Chapter 5 Chemical Bonding:

The Covalent Bond Model

- Atoms with similar ionization energy and electronegativity DO NOT form ionic bonds.
- There is NO electron transfer!
- Electron pairs are shared to form a covalent bond.

A covalent bond is a chemical bond resulting from two attracting the same shared

Fig 5.1 Electron sharing can occur only when electron orbitals from two different atoms overlap.

Each atom in H₂ has the electron configuration of

Ch 5.2 Lewis Structures for Molecular Compounds

The number of covalent bonds formed by a nonmetallic element is directly correlated with the number of electrons it must share in order to obtain an ______ of electrons.

Ch 5.3 Single, Double, and Triple Covalent Bonds

Some atoms must share _____ than one pair of electrons to obtain an octet of electrons.

Single bond-2 atoms share 1 pair of eDouble bond-2 atoms share 2 pairs of eTriple bond-2 atoms share 3 pairs of e

each N in N_2 has an

each atom in CO_2 has a complete octet

Supplemental material

Covalent bonds, bond energy, and bond length

Single \rightarrow Double \rightarrow Triple

ethane

ethylene

acetylene

Supplemental material: Sigma and Pi Bonds

ethylene

double bond = 1 sigma (σ) bond & _____ pi (π) bond

 σ bond

 π bond, 2 overlapping p orbitals (2 lobes/orbital) restricted motion

acetylene

triple bond = 1σ bond & _____ π bonds

Ch 5.4 Valence Electrons and Number of Covalent **Bonds Formed**

Group VIIA - 7 valence electrons - 1 covalent bond & lone pairs

Group VIA - 6 valence electrons - 2 covalent bonds & lone pairs

2 single bonds 1 double bond

Ch 5.5 Coordinate Covalent Bonds

In a coordinate covalent bond ______ electrons of a shared pair come ______ of the two atoms in the bond.

Ammonia shares its _____ with the hydrogen ion.

Ch 5.6 Systematic Procedures for Drawing Lewis Structures Bottom Line

- All valence electrons must be shown.
- All atoms must have an octet of electrons. (common exceptions include H)

Strategy

• 6 steps (slightly modified here)

Example A

Ammonia

Step 1. Sum up all valence e (adjust for charge if necessary)

N in VA = 5 valence e H in IA = 1 valence e $1 \times 5e + 3 \times 1e =$ valence e (there is no charge) Step 2. Draw skeleton structure and connect atoms by covalent bonds.

 NH_3 the central atom is often written first

Step 3. Subtract the number of e used in skeletal structure bonds from valence e of step 1.

8 valence e from step 1
<u>6 e used in step 2</u> (2 e per bond)
<u>2 e left</u>

Step 4. Count number of e needed in skeletal structure (step 2) to give each atom an octet (2 e for H). If that number = e left in step 3, distribute them.

Example B Hydrogen cyanide HCN (written in order bonded)

- Step 1 total valence e = 1 + 4 + 5 = 10 e (no charge)
- Step 2 H C N
- Step 3 10 e available - <u>e used in step 2</u> 6 e left

Step 4 H has 2 e = complete C in step 2 needs 4 e <u>N in step 2 needs 6 e</u> need 10 e to complete all octets We are short e

- Step 5 For each 2 e short, share one more pair by forming multiple bonds. Add 2 more bonds. $H - C \equiv N$
- Step 6 Distribute remaining e to complete octets.

10 e available (step 1) -<u>e used (step 5)</u> 2 e remain

 $H - C \equiv N$:

Example C (drill problem) Chlorite ion ClO₂

Ch 5.7 Bonding in Compounds with Polyatomic Ions Present

Both ionic and covalent bonds are present.

Supplemental Material Resonance Structures

A single Lewis structure does not always adequately represent a substance and the concept of resonance is used to describe the bonding in such molecules.

Resonance structures are two or more Lewis structures that represent the same ion or molecule equally well.

Examples:

Ch 5.8 Molecular Geometry is the 3-D arrangement of atoms within a molecule

Molecular models of methane

We can predict the molecular geometry using a molecule's Lewis structure and the Valence Shell Electron-Pair Repulsion theory (_______ theory)

- Electrons repel each other
- Electrons tend to be as far apart as possible
- Electron pairs control

2 electron pairs or VSEPR groups

(b) Trigonal planar

3 electron pairs or VSEPR groups

4 electron pairs or VSEPR groups

Steps in predicting molecular geometry

- draw a Lewis structure
- determine the number of VSEPR groups bonding and nonbonding pairs count equally single, double, and triple bonds count equally as one group
- predict which arrangement of VSEPR groups minimizes repulsion
- A. Molecules with two VSEPR groups are linear

$$: O = C = O$$
:
bond angle

2 VSEPR groups around the central atom

B. Molecules with three VSEPR groups are either trigonal planar or angular

H₂CO (formaldehyde)

3 VSEPR groups

(b) Trigonal planar

Trigonal planar bond angle ~

$$NO_2^-$$
 nitrite ion : $O = N - O$:

VSEPR groups around N 2 bonding, 1 nonbonding

bent or angular shape bond angle ~120°

- C. Molecules with four VSEPR groups have three possible geometries:
 - Tetrahedral (no nonbonding e pairs)
 - Trigonal pyramidal (____ nonbonding e pair)
 - Angular or bent (<u>nonbonding e pairs</u>)

Molecules with more than one central atom

Acetylene Hydrogen peroxide Hydrogen azide $H - C \equiv C - H$ H--O--H N = N = N-0-H-2 VSEPR 2 VSEPR 4 VSEPR 4 VSEPR **3 VSEPR VSEPR** 2 electron groups electron groups electron groups electron groups electron groups electron groups Linear C Linear C Angular O Angular O Angular N Linear N center center center center center center Η N:

Н−С≡С−Н

Zero bends in the chain

Two bends in

the chain

Η One bend in

the chain

Ethane

4 VSEPR groups for _____ carbon atom

Tetrahedral arrangement around each carbon atom.

ball-and-stick model of

Ethane

Ch 5.9 Electronegativity

Electronegativity is a measure of the relative attraction that an atom has for the ______ electrons in a bond.

Ch 5.10 Bond Polarity

Depicting bond polarity

Ch 5.11 Molecular Polarity depends on two factors:

- Bond polarity
- Molecular
- A. Polar bond + unsymmetrical distribution of electronic charge = _____ molecule

B. Polar bond + symmetrical distribution of electronic charge = _____ molecule

Polarity cancels in a trigonal planar molecule with 3 identical atoms or groups attached.

Polarity cancels in a tetrahedral molecule with 4 identical atoms or groups attached.

Examples of polar and nonpolar molecules (all contain ______ bonds)

Ch 5.12 Naming Binary Molecular Compounds

Different compounds exist for most pairs of ______. Examples of N-O compounds: NO NO₂ N₂O₃ N₂O₄ N₂O₅

N_2O_3

dinitrogen trioxide

- 1. prefix + full name of least electronegative nonmetal
- 2. prefix + stem name of more electronegative nonmetal

Prefix	Number	
mono-	1	
di-	2	
tri-	3	
tetra-	4	
penta-	5	
hexa-	6	
hepta-	7	
octa-	8	
nona-	9	
deca-	10	

+ suffix of "ide"

Table 5.1 Common numerical prefixes for 1 -10

Table 5.2 Accepted Common Names

Compound Formula	Accepted Common Name	Memorize?
$\begin{array}{c} H_{2}O \\ H_{2}O_{2} \\ NH_{3} \\ N_{2}H_{4} \\ CH_{4} \\ C_{2}H_{6} \\ PH_{3} \\ AsH_{3} \end{array}$	water hydrogen peroxide ammonia hydrazine methane ethane phosphine arsine	Yes Yes No Yes