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Let  and  be real - valued continuous functions and ( ptf , ) )( qtg , p  and q  be  cons-

tants, where denotes a set of positive rational numbers. Convolution of 

+Q

+Q ( )f pt,  and 

, denoted by ( )q,tg ( ) ( )qtgp ,∗tf ,  is defined by  

( ) ( ) ( ) ( )∫ −=∗
t

dvqvtgpvfqtgptf
0

,,,, , 

where  denotes convolution operation, provided that the integral exists. From the 

definition of convolution, we introduce a new relation as follows  

∗

( ) ( ) ( ) ( )qt,pgqp,tfq,tgp,tf ++=∗ or     , 

where  denotes an ordinary addition. The new relation is called extension of con-

volution semigroup. Objective of the study is to discover the necessary and sufficient 

condition for the new relation. The study is based on Laplace transformable functions. 

Convolution Theorem in Laplace transform is used to verify the new relation. It is im-

possible to achieve the new relation directly since most of the transforms are rational 

+



polynomial functions. Furthermore, any transform in terms of exponential function is 

different from one another.  However, we overcome the problem by 

 

(a)  Identity property under convolution such that ( ) ( ) (tftįtf )=∗ , where ( )tf  is a 

real - valued continuous function, which has Laplace transform and ( )tį  is the 

delta function and it is the identity function under convolution. The Laplace 

transform of delta function ( )tį  is 1. 

 

(b)  Under certain condition, the delta function ( )tį  is a convolution semigroup such 

that ( ) ( ) ( )qp,tįq,tįp,tį +=∗ . 

 

(c)  Delta function  can be replaced by other function under certain condition.  ( )tį

With (a), (b) and (c), we discover the following results: 

 

Proposition 1 Let ( ) ( )tpfptf ε=,  and ( ) ( )tqgqtg =,  for  such that 0≥t ( ) ( )tgtf ≠ε  

                        and ( ) ( ) 1lim
0

== ∫∫
⊂

→
dttgdttf

RRI

İİ
İ

.   

Then 

                    ( ) ( ) ( ) ,,, qptfqtgptf +=∗ if and only if ( )[ ] 0≠tfL ε  and ( )[ ] 1=tgL , 

or 

                   ( ) ( ) ( ) ,,, qptgqtgptf +=∗  if and only if ( )[ ] 1=tfL İ  and ( )[ ] ,0≠tgL  



where p and are  constants with q +Q 1
11
=+

qp
 and  is an interval of the point with 

neighborhood. 

εI

İ

                              

Proposition 2 Let  and ( )tf İ ( )tg  be given real - valued functions with ( ) ( ) 0== tgtf İ    

                        for . Let 0<t ( ) ( )ptfptf −= ε,  and ( ) ( )qtgqtg −=, . ( ) ( )tgtf ≠ε  and   

                        ( ) ( ) 1lim
0

== ∫∫
⊂

→
dttgdttf

RRI

İİ
İ

. 

Then 

                   ( ) ( ) ( ) ,,, qptfqtgptf +=∗ if and only if ( )[ ] 0≠tfL ε  and ( )[ ] 1=tgL , 

 or 

                    ( ) ( ) ( ) ,,, qptgqtgptf +=∗ if and only if  ( )[ ] 1=tfL ε  and ( )[ ] 0≠tgL , 

where p  and q  are  constants and  is an interval of the point with neighborhood. +Q εI İ

 

Proposition 1 is called scale form of the functions f and g, while Proposition 2 is called 

shift form of the functions  f and g. The extension of convolution semigroup is formed 

by a non - impulsive and an impulsive function such that the non - impulsive function is 

an approximation of the impulsive function under certain condition, where all functions 

in this study are both real - valued continuous and of exponential order.  

 

The study has shown that it is not necessary depend on the same function in order to get 

the new relation. This study is only true for the conditions described by Propositions 1 

and 2. 
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Katakan  dan  ialah fungsi nyata yang selanjar dan ( ptf , ) )( qtg , p  dan q  ialah pemalar 

dari , dimana  ialah set nombor rasional  positif.  Konvolusi  dan +Q +Q ( p, )tf ( )qtg , , 

iaitu , ditakrifkan sebagai ( ) tgp, ∗ ( q, )tf

( ) ( ) ( ) ( )∫ −=∗
t

dvqvtgpvfqtgptf
0

,,,, , 

dimana  mewakili konvolusi dan dengan syarat kamiran wujud.  Daripada definisi 

konvolusi, diperkenalkan satu hubungan baru seperti berikut: 

∗

( ) ( ) ( ) ( )qt,pgqp,tfq,tgp,tf ++=∗ atau     , 

dimana  mewakili operasi penambahan. Hubungan baru tersebut  dikenali sebagai 

lanjutan kepada semikumpulan konvolusi. Objektif kajian ini ialah mengkaji syarat perlu 

dan cukup untuk hubungan baru tersebut. Kajian ini berdasarkan fungsi penjelmaan 

Laplace. Teorem Konvolusi dalam jelmaan Laplace digunakan untuk mengesahkan 

hubungan baru tersebut. Adalah mustahil untuk mencapai hubungan baru tersebut secara 

langsung kerana kebanyakan jelmaan berbentuk pecahan fungsi polinomial. Malahan, 

+



sebarang jelmaan dalam bentuk fungsi eksponen adalah berbeza antara satu sama lain.  

Walau bagaimanapun, masalah ini ditangani dengan 

 

(a)  Sifat identiti bagi konvolusi sedemikian hingga ( ) ( ) (tftįtf = )∗ , dimana ( )tf  

ialah sebarang fungsi selanjar iaitu jelmaan Laplace dan  adalah fungsi delta 

dengan fungsi identiti untuk konvolusi. Jelmaan Laplacenya adalah 1. 

( )tį

 

(b)  Bagi keadaan tertentu, fungsi delta ( )tį  merupakan semikumpulan konvolusi 

sedemikian hingga ( ) ( ) ( ).qįq,tįp,tį p,t +=∗  

 

(c)  Fungsi delta  boleh digantikan dengan fungsi lain bagi keadaan tertentu. ( )tį

Dengan (a), (b)  dan  (c), keputusan berikut diperolehi: 

 

Cadangan 1  Katakan ( ) ( )tpfptf ε=,  dan ( ) ( )tqgqtg =,  untuk  sedemikian  0≥t

                       hingga ( ) ( )tgtf ≠ε  dan ( ) ( ) 1had
0

== ∫∫
⊂→

dttgdttf

RRI

İ
İ

İ

.  

Maka     

                    ( ) ( ) ( ) ,,, qptgqtgptf +=∗  jika dan hanya jika  dan ( )[ ] 0≠tfL İ

( )[ ] 1=tgL , 

atau  

                        ( ) ( ) ( ) ,,, qptgqtgptf +=∗  jika dan hanya jika  dan ( )[ ] 1=tfL İ

( )[ ] 0≠tgL , 



dimana p  dan q  adalah pemalar  dengan+Q 1
11
=+

qp
  dan   adalah  selang suatu 

titik dengan kejiranan İ . 

εI

 

Cadangan 2  Katakan  dan ( )tfε ( )tg  ialah fungsi nyata yang selanjar diberi, dengan  

                      untuk ( ) ( ) 0== tgtfε 0<t . Katakan ( ) ( )ptfptf −= ε,  dan  ( ) =qtg ,  

          .( )qtg − ( ) ( )tgtf ≠ε  dan ( ) ( ) 1had
0

== ∫∫
⊂→

dttgdttf

RRI

İ
İ

İ

.  

Maka  

                       ( ) ( ) ( ) ,,, qptfqtgptf +=∗ jika dan hanya jika ( )[ ] 0≠tfL ε  dan   

                                                             ( )[ ] 1=tgL , 

atau 

                      ( ) ( ) ( ) ,,, qptgqtgptf +=∗ jika dan hanya jika ( )[ ] 1=tfL İ  dan   

     ( )[ ] 0≠tgL , 

dimana p dan q  adalah pemalar  dan  adalah  selang suatu titik dengan kejiranan 

. 

+Q εI

İ

 

Cadangan 1 dikenali sebagai bentuk skala untuk fungsi  dan f g , manakala Cadangan 2 

pula dikenali sebagai bentuk alih untuk fungsi  dan f g . Lanjutan kepada semikumpu-

lan konvolusi ini dibentuk oleh fungsi bukan jenis denyut dan fungsi jenis denyut sede-

mikian hingga fungsi bukan jenis denyut tersebut merupakan penghampiran kepada 

fungsi jenis denyut dibawah keadaan tertentu, dimana semua fungsi dalam kajian ini 

adalah nyata, selanjar dan tertib eksponen.  



Kajian ini menunjukkan bahawa untuk mendapatkan hubungan baru adalah tidak 

bergantung kepada fungsi yang sama. Kajian ini hanya benar untuk syarat yang 

digariskan oleh  Cadangan 1 dan 2. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Convolution 

 

According to Zayed (1996), Hirschman and Widder (1955) were pioneers the theory of 

convolution presented in a book entitled by The Convolution Transform. Particularly, in 

that book they showed that for a certain class of kernels, the convolution covers a variety 

of different integral transform. While, according to Bronstein (2007), integral transforms 

have a large field of application in the solution of practical problems in physics and 

engineering. They are suitable to solve ordinary and partial differential equations, 

integral equations and difference equations.  

 

Krabbe (1958) was studied on convolution from a point of spectral theory. Convolution 

in a convex domain and singular support was studied by Hormander (1968). Essein 

(1963) was analyzed in detailed on a convolution inequality. Treatment of convolution 

in distribution theory was studied by Csiszár (1966). Lin (1966) was studied on convo-

lution semigroup associated with measured - valued branching processes. Numerical so-

lution for a convolution integral equation was analyzed by Day (1969). Terms of convo-

lution semigroup were frequently addressed in a book written by Berg (1976a). Berg 

(1976b) was studied on the support of the measures in a symmetric convolution semi-

group. Hill (1980) was studied on spectral analysis of finite convolution operators with 

matrix kernels. Babenko (1987) was studied on approximation of convolution classes. 



Budzban and Mukherjea (1992) studied on convolution products of non - identical dis-

tributions on a topological semigroup. Necessary and sufficient conditions for the con-

vergence of convolution products of non - identical distributions on finite abelian semi-

groups were obtained by Budzban (1994). Budzban and Rusza (1997) were studied on 

convergence of convolution products of probability measures on discrete semigroups. 

Mukherjea and Hognas (2003) were analyzed on maximal homomorphic group image 

and convergence of convolution sequences on a semigroup. Mukherjea and Budzban 

(2004) were studied on sub - semigroups of completely simple semigroups and weak 

convergence of convolution products of probability measures.  

 

There are various developments of convolution in various disciplines. Most recently, 

biological cybernetics, Wyler (2007) has studied on neural network firing rate - models 

on integral form. Classification and matricial interpretation of infinitely divisible dis-

tributions for rectangular free convolution was obtained by Benaych - Georges (2007). 

 

Definition 1.1: Convolution of two real - valued continuous functions  and  f g  over a 

finite range [  is defined by  ]t,0

( ) ( ) ( ) ( ) τdτtgτftgtf

t

−=∗ ∫
0

, 

 

(1.1)

where the symbol  denotes convolution of  and gf ∗ f g . Constant functions, arbitrary 

periodic functions, polynomials and exponential functions are suitable for finite type.  

Definition 1.2: Convolution of two real - valued continuous functions  and  over an 

infinite range is defined by 

f g



( ) ( ) ( ) τdτtgτft −= ∫
∞

( ) gtf ∗
∞−

. 

 

(1.2) 

 

Usually, convolution satisfies the following properties: 

a) Commutative ( ) ( ) ( ) ( )tftgtgtf ∗=∗ . 

b) Associative ( ) ( )( ) ( ) ( ) ( ) ( )( )thtgtfthtgtf ∗∗=∗∗ . 

c) Distributive over addition ( ) ( ) ( )( ) ( ) ( ) ( ) (thtftgtfthtgtf ∗ )+∗=+∗
. 

 

1.2 Integral Transform and Convolution 

 

Let T  represents a general integral transform for arbitrarily function . An integral 

transformation or simply integral transform is a correspondence between two functions 

 and  in the form of 

( )tf

(tf ) ( )[ tfT ]

)

( )[ ] ( ) ( ) dttftsKtfT

b

a

∫= , , 

 

(1.3)

 

 

where  is called the kernel of the transform, ( tsK , ( )tf  is a given function and ( )[ ]tfT   

is the transform function. If limits  and b  are finite, then a ( )[ ]tfT   is said to be the 

finite transform of . There are more than ten types of integral transform. More 

recently, some new integral transforms have been introduced for use in pattern 

recognition and characterizing signals such as the Wavelet transform, the Gabor 

transform and the Walsh transform. The inverse transform of a transform for the given 

function is denoted by  

( )tf

f



( )[ ][ ] ( )tftfTT =−1 . 

 

The determination of the inverse transform means the solution of the integral equation, 

where the function  is given and ( )[ tfT ] ( )tf  is to be determined.  The explicit determi-

nation of inverse transform for different integral transform for different kernels belongs 

to the fundamental problems of the theory of integral transform. In the present study, we 

narrowed to Laplace transform since it is a center of the present study.  

 

We will discuss briefly on Fourier and Mellin transform because they are closely related 

to Laplace transform. 

 

For a function  defined on ( )tf [ )∞,0 , its Laplace transform is denoted as ( )[ tfL ] obta-

ined by the following integral 

( )[ ] ( ) ( ) ( )∫
∞

−==
0

exp dttfstsFtfL , 

 

(1.4)

 

 

where  is a complex variable such that the integral converges. For an absolutely integ-

rable   defined on 

s

(tf ) R , its Fourier transform   is F

( )[ ] ( ) ( ) ( )∫
∞

∞−

−== dttftωiωFtfF exp , 

 

(1.5)

 

where ωis = , ω  is a real  number such that the integral converges.  For a function ( )tf  

defined on , its  Mellin transform ( ,0 )∞ M  is 

( )[ ] ( )∫
∞

−=
0

1 dttfttfM s , 

 

(1.6) 

 



where  is a complex variable such that the integral converges. From the above for-

mulas (1.4), (1.5) and (1.6),  and  are often taken to be real and  is assumed to be 

a real - valued continuous function. However the most general integral transform 

s

t s ( )tf

T  to 

be considered will be one in which all variables are complex. We only treated for real 

case since it is relevant to the study.   

 

Next, we discuss the presence of convolution theorem in different kinds of integral 

transform that centered on Laplace transform. 

 

1.3 Laplace Transform 

 

Deakin (1981) was studied and followed the development of Laplace transform from its 

earliest beginnings 1737 to 1880, where it was addressed that Laplace (1779) was a pio-

neer the theory of Laplace transform. Historically the development begins when the sea-

rch for solutions to differential equations in the form of definite integrals of certain ty-

pes. The theory of Laplace transform has a long history, dating back to Euler (1737). 

The development of the Laplace transform as an attempt to rigorize the Calculus of Ope-

rator. Petzval (1858) was studied on the technique of Laplace’s greatest exponent, where 

he had brought the theory to its highest development, but even this did not incorporate 

contour integrals in the fresh sense. He did have a version of the inversion for-mula; it 

was not a tractable one, although a theorem equivalent to our modern inversion formula 

was available in the contemporaneous work of Riemann (1860). One of the earliest pre-

vious histories of the Laplace transform have been by Spitzer (1878). Shortly, the years 



1737 - 1880 saw the gradual development of a body of theory centered on what we 

would now term the Laplace transform. However, the theory was incomplete and most 

noticeably in its failure to incorporate the full power of complex analysis.  

 

Deakin (1982) was also studied and followed the development of Laplace transform 

from 1880 to 1937. Poincare (1898) inaugurated the new era of Laplace transform toget-

her with independent work by Schlesinger (1992), particularly in the hands of Pincherle 

(1915). In between 1880 - 1937, there were rapid developments followed, ultimating in 

Doetsch (1937), in which the transform took its modern shape. 

 

On the ascendancy of Laplace transform was also studied by Deakin (1992), where it 

was addressed that the transform is now very widely used in mathematics itself and in its 

applications, particularly in electrical engineering. The Laplace transform is employed in 

the solution of differential equations, difference equations and functional equations; it 

allows ready evaluation of certain integrals and claims connection with number theory, 

which all in addition to the interest that the transform itself holds within functional 

analysis. In addition, it was addressed that the modern Laplace transform is relatively 

recent. 

 

1.4 Existence and Uniqueness 

 

Existence and uniqueness of Laplace transform are very important in the study of 

Laplace transform.  

 



Definition 1.3: A function ( )tf  is a piecewise continuous on a finite interval [  if  

is continuous on [  , except possibly at finitely many points   

]

]

ba, f

ba, .,,,
21 n

ccc L

 

Definition 1.4: A function ( )tf  is said to be of exponential order if there exists con-

stants M  and α , such that ( ) ( )tαM exp≤tf  for all [ )∞∈ ,0t , and .  0≥α

 

Theorem 1.1: Existence Theorem for Laplace transform: If  

a) ( )tf   is piecewise continuous on [ )∞,0 . 

b) ( )tf  is an exponential order on [ )∞,0 .  

then the Laplace transform of ( )tf , that is, ( )[ ] )s(FtfL =  exists for . αs >

 

Proof 

Let  is piecewise continuous on ( )tf [ )∞,0 , then ( ) ( )tfst−exp  is integrable on [ )∞,0 . 

Assume  

( )[ ] ( ) ( )

( ) ( )

( ) ( )

( )( )( )∞

∞

∞

∞

−−
−

=

−≤

−≤

−=

∫

∫

∫

0

0

0

0

exp

expexp

exp

exp

tαs
sα

M

dttαMst

dttfst

dttfsttfL

 



                                                            .
αs

M

−
=  

Then,   for αs > ( )[ ] ∞<tfL . 

 

There are real - valued continuous functions ( )tf , which are not exponential order, but 

Laplace transform of  exist or otherwise. Therefore conditions for Laplace tranform 

to exist are sufficient. For example, 

( )tf

t
tf

1
)( =  does not satisfy the exponential order 

condition but ⎥
⎦

⎤
⎢
⎣

⎡
t

L
1

 exists. 

( )∫
∞

−−=⎥⎦

⎤
⎢⎣

⎡

0

2

1

exp
1

dttst
t

L . 

Taking xst =  

( ) ( )

( ) ( )∫

∫∫

∞
−

∞ −∞
−

−⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛−=−

0

00

2

12

1

2

1

2

1

exp
1

expexp

dxxx
s

s

dx

s

x
xdttst

 

   

.

2

11

s

s

π

Γ

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 

All functions in this study are both real - valued continuous and of exponential order. 

 

 


