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Lecture 29: 

Video Tracking: Mean-Shift
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Appearance-Based Tracking

current frame +
previous location

Mode-Seeking
(e.g. mean-shift; Lucas-Kanade; 

particle filtering)

likelihood over
object location current location

appearance model
(e.g. image template, or

color; intensity; edge histograms)
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Histogram Appearance Models 

� Motivation – to track non-rigid objects, (like a 

walking person), it is hard to specify

an explicit 2D parametric motion model.

� Appearances of non-rigid objects can 

sometimes be modeled with color distributions
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Appearance via Color Histograms

Color distribution (1D  histogram 

normalized to have unit weight)

R’

G’
B’

discretize

R’ = R << (8 - nbits)

G’ = G << (8 - nbits)

B’ = B << (8-nbits)

Total histogram size is   (2^(8-nbits))^3

example, 4-bit encoding of R,G and B channels

yields a histogram of size 16*16*16 = 4096.
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Smaller Color Histograms

R’
G’

B’

discretize

R’ = R << (8 - nbits)

G’ = G << (8 - nbits)

B’ = B << (8-nbits)

Total histogram size is   3*(2^(8-nbits))

example, 4-bit encoding of R,G and B channels

yields a histogram of size 3*16 = 48.

Histogram information can be much much smaller if we 

are willing to accept a loss in color resolvability.

Marginal R distribution

Marginal G distribution

Marginal B distribution
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Color Histogram Example

red green blue
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Normalized Color

(r,g,b) (r’,g’,b’) =  (r,g,b) / (r+g+b)

Normalized color divides out pixel luminance (brightness), 

leaving behind only chromaticity (color) information.  The 

result is less sensitive to variations due to illumination/shading.
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Mean-Shift

The mean-shift algorithm is an efficient 

approach to tracking objects whose 

appearance is defined by color.

(not limited to only color, however. Could 

also use edge orientations, texture, motion)
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What is Mean Shift ?

Non-parametric

Density Estimation

Non-parametric

Density GRADIENT Estimation 

(Mean Shift)

Data

Discrete PDF Representation

PDF Analysis

A tool for:
Finding modes in a set of data samples, manifesting an 

underlying probability density function (PDF) in RN

Ukrainitz&Sarel, Weizmann

PDF in feature space

� Color space

� Scale space
� Actually any feature space you can conceive

� …
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Intuitive Description
Region of

interest

Center of
mass

Mean Shift

vector

Objective : Find the densest region
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Using Mean-Shift on Color Models

Two approaches:

1) Create a color “likelihood” image, with pixels

weighted by similarity to the desired color (best

for unicolored objects)

2) Represent color distribution with a histogram.  Use

mean-shift to find region that has most similar

distribution of colors.
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Mean-shift on Weight Images

Ideally, we want an indicator function that returns 1 for pixels on the 

object we are tracking, and 0 for all other pixels

Instead, we compute likelihood maps where the value at a pixel is 

proportional to the likelihood that the pixel comes from the object we 

are tracking.

Computation of likelihood can be based on

� color

� texture

� shape (boundary)

� predicted location 
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Mean-Shift Tracking

Let pixels form a uniform grid of data points, each with a weight (pixel value)  

proportional to the “likelihood” that the pixel is on the object we want to track. 

Perform standard mean-shift algorithm using this weighted set of points.

x = 
a K(a-x) w(a) (a-x)

a K(a-x) w(a)
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Nice Property

Running mean-shift with kernel K on weight image w is equivalent to 

performing gradient ascent in a (virtual) image formed by convolving w 

with some “shadow” kernel H.

Note: mode we are looking for is mode of location (x,y)

likelihood, NOT mode of the color distribution!
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Example: Face Tracking using Mean -Shift

Gray Bradski, “Computer Vision Face Tracking for use in a 

Perceptual User Interface,” IEEE Workshop On Applications of 

Computer Vision, Princeton, NJ, 1998, pp.214-219.
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Bradski’s CamShift

X,Y location of mode found by mean-shift.

Z, Roll angle determined by fitting an ellipse

to the mode found by mean-shift algorithm. 
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CamShift Results

Fast motion Distractors

From Gary Bradski
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CamShift Applications

Quake interface

Flight simulator
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Using Mean-Shift on Color Models

Two approaches:

1) Create a color “likelihood” image, with pixels

weighted by similarity to the desired color (best

for unicolored objects)

2) Represent color distribution with a histogram.  Use

mean-shift to find region that has most similar

distribution of colors.
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Mean-Shift Object Tracking
Target Representation

Choose a 

reference 

target model

Quantized 

Color Space

Choose a 

feature space

Represent the 

model by its 

PDF in the 

feature space
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Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer

Ukrainitz&Sarel, Weizmann
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Mean-Shift Object Tracking
PDF Representation

Ukrainitz&Sarel, Weizmann
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Comparing Color Distributions

Given an n-bucket model histogram {mi | i=1,…,n} and data histogram 

{di | i=1,…,n}, we follow Comanesciu, Ramesh and Meer * to use the 

distance function:



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n
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ii
dm

1

1

Why?

1) it shares optimality properties with the notion of Bayes error

2) it imposes a metric structure 

3) it is relatively invariant to object size (number of pixels)

4) it is valid for arbitrary distributions (not just Gaussian ones)

*Dorin Comanesciu, V. Ramesh and Peter Meer, “Real-time Tracking of Non-Rigid

Objects using Mean Shift,” IEEE Conference on Computer Vision and Pattern 

Recognition, Hilton Head, South Carolina, 2000 (best paper award).

(m,d) = 

Bhattacharya Distance:
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Glossing over the Details

Spatial smoothing of similarity function by 

introducing a spatial kernel (Gaussian, box filter)

Take derivative of similarity with respect to colors. 

This tells what colors we need more/less of to 

make current hist more similar to reference hist.

Result is weighted mean shift we used before. However, 

the color weights are now computed “on-the-fly”, and 

change from one iteration to the next.
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Mean-Shift Object Tracking
Results

Feature space: 161616 quantized RGB

Target: manually selected on 1st frame

Average mean-shift iterations: 4

Ukrainitz&Sarel, Weizmann

From Comaniciu, Ramesh, Meer
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Mean-Shift Object Tracking
Results

Partial occlusion Distraction Motion blur

Ukrainitz&Sarel, Weizmann
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Mean-Shift Object Tracking
Results

Ukrainitz&Sarel, Weizmann

From Comaniciu, Ramesh, Meer
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Mean-Shift Object Tracking
Results

Feature space: 128128 quantized RG

Ukrainitz&Sarel, Weizmann

From Comaniciu, Ramesh, Meer
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Mean-Shift Object Tracking
Results

Feature space: 128128 quantized RG
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From Comaniciu, Ramesh, Meer

The man himself…


