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Abstract—It has long been recognized that the Credit scheduler
favors CPU-bound applications while for the latency-sensitive
workloads such as those related to stream-based audio/video
services, its performance is far from satisfactory. In this paper
we present an improved Credit scheduler in Xen to facilitate
such tasks on multicore platforms. To this end, we improve
the Credit scheduler from three perspectives. First, given the
identified Simultaneous Multi-Boost problem, we minimize the
system response time by load balancing the virtual CPUs with
the BOOST priority between the cores. Second, we address
the Premature Preemption problem by monitoring the received
network packets in the driver domain and deliberately preventing
it from being prematurely preempted during the packet delivery
to further reduce and stabilize the I/O latency. Finally, we
optimize the frequency of CPU switch by utilizing time-variant
slice instead of the existing long time-invariant one to adapt to
the dynamic fluctuation of the number of virtual CPUs in the run
queue associated with each physical CPU. Our empirical studies
show that the proposed improvement can significantly improve
the performance of the Credit scheduler for scheduling the I/O
latency-sensitive applications.

Index Terms—Xen virtual machine, Credit scheduling, SMP
framework, multicore, I/O latency, Dynamic time slice

I. INTRODUCTION

Xen virtualization is being widely adopted by many enter-

prises at present to underpin their business-oriented services

due to its flexibility and efficiency in resource management

and provision. With Xen virtualization, one can easily achieve

quick resource re-allocation, ideal fault isolation, and in-

creased flexibility, which are all critical factors to the success

of service delivery.

Although the benefits of Xen are obvious, its complexity and

overhead present additional challenges to adversely effect the

overall performance to some applications. One typical example

is the I/O-intensive applications with latency sensitivity such

as those related to stream-based audio/video services. In gen-

eral, these applications do not require a great amount of CPU

time; rather they are very sensitive to latency. This observation

indicates that resource multiplexing and scheduling among

virtual machines in Xen is still poorly understood, or at least

not fully studied in some regards.

In this paper, we study this VM scheduling problem in

Xen [1] by improving its default Credit scheduler [2], [3] to

minimize the response time of the latency-sensitive applica-

tions. The Credit scheduler is the most recent work-conserving

(WC-mode) [3] scheduler in Xen, which is characterized by

using a credit system to fairly share processor resources while

minimizing the wasted CPU cycles. Hence, it is very intuitive

for users to think about CPU allocations, which should be

flexible enough to achieve global load balancing of virtual

CPUs (VCPUs) across physical CPUs (PCPUs) on SMP hosts

in order to achieve high performance for CPU-bound tasks.

Although the Credit scheduler is efficient to computation-

intensive workloads, it could incur a certain amount of latency

for I/O-intensive tasks due to the mismatched or inefficient

designs in its VCPU allocation strategies, data distribution

mechanisms, and time slice calculations. For example, VCPUs

could be frequently switched in dealing with I/O packet

distribution if a large amount of blocked I/O operations exist,

including those in Dom0 which is also subjected to the same

scheduling algorithm as other guest domains. This would

adversely impact the overall system performance as the control

domain (Dom0) back-ends the communication directly with

I/O devices to complete all the I/O requests in the system.

On the other hand, the fixed time slice the Credit scheduler

algorithm assigns to each PCPU may also potentially cause

frequent switching, cache miss or low hit rate, and sporadic

task starvation [4].

We make contributions to improving the Credit scheduler

with enhanced performance to the I/O latency-sensitive ap-

plications. First, we minimize the system response time by

balancing the I/O intensive tasks of the VCPUs with BOOST

priority (i.e., BOOST VCPUs) in multicore systems. Second,

we reduce the VCPU dispatching time by monitoring the re-

ceived network packets and deliberately prevent the scheduler

from being prematurely preempted during the packet delivery.

Finally, we optimize the frequency of CPU switch by utilizing

time-variant slice instead of the existing long time-invariant

one to adapt to the dynamic fluctuation of the number of

VCPUs in the run queue of each PCPU. Our experimental

results show that the proposed optimization can significantly

improve the performance of the Xen’s scheduling algorithm.



II. BACKGROUND KNOWLEDGE

Xen virtualization is a layer of software, termed Virtual

Machine Monitor (VMM) or hypervisor in Xen parlance,

that abstracts the underlying hardware resources of a single

physical server into multiple instances of virtual machines

(VMs) (aka Domains in Xen) co-existing and co-executing

simultaneously. Domain as the VM presents the virtualized

resources such as CPUs, physical memory, network connec-

tions, and block devices as an illusion of a real machine to

the overlying guest OS and applications.

A. Inter-Domain Communication in Xen

According to Xen, the domains in the same physical ma-

chine are not in the same functional class. Dom0 as a privi-

leged domain (i.e., control domain) is created during the boot

time to take the responsibility for hosting the application-level

management software, including the control of other domains,

termed DomUs in Xen (e.g., domain creation, domain termi-

nation). In particular, Dom0 can function as a driver domain

if it hosts the device drivers and performs I/O operations on

behalf of the DomUs1. In contrast, DomUs are unprivileged

guest domains which as discussed present the virtualized

resources to the overlying guest OS and applications. They

cannot directly access the physical hardware on the machine.

Rather, to accomplish an I/O operation (i.e., network and disk

accesses), DomUs have to cooperate with Dom0 via two ring

buffers: one for packet transmission and the other for packet

reception.

B. Xen’s Credit Scheduler

The Credit scheduler is a fair share algorithm based on

the proportional scheduling. Each domain is assigned a credit

value which is determined by the defined weight for the

domain. The credit value represents the CPU share that the

domain is expected to have. Therefore, the domains should

have an equal fraction of processor resources if each domain

is given the same number of credits. The credits of the

running domains as the cost paid for the processor resources

are deducted periodically (100 credits for every 10ms via

scheduler interrupts, but a domain that runs for less than

10ms will not have any credits debited). Whenever its credit

value is negative, the domain is in OVER priority, otherwise,

in UNDER priority. Every so often (30ms), a system-wide

accounting thread recomputes the credits earned by each

running domain according to its weight.

By default, Xen allocates only one VCPU to each domain

when the domain is created2, and it contains general infor-

mation related to scheduling and event channels. To support

the numerous processes in the guest OS and applications,

the VCPUs will be scheduled among the PCPUs, which is

1Current Xen-based systems usually employ the Isolated Driver Domain

(IDD) to conduct real I/O operations the reliability and safety of the system.
2Xen also allows a domain to have access to more than one CPU by

allocating more than one VCPU. For easy presentation, we assume that
each domain is configured by one VCPU. Thus VCPU and domain can be
interchangeable in the discussion.
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Fig. 1: The organization of the Credit scheduler (IDLE state is not
illustrated here).

achieved by maintaining a local ready VCPU (domain) queue

(i.e., run queue) for each PCPU. The queue is periodically

(accounting period 30ms) sorted in such a way that VCUPs

with UNDER priority (i.e., UNDER VCPUs) will always run

ahead of VCPUs with OVER priority (i.e., OVER VCPUs),

and the ordering within each priority is round-robin. The

system always schedules the VCPU to run which is at the

head of the queue. The selected VCPU will receive 30ms

before being preempted to run another VCPU. VCPUs in

OVER priority cannot be scheduled unless there is no UNDER

VCPUs in the run queue. This implies a domain cannot use

more than its fair share of the processor resources unless

the processor(s) would otherwise have been idle. When a

processor is idle or the processor’s run queue has no more

UNDER VCPUs, it would check other processors to find any

eligible VCPUs to run on this processor, achieving the global

load balancing.

However, the original Credit algorithm is merely amenable

to the compute-intensive workloads and biased against the I/O-

latency sensitive applications. To address this problem and

minimize the latency of I/O event handling, a boost mechanism

is introduced into the Credit scheduler by adding a new priority

BOOST to the system so that a VCPU with BOOST priority

(i.e., BOOST VCPU) is allowed to preempt a running UNDER

VCPU. The current Credit scheduler boosts the priority of the

blocked VCPU in UNDER to BOOST after it is woke up by

receiving an event over its event channel. The woke-up VCPU

preempts the running VCPU at once rather than entering the

run queue to compete with other domains. As a consequence,

the response time of I/O-intensive tasks is reduced. As an

illustrative example, Fig. 1 shows the organization of the

Credit scheduler where four Domains are co-located in the

same machine to multiplex the underlying physical resources

for effective utilization.

III. PERFORMANCE ANALYSIS OF XEN CREDIT

SCHEDULER

In this section, we identify several not yet fully-studied

sources of performance flaws in the current Credit scheduler

that could slowdown the I/O-latency sensitive applications.



We refer to them as Simultaneous Multi-Boosting, Premature

Preemption, and Fixed Time Slice.

1) Simultaneous Multi-Boosting (SMB): SMB refers to the

phenomenon that multiple domains could be boosted at the

same time. This phenomenon is quite often observed in I/O-

intensive applications due to Xen’s split driver model as we

discussed.

The SMB problem has been recognized in the virtual-

izations [5], [6]. However, there are quite few research on

this problem in the context of multicore platforms. Although

the Credit scheduler is merited for its global load balancing,

it does not distinguish the states of the VCPUs to balance

the loads among the multiple PCPUs. As a consequence, it

could be happened that for some PCPUs, there are more

BOOST VCPUs waiting in the queue to be scheduled than

the others, which results in the imbalance of the BOOST

VCPUs as shown in Fig. 2 where the uneven distribution of

the BOOST VCPUs for two I/O intensive benchmarks (ping

and zip&gzip) on a quad-core platform with 32 test domains

(excluding Dom0) are shown. In this paper, we intend to make

a contribution on this problem for the multicore platforms.
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Group CPU0 CPU1 CPU2 CPU3

(a) zip (Linux-2.6.18) 112 98 215 149
(b) ping (1000Mbps Eth.) 146 102 285 52

Fig. 2: Distribution of the BOOST VCPUs among the physical
CPUs. 32 guest domains are evenly divided into 4 groups, each having
8 domains concurrently running on Xen-3.4.2. Xentrace is used to
create a record whenever a VCPU enters BOOST state in a time
interval of 1s.

According to Xen I/O model, arriving packets are first

delivered to the hypervisor where the associated physical

interrupts are virtualized and sent to the driver domain via the

event channel. The driver domain demultiplexes the packets

after it receives the corresponding virtual interrupt, and then

notifies the availability of one or more packets to a target guest

domain (also via the event channel connected with the guest)

which will be woke up by the hypervisor if it is blocked.

Since sending an event will result in the scheduler tickle,

the PP problem will be caused as the driver domain could

be preempted by a guest domain even though it has multiple

pending interrupts for the arriving packets not being processed.

In this situation, the driver domain is prematurely scheduled

out in the sense that some guest domains cannot timely receive

their notices and have to wait till when the driver domain is

re-scheduled by the hypervisor, rendering the whole system to

be less responsive.

2) Fixed Time Slice (FTS): The Credit algorithm is by

nature a sort of round-robin algorithm, a fixed time slice of

30ms is designed independent of the number of the VCPUs as

well as their states to ensure the fairness among the domains.

However, this may result in two problems: when the number

of VCPUs in the run queue is small, the fixed time slice will

cause frequent switches between the VCPUs in the run queue,

increasing the system overhead. On the contrary, when the

number of VCPUs is large, the fixed time slice will increase

the response time of those VCPUs at the tail of the queue. In

theory, for a particular time interval, the longer the time slice

is, the fewer switch times and the shorter average turnaround

of the scheduling are. However, for a latency-sensitive task, its

response time is closely related to the number of tasks waiting

in the run queue. Therefore, the fixed time slice might not

be sufficiently adequate and dynamic time slice adapting to

the number of VCPUs waiting in the run queue is probably

desired. On the other hand, as the number of CPUs in the

same physical machine is constantly increased on a large-scale.

The number of VCPUs associated with each PCPU would be

steadily decreased for more efficient consolidation. Therefore,

the Credit scheduling algorithms need to consider and optimize

the case where the run queue of PCPU has less VCPUs. Again,

the fixed time slice is also not adequate.

IV. ENHANCED SCHEDULER: DESIGN AND

IMPLEMENTATION

Given the description of the identified flaws in Credit sched-

uler, in this section we present the design and implementation

of our enhanced scheduler to address these issues.

A. Load Balancing of BOOST Domains (LB)

As we showed in the last section, the current scheduler could

cause the SMB problem, which potentially leads to the uneven

distribution of BOOST domains among the PCPUs. Although

Credit scheduler can achieves global load balancing, it little

effect on the balance of the BOOST domains, making the

system less responsive as a whole. To address this problem,

we perform a load balance for the BOOST VCPUs across all

the PCPUs in the machine to improve the response speeds of

the VCPUs. Our load balancing algorithm is shown as follows:

After a BOOST domain is woke up and inserted into a

run queue, the hypervisor will tickle the scheduler to make a

scheduling for the PCPU associated with that queue. However,

before this action is performed, we first run a simple load

balancing algorithm,

• Checks whether or not the current running VCPU on the

corresponding PCPU is BOOST?

• If yes, selects the target PCPU based on some criteria

where VCPUs can migrate (ties are broken arbitrarily).

However, if the selected target and source PCPU are the

same, then exits. Otherwise, inserts the VCPU into the

run queue of the target PCPU.

• Otherwise, if the current running VCPU is not BOOST,

triggers the PCPU scheduling as usual, and then exits.



In a multicore system, the target PCPU is selected according

to the following criteria,

• Searches a free PCPU in accordance with the order of the

same core, the same socket, different sockets. If found,

then returns the PCPU number.

• Searches the PCPU not running a BOOST VCPU in

accordance with the order of the same core, the same

socket, different sockets. If found, then returns the PCPU

number.

• Finds out the PCPU whose run queue includes the least

BOOST VCPUs, then returns the PCPU number.

The rationale behind these criteria is the spatial locality of the

computations. For example, if two PCPU share the same core,

they can also share the same local cache.

B. Prevention of Premature Preemption (PPP)

This section introduces our design and implementation of

the algorithm to prevent the driver domain from being prema-

turely scheduled out (i.e., the PP problem) in the process of

the network packet dispatches. The basic idea of this algorithm

is straightforward. When there are multiple pending packets

for dispatching, the driver domain will inform the underlying

hypervisor of this fact, which as a response will not tickle the

scheduler until the driver domain dispatches all these packets

and yields.

1) Dispatching vector: The core data structure of this

algorithm is a dispatching vector of size equal to the number

of the PCPUs in the platform. The vector is created in the

hypervisor at the boot time and then shared with the driver

domain. Each bit represents a PCPU, and the bit value is set

by the driver domain and used by the hypervisor. The value

of 1 indicates the corresponding PCPU is dispatching packets

while the value of 0 denotes that the PCPU is not doing such

work.

2) Prevention algorithm: The algorithm runs inside the

driver domain whenever a packet is arriving or has been

dispatched to the target guest,

• Depending on whether or not the number of I/O virtual

interrupts in the event channel is greater than one, the

algorithm notifies the hypervisor by setting or clearing

the corresponding bit in the vector via a hypercall.

• When the scheduler is tickled by the hypervisor, it first

examines the value of the bit that corresponds to the

PCPU running the domain driver.

• If the value has been set to 1, then scheduling on the

corresponding PCPU is disabled, which means the driver

domain cannot be preempted while dispatching packets.

Otherwise, scheduling is performed as usual and the

driver domain could be preempted.

Our algorithm is simple yet efficient to achieve the goal as

only one bit vector is shared between the driver domain and

the hypervisor, and the shared bit vector is only updated by

the domain driver, incurring no synchronization cost.

C. Dynamic Time Slice (DTS)

As discussed, in Credit scheduler, the fixed time slice of

30ms is used, independent of the states of VCPU, BOOST

or UNDER. The slice for the BOOST VCPU is divided into

two phases. In the first phase, the VCPU will run under

the BOOST priority for 10ms and then switch down to the

UNDER priority, entering the second phase. The time length of

VCPU in the BOOST state is essential to the scheduling. If this

length is too long, other VCPUs with the same priority (i.e.,

BOOST) could be over delayed, increasing the I/O response

time. Otherwise, if it is too short, the BOOST VCPU could

not get sufficient time to execute before being preempted by

other BOOST VCPUs, balancing out the benefits of BOOST

state. With these factors in mind, to strike a balance between

the average turnaround time of the system and the mean

response time of each individual I/O-sensitive application, we

propose dynamic time slice that would be adjusted according

to the number of VCPUs in the corresponding run queues.

Depending on the state, the time slice after this optimization is

defined on the selected VCPU by the conducting the following

steps:

• Changing the length of its first BOOST phase as 2ms,

approximately amounting to the time slice for the I/O

processes running on BOOST VCPUs, inserting it into

the run queue, and then changing its priority into UN-

DER. As a consequence, the selected VCPU would be

located before all the UNDER VCPUs and after all the

BOOST VCPU in the queue. Clearly, if there is no more

BOOST VCPUs in the queue, the just inserted VCPU can

be continued to schedule for execution.

• Calculating the time slice for the UNDER VCPU based

on the number of UNDER VCPUs in the queue according

to the following formula:

time slice =

{

30ms if qlen > avg length

60ms if qlen ≤ avg lento,
(1)

here, avg length is the default length of the run queue,

which is typically set to 4 after system boot-ups. qlen

refers to the number of UNDER VCPUs in the queue

when the time slice is calculated.

The rationale behind this definition is twofold. First, for the

BOOST phase, I/O processes in general could be frequently

blocked, yielding the VCPUs. As a result, the VCPUs usually

do not need longer time slices. On the other hand, if there

are other applications other than the blocked I/O processes

running on the same BOOST VCPU, those applications will

continue to run at BOOST level till the end of the time slice.

As a result, it would delay the scheduling of other BOOST

VCPUs, which is not desired. This also requires a small time

slice for the BOOST VCPUs. Second, for the UNDER phase,

we distinguish two cases. On one hand, due to the VCPU

affinity, the number of the UNDER VCPUs in the queue

remains small and largely unchanged. If there are a quite few

UNDER VCPUs, the time slice can be increased accordingly

to minimize the scheduling overhead. As discussed previously,



in reality the number of UNDER VCPUs associated with a

PCPU is usually small, and the improved algorithm should

optimize this common case. On the other hand, the increased

time slice should not be varied in a wide range as otherwise,

it could compromise the fairness, the goal of the Credit

scheduler. Therefore, in our definition, we use two fixed values

(30ms and 60ms) to optimize the scheduler for the short run

queues while maintaining the fairness goal.

Given this definition, the algorithm for dynamic time slice

is straightforward. First, a color attribute is added to the

VCPU’s data structure, which is set to red when the VCPU

is inserted into the run queue, and to black when it is fetched

out for recalculating the time slice. Based on this attribute, the

algorithm then performs the following:

1) Checking the selected VCPU state. If it is in BOOST

state then the time slice is set to 30ms directly.

2) Otherwise, if the selected VCPU is not in BOOST state,

then checking the color of the VCPU. If it is black, the

time slice will be set to a value calculated according to

Eq. (1). Otherwise, if it is red, indicating the time slice

calculated previously has expired, and the algorithm

needs to recalculate it.

3) Locking the entire run queue, counting the VCPUs and

recalculating the time slice according to Eq. (1), then

setting all VCPUs to black and storing the time slices

into each PCPU’s local structures.

4) Setting the time slice of the forthcoming VCPU to the

just calculated value and switching off it.

D. Algorithm Combinations

The three proposed algorithms are independent of each

other. They are designed for different problems and invoked

at different time during the execution. Currently, the LB

algorithm for load balancing the BOOST VCPUs is invoked

by the hypervisor after a BOOST VCPU is inserted into a

queue and before the scheduler is tickled. This is reasonable

under the assumption that each BOOST VCPU has an equal

opportunity to preempt the running VCPU, implying that the

driver domain can be scheduled out at any time. However, this

assumption is not always true when considering the effects of

the prevention algorithm (PPP) since the driver domain cannot

be preempted arbitrarily. In this situation, the prevention

algorithm should be designed in conjunction with the load

balancing algorithm for further performance improvements.

More specifically, according to the original scheduler, after

an VCPU is boosted, it likely preempts the running driver

domain even though it has pending packets. However, in

our implementation, this premature preemption is temporarily

forbidden, and a new PCPU has to be selected for this new

woke-up BOOST VCPU with the stated load balancing in

mind. Therefore the performance can be improved. In contrast

to LB and PPP, the DTS algorithm is relatively isolated to be

completely implemented in the Credit scheduler, and invoked

when a VCPU is scheduled.

E. Remarks

Although our algorithm to SMB is effective to improve the

latency-sensitive applications as we will show in the empirical

studies in the next section, there is still some room left

unexplored for further improvements. For example, we did not

consider the temporal locality and queue features other than

the number of BOOST VCPUs in the current PCPU selection

criteria.

Like the proposed LB algorithm, the prevention algorithm

can also be improved as well. First, we can use a counter

vector instead of a bit vector to track the number of pending

packets in the driver domain. The advantage of using a counter

vector is that the values of the elements can be increased

or decreased on the fly with respects to the packet arriving

at or leaving from the driver domain, saving the work each

time to check the event channels. However, a problem with

this improvement is the size of the counter, the probabilistic

counting could be a potential solution to this problem for

further study. Second, as a side effect, the prevention algorithm

could pin down the driver domain to the PCPU if it has a large

number of pending packets, we therefore need new optimiza-

tions on both the scheduling algorithms and the network I/O

mechanisms running in due course to address this problem;

the current dynamic time slice may not suffice, but a large

time slice may also have negative effects on the fairness of the

Credit algorithm, especially for compute-intensive applications

on single-processor platforms.

Since the time slice for each selected VCPU, depending

its state, is different, the organization of the run queues may

have impact on the performance of the DTS algorithm. We

can organize all the logic CPUs in a red-black tree rather

than the linked list queue, which could be more efficient. It

is not necessary to assign a run queue of VCPU for each

PCPU, rather, we can assign a red-black tree for each group

to organize and maintain the VCPUs.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate our algorithms via intensive

empirical studies. After introducing the experimental setup, we

assess each proposed optimization by measuring the response

times of a latency-sensitive application. Our numerical results

show that the proposed optimizations can remarkably improve

the performance of the latency-sensitive tasks.

A. Experimental setup

Our experimental setup includes two physical machines and

32 virtual machines (excluding the driver domain). The two

physical machines are connected by a 100 Mbps Ethernet

and each of them is configured according to Table I. All

the virtual machines are installed on one physical machine

and managed by Xen-3.4.2 while the other one as a remote

machine communicates with those virtual machines.

We configure each domain based on Table II and use Cen-

tOS 5.2 as the guest OS in the driver domain (i.e., Dom0 in our

experiments). As the major goal of this research is to optimize

the latency-sensitive applications by reducing the response



TABLE I: Hardware configuration

CPU Intel Xeon E5462 2.80GHz

RAM 16GB RAM

Core Yorkfield (45 nm) / Stepping: C0
number of cores: 4

Logic processor 4

Socket Socket 771 (FC-LGA6)
frequency 2.80 GHz (400 MHz ×7.0)

FSB: 1600 MHz

L1 data cache 4× 32 KB, 8-Way, 64 byte lines

L1 code cache 4× 32 KB, 8-Way, 64 byte lines

L2 cache 2× 6 MB, 24-Way, 64 byte lines
rate: 2800 MHz

HardDisk 320G IDE

NIC 100Mbps

TABLE II: Domain (VM) configuration

Kernel “/boot/vmlinuz-2.6.18.8-xen”

Ramdisk “/boot/initrd-2.6.18.8-xen.img”

Memory 256

Name “DomU”

VCPUs 2

Disk [‘file:/dom1.img, hda1, w’]

Root “/dev/hda1 ro”

time, we deliberately select the ping and a basic search

(BS) programs as our benchmarks since these programs are

usually adopted for this purpose in the literature. Concretely,

a remote system is used to send pings to the guest who only

acknowledges the receipt of the ping packets without doing

any other computations. We use this benchmark to measure the

network latency whereby to evaluate our proposed algorithms.

B. Evaluations on the Load-Balancing of BOOST VCPUs

To evaluate the LB optimization on the BOOST domains,

we first create 20 guest domains in this experiment which are

evenly divided into two groups, each with 10 virtual machines.

We then allow each machine in the second group to ping a

machine in the first group every second in order to generate

a large amount of BOOST VCPUs. We then measure each

ping response time. The comparison results before and after

the improvement are shown in Fig. 3. It is clear that the

packet response time is not only dramatically reduced after

the optimization but also relatively stable between each ping

operation. This demonstrates the benefits of the load balancing

among the BOOST domains.

This phenomenon is not difficult to understand as during

the scheduling, the BOOST VCPUs are organized to wait in

the run queue, which would cause the VCPUs in the front

of the queue to have more opportunities to get scheduled

quickly and thus shorten the ping response time; but for the

VCPUs in the rear of the queue, they would get scheduled

slowly, lengthening the ping response time and resulting in the

unstableness. In contrast, after the improvements with the load

balancing, BOOST VCPUs are distributed evenly into each

PCPU’s run queue so that in average the number of BOOST

VCPUs in each run queue is decreased accordingly. As a

result, even a BOOST VCPU at the backend of the run queue

would not be waiting too long. Therefore, the ping response

time is fluctuated little, approximately around 0.08ms, which

is relatively stable compared with the before improvement.
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Fig. 3: The runtime of ping program before and after being improved.

C. Evaluations on Prevention of the Premature Preemption

As the system performance will be degraded if the back-

end driver is frequently switched off in the process of dis-

patching network packets, the number of domains involved

in this experiment should be increased accordingly so that

the advantages of this optimization would be prominently

displayed. To this end, we still create 20 virtual machines and

another machine to ping these 20 virtual machines. In this way,

a large number of the ping packets have to be dispatched by the

backend dispatcher to multiple blocked VCPUs. We measure

the distribution of the response time of the first 1000 ping re-

quests as the metric to evaluate the optimization. Fig. 4 shows

the comparison results on the distribution before and after the

improvements. From this figure, we can clearly see that a large

percentage of the response time before the improvement falls

into the interval greater than 0.10ms whereas for the improved

results, it is less than 0.10ms, demonstrating the effectiveness

of our improvement to the latency-sensitive applications.

The results are straightforward: before the improvement,

due to the extensive communications between the number of

guest domains, it is highly likely that the VCPUs allocated

to the back-end driver domain would be preempted by the

VCPUs that just woke up in other domains. Consequently, it

would delay to wake up some other VCPUs to dispatch the

ping packets. This is evidenced by the hash bars in Fig. 4

where the ping response time that is greater than 0.1ms

occupies a large percentage (close to 47%) of the total results.

With the PPP optimization, the VCPUs in the back-end driver

domain are prevented from being switched off during the

packet dispatching. As a result, the ping response time after

improved is less than 0.1ms in a large part (about 75%) as

shown by the dotted bars in Fig. 4.

D. Evaluations on Dynamic Time Slices

Although the DTS algorithm is designed to optimize the

response time of each individual latency-sensitive task when

the run queue length is short, it may also effect the overall

performance of other tasks as a whole, especially the compute-

intensive tasks. To evaluate the algorithm in a comprehensive
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Fig. 4: The ping time distribution before and after the improvement.
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Fig. 5: Mean response time before and after DTS improvement

way, in the following set of experiments, we focus on the

evaluations of its impact on both the mean response time of

the latency-sensitive applications and the average turnaround

time of the system as well. Our results show that with the

dynamic time slice, both the mean response time and the

average turnaround time can be more or less improved.

1) Mean Response Time of VCPUS: In this experiment, we

measure the mean response time of VCPUS by adopting the

BS benchmark. To this end, we first configure the measured

machine as a search server, which includes four guest OSes,

and observe the responses to the search requests in different

intensities from these guest OSes. We then use the average

of the response time over the four guest OSes as a metric to

evaluate the DTS algorithm.

As shown in Fig. 5, the mean response time after the

DTS improvement is gradually reduced compared to when

the improvement is not employed. This observation is not

surprisingly. As the search service is deployed in the virtual

machines, it could happen that there are multiple processes

running on the same VCPU. When the VCPU is boosted,

in addition to the I/O processes, other compute-intensive

processes would enable the BOOST VCPU to execute a long

time, which is not necessary. After the improvements, the time

slice is adjusted to 2ms, only allowing the I/O processes to

have the BOOST VCPUs while others having the UNDER

VCPUs. In the figure, when the request intensities are low,

the mean response time before and after the improvements is

almost the same. This is because in this case, there are not

that many BOOST VCPUs waiting in the queue. However,

with the intensity growth, the results after the improvements

is clearly better than those before improved because a large

number of BOOST VCPU could be produced as a result of

the ever-increasing requests.

2) Average Turnaround Time: In Credit scheduler, the time

slice for the UNDER VCPUs is set to 30ms whereas in the

improved algorithm, we adjust this value for the UNDER

VCPUs based on their queue lengths and optimize the case

when such a queue length is less than a default value.

In the measurements, to avoid the impact of the multicore

architectures on the scheduling algorithm, we deliberately

conduct the experiment on a single PCPU by creating different

a number of guest OSes, which could further result in a

different number of VCPUs for the same PCPU. Additionally,

we deploy SysBench [7] on each gust OS and adopt its prime-

sum3 as the benchmark to measure the CPU performance.

Table III shows the compared average turnaround times

between the after-improved and the before-improved when the

number of VCPUs in the run queue is varied from 1 to 8.

Given the default queue length of 4, we can observe that

the turnaround times after the improvements are obviously

lower than those before the improvements, and the difference

between them is gradually increased with respects to the

execution time as shown in Fig. 6. The reason is that when

the number of UNDER VCPUs is less than the default value,

the algorithm sets the time slice by 60ms in order to minimize

the scheduling overhead. However, when the queue length of

the UNDER VCPUs is greater than the default value, both

the improved and unimproved algorithms have the same time

slice of 30ms. As a result, they exhibit approximately the

same turnaround time. These results demonstrate that when the

number of UNDER VCPUs in the queue is small, increasing

the time slice can clearly improve the system performance.
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Fig. 6: Difference of the average turnaround time between before-
improved and after-improved (the default VCPU queue length is 4).

VI. RELATED WORK

Improving the Credit scheduler to assure that I/O domains

will get timely response has long been an active research topic.

3The testing command line is “sysbench –test=cpu –cpus-max-
prime=100000 run”.



TABLE III: Compared turnaround times for the SysBench Prime-Sum benchmark. The default VCPU queue length is 4.

#VCPU 1 2 3 4 5 6 7 8

Before-improved (s) 361.823 724.438 1086.978 1452.598 1807.154 2215.224 2533.542 2895.687
After-improved (s) 361.758 722.989 1084.652 1447.488 1807.065 2215.439 2533.453 2895.406

Although various methods have been proposed [4], [5], [8]–

[11], in practice I/O latency is still an obstacle, leaving much

room unexplored for further improvements. Govindan et al. [8]

proposed a communication-aware scheduling to preferentially

scheduling communication-oriented domains over compute-

intensive counterparts by scarifying a short-term fairness. Sim-

ilarly, Ongaro et al. [5] advocated a boost/tickle mechanism

to favor the scheduling of I/O domains as we discussed.

To supplement this mechanism with knowledge about the

characteristics of guest-level tasks for further achieving both

low I/O latency and fair CPU allocation, a task-aware VM

scheduling was proposed in [9]. Some related work pertain to

network virtualization techniques to fully exploit the benefits

of virtualization is summarized in [12]. Other research with

the same goal in the multicore environments includes [4],

[10], [11]. However, no one in these studies considers all the

problems we delved into in this paper.

SMB was first identified by Ongaro et al. [5] in their original

paper of introducing BOOST, and later studied in [6] for

real-time Credit scheduling. However, the unbalanced BOOST

VCPUs caused by this problem on multiprocessor platforms

has not yet aroused much attention in the literature. To our

best knowledge, we are the first to investigate this special load

balancing problem. The PP problem was also first discussed

in Ongaro et al. [5] but has not been well studied since

then. Yoo et al. [6] investigated this problem from a real-

time prospective by proposing three strategies. However, their

methods are incomparable with ours presented in this paper

since our goal is not for real-time computing.

Ongaro et al. introduced the ideal of disabling scheduler

tickle to prevent the PP problem in [5] but left unexplored.

Our method can be viewed as an extension of their idea to the

multiprocessor platforms. The subtle, but important extension

is that we allow the scheduler to be tickled, yet forbid when

scheduling the PCPU, on which the driver domain is running.

Chen et al. [4] discussed dynamic time slice problem

based on their analysis on the ineffective holding time in the

communication-intensive multiprocessing programs. Similar to

ours, they also suggested a set of formulae to compute the

variable time slice in order to dynamically scale the context

switching frequency. However, their goal is to reduce the

actual execution time of the program whereas our goal is to

improve the response time of each scheduled BOOST VCPU.

VII. CONCLUSIONS

In this paper, we presented three improvements to the

Credit scheduler in Xen for latency-sensitive applications on

multicore systems. These improvements are motivated by the

observations on the performance flaws in the current Xen

default VM scheduler implementations. The first improvement

is the load balancing of BOOST domains to to mitigate the

adverse impact of the identified SMB issue. The second is the

prevention of the premature preemption to improve the Credit

scheduler to address the PP problem for the latency-sensitive

applications. The last one is the dynamic time slice which

can be adjusted in the runtime as a reaction to the changes

of the number of VCUPs in the run queue. Our empirical

results show that the proposed improvement can remarkably

boost the performance of latency-sensitive applications with

minimized the mean response time of VCPUs without have

adverse impact on the average turnaround time of the compute-

intensive applications.
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