for
per-message security services.

As part of the establishment of a security context, the context initiator is authenticated to
the responder, and may require that the responder be authenticated in turn
(gss_init_sec_context () and gss_accept_sec_context()). The initiator may optionally give the
responder the right to initiate further security contexts. This transfer of rights is termed
delegation, and is achieved by creating a set of credentials, similar to those used by the
originating application, but which may be used by the responder .

To manage the state of a context once established, certain GSS-API calls return a token data
structure that carries control information. The caller of such an GSS-API routine is
responsible for transferring the token to the peer application, which should then pass it to
a corresponding GSS-API routine (gss_process_context_token ()) which processes the
information appropriately. The token is cryptographically protected so it can be
transmitted over an insecure link.

3. Per-message services are invoked to apply either integrity and data origin authentication,
or confidentiality, integrity and data origin authentication to application data, which is
treated by GSS-API as arbitrary octet strings. The application transmitting a message that
it wishes to protect calls the appropriate GSS-API routine (gss_get_mic() or gss_wrap()) to
apply protection, specifying the appropriate security context, and sends the result to the
receiving application. The receiver passes the received data to the corresponding decoding
routine (gss_verify_mic() or gss_unwrap()) to remove the protection and validate the data.

4. At the completion of a communication session (which may extend across several
connections), the peer applications call GSS-API routines to delete the security context
(gss_delete_sec_context()). Multiple contexts may also be used (either successively or
simultaneously) within a single communication association.

Part 2 C-language Bindings 41

GSS-API C-language Routines GSS-API C-language Overview

6.2 GSS-API C-language Routines

The GSS-API C-language routines are listed below:

Routine Function

gss_acquire_cred() assume a global identity

gss_release_cred() discard credentials

gss_init_sec_context () initiate a security context with a peer application

gss_accept_sec_context() accept a security context initiated by a peer application

gss_process_context_token () process a token on a security context from a peer application

gss_delete_sec_context() discard a security context

gss_context_time() determine for how long a context remains valid

gss_get_mic() sign a message; integrity service

gss_verify_mic() check signature on a message

gss_wrap() sign (optionally encrypt) a message; confidentiality service

gss_unwrap() verify (optionally decrypt) message

gss_display_status () convert an API status code to text

gss_indicate_mechs() determine underlying authentication mechanism

gss_compare_name() compare two internal names

gss_display_name () convert opaque name to text

gss_import_name() convert a textual name to internal form

gss_release_name() discard an internal name

gss_release_buffer() discard a buffer

gss_release_oid_set() discard a set of object identifiers

gss_inquire_cred() determine information about a credential

Individual GSS-API implementations may augment these routines by providing additional
mechanism-specific routines if the required capability is not available from the generic forms.
Applications are encouraged to use the generic routines wherever possible on portability
grounds.

42 X/Open CAE Specification (1995)

Chapter 7

Data Types and Calling Conventions

This chapter describes the data types used by the C-language versions of the GSS-API functions.
It also explains calling conventions for these functions.

7.1 Structured Data Types

Wherever these GSS-API C-bindings describe structured data, only fields that must be provided
by all GSS-API implementations are documented. Individual implementations may provide
additional fields, either for internal use within GSS-API routines, or for use by non-portable
applications.

7.2 Integer Types

GSS-API defines the following integer data type:

OM_uint32 32-bit unsigned integer

Where guaranteed minimum bit-count is important, this portable data type is used by the GSS-
API routine definitions. Individual GSS-API implementations include appropriate typedef
definitions to map this type onto a built-in data type.

Part 2 C-language Bindings 43

String and Similar Data Data Types and Calling Conventions

7.3 String and Similar Data

Many of the GSS-API routines take arguments and return values that describe contiguous
multi-byte data. All such data is passed between the GSS-API and the caller using the
gss_buffer_t data type. This data type is a pointer to a buffer descriptor consisting of a length
field, which contains the total number of bytes in the data, and a value field, which contains a
pointer to the actual data:

typedef struct gss_buffer_desc_struct{
size_t length;
void *value;

} gss_buffer_desc, *gss_buffer_t;

Storage for data passed to the application by a GSS-API routine using the gss_buffer_t
conventions is allocated by the GSS-API routine. The application may free this storage by
invoking the gss_release_buffer() routine. Allocation of the gss_buffer_desc object is always the
responsibility of the application; unused gss_buffer_desc objects may be initialised to the value
GSS_C_EMPTY_BUFFER.

7.3.1 Opaque Data Types

Certain multi-octet data items are considered opaque data types at the GSS-API, because their
internal structure has no significance either to the GSS-API or to the caller. Examples of such
opaque data types are the input_token argument to gss_init_sec_context () (which is opaque to the
caller), and the input_message argument to gss_wrap() (which is opaque to the GSS-API). Opaque
data is passed between the GSS-API and the application using the gss_buffer_t datatype.

7.3.2 Character Strings

Certain multi-octet data items may be regarded as simple Latin-1 character strings as defined in
the ISO/IEC 8859-1 standard. An example of this is the input_name_buffer argument to
gss_import_name(). Some GSS-API routines also return character strings. Character strings are
passed between the application and the GSS-API using the gss_buffer_t data type, defined
earlier.

44 X/Open CAE Specification (1995)

Data Types and Calling Conventions Object Identifiers

7.4 Object Identifiers

Certain GSS-API procedures take arguments of the type gss_OID, or object identifier. This is a
type containing ISO-defined tree-structured values, and is used by the GSS-API caller to select
an underlying security mechanism. A value of type gss_OID has the following structure:

typedef struct gss_OID_desc_struct{
OM_uint32 length;
void *elements;

} gss_OID_desc, *gss_OID;

The elements field of this structure points to the first byte of an octet string containing the
ASN.1 BER encoding of the value of the gss_OID. The length field contains the number of bytes
in this value. For example, the gss_OID value corresponding to:

{iso(1) identified-organization(3) icd-ecma(12)
member-company(2) dec(1011) cryptoAlgorithms(7) SPX(5)}

meaning SPX (Digital’s X.509 authentication mechanism) has a length field of 7 and an elements
field pointing to seven octets containing the following octal values: 53,14,2,207,163,7,5. GSS-API
implementations should provide constant gss_OID values to allow callers to request any
supported mechanism, although applications are encouraged on portability grounds to accept
the default mechanism. gss_OID values should also be provided to allow applications to specify
particular name types (see Section 7.10 on page 50). Applications should treat gss_OID_desc
values returned by GSS-API routines as read-only. In particular, the application should not
attempt to deallocate them. The gss_OID_desc data type is equivalent to the X/Open
OM_object_identifier datatype (XOM).

7.5 Object Identifier Sets

Certain GSS-API procedures take arguments of the type gss_OID_set. This type represents one
or more object identifiers (see Section 7.4). A gss_OID_set object has the following structure:

typedef struct gss_OID_set_desc_struct{
int count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

EX The count field contains the number of OIDs within the set. The elements field is type gss_OID,
which is a pointer to an array of gss_OID_desc objects, each of which describes a single OID.
Type gss_OID_set values are used to name the available mechanisms supported by the GSS-
API, to request the use of specific mechanisms, and to indicate which mechanisms a given
credential supports. Storage associated with gss_OID_set values returned to the application by
the GSS-API may be deallocated by the gss_release_oid_set() routine.

Part 2 C-language Bindings 45

Credentials Data Types and Calling Conventions

7.6 Credentials

A credential handle is a caller-opaque atomic datum that identifies a GSS-API credential data
structure. It is represented by the caller-opaque type gss_cred_id_t, which may be implemented
as either an arithmetic or a pointer type. Credentials describe a principal, and they give their
holder the ability to act as that principal. The GSS-API does not make the actual credentials
available to applications; instead the credential handle is used to identify a particular credential,
held internally by GSS-API or the underlying mechanism. Thus the credential handle contains
no security-relevant information, and requires no special protection by the application.
Dependent on the implementation, a given credential handle may refer to different credentials
when presented to the GSS-API by different callers. Individual GSS-API implementations
should define both the scope of a credential handle and the scope of a credential itself (which
must be at least as wide as that of a handle). Possibilities for credential handle scope include the
process that acquired the handle, the acquiring process and its children, or all processes sharing
some local identification information (for example, UID). If no handles exist by which a given
credential may be reached, the GSS-API may delete the credential.

Certain routines allow credential handle arguments to be omitted to indicate the use of a default
credential. The mechanism by which a default credential is established and its scope should be
defined by the individual GSS-API implementation.

7.7 Contexts

The gss_ctx_id_t data type contains a caller-opaque atomic value that identifies one end of a
GSS-API security context. It may be implemented as either an arithmetic or a pointer type.
Depending on the implementation, a given gss_ctx_id_t value may refer to different GSS-API
security contexts when presented to the GSS-API by different callers. The security context holds
state information about each end of a peer communication, including cryptographic state
information. Individual GSS-API implementations should define the scope of a context. Since
no way is provided by which a new gss_ctx_id_t value may be obtained for an existing context,
the scope of a context should be the same as the scope of a gss_ctx_id_t.

7.8 Authentication Tokens

A token is a caller-opaque type that GSS-API uses to maintain synchronisation between the
context data structures at each end of a GSS-API security context. The token is a
cryptographically protected bit-string, generated by the underlying mechanism at one end of a
GSS-API security context for use by the peer mechanism at the other end. Encapsulation (if
required) and transfer of the token are the responsibility of the peer applications. A token is
passed between the GSS-API and the application using the gss_buffer_t conventions.

46 X/Open CAE Specification (1995)

Data Types and Calling Conventions Status Values

7.9 Status Values

One or more status codes are returned by each GSS-API routine. Two distinct sorts of status
code are returned. These are termed GSS status codes and mechanism status codes.

7.9.1 GSS Status Codes

GSS-API routines return GSS status codes as their OM_uint32 function value. These codes
indicate major status errors that are independent of the underlying mechanism used to provide
the security service. The errors that can be indicated by means of a GSS status code are either
generic API routine errors (errors that are defined in the GSS-API specification) or calling errors
(errors that are specific to these bindings10).

A GSS status code can indicate a single fatal generic API error from the routine and a single
calling error. In addition, supplementary status information may be indicated by setting bits in a
Supplementary Info field in a GSS status code.

These errors are encoded into the 32-bit GSS status code as follows:

MSB LSB
|--|
| Calling Error | Routine Error | Supplementary Info |
|--|

Bit 31 24 23 16 15 0

Hence if a GSS-API routine returns a GSS status code whose upper 16 bits contain a non-zero
value, the call failed. If the Calling Error field is non-zero, the invoking application’s call of the
routine was erroneous. Calling errors are defined in Table 7-1. If the Routine Error field is non-
zero, the routine failed for one of the routine-specific reasons listed in Table 7-2 on page 48.
Whether or not the upper 16 bits indicate a failure or a success, the routine may indicate
additional information by setting bits in the Supplementary Info field of the status code. The
meaning of individual bits is listed in Table 7-3 on page 48.

Name Value in Meaning
Field

A required input argument cannot be
read.

[GSS_S_CALL_INACCESSIBLE_READ] 1

A required output argument cannot
be written.

[GSS_S_CALL_INACCESSIBLE_WRITE] 2

[GSS_S_CALL_BAD_STRUCTURE] 3 An argument is malformed.

Table 7-1 Calling Errors

10. The included C bindings.

Part 2 C-language Bindings 47

Status Values Data Types and Calling Conventions

Name Value in Meaning
Field

[GSS_S_BAD_MECH] 1 Unsupported mechanism requested.
[GSS_S_BAD_NAME] 2 Invalid name supplied.
[GSS_S_BAD_NAMETYPE] 3 A name supplied is of an unsupported type.
[GSS_S_BAD_BINDINGS] 4 Incorrect channel bindings supplied.
[GSS_S_BAD_STATUS] 5 Invalid status code supplied.
[GSS_S_BAD_SIG] 6 A token has an invalid signature.
[GSS_S_NO_CRED] 7 No credentials supplied.
[GSS_S_NO_CONTEXT] 8 No context established.
[GSS_S_DEFECTIVE_TOKEN] 9 Token invalid.
[GSS_S_DEFECTIVE_CREDENTIAL] 10 Credential invalid.
[GSS_S_CREDENTIALS_EXPIRED] 11 The referenced credentials have expired.
[GSS_S_CONTEXT_EXPIRED] 12 The context has expired.
[GSS_S_FAILURE] 13 Miscellaneous failure (see text).

Table 7-2 Routine Errors

Name Value in Meaning
Field

The routine must be called again to
complete its function. See individual
function descriptions in Chapter 8 on page
55 for a detailed description.

[GSS_S_CONTINUE_NEEDED] 0 (LSB)

[GSS_S_DUPLICATE_TOKEN] 1 The token is a duplicate of an earlier token.
[GSS_S_OLD_TOKEN] 2 The token’s validity period has expired.
[GSS_S_UNSEQ_TOKEN] 3 A later token has already been processed.

Table 7-3 Supplementary Status Bits

The function specifications also use the name [GSS_S_COMPLETE], which is a zero value, to
indicate an absence of any API errors or supplementary information bits.

All [GSS_S_*] symbols equate to complete OM_uint32 status codes, rather than to bit-field
values. For example, the actual value of the symbol [GSS_S_BAD_NAMETYPE] (value 3 in the
Routine Error field) is 3 << 16.

The macros11:

GSS_C_CALLING_ERROR()
GSS_C_ROUTINE_ERROR()
GSS_C_SUPPLEMENTARY_INFO()

are provided, each of which takes a GSS status code and removes all but the relevant field. For
example, the value obtained by applying GSS_C_ROUTINE_ERROR() to a status code removes
the Calling Errors and Supplementary Info fields, leaving only the Routine Errors field. The
values delivered by these macros may be directly compared with a [GSS_S_*] symbol of the

11. See Section C.4 on page 108.

48 X/Open CAE Specification (1995)

Data Types and Calling Conventions Status Values

appropriate type. The macro GSS_C_ERROR() is also provided, which when applied to a GSS
status code returns a non-zero value if the status code indicates a calling or routine error, and a
zero value otherwise.

A GSS-API implementation may choose to signal calling errors in a platform-specific manner
instead of, or in addition to the routine value; routine errors and supplementary information
should be returned by means of routine status values only.

7.9.2 Mechanism-specific Status Codes

GSS-API C-language functions return a minor_status argument, which is used to indicate
specialised errors from the underlying security mechanism. This argument may contain a single
mechanism-specific error, indicated by an OM_uint32 value.

The minor_status argument is always set by a GSS-API function, even if it returns a calling error
or one of the generic API errors indicated above as fatal, although other output arguments may
remain unset in such cases. However, output arguments that are expected to return pointers to
storage allocated by a function must always be set by the function, even in the event of an error,
although in such cases the GSS-API function may elect to set the returned argument value to
NULL to indicate that no storage was actually allocated. Any length field associated with such
pointers (as in a gss_buffer_desc structure) should also be set to zero in such cases.

The GSS status code [GSS_S_FAILURE] is used to indicate that the underlying mechanism
detected an error for which no specific GSS status code is defined. The mechanism status code
provides more details about the error.

Part 2 C-language Bindings 49

Names Data Types and Calling Conventions

7.10 Names

A name is used to identify a person or entity. GSS-API authenticates the relationship between a
name and the entity claiming the name.

Two distinct representations are defined for names:

• a printable form, for presentation to a user

• an internal form, for presentation at the API.

The syntax of a printable name is defined by the GSS-API implementation, and may be
dependent on local system configuration, or on individual user preference. The internal form
provides a canonical representation of the name that is independent of configuration.

A given GSS-API implementation may support names drawn from multiple name spaces. In
such an implementation, the internal form of the name must include fields that identify the
name space from which the name is drawn. The name space from which a printable name is
drawn is specified by an accompanying object identifier.

The functions gss_import_name() and gss_display_name () are provided to convert names between
their printable representations and the gss_name_t type. The function gss_import_name() may
support multiple syntaxes for each supported name space, allowing users the freedom to choose
a preferred name representation. The function gss_display_name () should use an
implementation-chosen preferred syntax for each supported name type.

Comparison of internal names is accomplished by means of the gss_compare_names() function.
This removes the need for the application program to understand the syntaxes of the various
printable names that a given GSS-API implementation may support.

Storage is allocated by routines that return gss_name_t values. The function gss_release_name()
is provided to free storage associated with a name.

50 X/Open CAE Specification (1995)

Data Types and Calling Conventions Channel Bindings

7.11 Channel Bindings

GSS-API supports the use of user-specified tags to identify a given context to the peer
application. These tags are used to identify the particular communication channel that carries
the context. Channel bindings are communicated to the GSS-API using the following structure:

typedef struct gss_channel_bindings_struct{
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel_bindings_t;

The initiator_addrtype and acceptor_addrtype fields denote the type of addresses contained in
the initiator_address and acceptor_address buffers.

EX Examples12 of address !types13 are as follows:

• Defined Address Types

GSS_C_AF_INET
IPV4 only. Four octets in net byte order in gss_buffer_desc().

GSS_C_AF_NULLADDR
Zero length octet string in gss_buffer_desc().

• Example Address Types

GSS_C_AF_UNSPEC
Unspecified address type.

GSS_C_AF_LOCAL
Host-local address type.

GSS_C_AF_IMPLINK
ARPAnet IMP address type.

GSS_C_AF_PUP
pup protocols (for example, BSP) address type.

GSS_C_AF_CHAOS
MIT CHAOS protocol address type.

GSS_C_AF_NS
XEROX NS address type.

GSS_C_AF_NBS
nbs address type.

GSS_C_AF_ECMA
ECMA address type.

12. The text in RFC 1509 implies that this is prescriptive. At present they are examples (see Section C.3 on page 108 for information
on expected future changes).

13. X/Open acknowledges the rights of the proprietors of the trade marks referred to in this section.

Part 2 C-language Bindings 51

Channel Bindings Data Types and Calling Conventions

GSS_C_AF_DATAKIT
datakit protocols address type.

GSS_C_AF_CCITT
CCITT protocols (for example, X.25).

GSS_C_AF_SNA
IBM SNA address type.

GSS_C_AF_DECnet
DECnet address type.

GSS_C_AF_DLI
DCE address type.

GSS_C_AF_DLI
Direct data link interface address type.

GSS_C_AF_LAT
LAT address type.

GSS_C_AF_HYLINK
NSC Hyperchannel address type.

GSS_C_AF_APPLETALK
AppleTalk address type.

GSS_C_AF_BSC
BISYNC 2780/3780 address type.

GSS_C_AF_DSS
Distributed system services address type.

GSS_C_AF_OSI
OSI TP4 address type.

GSS_C_AF_X25
X.25 address type.

Note that these identify address families rather than specific addressing formats. For address
families that contain several possible address forms, the initiator_address and acceptor_address
fields must contain sufficient information to determine which address form is used. When not
otherwise specified, addresses should be specified in network byte order.

Conceptually, the GSS-API concatenates the initiator_addrtype, initiator_address,
acceptor_addrtype, acceptor_address and application_data to form an octet string. The
mechanism signs this octet string, and binds the signature to the context establishment token
emitted by gss_init_sec_context (). The same bindings are presented by the context acceptor to
gss_accept_sec_context(), and a signature is calculated in the same way. The calculated signature
is compared with that found in the token, and if the signatures differ, gss_accept_sec_context()
returns a [GSS_S_BAD_BINDINGS] error, and the context is not established. Some mechanisms
may include the actual channel binding data in the token (rather than just a signature);
applications should therefore not use confidential data as channel-binding components.
Individual mechanisms may impose additional constraints on addresses and address types that

13. X/Open acknowledges the rights of the proprietors of the trade marks referred to in this section.

52 X/Open CAE Specification (1995)

Data Types and Calling Conventions Channel Bindings

may appear in channel bindings. For example, a mechanism may verify that the
initiator_address field of the channel bindings presented to gss_init_sec_context () contains the
correct network address of the host system.

Part 2 C-language Bindings 53

Optional Arguments Data Types and Calling Conventions

7.12 Optional Arguments

Various arguments are described as optional. This means that they follow a convention whereby
a default value may be requested. The following conventions are used for omitted arguments.
These conventions apply only to those arguments that are explicitly documented as optional.

7.12.1 gss_buffer_t Types(Input, Output)

Specify GSS_C_NO_BUFFER as a value. For an input argument this signifies that default
EX behaviour is requested, while for aninput,output argument it indicates that the information that

would be returned by the argument is not required by the application.

7.12.2 Integer Types (Input)

Individual argument documentation lists values to be used to indicate default actions.

7.12.3 Integer Types(Input, Output)

If the caller of the API is not interested in the return value, specify NULL as the value for the
pointer.

7.12.4 Pointer Types

Specify NULL as the value.

7.12.5 Object IDs

Specify GSS_C_NULL_OID as the value.

7.12.6 Object ID Sets

Specify GSS_C_NULL_OID_SET as the value.

7.12.7 Credentials

Specify GSS_C_NO_CREDENTIAL to use the default credential handle.

7.12.8 Channel Bindings

Specify GSS_C_NO_CHANNEL_BINDINGS to indicate that channel bindings are not to be
used.

54 X/Open CAE Specification (1995)

Chapter 8

C-language Reference Manual Pages

This chapter specifies the GSS-API C-language functions in alphabetical order.

Part 2 C-language Bindings 55

gss_accept_sec_context() C-language Reference Manual Pages

NAME
gss_accept_sec_context — allow a remotely initiated security context between the application
and a remote peer to be established

SYNOPSIS
OM_uint32 gss_accept_sec_context(

OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,
gss_cred_id_t verifier_cred_handle,
gss_buffer_t input_token,
gss_channel_bindings_t input_chan_bindings,
gss_name_t *src_name
gss_OID *mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,
OM_uint32 *time_rec,
gss_cred_id_t *delegated_cred_handle
);

DESCRIPTION
This call verifies the incoming token and returns the authenticated internal name and the
mechanism types used. The function may return an output_token, which should be transferred to
the peer application. The peer application presents it to gss_init_sec_context (). If no token need
be sent, gss_accept_sec_context() indicates this by setting the length field of the output_token
argument to zero. To complete the context establishment, one or more reply tokens may be
required from the peer application. If so, gss_accept_sec_context() returns a status flag of
[GSS_S_CONTINUE_NEEDED], in which case it should be called again when the reply token is
received from the peer application, passing the token to gss_accept_sec_context() in the
input_token argument.

This call may block pending network interactions for those mechanism types in which a
directory service or other network entity must be consulted on behalf of a context acceptor, to
validate a received input_token.

The gss_accept_sec_context () routine is used by a context target. Using information in the
credentials structure referenced by the input acceptor_cred_handle, it verifies the incoming
input_token and (following the successful completion of a context establishment sequence)
returns the authenticated src_name and the mechanism types used. The acceptor_cred_handle
must correspond to the same valid credentials structure on the initial call to
gss_accept_sec_context () and on any successor calls resulting from
GSS_S_CONTINUE_NEEDED status returns; different protocol sequences modelled by the
GSS_S_CONTINUE_NEEDED mechanism require access to credentials at different points in the
context establishment sequence.

The input_context_handle argument is 0, meaning ‘‘not yet assigned’’, on the first
gss_accept_sec_context () call relating to a given context. That call returns an
output_context_handle for future references to this context; when continuation attempts to
gss_accept_sec_context () are needed to perform context establishment, that handle value is
entered into the input_context_handle argument.

The chan_bindings argument is used by the caller to provide information binding the security
context to security-related characteristics (for example, addresses, cryptographic keys) of the
underlying communication channel. See Section 2.7.6 on page 19 for more discussion of this
argument’s usage.

56 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_accept_sec_context()

The returned state results (deleg_state, mutual_state, replay_det_state and sequence_state)
reflect the same context state values as returned to the caller of gss_init_sec_context () at the
initiator system.

The conf_avail return value indicates whether the context supports per-message confidentiality
services, and so informs the caller whether or not a request for encryption through the
conf_req_flag input to gss_wrap() can be honoured. In similar fashion, the integ_avail return
value indicates whether per-message integrity services are available (through either
gss_get_mic () or gss_wrap()) on the established context.

The lifetime_rec return value indicates the length of time for which the context is valid,
expressed as an offset from the present. The values of deleg_state, mutual_state,
replay_det_state, sequence_state, conf_avail, integ_avail and lifetime_rec are undefined unless
the accompanying major_status indicates GSS_S_COMPLETE.

The delegated_cred_handle result is significant only when deleg_state is TRUE, and provides a
means for the target to reference the delegated credentials. The output_token result, when non-
NULL, provides a context-level token to be returned to the context initiator to continue a multi-
step context establishment sequence. As noted with gss_init_sec_context (), any returned token
should be transferred to the context’s peer (in this case, the context initiator), independent of the
value of the accompanying returned major_status.

Note: A target must be able to distinguish a context-level input_token, which is passed to
EX gss_accept_sec_context (), from the per-message data elements (or tokens) passed to

gss_verify_mic () or gss_unwrap(). These data elements may arrive in a single
application message, and gss_accept_sec_context () must be performed before per-
message processing can be performed successfully.

The values returned in the src_name, ret_flags, time_rec and delegated_cred_handle arguments are
not defined unless the function returns [GSS_S_COMPLETE].

The arguments for gss_accept_sec_context() are:

context_handle (in,out)
Context handle for a new context. Supply GSS_C_NO_CONTEXT for the first call; use the
value returned in subsequent calls.

verifier_cred_handle (in)
Optional credential handle claimed by context acceptor. Specify
GSS_C_NO_CREDENTIAL to use default credentials. If GSS_C_NO_CREDENTIAL is
specified, but the caller has no default credentials established, an implementation-defined
default credential may be used.

input_token (opaque, in)
Token obtained from remote application.

input_chan_bindings (in)
Application-specified bindings. Allows application to bind channel identification
information securely to the security context.

src_name (out)
Optional authenticated name of context initiator. After use, this name should be
deallocated by passing it to gss_release_name(). If not required, specify NULL.

mech_type (out)
Security mechanism used. The returned OID value is a pointer into static storage, and
should be treated as read-only by the caller.

Part 2 C-language Bindings 57

gss_accept_sec_context() C-language Reference Manual Pages

output_token (opaque, out)
Token to be passed to peer application. If the length field of the returned token buffer is 0,
no token need be passed to the peer application.

ret_flags (bit-mask, out)
This argument contains six independent flags, each of which indicates that the context
supports a specific service option. Symbolic names are provided for each flag, and the
symbolic names corresponding to the required flags should be logically ANDed with the
ret_flags value to test whether a given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG

True Delegated credentials are pointed to by the delegated_cred_handle argument.
False No credentials have been delegated.

GSS_C_MUTUAL_FLAG

True Remote peer asked for mutual authentication.
False Remote peer did not ask for mutual authentication.

GSS_C_REPLAY_FLAG

True Replay of signed or sealed messages is detected.
False Replayed messages are not detected.

GSS_C_SEQUENCE_FLAG

True Out-of-sequence signed or sealed messages are detected.
False Out-of-sequence messages are not detected.

GSS_C_CONF_FLAG

True Confidentiality service may be invoked by calling gss_wrap().
False No confidentiality service (by means of gss_wrap()) available. The function

gss_wrap() provides message encapsulation, data-origin authentication and
integrity services only.

GSS_C_INTEG_FLAG

True Integrity service may be invoked by calling either gss_get_mic() or gss_wrap().
False Per-message integrity service unavailable.

time_rec (out)
Optional number of seconds for which the context remains valid. Specify NULL if not
required.

delegated_cred_handle (out)
Credential handle for credentials received from context initiator. Only valid if
GSS_C_DELEG_FLAG in ret_flags is true.

minor_status (out)
Mechanism-specific status code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_CONTINUE_NEEDED]
A token from the peer application is required to complete the context, and
gss_accept_sec_context() must be called again with that token.

58 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_accept_sec_context()

[GSS_S_DEFECTIVE_TOKEN]
Consistency checks performed on the input_token failed.

[GSS_S_DEFECTIVE_CREDENTIAL]
Consistency checks performed on the credential failed.

[GSS_S_NO_CRED]
The credentials supplied are not valid for context acceptance, or the credential handle does
not reference any credentials.

[GSS_S_CREDENTIALS_EXPIRED]
The referenced credentials have expired.

[GSS_S_BAD_BINDINGS]
The input_token contains different channel bindings from those specified by the
input_chan_bindings argument.

[GSS_S_NO_CONTEXT]
The context handle supplied does not refer to a valid context.

[GSS_S_BAD_SIG]
The input_token contains an invalid message integrity code.

[GSS_S_OLD_TOKEN]
The input_token is too old. This is a fatal error during context establishment.

[GSS_S_DUPLICATE_TOKEN]
The input_token is valid, but is a duplicate of a token already processed. This is a fatal error
during context establishment.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 59

gss_acquire_cred() C-language Reference Manual Pages

NAME
gss_acquire_cred — acquire a handle for an existing credential

SYNOPSIS
OM_uint32 gss_acquire_cred(

OM_uint32 *minor_status,
gss_name_t desired_name,
OM_uint32 time_req,
gss_OID_set desired_mechs,
int cred_usage
gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs,
OM_int32 *time_rec
);

DESCRIPTION
This function allows an application to acquire a handle for an existing credential by name. GSS-
API implementations shall impose a local access-control policy on callers of this function to
prevent unauthorised callers from acquiring credentials to which they are not entitled. This
function is not intended to provide a ‘‘login to the network’’ function, as such a function would
result in the creation of new credentials rather than merely acquiring a handle to existing
credentials. Such functions, if required, should be defined in implementation-specific extensions
to the API.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to
delay the actual acquisition until the credential is required (for example, by gss_init_sec_context ()
or gss_accept_sec_context()). Such mechanism-specific implementation decisions should be
invisible to the calling application; thus a call of gss_inquire_cred() immediately following the
call of gss_acquire_cred() must return valid credential data, and may therefore incur the overhead
of a deferred credential acquisition.

This call is used to acquire a handle to existing or modified credentials so that a principal (as a
function of the input argument cred_usage) can initiate or accept security contexts under the
identity represented by the input argument desired_name.

On successful completion, the returned output_cred_handle provides a handle for subsequent
references to the acquired credentials. Typically, single-user client processes using only default
credentials for context establishment purposes have no need to invoke this call14.

A caller may provide the value NULL for desired_name, signifying a request for credentials
corresponding to a default principal identity. The procedures used by GSS-API implementations
to select the appropriate principal identity in response to this form of request are local matters. It
is possible that multiple pre-established credentials may exist for the same principal identity (for
example, as a result of multiple user login sessions) when gss_acquire_cred () is called; the
means used in such cases to select a specific credential are local matters. The input argument
lifetime_req to gss_acquire_cred () provides information that may be useful in resolving
ambiguity in a manner that best satisfies a caller’s intent.

The lifetime_rec output argument indicates the length of time for which the acquired credentials
are valid, as an offset from the present. A mechanism may return a reserved value indicating
INDEFINITE if no constraints on credential lifetime are imposed. A caller of gss_acquire_cred ()

14. A single-user client is a client acting on behalf of a single identity.

60 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_acquire_cred()

can request a length of time for which acquired credentials are to be valid (the lifetime_req input
argument), beginning at the present, or can request credentials with a default validity interval.
(Requests for postdated credentials are not supported within the GSS-API.)

Certain mechanisms and implementations may bind in credential validity period specifiers at a
point preliminary to invocation of the gss_acquire_cred () call (for example, in conjunction with
user login procedures). As a result, callers requesting non-default values for lifetime_req must
recognise that such requests cannot always be honoured and must be prepared to accommodate
the use of returned credentials with different lifetimes as indicated in lifetime_rec15.

The caller of gss_acquire_cred () can explicitly specify a set of mechanism types that are to be
accommodated in the returned credentials (desired_mechs argument), or can request credentials
for a system-defined default set of mechanism types. Selection of the system-specified default
set is recommended in the interests of application portability. The actual_mechs output
argument may be interrogated by the caller to determine the set of mechanisms with which the
returned credentials may be used.

The arguments for gss_acquire_cred() are:

desired_name (in)
Name of principal whose credential is required.

time_req (in)
Number of seconds that credentials remain valid.

desired_mechs (in)
Set of underlying security mechanisms that may be used. GSS_C_NULL_OID_SET may be
used to obtain an implementation-specific default.

cred_usage (in)
This argument can have one of the following values:

GSS_C_BOTH
Credentials may be used either to initiate or accept security contexts.

GSS_C_INITIATE
Credentials are only used to initiate security contexts.

GSS_C_ACCEPT
Credentials are only used to accept security contexts.

output_cred_handle (out)
The returned credential handle.

actual_mechs (out)
The optional set of mechanisms for which the credential is valid. Specify NULL if not
required.

time_rec (out)
The actual number of seconds for which the returned credentials remain valid; this
argument is optional. If the implementation does not support expiration of credentials, the
value GSS_C_INDEFINITE is returned. Specify NULL if not required.

15. lifetime_rec may be greater than lifetime_req.

Part 2 C-language Bindings 61

gss_acquire_cred() C-language Reference Manual Pages

minor_status (out)
Mechanism-specific status code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_MECH]
Unavailable mechanism requested.

[GSS_S_BAD_NAMETYPE]
Type contained within desired_name argument is not supported.

[GSS_S_BAD_NAME]
Value supplied for desired_name argument is ill-formed.

[GSS_S_FAILURE]
Unspecified failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

62 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_compare_name()

NAME
gss_compare_name — compare two internal-form names

SYNOPSIS
OM_uint32 gss_compare_name(

OM_uint32 *minor_status,
gss_name_t name1,
gss_name_t name2,
int *name_equal
);

DESCRIPTION
Allows an application to compare two internal-form names to determine whether they refer to
the same entity.

The arguments for gss_compare_name() are:

minor_status (out)
Mechanism-specific status code.

name1 (in)
Internal-form name.

name2 (in)
Internal-form name.

name_equal (boolean, out)

True Names refer to same entity.
False Names refer to different entities. (Strictly, the names are not known to refer to the

same identity.)

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_NAMETYPE]
The type contained within either name1 or name2 is unrecognised, or the names are of
incomparable types.

[GSS_S_BAD_NAME]
Either name1 or name2 (or both) is ill-formed.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 63

gss_context_time() C-language Reference Manual Pages

NAME
gss_context_time — determine time for which the context remains valid

SYNOPSIS
OM_uint32 gss_context_time(

OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
OM_uint32 *time_rec
);

DESCRIPTION
This function determines the number of seconds for which the specified context remains valid.

The arguments for gss_context_time() are:

minor_status (out)
Implementation-specific status code.

context_handle (in)
Identifies the context to be interrogated.

time_rec (out)
Number of seconds that the context remains valid. If the context has already expired, zero
is returned.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_CONTEXT_EXPIRED]
The context has already expired.

[GSS_S_CREDENTIALS_EXPIRED]
The context is recognised, but associated credentials have expired.

EX [GSS_S_FAILURE]
Unspecified failure. The minor_status argument points to more detailed information.

[GSS_S_NO_CONTEXT]
The context_handle argument does not identify a valid context.

ERRORS
No other errors are defined.

64 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_delete_sec_context()

NAME
gss_delete_sec_context — delete a security context

SYNOPSIS
OM_uint32 gss_delete_sec_context(

OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,
gss_buffer_t output_token
);

DESCRIPTION
This call may block pending network interactions for mechanism types in which active
notification must be made to a central server when a security context is to be deleted.

This call can be made by either peer in a security context, to flush context-specific information
and to return an output_context_token which can be passed to the context’s peer informing it
that the peer’s corresponding context information can also be flushed. Once a context is
established, the peers involved are expected to retain cached credential and context-related
information until the information’s expiration time is reached or until a gss_delete_sec_context ()
call is made. Attempts to perform per-message processing on a deleted context result in error
returns. No further security services can be obtained using the context specified by
context_handle.

The arguments for gss_delete_sec_context() are:

minor_status (out)
Mechanism-specific status code.

EX context_handle (in,out)
Context handle identifying context to delete.

output_token (opaque, out)
Token to be sent to remote application to instruct it also to delete the context.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

[GSS_S_NO_CONTEXT]
No valid context supplied.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 65

gss_display_name() C-language Reference Manual Pages

NAME
gss_display_name — obtain a textual representation of an internal name

SYNOPSIS
OM_uint32 gss_display_name(

OM_uint32 *minor_status,
gss_name_t input_name,
gss_buffer_t output_name_buffer,
gss_OID *output_name_type
);

DESCRIPTION
This function allows an application to obtain a textual representation of an opaque internal-form
name for display purposes. The syntax of a printable name is defined by the GSS-API
implementation.

The arguments for gss_display_name () are:

minor_status (out)
Mechanism-specific status code.

input_name (in)
Name to be displayed.

output_name_buffer (out)
Buffer to receive textual name string.

output_name_type (out)
The type of the returned name. The returned type gss_OID is a pointer into static storage
and should be treated as read-only by the caller.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_MECH]
Unavailable mechanism requested.

[GSS_S_BAD_NAMETYPE]
Type contained within desired_name argument is not supported.

[GSS_S_BAD_NAME]
Value supplied for desired_name argument is ill-formed.

[GSS_S_FAILURE]
Unspecified failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

66 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_display_status()

NAME
gss_display_status — obtain a textual representation of a GSS-API status code

SYNOPSIS
OM_uint32 gss_display_status(

OM_uint32 *minor_status,
OM_uint32 status_value,
int status_type,
gss_OID mech_type,
int *message_context,
gss_buffer_t status_string
);

DESCRIPTION
This function is used to translate major and minor status codes into printable string
representations, for display to the user or for logging purposes. Since some status values may
indicate multiple errors, applications may need to call gss_display_status () multiple times, each
call generating a single text string. The message_context argument is used to indicate which error
message should be extracted from a given status_value. The argument message_context should be
initialised to 0. The function gss_display_status () returns a non-zero value if there are further
messages to extract.

The arguments for gss_display_status () are:

minor_status (out)
Mechanism-specific status code.

status_value (in)
Status value to be converted.

status_type (in)
This argument can take one of the following values:

GSS_C_GSS_CODE
The argument status_value is a GSS status code.

GSS_C_MECH_CODE
The argument status_value is a mechanism status code.

mech_type (in)
Optional underlying mechanism (used to interpret a minor_status value). Supply
GSS_C_NULL_OID to obtain the system default.

message_context (in,out)
Should be initialised to zero by caller on first call. If further messages are contained in the
status_value argument, message_context is non-zero on return; this value should be passed
back to subsequent calls, along with the same status_value, status_type and mech_type
arguments.

status_string (out)
Textual interpretation of the status_value.

Part 2 C-language Bindings 67

gss_display_status() C-language Reference Manual Pages

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_MECH]
Translation in accordance with an unsupported mechanism type requested.

[GSS_S_BAD_STATUS]
The status value is not recognised, or the status type is neither GSS_C_GSS_CODE nor
GSS_C_MECH_CODE.

ERRORS
No other errors are defined.

68 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_get_mic()

NAME
gss_get_mic16 — generate a cryptographic Message Integrity Code (MIC)

SYNOPSIS
OM_uint32 gss_get_mic(

OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int qop_req,
gss_buffer_t message_buffer,
gss_buffer_t msg_token
);

DESCRIPTION
This function generates a message integrity check value for the supplied message_buffer, and
places the message integrity code in a token for transfer to the peer application. The qop_req
argument allows a choice between several cryptographic algorithms, if supported by the chosen
mechanism.

The arguments for gss_get_mic() are:

minor_status (out)
Implementation-specific status code.

context_handle (in)
Identifies the context on which the message is sent.

qop_req (in)
Specifies the requested quality of protection. This argument is optional. See Section 7.12 on
page 54. Callers are encouraged, on portability grounds, to accept the default quality of
protection offered by the chosen mechanism, which may be requested by specifying
GSS_C_QOP_DEFAULT for this argument. If an unsupported protection strength is
requested, gss_get_mic() returns [GSS_S_FAILURE].

message_buffer (opaque, in)
Message to be signed.

msg_token (opaque, out)
Buffer to receive token.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_CONTEXT_EXPIRED]
The context has already expired.

[GSS_S_CREDENTIALS_EXPIRED]
The context is recognised, but associated credentials have expired.

[GSS_S_NO_CONTEXT]
The context_handle argument does not identify a valid context.

16. The old message name gss_sign() is also implemented.
See the note on terminology in Appendix C on page 107.

Part 2 C-language Bindings 69

gss_get_mic() C-language Reference Manual Pages

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

70 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_import_name()

NAME
gss_import_name — convert a printable name to internal form

SYNOPSIS
OM_uint32 gss_import_name(

OM_uint32 *minor_status,
gss_buffer_t input_name_buffer,
gss_OID input_name_type,
gss_name_t *output_name
);

DESCRIPTION
This function converts a printable name to an internal form.

The arguments for gss_import_name() are:

minor_status (out)
Mechanism-specific status code.

input_name_buffer (in)
Buffer containing printable name to convert.

input_name_type (in)
Optional object ID specifying type of printable name. Applications may specify either
GSS_C_NULL_OID, to use a local system-specific printable syntax, or an OID registered by
the GSS-API implementation, to name a particular name space.

output_name (out)
Returned name in internal form.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_NAMETYPE]
The input_name_type is unrecognised.

[GSS_S_BAD_NAME]
The input_name argument cannot be interpreted as a name of the specified type.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 71

gss_indicate_mechs() C-language Reference Manual Pages

NAME
gss_indicate_mechs — determine which underlying security mechanisms are available

SYNOPSIS
OM_uint32 gss_indicate_mechs(

OM_uint32 *minor_status,
gss_OID_set *mech_set
);

DESCRIPTION
This function allows an application to determine which underlying security mechanisms are
available.

The arguments for gss_indicate_mechs() are:

minor_status (out)
Mechanism-specific status code.

mech_set (out)
Set of implementation-supported mechanisms. The returned type gss_OID_set value is a
pointer into static storage, and should be treated as read-only by the caller.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

[GSS_S_COMPLETE]
Successful completion.

ERRORS
No errors are defined.

72 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_init_sec_context()

NAME
gss_init_sec_context — initiate the establishment of a security context

SYNOPSIS
OM_uint32 gss_init_sec_context(

OM_uint32 *minor_status,
gss_cred_id_t claimant_cred_handle,
gss_ctx_id_t *context_handle,
gss_name_t target_name,
gss_OID mech_type,
int req_flags,
int time_req,
gss_channel_bindings_t input_chan_bindings,
gss_buffer_t input_token,
gss_OID *actual_mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,
OM_uint32 *time_rec
);

DESCRIPTION
This function initiates the establishment of a security context between the application and a
remote peer. Initially, the input_token argument should be specified as GSS_C_NO_BUFFER.
The function may return an output_token which should be transferred to the peer application; the
peer application presents it to gss_accept_sec_context(). If no token need be sent,
gss_init_sec_context () indicates this by setting the length field of the output_token argument to
zero.

To complete the context establishment, one or more reply tokens may be required from the peer
application. If so, gss_init_sec_context () returns [GSS_S_CONTINUE_NEEDED], in which case it
should be called again when the reply token is received from the peer application, passing the
token to gss_init_sec_context () by means of the input_token argument.

This call may block pending network interactions for some mechanism types. The mechanism
types concerned are those where an authentication server or other network entity must be
consulted on behalf of a context initiator in order to generate an output_token suitable for
presentation to a specified target.

This call is used by a context initiator, and ordinarily emits one (or, for the case of a multi-step
exchange, more than one) output_token suitable for use by the target within the selected
mechanism type’s protocol. Using information in the credentials structure referenced by
claimant_cred_handle, gss_init_sec_context () initialises the data structures required to establish
a security context with target targ_name. The claimant_cred_handle must correspond to the
same valid credentials structure on the initial call to gss_init_sec_context () and on any
successor calls resulting from GSS_S_CONTINUE_NEEDED status returns; different protocol
sequences modelled by the GSS_S_CONTINUE_NEEDED mechanism require access to
credentials at different points in the context establishment sequence.

The input_context_handle argument is 0, meaning ‘‘not yet assigned’’, on the first
gss_init_sec_context () call relating to a given context. That call returns an
output_context_handle for future references to this context. When continuation attempts to
gss_init_sec_context () are needed to perform context establishment, the previously-returned
non-zero handle value is entered into the input_context_handle argument and is echoed in the
returned output_context_handle argument. On such continuation attempts (and only on
continuation attempts) the input_token value is used to provide the token returned from the

Part 2 C-language Bindings 73

gss_init_sec_context() C-language Reference Manual Pages

context’s target.

The chan_bindings argument is used by the caller to provide information binding the security
context to security-related characteristics (for example, addresses, cryptographic keys) of the
underlying communication channel. See Section 2.7.6 on page 19 for more discussion of this
argument’s usage.

The input_token argument contains a message received from the target, and is significant only
on a call to gss_init_sec_context () that follows a previous return indicating
GSS_S_CONTINUE_NEEDED major_status value.

It is the caller’s responsibility to establish a communication path to the target, and to transmit
any returned output_token (independent of the accompanying returned major_status value) to
the target over that path. The output_token can, however, be transmitted along with the first
application-provided input message to be processed by gss_get_mic () or gss_wrap() in
conjunction with a successfully-established context. On the final call in a context establishment
sequence, output_token will be returned NULL to indicate that no further token need be
transmitted to the peer.

The initiator may request various context-level functions through input flags: the deleg_req_flag
requests delegation of access rights, the mutual_req_flag requests mutual authentication, the
replay_det_req_flag requests that replay detection features be applied to messages transferred
on the established context, and the sequence_req_flag requests that sequencing be enforced. See
Section 2.8.3 on page 23 for more information on replay detection and sequencing features.

Not all of the optionally-requestable features are available in all underlying mechanism types;
the corresponding return state values (deleg_state, mutual_state, replay_det_state,
sequence_state) indicate, as a function of mechanism types processing capabilities and initiator-
provided input flags, the set of features active on the context. These state indicators’ values are
undefined unless the routine’s major_status indicates GSS_COMPLETE. Failure to provide the
precise set of features requested by the caller does not cause context establishment to fail; it is
the caller’s prerogative to delete the context if the feature set provided is unsuitable for the
caller’s use. The returned mechanism types value indicates the specific mechanism employed on
the context, and never indicates the value for default.

The value of conf_avail indicates whether the context supports per-message confidentiality
services, and so informs the caller whether or not a request for encryption through the
conf_req_flag input to gss_wrap() can be honoured. In similar fashion, the value of integ_avail
indicates whether per-message integrity services are available (through either gss_get_mic () or
gss_wrap()) on the established context.

The lifetime_req input specifies a desired upper bound for the lifetime of the context to be
established, with a value of 0 used to request a default lifetime. The lifetime_rec output indicates
the length of time for which the context is valid, expressed as an offset from the present.
Dependent on mechanism capabilities, credential lifetimes and local policy, it may not
correspond to the value requested in lifetime_req. If no constraints on context lifetime are
imposed, this may be indicated by returning a reserved value representing INDEFINITE
lifetime_req. The values of conf_avail, integ_avail and lifetime_rec are undefined unless the
routine’s major_status indicates GSS_COMPLETE.

If the mutual_state is TRUE, this fact is reflected within the output_token. A call to
gss_accept_sec_context () at the target in conjunction with such a context returns a token, to be
processed by a continuation call to gss_init_sec_context (), to achieve mutual authentication.

The values returned by means of the ret_flags and time_rec arguments are not defined unless the
function returns [GSS_S_COMPLETE].

74 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_init_sec_context()

The arguments for gss_init_sec_context () are:

claimant_cred_handle (in)
Optional handle for credentials claimed. Supply GSS_C_NO_CREDENTIAL to use default
credentials.

context_handle (in,out)
Context handle for new context. Supply GSS_C_NO_CONTEXT for the first call; use the
value returned by the first call in continuation calls.

target_name (in)
Name of target.

mech_type (in)
Optional object ID of desired mechanism. Supply GSS_C_NULL_OID to obtain an
implementation-specific default.

req_flags (bit-mask, in)
Contains four independent flags, each of which requests that the context support a specific
service option. Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically ORed together to form the bit-mask
value. The flags are:

GSS_C_DELEG_FLAG

True Delegate credentials to remote peer.
False Do not delegate.

GSS_C_MUTUAL_FLAG

True Request that remote peer authenticate itself.
False Authenticate self to remote peer only.

GSS_C_REPLAY_FLAG

True Enable replay detection for signed or sealed messages.
False Do not attempt to detect replayed messages.

GSS_C_SEQUENCE_FLAG

True Enable detection of out-of-sequence signed or sealed messages.
False Do not attempt to detect out-of-sequence messages.

time_req (in)
Desired number of seconds for which context should remain valid. Supply 0 to request a
default validity period.

input_chan_bindings (in)
Application-specified bindings. Allows application to bind channel identification
information securely to the security context.

input_token (opaque, in)
Optional token received from peer application. Supply GSS_C_NO_BUFFER on initial call.

actual_mech_type (out)
Actual mechanism used.

output_token (opaque, out)
Token to be sent to peer application. If the length field of the returned buffer is zero, no
token need be sent to the peer application.

Part 2 C-language Bindings 75

gss_init_sec_context() C-language Reference Manual Pages

ret_flags (bit-mask, out)
Contains six independent flags, each of which indicates that the context supports a specific
service option. Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically ANDed with the ret_flags value to
test whether a given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG

True Credentials have been delegated to the remote peer.
False No credentials have been delegated.

GSS_C_MUTUAL_FLAG

True Remote peer has been asked to authenticate itself.
False Remote peer has not been asked to authenticate itself.

GSS_C_REPLAY_FLAG

True Replay of signed or sealed messages is detected.
False Replayed messages are not detected.

GSS_C_SEQUENCE_FLAG

True Out-of-sequence signed or sealed messages are detected.
False Out-of-sequence messages are not detected.

GSS_C_CONF_FLAG

True Confidentiality service may be invoked by calling gss_wrap().
False No confidentiality service (by means of gss_wrap()) available. The function

gss_wrap() provides message encapsulation, data-origin authentication and
integrity services only.

GSS_C_INTEG_FLAG

True Integrity service may be invoked by calling either gss_get_mic() or gss_wrap().
False Per-message integrity service unavailable.

time_rec (out)
Optional number of seconds for which the context remains valid. If the implementation
does not support credential expiration, the value GSS_C_INDEFINITE is returned. Specify
NULL if not required.

minor_status (out)
Mechanism-specific status code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_CONTINUE_NEEDED]
A token from the peer application is required to complete the context, and
gss_init_sec_context () must be called again with that token.

[GSS_S_DEFECTIVE_TOKEN]
Consistency checks performed on the input_token failed.

[GSS_S_DEFECTIVE_CREDENTIAL]
Consistency checks performed on the credential failed.

76 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_init_sec_context()

[GSS_S_NO_CRED]
The supplied credentials are not valid for context initiation, or the credential handle does
not reference any credentials.

[GSS_S_CREDENTIALS_EXPIRED]
The referenced credentials have expired.

[GSS_S_BAD_BINDINGS]
The input_token contains different channel bindings from those specified by means of the
input_chan_bindings argument.

[GSS_S_BAD_SIG]
The input_token contains an invalid message integrity code, or a message integrity code that
could not be verified.

[GSS_S_OLD_TOKEN]
The input_token is too old. This is a fatal error during context establishment.

[GSS_S_DUPLICATE_TOKEN]
The input_token is valid, but is a duplicate of a token already processed. This is a fatal error
during context establishment.

[GSS_S_NO_CONTEXT]
The supplied context handle does not refer to a valid context.

[GSS_S_BAD_NAMETYPE]
The target_name argument provided contains an invalid or unsupported type of name.

[GSS_S_BAD_NAME]
The target_name argument provided is ill-formed.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 77

gss_inquire_cred() C-language Reference Manual Pages

NAME
gss_inquire_cred — obtain information about a credential

SYNOPSIS
OM_uint32 gss_inquire_cred(

OM_uint32 *minor_status,
gss_cred_id_t cred_handle,
gss_name_t *name,
OM_uint32 *lifetime,
int *cred_usage
gss_OID_set *mechanisms
);

DESCRIPTION
This function obtains information about a credential. The caller must already have obtained a
handle that refers to the credential.

The arguments for gss_inquire_cred() are:

minor_status (out)
Mechanism-specific status code.

cred_handle (in)
A handle that refers to the target credential. Specify GSS_C_NO_CREDENTIAL to inquire
about the default credential.

name (out)
The name whose identity the credential asserts. Specify NULL if not required.

lifetime (out)
The number of seconds for which the credential remains valid. If the credential has expired,
this argument is set to zero. If the implementation does not support credential expiration,
the value GSS_C_INDEFINITE is returned. Specify NULL if not required.

cred_usage (out)
How the credential may be used. This argument takes one of the following values:

GSS_C_INITIATE
GSS_C_ACCEPT
GSS_C_BOTH

Specify NULL if not required.

mechanisms (out)
Set of mechanisms supported by the credential. Specify NULL if not required.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_NO_CRED]
The referenced credentials cannot be accessed.

[GSS_S_DEFECTIVE_CREDENTIAL]
The referenced credentials are invalid.

78 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_inquire_cred()

[GSS_S_CREDENTIALS_EXPIRED]
The referenced credentials have expired. If the lifetime argument is not passed as NULL, it is
set to 0.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 79

gss_process_context_token() C-language Reference Manual Pages

NAME
gss_process_context_token — pass a token to the security service

SYNOPSIS

OM_uint32 gss_process_context_token(
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t token_buffer
);

DESCRIPTION
This function provides a way to pass a token to the security service. Usually, tokens are
associated either with context establishment (when they would be passed to
gss_init_sec_context () or gss_accept_sec_context()) or with per-message security service (when
they would be passed to gss_verify_mic() or gss_unwrap()). Occasionally, tokens may be
received at other times, and gss_process_context_token () allows such tokens to be passed to the
underlying security service for processing. At present, such additional tokens may only be
generated by gss_delete_sec_context(). GSS-API implementations may use this service to
implement deletion of the security context.

The arguments for gss_process_context_token () are:

context_handle (in)
Context handle of context on which token is to be processed.

token_buffer (opaque, in)
Pointer to first byte of token to process.

minor_status (out)
Implementation-specific status code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_DEFECTIVE_TOKEN]
Consistency checks performed on the token fail.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

[GSS_S_NO_CONTEXT]
The context_handle does not refer to a valid context.

ERRORS
No other errors are defined.

80 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_release_bu ffer()

NAME
gss_release_buffer — free storage associated with a buffer

SYNOPSIS
OM_uint32 gss_release_buffer(

OM_uint32 *minor_status,
gss_buffer_t buffer
);

DESCRIPTION
Free storage associated with a buffer format name. The storage must have been allocated by a
GSS-API function. In addition to freeing the associated storage, the function zeros the length
field in the buffer argument.

The arguments for gss_release_buffer() are:

minor_status (out)
Mechanism-specific status code.

EX buffer (in,out)
The storage associated with the buffer is deleted. The gss_buffer_desc object is not freed,
but its length field is zeroed.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

EX [GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No errors are defined.

Part 2 C-language Bindings 81

gss_release_cred() C-language Reference Manual Pages

NAME
gss_release_cred — release credential handle

SYNOPSIS
OM_uint32 gss_release_cred(

OM_uint32 *minor_status,
gss_cred_id_t *cred_handle
);

DESCRIPTION
Informs GSS-API that the specified credential handle is no longer required by the process. When
all processes have released a credential, it is deleted.

Note: System-specific credential management functions are also likely to exist, for example,
to ensure that credentials shared between processes are properly deleted when all
affected processes terminate, even if no explicit release requests are issued by those
processes. Given the fact that multiple callers are not precluded from gaining
authorised access to the same credentials, invocation of gss_release_cred () cannot be
assumed to delete a particular set of credentials on a system-wide basis.

The arguments for gss_release_cred() are:

EX cred_handle (in,out)
Optional buffer containing opaque credential handle. If GSS_C_NO_CREDENTIAL is
supplied, the default credential is released.

minor_status (out)
Mechanism-specific status code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_NO_CRED]
Credentials cannot be accessed.

EX [GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

82 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_release_name()

NAME
gss_release_name — free storage associated with an internal form name

SYNOPSIS

OM_uint32 gss_release_name(
OM_uint32 *minor_status,
gss_name_t *name
);

DESCRIPTION
This function frees storage allocated by GSS_API that is associated with an internal form name.

The arguments for gss_release_name() are:

minor_status (out)
Mechanism-specific status code.

EX name (in,out)
The name to be deleted.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_BAD_NAME]
The name argument does not contain a valid name.

EX [GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

Part 2 C-language Bindings 83

gss_release_oid_set() C-language Reference Manual Pages

NAME
gss_release_oid_set — free storage associated with an OID set

SYNOPSIS
OM_uint32 gss_release_oid_set(

OM_uint32 *minor_status,
gss_OID_set *set
);

DESCRIPTION
Free storage associated with a type gss_OID_set object. The storage must have been allocated
by a GSS-API function.

The arguments for gss_release_oid_set() are:

minor_status (out)
Mechanism-specific status code.

EX set (in,out)
The storage associated with the type gss_OID_set is deleted.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

EX [GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No errors are defined.

84 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_unwrap()

NAME
gss_unwrap17 — convert a previously sealed message back to a usable form

SYNOPSIS
OM_uint32 gss_unwrap(

OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int *conf_state,
int *qop_state
);

DESCRIPTION
This function converts a previously sealed message back to a usable form, verifying the
embedded message integrity code. The conf_state argument indicates whether the message is
encrypted. The qop_state argument indicates the strength of protection used to provide the
confidentiality and integrity services.

The arguments for gss_unwrap() are:

minor_status (out)
Mechanism-specific status code.

context_handle (in)
Identifies the context on which the message arrived.

input_message_buffer (opaque, in)
Sealed message.

output_message_buffer (opaque, out)
Buffer to receive unsealed message.

conf_state (boolean, out)

True Confidentiality and integrity protection used.
False Integrity service only used.

qop_state (out)
Quality of protection gained from the message integrity code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_DEFECTIVE_TOKEN]
The token fails consistency checks.

[GSS_S_BAD_SIG]
The message integrity code is incorrect.

17. The old message name gss_unseal() is also implemented.
See the note on terminology in Appendix C on page 107.

Part 2 C-language Bindings 85

gss_unwrap() C-language Reference Manual Pages

[GSS_S_DUPLICATE_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but it has
already been processed.

[GSS_S_OLD_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but it is
too old.

[GSS_S_UNSEQ_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but it has
been verified out of sequence. An earlier token has been signed or sealed by the remote
application, but not yet been processed locally.

[GSS_S_CONTEXT_EXPIRED]
The context has already expired.

[GSS_S_CREDENTIALS_EXPIRED]
The context is recognised, but associated credentials have expired.

[GSS_S_NO_CONTEXT]
The context_handle argument does not identify a valid context.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

86 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_verify_mic()

NAME
gss_verify_mic18 — verify that a cryptographic Message Integrity Code (MIC) is acceptable

SYNOPSIS
OM_uint32 gss_verify_mic(

OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t message_buffer,
gss_buffer_t token_buffer,
int *qop_state
);

DESCRIPTION
This function verifies that a cryptographic message integrity code, contained in the token_buffer
argument, fits the supplied message. The qop_state argument allows a message recipient to
determine the strength of protection applied to the message.

The arguments for gss_verify_mic() are:

minor_status (out)
Mechanism-specific status code.

context_handle (in)
Identifies the context on which the message arrived.

message_buffer (opaque, in)
Message to be verified.

token_buffer (opaque, in)
Token associated with message.

qop_state (out)
Quality of protection gained from the message integrity code.

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_DEFECTIVE_TOKEN]
The token fails consistency checks.

[GSS_S_BAD_SIG]
The message integrity code is incorrect.

[GSS_S_DUPLICATE_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but it has
already been processed.

[GSS_S_OLD_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but it is
too old.

18. The old message name gss_verify () is also implemented.
See the note on terminology in Appendix C on page 107.

Part 2 C-language Bindings 87

gss_verify_mic() C-language Reference Manual Pages

[GSS_S_UNSEQ_TOKEN]
The token is valid, and contains a correct message integrity code for the message, but has
been verified out of sequence. An earlier token has been signed or sealed by the remote
application, but not yet been processed locally.

[GSS_S_CONTEXT_EXPIRED]
The context has already expired.

[GSS_S_CREDENTIALS_EXPIRED]
The context is recognised, but associated credentials have expired.

[GSS_S_NO_CONTEXT]
The context_handle argument does not identify a valid context.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

88 X/Open CAE Specification (1995)

C-language Reference Manual Pages gss_wrap()

NAME
gss_wrap19 — sign and optionally encrypt an input message

SYNOPSIS
OM_uint32 gss_wrap(

OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag,
int qop_req,
gss_buffer_t input_message_buffer,
int *conf_state,
gss_buffer_t output_message_buffer
);

DESCRIPTION
This function cryptographically signs and optionally encrypts the specified input_message. The
output_message contains both the message integrity code and the message. The qop_req argument
allows a choice between several cryptographic algorithms, if supported by the chosen
mechanism.

The arguments for gss_wrap() are:

minor_status (out)
Mechanism-specific status code.

context_handle (in)
Identifies the context on which the message is sent.

conf_req_flag (boolean, in)

True Both confidentiality and integrity services are requested.
False Only integrity service is requested.

qop_req (in)
Specifies the required quality of protection. This argument is optional. See Section 7.12 on
page 54. A mechanism-specific default can be requested by setting qop_req to
GSS_C_QOP_DEFAULT. If an unsupported protection strength is requested, gss_wrap()
returns [GSS_S_FAILURE].

input_message_buffer (opaque, in)
Message to be sealed.

conf_state (boolean, out)

True Confidentiality, data origin authentication and integrity services have been
applied.

False Integrity and data origin services only have been applied.

output_message_buffer (opaque, out)
Buffer to receive sealed message.

19. The old message name gss_seal () is also implemented.
See the note on terminology in Appendix C on page 107.

Part 2 C-language Bindings 89

gss_wrap() C-language Reference Manual Pages

RETURN VALUE
The following GSS status codes shall be returned:

[GSS_S_COMPLETE]
Successful completion.

[GSS_S_CONTEXT_EXPIRED]
The context has already expired.

[GSS_S_CREDENTIALS_EXPIRED]
The context is recognised, but associated credentials have expired.

[GSS_S_NO_CONTEXT]
The context_handle argument does not identify a valid context.

[GSS_S_FAILURE]
Failure. The minor_status argument points to more detailed information.

ERRORS
No other errors are defined.

90 X/Open CAE Specification (1995)

Appendix A

Example C Header File <gssapi.h>

This appendix contains the source of an example header file <gssapi.h>.

#ifndef GSSAPI_H_
#define GSSAPI_H_

/*
* First, define the platform-dependent types.
*/
typedef <platform-specific> OM_uint32;
typedef <platform-specific> gss_ctx_id_t;
typedef <platform-specific> gss_cred_id_t;
typedef <platform-specific> gss_name_t;

/*
* Note that a platform supporting the xom.h X/Open header file
* may make use of that header for the definitions of OM_uint32
* and the structure to which gss_OID_desc equates.
*/

typedef struct gss_OID_desc_struct {
OM_uint32 length;
void *elements;

} gss_OID_desc, *gss_OID;

typedef struct gss_OID_set_desc_struct {
int count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc, *gss_buffer_t;

typedef struct gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel_bindings_t;

Part 2 C-language Bindings 91

Example C Header File <gssapi.h>

/*
* Six independent flags each of which indicates that a context
* supports a specific service option.
*/
#define GSS_C_DELEG_FLAG 1
#define GSS_C_MUTUAL_FLAG 2
#define GSS_C_REPLAY_FLAG 4
#define GSS_C_SEQUENCE_FLAG 8
#define GSS_C_CONF_FLAG 16
#define GSS_C_INTEG_FLAG 32

/*
* Credential usage options
*/
#define GSS_C_BOTH 0
#define GSS_C_INITIATE 1
#define GSS_C_ACCEPT 2

/*
* Status code types for gss_display_status
*/
#define GSS_C_GSS_CODE 1
#define GSS_C_MECH_CODE 2

/*
* The constant definitions for channel-bindings address families
*/
#define GSS_C_AF_UNSPEC 0
#define GSS_C_AF_LOCAL 1
#define GSS_C_AF_INET 2
#define GSS_C_AF_IMPLINK 3
#define GSS_C_AF_PUP 4
#define GSS_C_AF_CHAOS 5
#define GSS_C_AF_NS 6
#define GSS_C_AF_NBS 7
#define GSS_C_AF_ECMA 8
#define GSS_C_AF_DATAKIT 9
#define GSS_C_AF_CCITT 10
#define GSS_C_AF_SNA 11
#define GSS_C_AF_DECnet 12
#define GSS_C_AF_DLI 13
#define GSS_C_AF_LAT 14
#define GSS_C_AF_HYLINK 15
#define GSS_C_AF_APPLETALK 16
#define GSS_C_AF_BSC 17
#define GSS_C_AF_DSS 18
#define GSS_C_AF_OSI 19
#define GSS_C_AF_X25 21

#define GSS_C_AF_NULLADDR 255

92 X/Open CAE Specification (1995)

Example C Header File <gssapi.h>

#define GSS_C_NO_BUFFER ((gss_buffer_t) 0)
#define GSS_C_NULL_OID ((gss_OID) 0)
#define GSS_C_NULL_OID_SET ((gss_OID_set) 0)
#define GSS_C_NO_CONTEXT ((gss_ctx_id_t) 0)
#define GSS_C_NO_CREDENTIAL ((gss_cred_id_t) 0)
#define GSS_C_NO_CHANNEL_BINDINGS ((gss_channel_bindings_t) 0)
#define GSS_C_EMPTY_BUFFER {0, NULL}

/*
* Define the default Quality of Protection for per-message
* services. Note that an implementation that offers multiple
* levels of QOP may either reserve a value (for example zero,
* as assumed here) to mean "default protection", or alternatively
* may simply equate GSS_C_QOP_DEFAULT to a specific explicit QOP
* value.
*/
#define GSS_C_QOP_DEFAULT 0

/*
* Expiration time of 2ˆ32-1 seconds means infinite lifetime for a
* credential or security context
*/
#define GSS_C_INDEFINITE 0xfffffffful

/* Major status codes */

#define GSS_S_COMPLETE 0

/*
* Some "helper" definitions to make the status code macros obvious.
*/
#define GSS_C_CALLING_ERROR_OFFSET 24
#define GSS_C_ROUTINE_ERROR_OFFSET 16
#define GSS_C_SUPPLEMENTARY_OFFSET 0
#define GSS_C_CALLING_ERROR_MASK 0377ul
#define GSS_C_ROUTINE_ERROR_MASK 0377ul
#define GSS_C_SUPPLEMENTARY_MASK 0177777ul

/*
* The macros that test status codes for error conditions
*/
#define GSS_C_CALLING_ERROR(x) \
(x & (GSS_C_CALLING_ERROR_MASK << GSS_C_CALLING_ERROR_OFFSET))

#define GSS_C_ROUTINE_ERROR(x) \
(x & (GSS_C_ROUTINE_ERROR_MASK << GSS_C_ROUTINE_ERROR_OFFSET))

#define GSS_C_SUPPLEMENTARY_INFO(x) \
(x & (GSS_C_SUPPLEMENTARY_MASK << GSS_C_SUPPLEMENTARY_OFFSET))

#define GSS_C_ERROR(x) \
((GSS_C_CALLING_ERROR(x) != 0) || (GSS_C_ROUTINE_ERROR(x) != 0))

/*
* Now the actual status code definitions
*/

Part 2 C-language Bindings 93

Example C Header File <gssapi.h>

/*
* Calling errors:
*/
#define GSS_S_CALL_INACCESSIBLE_READ \

(1ul << GSS_C_CALLING_ERROR_OFFSET)
#define GSS_S_CALL_INACCESSIBLE_WRITE \

(2ul << GSS_C_CALLING_ERROR_OFFSET)
#define GSS_S_CALL_BAD_STRUCTURE \

(3ul << GSS_C_CALLING_ERROR_OFFSET)

/*
* Routine errors:
*/
#define GSS_S_BAD_MECH (1ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_BAD_NAME (2ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_BAD_NAMETYPE (3ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_BAD_BINDINGS (4ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_BAD_STATUS (5ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_BAD_SIG (6ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_NO_CRED (7ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_NO_CONTEXT (8ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_DEFECTIVE_TOKEN (9ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_DEFECTIVE_CREDENTIAL (10ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_CREDENTIALS_EXPIRED (11ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_CONTEXT_EXPIRED (12ul << GSS_C_ROUTINE_ERROR_OFFSET)
#define GSS_S_FAILURE (13ul << GSS_C_ROUTINE_ERROR_OFFSET)

/*
* Supplementary info bits:
*/
#define GSS_S_CONTINUE_NEEDED (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 0))
#define GSS_S_DUPLICATE_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 1))
#define GSS_S_OLD_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 2))
#define GSS_S_UNSEQ_TOKEN (1ul << (GSS_C_SUPPLEMENTARY_OFFSET + 3))

/*
* Finally, function prototypes for the GSS-API routines.
*/

OM_uint32 gss_acquire_cred
(OM_uint32*, /* minor_status */
gss_name_t, /* desired_name */
OM_uint32, /* time_req */
gss_OID_set, /* desired_mechs */
int, /* cred_usage */
gss_cred_id_t*, /* output_cred_handle */
gss_OID_set*, /* actual_mechs */
OM_uint32* /* time_rec */
);

OM_uint32 gss_release_cred,
(OM_uint32*, /* minor_status */
gss_cred_id_t* /* cred_handle */
);

94 X/Open CAE Specification (1995)

Example C Header File <gssapi.h>

OM_uint32 gss_init_sec_context
(OM_uint32*, /* minor_status */
gss_cred_id_t, /* claimant_cred_handle */
gss_ctx_id_t*, /* context_handle */
gss_name_t, /* target_name */
gss_OID, /* mech_type */
OM_uint32, /* req_flags */
OM_uint32, /* time_req */
gss_channel_bindings_t,

/* input_chan_bindings */
gss_buffer_t, /* input_token */
gss_OID*, /* actual_mech_type */
gss_buffer_t, /* output_token */
int*, /* ret_flags */
OM_uint32* /* time_rec */
);

OM_uint32 gss_accept_sec_context
(OM_uint32*, /* minor_status */
gss_ctx_id_t*, /* context_handle */
gss_cred_id_t, /* verifier_cred_handle */
gss_buffer_t, /* input_token_buffer */
gss_channel_bindings_t,

/* input_chan_bindings */
gss_name_t*, /* src_name */
gss_OID*, /* mech_type */
gss_buffer_t, /* output_token */
OM_uint32*, /* ret_flags */
OM_uint32*, /* time_rec */
gss_cred_id_t* /* delegated_cred_handle */
);

OM_uint32 gss_process_context_token
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
gss_buffer_t /* token_buffer */
);

OM_uint32 gss_delete_sec_context
(OM_uint32*, /* minor_status */
gss_ctx_id_t*, /* context_handle */
gss_buffer_t /* output_token */
);

OM_uint32 gss_context_time
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
OM_uint32* /* time_rec */
);

Part 2 C-language Bindings 95

Example C Header File <gssapi.h>

OM_uint32 gss_get_mic
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
int, /* qop_req */
gss_buffer_t, /* message_buffer */
gss_buffer_t /* message_token */
);

OM_uitn32 gss_verify_mic
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
gss_buffer_t, /* message_buffer */
gss_buffer_t, /* token_buffer */
int* /* qop_state */
);

OM_uint32 gss_wrap
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
int, /* conf_req_flag */
int, /* qop_req */
gss_buffer_t, /* input_message_buffer */
int*, /* conf_state */
gss_buffer_t /* output_message_buffer */
);

OM_uint32 gss_unwrap
(OM_uint32*, /* minor_status */
gss_ctx_id_t, /* context_handle */
gss_buffer_t, /* input_message_buffer */
gss_buffer_t, /* output_message_buffer */
int*, /* conf_state */
int* /* qop_state */
);

OM_uint32 gss_display_status
(OM_uint32*, /* minor_status */
OM_uint32, /* status_value */
int, /* status_type */
gss_OID, /* mech_type */
int*, /* message_context */
gss_buffer_t /* status_string */
);

OM_uint32 gss_indicate_mechs
(OM_uint32*, /* minor_status */
gss_OID_set* /* mech_set */
);

96 X/Open CAE Specification (1995)

Example C Header File <gssapi.h>

OM_uint32 gss_compare_name
(OM_uint32*, /* minor_status */
gss_name_t, /* name1 */
gss_name_t, /* name2 */
int* /* name_equal */
);

OM_uint32 gss_display_name,
(OM_uint32*, /* minor_status */
gss_name_t, /* input_name */
gss_buffer_t, /* output_name_buffer */
gss_OID* /* output_name_type */
);

OM_uint32 gss_import_name
(OM_uint32*, /* minor_status */
gss_buffer_t, /* input_name_buffer */
gss_OID, /* input_name_type */
gss_name_t* /* output_name */
);

OM_uint32 gss_release_name
(OM_uint32*, /* minor_status */
gss_name_t* /* input_name */
);

OM_uint32 gss_release_buffer
(OM_uint32*, /* minor_status */
gss_buffer_t /* buffer */
);

OM_uint32 gss_release_oid_set
(OM_uint32*, /* minor_status */
gss_OID_set* /* set */
);

OM_uint32 gss_inquire_cred
(OM_uint32 *, /* minor_status */
gss_cred_id_t, /* cred_handle */
gss_name_t *, /* name */
OM_uint32 *, /* lifetime */
int *, /* cred_usage */
gss_OID_set * /* mechanisms */
);

#endif /* GSSAPI_H_ */

Part 2 C-language Bindings 97

Example C Header File <gssapi.h>

98 X/Open CAE Specification (1995)

X/Open CAE Specification

Part 3

Supplement

X/Open Company Ltd.

Part 3 Supplement 99

100 X/Open CAE Specification (1995)

Appendix B

Security

This appendix discusses the security issues for implementors of the GSS-API. Refer to the
Procurement Guide for details of the security functionality provided by X-BASE, X-DAC, X-
MAC, X-AUDIT, X-PRIV and X-DIST.

The goals of this security chapter for the GSS-API specification are:

1. To raise the level of awareness of specification writers, specification implementors and
application developers who may use the GSS-API such that the security functions being
utilised by means of the API are prevented from compromise through misuse or ignorance
of key environmental factors.

2. To identify a set of guidelines on the use of GSS-API by specification and application
developers to ensure against such compromise.

3. To provide a description of tests that specification writers using GSS-API can apply after
having written the specification to ensure no key areas have been overlooked.

B.1 Threats

An implementation of the GSS-API provides peer-entity authentication, delegation, message
integrity and privacy services to calling applications. In the course of providing these services
certain data elements are used (for example, principal credentials) or created (for example,
security contexts) which, if not suitably protected, could result in the breach of expected
security. In addition, the failure of applications using the GSS-API to utilise per-message
security features can leave communication open to active attack (for example, the insertion of
false messages into the communication stream).

Specifically:

• If a principal’s credentials are successfully obtained by an unauthorised user, they could be
used to masquerade as that principal to another principal for the lifetime of the credentials.

• If the data elements representing the security context between principals is discovered by an
unauthorised user, then the security of the communication channel can be breached: privacy
protected messages can be read, integrity protected messages can be modified and resent,
and false messages can be inserted into the communication stream.

• If the application using the GSS-API fails to establish channel bindings, then that application
runs the risk of allowing an attacker to use potentially compromised credentials from any
location.

• If the application using the GSS-API fails to use per-message confidentiality services,
messages may be subject to unauthorised disclosure.

• If an application using the GSS-API fails to employ per-message replay or out-of-sequence
protection, messages may be reordered or replayed without detection.

• If the application using the GSS-API fails to employ per-message integrity services, message
recipients may not be able reliably to verify the authenticity of information received. If
integrity protection, replay and sequence detection are not used, then the recipient is subject
to message interception, modification and retransmission.

Part 3 Supplement 101

Threats Security

• If credentials are destroyed or corrupted, secure associations cannot be established between
principals without credential refresh.

• If security context data elements are destroyed or corrupted, subsequent communication
using secure facilities is not possible without establishment of a new security context.
Messages transmitted under the prior context are not recoverable (if privacy protected) or
verifiable (if integrity protected).

• If the application using the GSS-API fails to manage conditions where credentials or contexts
expire, then communication subsequent to the expiration is not possible or may be rejected
by the peer.

B.1.1 Basic Security Policy Requirements

Integrity

The implementation of the GSS-API shall use appropriate platform security controls to protect
credentials and context data elements from modification by external processes, and shall use
data-hiding techniques to prevent unintentional modification by the application process.

Availability

The implementation of the GSS-API shall provide for the proper handling of the
GSS_S_CREDENTIALS_EXPIRED and GSS_S_CONTEXT_EXPIRED error conditions to ensure
that applications can continue processing, or gracefully exit, when credentials and contexts
expire.

Confidentiality

The implementation of the GSS-API shall use appropriate platform security controls to protect
credentials and context data elements from being referenced, captured or displayed by
unauthorised processes.

B.1.2 Impact on Other Specifications

Providing security for an implementation of the GSS-API does not impact other specifications.

102 X/Open CAE Specification (1995)

Security Overview of Security Solution

B.2 Overview of Security Solution

B.2.1 Security Goals

The goals of the security functionality are twofold:

1. To provide a secure environment for applications using the GSS-API to run such that the
critical information necessary for the establishment and maintenance of secure
communication cannot be compromised or corrupted.

2. To recommend that certain necessary security services, providing secure communication
facilities, should be provided by the actual mechanisms supplied with an implementation
of the GSS-API.

B.2.2 Security Framework

To be added in a later version of this specification.

B.2.3 Security Functionality and Services

Availability of the GSS-API specification on a platform results in some or all of the functionality
of X-DIST being made available to applications on that platform.

It is suggested that a platform with applications that use an implementation of the GSS-API
should provide X-BASE and X-AUDIT security functionality to provide a secure environment
for the sensitive data elements used by the GSS-API.

Implementors wishing to provide platforms of extra security should consider implementing
some of the following:

X-DAC
X-MAC
X-PRIV
X-DIST.

B.2.4 Standards

None applicable.

B.2.5 Emerging Standards

None applicable.

Part 3 Supplement 103

Security Specification Security

B.3 Security Specification

B.3.1 Identification

There are no identification functional requirements, except as required by X-BASE to permit the
operating environment to protect information in memory or when stored on disk.

B.3.2 Authentication

There are no authentication functional requirements, except as required by X-BASE to permit the
operating environment to protect information in memory or when stored on disk.

B.3.3 Authorisation and Access Control

Authorisation and Access Control functionality is implementation-defined.

An implementation of the GSS-API must demonstrate the following:

• Only authorised processes may make use of a principal’s credentials to establish a security
context with a remote peer. This implies that GSS-API implementations should incorporate
appropriate protection features (for example, encryption, effective use of local operating
system and file system security features, other available means, or a combination of these
approaches) to mediate access to credential data.

Where appropriate on particular platforms this precludes:

— the storage of credentials in unprotected files or shared memory

— the storage of credentials using distributed file systems that do not provide
confidentiality services between platforms.

• Only authorised processes may access data associated with a GSS-API security context. This
implies that GSS-API implementations should incorporate appropriate protection features
(for example, encryption, effective use of local operating system and file system security
features, other available means, or combinations of these approaches) to mediate access to
context data.

Where appropriate on particular platforms this precludes the careless use of:

— unprotected memory

— unprotected files for temporary storage (including swap space)

— unprotected communication (for example, shared memory, message queues, raw sockets)
for transmission of context information between cooperating processes on the same (or
distributed) platform.

Accountability and Audit

This specification provides no recommended functionality for auditing. In environments in
which auditing is supported the following activities should generate audit records:

• credential acquisition and calls to gss_init_sec_context () and gss_accept_sec_context ()

• if any of the fatal error codes in Section 2.8.1 on page 21 are encountered

• if the GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN or GSS_S_UNSEQ_TOKEN
informative status codes are encountered.

Definition of the parameters for the audit records required is left for a future issue of this
specification.

104 X/Open CAE Specification (1995)

Security Security Specification

Object Reuse

An implementation of the GSS-API shall ensure that data objects are not left in a state such
that they could be referenced and examined by unauthorised processes. Platforms employing
the object reuse functions of X-BASE should be used where possible to ensure:

• The data structures associated with a security context are erased upon successful
completion of the gss_delete_sec_context () call.

• Internal buffers used by gss_get_mic (), gss_wrap(), gss_verify_mic (), and gss_unwrap()
to store plain text or unsigned data are erased prior to return of control to the calling
process.

• The data structures associated with credentials are erased upon successful completion of
the gss_release_cred () call.

Integrity

Necessary integrity functionality is described in Section B.1.1 on page 102.

Additional integrity services are implementation-defined. However, to provide basic
communications security, the mechanisms supported by an implementation of the GSS-API
should provide per-message integrity, data origin authentication, replay detection, and
sequence detection services for applications.

Confidentiality

The necessary confidentiality functionality is described in Section B.1.1 on page 102.

Additional confidentiality services are implementation-defined. However the mechanisms
supported by an implementation of the GSS-API should provide confidentiality services.

Availability of Service

The necessary service availability functionality is described in Section B.1.1 on page 102.

Part 3 Supplement 105

Security

106 X/Open CAE Specification (1995)

Appendix C

Future Directions

This appendix explains how this specification is expected to develop.

C.1 Terminology and Function Names

The names of the functions gss_sign () and gss_seal () can be misleading because they do not
represent signing and sealing in the sense used by ISO. In this document and the referenced
RFC 1508:

• The term sign means integrity protect.

• The term signature means Message Integrity Code (MIC) or cryptographic checkvalue.

• The term seal means protect the data with integrity, integrity and confidentiality, or nothing.
A suggested alternative is wrap. There is no corresponding term in ISO standards.

In this specification, gss_get_mic (), gss_wrap(), gss_verify_mic () and gss_unwrap() are used in
preference to gss_sign (), gss_seal (), gss_verify () and gss_unseal ().

Note: Because it is expected that the IETF will change to be consistent with ISO terminology,
implementors may think it advisable to support both types of name.

C.2 Additional major_status Codes

The descriptions of major_status values in Section 2.8.3 on page 23 are expected to change as
follows:

‘‘When replay_det_state is TRUE and sequence_state is FALSE, the possible major_status
values for well-formed and correctly integrity-protected messages are as follows:

• GSS_S_COMPLETE indicates that the message is within the window (of time or sequence
space) allowing replay events to be detected, and that the message is not a replay of a
previously-processed message within that window.

• GSS_S_DUPLICATE_TOKEN indicates that the cryptographic checkvalue on the received
message is correct, but that the message is recognised as a duplicate of a previously-
processed message.

• GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on the received message is
correct, but that the message is too old to be checked for duplication.

When replay_det_state is FALSE and sequence_state is TRUE, the possible major_status values
for well-formed and correctly signed messages are as follows:

• GSS_S_COMPLETE indicates that the cryptographic checkvalue of the message is correct, is
not a replay from the previous message, and that no message is missing relative to the last
message received whose integrity checkvalue was correct.

• GSS_S_DUPLICATE_TOKEN indicates that the cryptographic checkvalue on the received
message is correct, but that the message is recognised as a duplicate of a previously-
processed message.

• GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on the received message is
correct, but that the token is too old to be checked for duplication.

Part 3 Supplement 107

Additional major_status Codes Future Directions

• GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue of the message is
correct, but that it is earlier relative to the last message received whose integrity checkvalue
was correct.

• GSS_C_GAP_TOKEN indicates that the checkvalue of the message is correct but one or more
messages are missing relative to the last message received whose integrity checkvalue was
correct (that is, with GSS_S_COMPLETE status).

When both sequence_state and replay_det_state are TRUE, the possible major_status values for
well-formed and correctly integrity-protected messages include any of the previous status
values with the following meaning for GSS_S_COMPLETE:

• GSS_S_COMPLETE indicates that the cryptographic checkvalue of the message is correct,
that the message is within the time window (of time or sequence space) allowing replay
messages to be detected, that the message is not a replay of a previously processed message
within that window, and that no message is missing relative to the last message received
whose integrity checkvalue was correct.’’

C.3 Channel Bindings

In a future version of this specification Section 7.11 on page 51 will be amended to add
references for the address types listed. The form of the address type and values for the constants
will be made normative.

C.4 Status Values

In a future version of this specification Section 7.9 on page 47 may be modified to allow errors to
be returned by functions instead of macros.

C.5 Support for Anonymous Security Contexts

There has been some discussion on whether authentication is mandatory.

While the semantics of a NULL pointer are defined (that is, what is passed in), the semantics of
an empty value (that is, what is passed out) are not defined. As a consumer of the API is not told
otherwise, the assumption is that it expects that a completed security context results in an
src_name being written into any supplied non-NULL reference parameter. Based on the current
text, it is not proven that authentication is not mandatory. If this is intended, it should be noted
explicitly.

By adding one flag to gss_init_sec_context () the client would be able to specify that anonymity is
required (in) and would be informed if anonymity is supported (out).

An addition of a flag to gss_accept_sec_context() (out) could specify that the src_name value is not
meaningful.

If this feature is considered useful and is added to GSS-API, a future version of this document
will describe why and how per-message protection can be used without authentication.

108 X/Open CAE Specification (1995)

Glossary

For common computing terms refer to the glossary in the Procurement Guide .

channel bindings
Information used by GSS-API callers to bind the establishment of a security context to
relevant characteristics (for example, addresses and transformed representations of
encryption keys).

confidentiality
The property that information is not disclosed without authorisation.

context
A relationship between two communicating peers.

credential
Authentication information possessed by a peer which enables it to initiate security contexts
with other peers under a specific mechanism or set of mechanisms.

delegate
A peer who acts on behalf of another peer.

delegation
To authorise a principal to act on behalf of another. With GSS-API, an initiator peer may
delegate its credentials to another intermediate peer when establishing a security context.
The intermediate which accepted the security context can then optionally act as a delegate
for the initiator, when initiating a second security context with a third peer.

IETF
Internet Engineering Taskforce.

integrity
The property that information is protected against undetected, unauthorised modification.

Kerberos
Authentication and key distribution protocol originated in MIT’s Project Athena protocol
specified in RFC 1511. The Kerberos RFC is RFC-1510.

mechanism
In GSS-API, a security mechanism is a specific method for implementing security functions
based on conventions (which may include particular cryptographic algorithms and
protocols).

OID
Object Identifier (see the XOM specification).

out of sequence detection
This is the detection of the unauthorised or accidental reordering of messages in transit
without either peer being aware of it.

principal
An entity whose identity may be authenticated.

proxy
Same as delegation.

Part 3 Supplement 109

Glossary

QOP
Quality of protection.

quality of protection
Strength of integrity and confidentiality protection.

replay detection
This is the detection of the unauthorised reuse of a message sent from one peer to another.

signature
Linkage of a data item to a principal, who creates the signature by signing that data item.
Signing requires that a cryptographic checksum be computed of the data item, and then be
encrypted by the private key of the signing principal.

TGT
Ticket Granting Ticket.

Ticket Granting Ticket
Data element of the Kerberos (see Kerberos on page 109) protocol.

token
Binary data, opaque to the GSS-API caller, produced or consumed by a mechanism
underlying a GSS-API implementation.

110 X/Open CAE Specification (1995)

Index

<gssapi.h> ..91
additional requirements..35
argument

optional...54
authentication token ..46
C-language

calling conventions ..43
channel bindings...51
data types ...43
functions" ...41"
names ..50

C-language functions...41
call

context-level ..27
credential-management.................................27-28
per-message...27
support ...27

calling convention ..43
authentication token..46
context ..46
credential..46
names ..50
status value..47

calling conventions
optional arguments..54

calling errors..47
channel bindings ..19, 51, 109
confidentiality ...109
constraints ..37
context ..46, 109
context-level call ...27
credential ...16, 46, 109

handle ...46
credential-management call27-28
data type...43

character strings..44
gss_buffer_t..44
gss_cred_id_t...46
gss_ctx_id_t ...46
gss_OID ..45
gss_OID_desc..45
gss_OID_set ...45
integer ...43
OM_uint32...47, 49
opaque ..44
string ...44

structured...43
delegate...109
delegation...109
error

calling..47
fatal..21
informative ..21
routine...48
supplementary ..48

EX2, 7-8, 12, 15, 23, 27-28, 45, 51, 54
in gss_accept_sec_context()...............................57
in gss_context_time() ..64
in gss_delete_sec_context()65
in gss_release_buffer() ..81
in gss_release_cred() ...82
in gss_release_name() ...83
in gss_release_oid_set()......................................84

example...31
Kerberos V5, double-TGT...................................32
Kerberos V5, single-TGT.....................................31
X.509..33

fatal error..21
goal ..15

mechanism independence..................................15
protocol association independence15
protocol environment independence...............15

GSS
status code ...47

GSS-API ..2
C-language...2
C-language functions ..41
channel bindings...19
characteristics ..7
concepts ..7
constructs ...16
credentials ..16
extensions...2
goals ..15
identification..35
language-independent...2
mechanism types..18
naming..18
operational paradigm..12
purpose...7
related activities..35
scope..8

Generic Security Service API (GSS-API) Base 111

Index

security contexts ...17
status reporting...21
token format ..36
tokens..17
used by client and server13

gss_accept_sec_context()56
gss_acquire_cred() ...60
gss_buffer_t..44

types ..54
gss_compare_name() ..63
gss_context_time()...64
gss_cred_id_t ...46
gss_ctx_id_t ...46
GSS_C_CALLING_ERROR()48
GSS_C_ROUTINE_ERROR()48
GSS_C_SUPPLEMENTARY_INFO()...................48
gss_delete_sec_context() ..65
gss_display_name()...66
gss_display_status() ..67
gss_get_mic..12
gss_get_mic() ..69
gss_import_name()..71
gss_indicate_mechs() ..72
gss_init_sec_context() ...73
gss_inquire_cred() ...78
gss_OID ..45
gss_OID_desc ..45
gss_OID_set ...45
gss_process_context_token().................................80
gss_release_buffer() ...81
gss_release_cred() ..82
gss_release_name()..83
gss_release_oid_set()...84
gss_seal ...12
gss_sign...12
GSS_S_BAD_BINDINGS ..48

in gss_accept_sec_context()...............................59
in gss_init_sec_context()77

GSS_S_BAD_MECH ..48
in gss_acquire_cred() ..62
in gss_display_name() ..66
in gss_display_status()68

GSS_S_BAD_NAME..48
in gss_acquire_cred() ..62
in gss_compare_name()......................................63
in gss_display_name() ..66
in gss_import_name() ...71
in gss_init_sec_context()77
in gss_release_name() ...83

GSS_S_BAD_NAMETYPE......................................48
in gss_acquire_cred() ..62

in gss_compare_name()......................................63
in gss_display_name() ..66
in gss_import_name() ...71
in gss_init_sec_context()77

GSS_S_BAD_SIG ..48
in gss_accept_sec_context()...............................59
in gss_init_sec_context()77
in gss_unwrap() ...85
in gss_verify_mic() ..87

GSS_S_BAD_STATUS..48
in gss_display_status()68

GSS_S_CALL_BAD_STRUCTURE.......................47
GSS_S_CALL_INACCESSIBLE_READ47
GSS_S_CALL_INACCESSIBLE_WRITE47
GSS_S_COMPLETE

in gss_accept_sec_context()...............................58
in gss_acquire_cred() ..62
in gss_compare_name()......................................63
in gss_context_time() ..64
in gss_delete_sec_context()65
in gss_display_name() ..66
in gss_display_status()68
in gss_get_mic() ...69
in gss_import_name() ...71
in gss_indicate_mechs()72
in gss_init_sec_context()76
in gss_inquire_cred()...78
in gss_process_context_token()........................80
in gss_release_buffer() ..81
in gss_release_cred() ...82
in gss_release_name() ...83
in gss_release_oid_set()......................................84
in gss_unwrap() ...85
in gss_verify_mic() ..87
in gss_wrap() ..90

GSS_S_CONTEXT_EXPIRED48
in gss_context_time() ..64
in gss_get_mic() ...69
in gss_unwrap() ...86
in gss_verify_mic() ..88
in gss_wrap() ..90

GSS_S_CONTINUE_NEEDED..............................48
in gss_accept_sec_context()...............................58
in gss_init_sec_context()76

GSS_S_CREDENTIALS_EXPIRED.......................48
in gss_accept_sec_context()...............................59
in gss_context_time() ..64
in gss_get_mic() ...69
in gss_init_sec_context()77
in gss_inquire_cred()...79
in gss_unwrap() ...86

112 X/Open CAE Specification (1995)

Index

in gss_verify_mic() ..88
in gss_wrap() ..90

GSS_S_DEFECTIVE_CREDENTIAL....................48
gss_accept_sec_context()59
gss_init_sec_context()...76
gss_inquire_cred() ...78

GSS_S_DEFECTIVE_TOKEN48
in gss_accept_sec_context()...............................59
in gss_init_sec_context()76
in gss_process_context_token()........................80
in gss_unwrap() ...85
in gss_verify_mic() ..87

GSS_S_DUPLICATE_TOKEN................................48
in gss_accept_sec_context()...............................59
in gss_init_sec_context()77
in gss_unwrap() ...86
in gss_verify_mic() ..87

GSS_S_FAILURE ..48
in gss_accept_sec_context()...............................59
in gss_acquire_cred() ..62
in gss_context_time() ..64
in gss_delete_sec_context()65
in gss_display_name() ..66
in gss_display_status()68
in gss_get_mic() ...70
in gss_import_name() ...71
in gss_indicate_mechs()72
in gss_init_sec_context()77
in gss_inquire_cred()...79
in gss_process_context_token()........................80
in gss_release_buffer() ..81
in gss_release_cred() ...82
in gss_release_name() ...83
in gss_release_oid_set()......................................84
in gss_unwrap() ...86
in gss_verify_mic() ..88
in gss_wrap() ..90

GSS_S_NO_CONTEXT ...48
in gss_accept_sec_context()...............................59
in gss_context_time() ..64
in gss_delete_sec_context()65
in gss_get_mic() ...69
in gss_init_sec_context()77
in gss_process_context_token()........................80
in gss_unwrap() ...86
in gss_verify_mic() ..88
in gss_wrap() ..90

GSS_S_NO_CRED..48
in gss_accept_sec_context()...............................59
in gss_init_sec_context()77
in gss_inquire_cred()...78

in gss_release_cred() ...82
GSS_S_OLD_TOKEN ..48

in gss_accept_sec_context()...............................59
in gss_init_sec_context()77
in gss_unwrap() ...86
in gss_verify_mic() ..87

GSS_S_UNSEQ_TOKEN...48
in gss_unwrap() ...86
in gss_verify_mic() ..88

gss_unseal ..12
gss_unwrap..12
gss_unwrap() ..85
gss_verify ...12
gss_verify_mic ..12
gss_verify_mic() ...87
gss_wrap...12
gss_wrap() ...89
identification..35
IETF ...109
informative error ..21
integrity ..109
Kerberos..31-32, 109
mechanism...109
mechanism design constraints...............................37
mechanism types ..18
mechanism-specific examples31
mechanism-specific status code49
name..18, 50

internal..18, 50
printable ...18, 50

object identifier..45
object identifier set ...45
OID ..109
OID (object identifier)..45
OID set ..45
OM_uint32 ...47, 49
operational paradigm ..12
optional arguments ..54
out of sequence detection109
parameter

(argument) ...54
per-message

replay detection ..23
security service availability................................22

per-message call..27
per-message sequencing ...23
principal..109
proxy ...109
purpose ...7
QOP ...110
quality of protection ..24, 110

Generic Security Service API (GSS-API) Base 113

Index

replay detection ..23, 110
return value..47
routine errors...48
scope..8
security contexts ...17
security service..1

per-message...22
security services

standardisation ...3
sequencing ...23
signature...110
standardisation

current activities ...4
motivation..3

status code..47
mechanism-specific..49

status reporting...21
status value ..47
supplementary status bits.......................................48
support call ..27
TGT..110
threat ...1
Ticket Granting Ticket...110
token..17, 110

authentication ...46
token format ..36
X.509 ..33

114 X/Open CAE Specification (1995)

