
Murano Administrator's Guide

Murano Administrator's Guide

v0.2

Publication date 2013-09-09

Copyright ©

Abstract

This document is intended for individuals who wish to install and use our product or intend to contribute.

iii

Table of Contents

1. General Deployment Steps ... 1

Prepare A Lab For Murano .. 1

Lab Requirements ... 1

Test Your Lab Host Performance .. 1

Baseline Data .. 2

Host Optimizations ... 3

Install OpenStack ... 3

Configure OpenStack .. 4

2. Install Murano Components .. 5

Automatic Installation ... 5

Manual Installation ... 6

Pre-Requisites .. 6

Murano API Service ... 7

Conductor Service ... 10

Murano Dashboard .. 13

SSL configuration ... 14

3. Image Builder ... 17

Install Required Packages ... 17

Configure Shared Resource .. 18

Prerequisites ... 18

Additional Software .. 20

Build Windows Image (Automatic Way) ... 21

Build Windows Image (Manual Way) .. 22

Upload Image Into Glance .. 24

4. Troubleshooting .. 26

5. Appendix ... 28

iv

List of Tables

1.1. Hardware requirements .. 1

1.2. OS Requirements ... 1

1

Chapter 1. General Deployment Steps

Prepare A Lab For Murano

This section provides basic information about lab's system requirements. It also contains a description of

a test which you may use to check if your hardware fits the requirements. To do this, run the test and

compare the results with baseline data provided.

Lab Requirements

Table 1.1. Hardware requirements

Criteria Minimal Recommended

CPU 4 core @ 2.4 GHz 24 core @ 2.67 GHz

RAM 8 GB 24 GB or more

HDD 2 x 500 GB (7200 rpm) 4 x 500 GB (7200 rpm)

RAID Software RAID-1 (use mdadm as it will

improve read performance almost two

times)

Hardware RAID-10

There are a few possible storage configurations except the shown above. All of them were tested and were

working well.

• 1x SSD 500+ GB

• 1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto the HDD and mount the

SSD drive to folder where VM images are)

• 1x HDD (15000 rpm) 500+ GB

The list of OSes which we used in our lab is shown below.

Table 1.2. OS Requirements

List

Ubuntu Server 12.04 LTS

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows system simultaneously. You can

use this data as the baseline to check if your system is fast enough.

You should use sysprepped images for this test, to simulate VM first boot.

Steps to reproduce test:

1. Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let's assume that its name is

ws-2012-std.qcow2

2. Ensure that there is NO KVM PROCESSES on the host. To do this, run command:

General Deployment Steps

2

># ps aux | grep kvm

3. Make 5 copies of Windows image file:

># for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

4. Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm \
 -m 1024 \
 -drive file=ws-2012-std-$i.qcow2,if=virtio \
 -net user -net nic,model=virtio \
 -nographic \
 -usbdevice tablet \
 -vnc :$i &
done

5. Start ONE instance with command below (as root) and measure time between VM’s launch and the

moment when Server Manager window appears. To view VM’s desktop, connect with VNC viewer to

your host to VNC screen :1 (port 5901):

># ./start-vm.sh 1

6. Turn VM off. You may simply kill all KVM processes by

># killall kvm

7. Start FIVE instances with command below (as root) and measure time interval between ALL VM’s

launch and the moment when LAST Server Manager window appears. To view VM’s desktops, connect

with VNC viewer to your host to VNC screens :1 thru :5 (ports 5901-5905):

># ./start-vm.sh 5

8. Turn VMs off. You may simply kill all KVM processes by

># killall kvm

Baseline Data

The table below provides baseline data which we've got in our environment.

Avg. Time refers to the lab with recommended hardware configuration, while Max. Time refers to

minimal hardware configuration.

General Deployment Steps

3

Boot ONE instance Boot FIVE instances

Avg. Time 3m:40s 8m

Max. Time 5m 20m

Host Optimizations

Default KVM installation could be improved to provide better performance.

The following optimizations may improve host performance up to 30%:

• change default scheduler from CFQ to Deadline

• use ksm

• use vhost-net

Install OpenStack

Murano works great with Openstack packages installation as well as devstack installation. For now we

support Openstack Grizzly and working on Havana integration.

• For Openstack Grizzly installation follow the documentation [https://github.com/mseknibilel/

OpenStack-Grizzly-Install-Guide]. In addition to that Heat [https://wiki.openstack.org/wiki/Heat]

should be installed. Follow the link to setup Heat on Ubuntu [http://openstack.redhat.com/

Deploy_Heat_and_launch_your_first_Application] and on CentOS [http://docs.openstack.org/

developer/heat/getting_started/on_ubuntu.html].

• For a Devstack installation take a look at this page [http://devstack.org/].

Warning

Murano Dashboard component should be installed on a separate node in case of devstack

installation

Use Devstack's guide to install single VM OpenStack (http://devstack.org/guides/single-vm.html

[http://devstack.org/guides/single-vm.html])

localrc example.

HOST_IP=
FLAT_INTERFACE=
FLOATING_RANGE=

ADMIN_PASSWORD=swordfish
MYSQL_PASSWORD=swordfish
RABBIT_PASSWORD=swordfish
SERVICE_PASSWORD=swordfish
SERVICE_TOKEN=tokentoken

ENABLED_SERVICES+=,heat,h-api,h-api-cfn,h-api-cw,h-eng

Image's cache is in $TOP_DIR/files

General Deployment Steps

4

IMAGE_URLS+=",http://fedorapeople.org/groups/heat/prebuilt-jeos-images/"
IMAGE_URLS+="F17-x86_64-cfntools.qcow2"

/etc/nova/nova.conf
EXTRA_OPTS=(force_config_drive=true libvirt_images_type=qcow2 force_raw_images=false)

Logging
SCREEN_LOGDIR=/opt/stack/log/
LOGFILE=$SCREEN_LOGDIR/stack.sh.log

If you need to image builder only, then install only packages required to run KVM (see below).

Configure OpenStack

Note

Additional OpenStack configuration usually doesn't required in case you've installed OpenStack

with Devstack scripts.

5

Chapter 2. Install Murano Components
This chapter describes how to install Murano components on a separate devbox. We strongly recommend

to use a separate host (virtual machine or real host) for Murano devbox as it prevents you from various

dependency conflicts.

Automatic Installation

There is a script to automate Murano installation onto devbox.

• Create a folder to hold cloned repositories

># mkdir -p /opt/git

• Clone murano-deployment repository

># cd /opt/git
># git clone git://github.com/stackforge/murano-deployment.git

• Change directory to murano-deployment and switch to required branch (e.g.master)

># cd /opt/git/murano-deployment
># git checkout -b master origin/master

• Install prerequisites

># cd /opt/git/murano-deployment/devbox-scripts
># ./murano-git-install.sh prerequisites

• Configure the following parameters in lab binding configuration file /etc/murano-deployment/lab-

binding.rc

• LAB_HOST - IP or nostname of the lab. Actually, this address/name should point to the host where

Keystone is installed.

• ADMIN_USER - OpenStack admin user

• ADMIN_PASSWORD - A password for OpenStack admin user

• RABBITMQ_USER - User to connect to RabbitMQ host

• RABBITMQ_PASSWORD - Password for that user

• RABBITMQ_VHOST - vHost which will be used by Murano components. Provides additional

layer of isolation from other devboxes.

• RABBITMQ_HOST - (optional) IP address or hostname of the host where RabbitMQ is installed

IF it is not the same host as LAB_HOST points to

Install Murano Components

6

• RABBITMQ_HOST_ALT - (optional) IP address or hostname of the RabbitMQ host to

connect from inside the Windows instance. In some cases the addresses like LAB_HOST or

RABBITMQ_HOST are inaccessible from instances, and they must use different address.

• FILE_SHARE_HOST - (optional) IP address or hostname of the host where file share with

prerequisites is located IF it is not the same host as LAB_HOST points to.

• BRANCH_NAME - branch name from which all Murano components will be fetched for installation

• SSL_ENABLED - Set 'true' if OpenStack is configured with SSL support and 'false' otherwise.

• SSL_CA_FILE - Path to CA certificate for certificate validation on client side.

• Install Murano components

># ./murano-git-install.sh install

• Login to the Dashboard using URL http://<your VM IP>/dashboard or http://<your VM IP>/

horizon

Manual Installation

This chapter describes manual installation and configuration of Murano services.

Note that all Murano modules can be downloaded from our page [https://launchpad.net/murano/] on

launchpad.

Automatic installation
Murano can be installed in automatic way. Script will install all necessary packages to your

system. Find out more about this in Getting Started Guide [http://murano-docs.github.io/0.2/

getting-started/content/ch04s02.html]

Pre-Requisites

Murano supports the following operating systems:

1. Ubuntu 12.04

2. RHEL/CentOS 6.4

These system packages are required for Murano:

Ubuntu

1. gcc

2. python-pip

3. python-dev

4. libxml2-dev

5. libxslt-dev

Install Murano Components

7

6. libffi-dev

CentOS

1. gcc

2. python-pip

3. python-devel

4. libxml2-devel

5. libxslt-devel

6. libffi-devel

All these packages will be installed in murano-installation scripts. In addition to these packages some

repositories are required. Please follow the instructions in the appendix to prepare your environment for

murano installation.

Murano API Service

Murano API provides access to the Murano orchestration engine via API.

This chapter describes the procedure of installation and condiguration of Murano API.

Install

• Superuser privileges is required to install and configure system packages. Let's switch to root account:

sudo su -

• Make sure that additional linux repositories are installed. See the appendix for information about

preparing a virtual machine for murano installation.

• Clone Murano API git repository:

git clone https://github.com/stackforge/murano-api

Stable version one of our releases [http://murano-docs.github.io/latest/developers-guide/content/

ch03s02.html] can be checked by tag:

git checkout 0.2

• Switch to just created directory and then perform installation

Ubuntu

Install Murano Components

8

sh murano-api/setup.sh install

CentOS

sh murano-api/setup-centos.sh install

• Successful installation ends with message like this:

Successfully installed muranoapi
Cleaning up...
LOG:> Making sample configuration files at "/etc/murano-api"
LOG:> Reloading initctl
LOG:> Please, make proper configuration,located at "/etc/murano-api", before starting the "murano-api" daemon!

Configure

• Copy and edit configuration files:

cd /etc/murano-api
cp murano-api.conf.sample murano-api.conf
cp murano-api-paste.ini.sample murano-api-paste.ini

vi murano-api.conf

• Configure it according to your environment:

• [DEFAULT] section sets up logging.

• [reports] section allows you to set up names for new rabbitMQ queues.

• In [rabbitmq] section you can set up host configuration where rabbitMQ with just created user and

vhost is running. If you consider to use Murano in production it;sbetter to use seperate vhosts in

RabbitMQ. To add new vhost and user with administrator rights preform:

rabbitmqctl add_user muranouser murano
rabbitmqctl set_user_tags muranouser administrator
rabbitmqctl add_vhost muranovhost
rabbitmqctl set_permissions -p muranovhost muranouser ".*" ".*" ".*"

Install Murano Components

9

• In [filter:authtoken] configure keystone auth_token. For more information see Auth-

Token Middleware with Username and Password [http://docs.openstack.org/developer/keystone/

configuringservices.html]

• Another murano-api configuration file located at /etc/murano-api/murano-api-
paste.ini not requires any changes.

For more information how to configure SSL take a look at SSL configuration chapter

•

Register murano-api service in Openstack.

Note: you need to be authorized in Openstack to run this commands. To do this, you can run something

like (having changed variables to appropriate values)

source $(YOUR_OPENSTACK_DIR)/openrc $(LOGIN) $(PASSWORD)

keystone service-create --name muranoapi --type murano --description "Murano-Api Service"

keystone endpoint-create

 --region RegionOne
 --service-id The ID field returned by the keystone service-create
 --publicurl http://x.x.x.x:8082 (where x.x.x.x - host ip where murano-api installed)
 --internalurl the same as publicurl
 --adminurl the same as publicurl

Run

• Run Murano API service:

Ubuntu

service murano-api start

CentOS

initctl start murano-api

Install Murano Components

10

Conductor Service

Conductor is a Murano orchestration engine that transforms object model sent by REST API service into

a series of Heat and Murano-Agent commands.

This chapter describes Conductor for contributors of the project.

Install

• Murano Conductor uses OpenStack Heat for new virtual machines creation, therefore Heat should been

installed and configured. Some services require the Internet access for virtual machines to successful

deployment.

The detailed information about Heat configuration is described here. [http://docs.openstack.org/

developer/heat/getting_started/index.html]

• OpenStack Heat require Key Pair for Load Balancer instances. Murano Conductor uses LoadBalancer

for IIS Farms and ASP.NET Farms. The default name for Key Pair is "murano-lb-key", you can change

this parameter in file /etc/murano-conductor/data/templates/cf/Windows.template

• Superuser privileges is required to install and configure system packages. Let's switch to root account:

sudo su -

• Make sure that additional repositories are installed. See the appendix for information about preparing

a virtual machine for murano installation.

• Clone Murano Conductor repository from the github.

git clone https://github.com/stackforge/murano-conductor

Stable version one of our releases [http://murano-docs.github.io/latest/developers-guide/content/

ch03s02.html] can be checked out by tag:

git checkout 0.2

• Switch to just created directory and then perform installation

Ubuntu

sh murano-conductor/setup.sh install

Install Murano Components

11

CentOS

sh murano-conductor/setup-centos.sh install

Configure

• Edit configuration file and take a look at inline comments:

cd /etc/murano-conductor
cp conductor.conf.sample conductor.conf

• Change configuration file according to your environment.

vi conductor.conf

• [DEFAULT]section is responsible for logging.

• [heat]points where heat is running.

• [rabbitmq]section points where your rabbitMQ installed and configured.

[DEFAULT]

Path where log will be written
log_file = /var/log/murano-conductor.log
Log verbosity
debug=True
verbose=True
data_dir = /etc/murano-conductor
Maximum number of environments that can be processed simultaneously
max_environments = 20

[keystone]
auth_url = http://localhost:5000/v2.0
ca_file =
cert_file =
key_file =
insecure = False

[heat]
Heat SSL parameters

Install Murano Components

12

Optional CA cert file to use in SSL connections
ca_file =
Optional PEM-formatted certificate chain file
cert_file =
Optional PEM-formatted file that contains the private key
key_file =
If set then the server's certificate will not be verified
insecure = False
Valid endpoint types: publicURL (default), internalURL, adminURL
endpoint_type = publicURL

[rabbitmq]
Connection parameters to RabbitMQ service
Hostname or IP address where RabbitMQ is located.
!!! Change localhost to your real IP or hostname as this address must be reachable from VMs !!!
host = localhost
RabbitMQ port (5672 is a default)
port = 5672
Use SSL for RabbitMQ connections (True or False)
ssl = False
Path to SSL CA certificate or empty to allow self signed server certificate
ca_certs =
RabbitMQ credentials. Fresh RabbitMQ installation has "guest" account with "guest" password.
It is recommended to create dedicated user account for Murano using RabbitMQ web console or command line utility
login = quest
password = quest
RabbitMQ virtual host (vhost). Fresh RabbitMQ installation has "/" vhost preconfigured.
It is recommended to create dedicated vhost for production use
virtual_host = /

Run

• Run Murano Conductor service:

Ubuntu

service murano-conductor start

CentOS

initctl start murano-conductor

Install Murano Components

13

Murano Dashboard

Murano Dashboard provides Web UI for Murano Project.

Warning

This installation is not capable with Horizon installed by devstack

Install

• Superuser privileges is required to install and configure system packages. Let's switch to root account:

sudo su -

• Make sure that additional repositories are installed. See the appendix for information about preparing

a virtual machine for murano installation.

• If there is no openstack dashboard package in your environment install it now with all dependencies.

Deleting an Ubuntu theme is an optional step but recommended.

Note

Horizon installed by devstack is not capable for a murano installation.

CentOS

yum install make gcc memcached python-memcached \
 mod_wsgi openstack-dashboard python-netaddr.noarch

Ubuntu

apt-get install memcached libapache2-mod-wsgi openstack-dashboard
dpkg --purge openstack-dashboard-ubuntu-theme

• Clone Murano Dashboard repository from the github:

git clone https://github.com/stackforge/murano-dashboard

• Stable version one of our releases [http://murano-docs.github.io/latest/developers-guide/content/

ch03s02.html] can be checked out by tag:

git checkout 0.2

Install Murano Components

14

• Switch to just created directory and run installation script

Ubuntu

sh murano-dashboard/setup.sh install

CentOS

sh murano-dashboard/setup-centos.sh install

Configure

• Murano installation script makes all needed changes in horizon (openstack dashboard) configs. All you

have to do is to configure horizon in appropriate way. Set OPENSTACK_HOST in your horizon local

settings which located in /etc/openstack-dashboard/local_settings.py.. For more

information visit official horizon documentation. [http://docs.openstack.org/developer/horizon/]

Run

Since all required settings are made Apache service need to be restarted to apply all changes.

• CentOS

service httpd restart

• Ubuntu

service apache2 restart

• Check that "Environments" panel appears at the horizon "Project" tab. To see how to operate with

Murano dashboard plugin check out Murano User Guide. [http://murano-docs.github.io/latest/user-

guide/content/ch01.html]

SSL configuration

Murano components are able to work with SSL. This chapter will help your to make proper settings with

SSL configuration.

HTTPS for Murano API

SSL for Murano API service can be configured in ssl section in /etc/murano-api/murano-api.conf. Just

point to a valid SSL certificate. See the example below:

Install Murano Components

15

[ssl]
cert_file = PATH
key_file = PATH
ca_file = PATH

• cert_file=PATH: Path to the certificate file the server should use when binding to an SSL-wrapped

socket.

• key_file=PATH: Path to the private key file the server should use when binding to an SSL-wrapped

socket.

• ca_file=PATH: Path to the CA certificate file the server should use to validate client certificates

provided during an SSL handshake. This is ignored if cert_file and "key_file" are not set.

The use of SSL is automatically started after point to HTTPS protocol instead of HTTP during registration

Murano API service in endpoints (Change publicurl argument to start with https://). See here how to

register Murano API in Openstack Keystone.

SSL for Murano API is implemented like in any other Openstack component. This realization is based

on ssl python module so more information about it can be found here. [http://docs.python.org/2/library/

ssl.html]

SSL for RabbitMQ

All Murano components communicate with each other by RabbitMQ. This interaction can be encrypted

with SSL. By default all messages in Rabbit MQ are not encrypted. Each RabbitMQ Exchange should be

configured separately.

Murano API -> Rabbit MQ exchange

Edit rabbitmq section in /etc/murano-api/murano-api.conf and set ssl option to True to enable SSL. Specify

the path to the SSL CA certificate in regular format: /path/to/file without quotes or leave it empty to allow

self-signed certificates.

 [rabbitmq]

Use SSL for RabbitMQ connections (True or False)
ssl = True

Path to SSL CA certificate or empty to allow self signed server certificate
ca_certs =

Rabbit MQ -> Murano Conductor exchange

Open /etc/murano-conductor/conductor.conf and configure rabbitmq section in the same way: enable ssl

option to True and set CA certificate path or leave it empty to allow self-signed certificates.

Install Murano Components

16

 [rabbitmq]

Use SSL for RabbitMQ connections (True or False)
ssl = True

Path to SSL CA certificate or empty to allow self signed server certificate
ca_certs = /home/user/certificates/example.crt

Murano Agent -> Rabbit MQ exchange

By default all Murano Conductor configuration settings apply to Murano Agent. If you want to configure

Murano Agent in a different way change the default template. It can be found here:/etc/murano-conductor/

data/templates/agent-config/Default.template. Take a look at appSettings section:

 <appSettings>
 <add key="rabbitmq.host" value="%RABBITMQ_HOST%"/>
 <add key="rabbitmq.port" value="%RABBITMQ_PORT%"/>
 <add key="rabbitmq.user" value="%RABBITMQ_USER%"/>
 <add key="rabbitmq.password"
 value="%RABBITMQ_PASSWORD%"/>
 <add key="rabbitmq.vhost" value="%RABBITMQ_VHOST%"/>
 <add key="rabbitmq.inputQueue"
 value="%RABBITMQ_INPUT_QUEUE%"/>
 <add key="rabbitmq.resultExchange" value=""/>
 <add key="rabbitmq.resultRoutingKey"
 value="%RESULT_QUEUE%"/>
 <add key="rabbitmq.durableMessages" value="true"/>

 <add key="rabbitmq.ssl" value="%RABBITMQ_SSL%"/>
 <add key="rabbitmq.allowInvalidCA" value="true"/>
 <add key="rabbitmq.sslServerName" value=""/>
 </appSettings>

Desired parameter should be set directly to the value of the key that you want to change. Quotes are need

to be kept. Thus you can change "rabbitmq.ssl" and "rabbitmq.port" values to make Rabbit MQ work with

this exchange in a different from Murano-Conductor way.

17

Chapter 3. Image Builder
Murano requires a Windows Image in QCOW2 format to be builded and uploaded into Glance.

The easiest way to build Windows image for Murano is to build it on the host where your OpenStack is

installed.

Install Required Packages

Note

Please check that hardware virtualization supported and enabled in BIOS.

The following packages should be installed on any host which will be used to build Windows Image:

• ipxe-qemu

• kvm-ipxe

• qemu-kvm

• munin-libvirt-plugins

• python-libvirt

• libvirt-bin

• libvirt0

• munin-libvirt-plugins

• python-libvirt

• virt-goodies

• virt-manager

• virt-top

• virt-what

• virtinst

• python

On Ubuntu you could install them using the command below:

># apt-get install ipxe-qemu kvm-ipxe qemu-kvm virt-goodies \
 virtinst virt-manager libvirt0 libvirt-bin \
 munin-libvirt-plugins python python-libvirt \
 python-libxml2 python-minimal python-pycurl \
 python-pyorbit python-requests python-six \

Image Builder

18

 samba samba-common openssh-server virt-top virt-what

Configure Shared Resource

Configure samba based share.

># mkdir -p /opt/samba/share
># chown -R nobody:nogroup /opt/samba/share

Configure samba server (/etc/samba/smb.conf).

...
[global]
 ...
 security = user
...
[share]
 comment = Deployment Share
 path = /opt/samba/share
 browsable = yes
 read only = no
 create mask = 0755
 guest ok = yes
 guest account = nobody
...

Restart services.

># service smbd restart
># service nmbd restart

Prerequisites

Download the files below and copy them into their places in your ${SHARE_PATH} folder (we usually

use /opt/samba/share as ${SHARE_PATH}):

• Windows 2012 Server ISO evaluation version

• ${SHARE_PATH}/libvirt/images/ws-2012-eval.iso

• http://technet.microsoft.com/en-us/evalcenter/hh670538.aspx [http://technet.microsoft.com/en-us/

evalcenter/hh670538.aspx]

• VirtIO drivers for Windows

• ${SHARE_PATH}/libvirt/images/virtio-win-0.1-52.iso

• http://alt.fedoraproject.org/pub/alt/virtio-win/stable/virtio-win-0.1-52.iso [http://

alt.fedoraproject.org/pub/alt/virtio-win/stable/virtio-win-0.1-52.iso]

• CloudBase-Init for Windows

Image Builder

19

• ${SHARE_PATH}/share/files/CloudbaseInitSetup_Beta.msi

• http://www.cloudbase.it/downloads/CloudbaseInitSetup_Beta.msi [http://www.cloudbase.it/

downloads/CloudbaseInitSetup_Beta.msi]

• Far Manager

• ${SHARE_PATH}/share/files/Far30b3367.x64.20130426.msi

• http://www.farmanager.com/files/Far30b3525.x64.20130717.msi [http://www.farmanager.com/

files/Far30b3525.x64.20130717.msi]

• Git client

• ${SHARE_PATH}/share/files/Git-1.8.1.2-preview20130201.exe

• https://msysgit.googlecode.com/files/Git-1.8.3-preview20130601.exe [https://

msysgit.googlecode.com/files/Git-1.8.3-preview20130601.exe]

• Sysinternals Suite

• ${SHARE_PATH}/share/files/SysinternalsSuite.zip

• http://download.sysinternals.com/files/SysinternalsSuite.zip [http://download.sysinternals.com/

files/SysinternalsSuite.zip]

• unzip.exe tool

• ${SHARE_PATH}/share/files/unzip.exe

• https://www.dropbox.com/sh/zthldcxnp6r4flm/-k1Om_V6XR [https://www.dropbox.com/sh/

zthldcxnp6r4flm/-k1Om_V6XR]

• PowerShell v3

• ${SHARE_PATH}/share/files/Windows6.1-KB2506143-x64.msu

• http://www.microsoft.com/en-us/download/details.aspx?id=34595 [http://www.microsoft.com/en-

us/download/details.aspx?id=34595]

• .NET 4.0

• ${SHARE_PATH}/share/files/dotNetFx40_Full_x86_x64.exe

• http://www.microsoft.com/en-us/download/details.aspx?id=17718 [http://www.microsoft.com/en-

us/download/details.aspx?id=17718]

• .NET 4.5

• ${SHARE_PATH}/share/files/dotNetFx45_Full_setup.exe

• http://www.microsoft.com/en-us/download/details.aspx?id=30653 [http://www.microsoft.com/en-

us/download/details.aspx?id=30653]

• Murano Agent

• ${SHARE_PATH}/share/files/MuranoAgent.zip

Image Builder

20

• https://www.dropbox.com/sh/zthldcxnp6r4flm/-k1Om_V6XR [https://www.dropbox.com/sh/

zthldcxnp6r4flm/-k1Om_V6XR]

Additional Software

This section describes additional software which is required to build an Windows Image.

Windows ADK

Windows Assessment and Deployment Kit (ADK) for Windows® 8 is required to build your own answer

files for auto unattended Windows installation.

You can dowload it from http://www.microsoft.com/en-us/download/details.aspx?id=30652 [http://

www.microsoft.com/en-us/download/details.aspx?id=30652].

PuTTY

PuTTY is a useful tool to manage your Linux boxes via SSH.

You can download it from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html [http://

www.chiark.greenend.org.uk/~sgtatham/putty/download.html].

Windows Server 2012 ISO image

We use the following Windows installation images:

• Windows Server 2008 R2

• Image Name: 7601.17514.101119-1850_x64fre_server_eval_en-us-GRMSXEVAL_EN_DVD.iso

• URL: http://www.microsoft.com/en-us/download/details.aspx?id=11093 [http://

www.microsoft.com/en-us/download/details.aspx?id=11093]

• Windows Server 2012

• Image Name: 9200.16384.WIN8_RTM.120725-1247_X64FRE_SERVER_EVAL_EN-US-

HRM_SSS_X64FREE_EN-US_DV5.iso

• URL: http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?

ocid=&wt.mc_id=TEC_108_1_33 [http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?

ocid=&wt.mc_id=TEC_108_1_33]

VirtIO Red Hat drivers ISO image

Warning

Please, choose stable version instead of latest, We’ve got errors with unstable drivers during guest

unattended install.

Download drivers from http://alt.fedoraproject.org/pub/alt/virtio-win/stable/ [http://alt.fedoraproject.org/

pub/alt/virtio-win/stable/]

Floppy Image With Unattended File

Run following commands as root:

Image Builder

21

1. Create emtpy floppy image in your home folder

># dd bs=512 count=2880 \
 if=/dev/zero of=~/floppy.img \
 mkfs.msdos ~/floppy.img

2. Mount the image to /media/floppy

># mkdir /media/floppy mount -o loop \
 ~/floppy.img /media/floppy

3. Download autounattend.xml file from https://raw.github.com/stackforge/murano-deployment/

master/image-builder/share/files/ws-2012-std/autounattend.xml [https://raw.github.com/stackforge/

murano-deployment/master/image-builder/share/files/ws-2012-std/autounattend.xml]

># cd ~
># wget https://raw.github.com/stackforge/murano-deployment\
/master/image-builder/share/files/ws-2012-std/autounattend.xml

4. Copy our autounattend.xml to /media/floppy

># cp ~/autounattend.xml /media/floppy

5. Unmount the image

># umount /media/floppy

Build Windows Image (Automatic Way)

1. Clone murano-deployment repository

># git clone git://github.com/stackforge/murano-deployment.git

2. Change directory to murano-deployment/image-builder folder.

3. Create folder structure for image builder

># make build-root

4. Create shared resource

Add to /etc/samba/smb.conf.

[image-builder-share]
 comment = Image Builder Share
 browsable = yes
 path = /opt/image-builder/share
 guest ok = yes

Image Builder

22

 guest user = nobody
 read only = no
 create mask = 0755

Restart samba services.

># restart smbd && restart nmbd

5. Test that all required files are in place

># make test-build-files

6. Get list of available images

># make

7. Run image build process

># make ws-2012-std

8. Wait until process finishes

9. The image file ws-2012-std.qcow2 should be stored under /opt/image-builder/share/images folder.

Build Windows Image (Manual Way)

Warning

Please note that the preferred way to build images is to use Automated Build described in the

previous chapter.

Get Post-Install Scripts

There are a few scripts which perform all the required post-installation tasks.

Package installation tasks are performed by script named wpi.ps1.

Download it from https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/

scripts/ws-2012-std/wpi.ps1 [https://raw.github.com/stackforge/murano-deployment/master/image-

builder/share/scripts/ws-2012-std/wpi.ps1]

Note

There are a few scripts named wpi.ps1, each supports only one version of Windows image. The

script above is intended to be used to create Windows Server 2012 Standard. To build other

version of Windows please use appropriate script from scripts folder.

Clean-up actions to finish image preparation are performed by Start-Sysprep.ps1 script.

Download it from https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/

scripts/ws-2012-std/Start-Sysprep.ps1 [https://raw.github.com/stackforge/murano-deployment/master/

image-builder/share/scripts/ws-2012-std/Start-Sysprep.ps1]

Image Builder

23

These scripts should be copied to the shared resource folder, subfolder Scripts.

Create a VM

This section describes steps required to build an image of Windows Virtual Machine which could be used

with Murano. There are two possible ways to create it - from CLI or using GUI tools. We describe both

in this section.

Note

Run all commands as root.

Way 1: Using CLI Tools

This section describes the required step to launch a VM using CLI tools only.

1. Preallocate disk image

># qemu-img create -f raw /var/lib/libvirt/images/ws-2012.img 40G

2. Start the VM

># virt-install --connect qemu:///system --hvm --name WinServ \
 --ram 2048 --vcpus 2 --cdrom /opt/samba/share/9200.16384.WIN8_RTM\
.120725-1247_X64FRE_SERVER_EVAL_EN-US-HRM_SSS_X64FREE_EN-US_DV5.ISO \
 --disk path=/opt/samba/share/virtio-win-0.1-52.iso,device=cdrom \
 --disk path=/opt/samba/share/floppy.img,device=floppy \
 --disk path=/var/lib/libvirt/images/ws-2012.qcow2\
,format=qcow2,bus=virtio,cache=none \
 --network network=default,model=virtio \
 --memballoon model=virtio --vnc --os-type=windows \
 --os-variant=win2k8 --noautoconsole \
 --accelerate --noapic --keymap=en-us --video=cirrus --force

Way 2: Using virt-manager UI

A VM also could be lauched via GUI tools like virt-manager.

1. Launch virt-manager from shell as root

2. Set a name for VM and select Local install media

3. Add one cdrom and attach Windows Server ISO image to it

4. Select OS type Windows and it's version Windows Server 2008

5. Set CPU and RAM amount

6. Deselect option Enable storage for this virtual machine

7. Select option Customize configuration before install

8. Add second cdrom for ISO image with virtio drivers

9. Add a floppy drive and attach our floppy image to it

Image Builder

24

10.Add (or create new) HDD image with Disk bus VirtIO and storage format RAW

11.Set network device model VirtIO

12.Start installation process and open guest vm screen through Console button

Convert the image from RAW to QCOW2 format. The image must be converted from RAW format

to QCOW2 before being imorted into Glance.

># qemu-img convert -O qcow2 /var/lib/libvirt/images/ws-2012.raw \
 /var/lib/libvirt/images/ws-2012-ref.qcow2

Upload Image Into Glance

Services deployed by Murano require specially prepared images, that can be created manually or via

automated scripts. Please refer to corresponding chapters of this book to create image. After images are

created they should be registered in Openstack Glance - image operation service.

1. Use the glance image-create command to import your disk image to Glance:

>$ glance image-create --name <NAME> \
 --is-public true --disk-format qcow2 \
 --container-format bare \
 --file <IMAGE_FILE> \
 --property <IMAGE_METADATA>

Replace the command line arguments to glance image-create with the appropriate values for your

environment and disk image:

• Replace <NAME> with the name that users will refer to the disk image by. E.g. 'ws-2012-std'

• Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. 'ws-2012-std.qcow2'.

• Replace <IMAGE_METADATA> with the following property string

murano_image_info='{"title": "Windows 2012 Core Edition", "type": "ws-2012-core"}'

where

• title - user-friendly description of the image

• type - one of possible image types

• ws-2012-std - Windows Server 2012 Standart Edition

• ws-2012-core - Windows 2012 Core Edition

• ws-2008r2-std - Windows Server 2008R2 Standart Edition

• ws-2008r2 - Windows Server 2012R2

2. To update metadata of the existing image run the command:

Image Builder

25

>$ glance image-update <IMAGE-ID> --property <IMAGE_MATADATA>

• Replace <IMAGE-ID> with image id from the previous command output.

• Replace <IMAGE_METADATA> with murano_image_info property, e.g.

murano_image_info='{"title": "Windows 2012 Core Edition", "type": "ws-2012-core"}'

Warning

The value of the --property argument named murano_image_info is a JSON string. Only double

quotes are valid in JSON, so please type the string exactly as in the example above.

After these steps desired image can be chosen in Murano dashboard and used for services platform.

26

Chapter 4. Troubleshooting
General Notes. The following debug sequence should be used when you have no idea about why the

system isn't working. If you have one, you may skip unnecessary sections.

Set debug options to "True" in the following Murano configuration files:

• /etc/murano-api/murano-api.conf

• /etc/murano-conductor/conductor.conf

Stop both murano-api and murano-conductor services. We will start them one by one from the console.

murano-api. First, the murano-api must be started.

• Open new console

• Start murano-api service manually

># murano-api --config-dir /etc/murano-api 2>&1 \
 > /var/log/murano-api-live.log &
># tailf /var/log/murano-api-live.log

• Open dashboard, create and send to deploy some simple environment.

• Open RabbitMQ web console, open your vhost and ensure that queues were created and there is at least

one message.

• Check log for errors - there shouldn't be any

• Keep murano-api service running

murano-conductor. Next to the murano-api the murano-conductor should be started

• Open new console

• Start conductor from console

># muranoconductor --config-dir /etc/murano-conductor \
 > /var/log/murano-conductor-live.log &
># tailf /var/log/murano-conductor-live.log

• Check that there is no python exceptions in the log. Some errors like 404 are ok, as conductor tries to

delete environment that doesn't exist

• Check heat stack status. It should not be in FAILED state. If it is - check heat and nova error log to

find the cause.

• Keep murano-conductor service running.

Log Files. There are various log files which will help you to debug the system.

Murano Log Files

• /var/log/murano-api.log

• /var/log/murano-conductor.log

Troubleshooting

27

• /var/log/apache2/errors.log

• /var/log/httpd/errors.log

Windows Log Files

• C:\Program Files (x86)\CloudBase Solutions\logs\log.txt

• C:\Murano\Agent\log.txt

• C:\Murano\PowerShell.log

28

Chapter 5. Appendix
Murano VM

Note

Your VM MUST be attached to the network with Internet access and openstack management

network (lab network) access.

Ubuntu Server 12.04 LTS x86_64

Installation steps:

• Install minimal version of the system

• When prompted, mark OpenSSH Server to be installed

• Login as root

• Enable Cloud Archive repository

Create and add the following lines to the /etc/apt/sources.list.d/grizzly.list file

deb http://ubuntu-cloud.archive.canonical.com/ubuntu \
 precise-updates/grizzly main
deb http://archive.gplhost.com/debian grizzly main
deb http://archive.gplhost.com/debian grizzly-backports main

• Update installed OS and packages

># apt-get update
># apt-get install ubuntu-cloud-keyring
># apt-get install gplhost-archive-keyring
># apt-get install mc unzip git make gcc python-setuptools python-pip
># apt-get upgrade

CentOS 6.4 x86_64

Installation steps:

• Install minimal version of the system.

• When prompted, mark OpenSSH Server to be installed

• Login as root

• Enable RedHat Openstack and Epel repository

• Update system and add repositories and update OS

># yum install -y http://rdo.fedorapeople.org/openstack/\

Appendix

29

 openstack-grizzly/rdo-release-grizzly.rpm
># yum install -y http://mirror.us.leaseweb.net/\
 epel/6/x86_64/epel-release-6-8.noarch.rpm
># yum install -y mc unzip git make gcc python-setuptools python-pip upstart
># yum update
># yum upgrade

Most of dependent packages will be installed automatically with setup scripts.

Note

Some words about pip (python-pip) version. In order to have proper versions of python

dependency packages installed, pip version MUST be 1.4 or higher!

How-to determine python-pip version:

># pip --version

To upgrade pip to latest version use

># pip install --upgrade pip

Note

You should pay attention to python-pip after upgrade to version 1.4, because its filesystem

location can change from /usr/bin/pip to /usr/local/bin/pip!

To handle this situation:

># rm /usr/bin/pip
># ln -s /usr/local/bin/pip /usr/bin/pip

