Chapter 5 Chemical Bonding:

## The Covalent Bond Model



- Atoms with similar ionization energy and electronegativity DO NOT form ionic bonds.
- There is NO electron transfer!
- Electron pairs are shared to form a covalent bond.


## A covalent bond is a chemical bond resulting from two <br> $\qquad$ attracting the same shared <br> $\qquad$ .



Two hydrogen atoms
$\mathrm{H} \quad+\quad \mathrm{H}$

Shared electron pair


A hydrogen molecule $\mathrm{H}-\mathrm{H}$

Fig 5.1 Electron sharing can occur only when electron orbitals from two different atoms overlap.

$$
\begin{aligned}
\mathrm{H} \cdot+\cdot \mathrm{H} \rightarrow & \mathrm{H}: \mathrm{H} \\
& \mathrm{H}-\mathrm{H} \\
& \mathrm{H}_{2}
\end{aligned}
$$

Each atom in $\mathrm{H}_{2}$ has the electron configuration of

Ch 5.2 Lewis Structures for Molecular Compounds


F, with ___ valence electrons, forms 1 covalent bond.


$$
\begin{aligned}
& \mathrm{H}-\mathrm{O}-\mathrm{H} \\
& \text { Water, } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

O , with __ valence electrons, forms 2 covalent bonds.
Nonbonding electrons are also called $\qquad$ .


Ammonia, $\mathrm{NH}_{3}$
$\mathrm{N} \quad$ __ valence electron 3 covalent bonds


Methane, $\mathrm{CH}_{4}$
C ___ valence electron 4 covalent bonds

The number of covalent bonds formed by a nonmetallic element is directly correlated with the number of electrons it must share in order to obtain an $\qquad$ of electrons.

Ch 5.3 Single, Double, and Triple Covalent Bonds
Some atoms must share ___ than one pair of electrons to obtain an octet of electrons.

Single bond - 2 atoms share 1 pair of e Double bond - 2 atoms share 2 pairs of e Triple bond - 2 atoms share 3 pairs of e
 each N in $\mathrm{N}_{\mathbf{2}}$ has an

## Carbon dioxide has <br> $\square$

$$
\begin{aligned}
: \ddot{\mathrm{O}}: \dot{\mathrm{C}} \cdot \overrightarrow{\mathrm{O}}: \rightarrow & : \ddot{\mathrm{O}}:: \mathrm{C}:: \ddot{\mathrm{O}}: \\
& : \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}:
\end{aligned}
$$

each atom in $\mathrm{CO}_{2}$ has a complete octet

Supplemental material
Covalent bonds, bond energy, and bond length

## Single $\rightarrow$ Double $\rightarrow$ Triple


bond energy increases bond length

ethylene

acetylene

Supplemental material: Sigma and Pi Bonds
ethylene

double bond $=1 \operatorname{sigma}(\sigma)$ bond $\& \ldots \ldots$ pi $(\pi)$ bond


$$
\sigma \text { bond }
$$


$\pi$ bond, 2 overlapping p orbitals (2 lobes/orbital) restricted motion

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

$\square$

Ch 5.4 Valence Electrons and Number of Covalent Bonds Formed

Group VIIA - 7 valence electrons - 1 covalent bond \& ___ lone pairs

$$
: \ddot{\mathrm{Cl}}-\quad 1 \text { single bond }
$$

Group VIA - 6 valence electrons - 2 covalent bonds \& ___ lone pairs


$$
\begin{gathered}
\mathrm{O}= \\
.
\end{gathered}
$$

2 single bonds 1 double bond
Group VA - 5 valence electrons - 3 covalent bonds \& ___ lone pair

3 single
1 single $\quad 1$ triple
$\& 1$ double

Group IV - 4 valence electrons - 4 covalent bonds
\& ___ lone pairs


4 single

2 single
\& 1 double

$$
=\mathrm{C}=-\mathrm{C} \equiv
$$

2 double $\quad 1$ single
\& $\qquad$

## Ch 5.5 Coordinate Covalent Bonds

In a coordinate covalent bond ___ electrons of a shared pair come $\qquad$ of the two atoms in the bond.



## Ch 5.6 Systematic Procedures for Drawing Lewis Structures

## Bottom Line

- All valence electrons must be shown.
- All atoms must have an octet of electrons. (common exceptions include H )


## Strategy

- 6 steps (slightly modified here)

Example A

- Ammonia


Step 1. Sum up all valence e (adjust for charge if necessary)
N in VA $=5$ valence e
H in IA $=1$ valence e
$1 \times 5 \mathrm{e}+3 \times 1 \mathrm{e}=\quad$ valence e (there is no charge)

Step 2. Draw skeleton structure and connect atoms by covalent bonds.
$\mathrm{NH}_{3}$ the central atom is often written first


Step 3. Subtract the number of e used in skeletal structure bonds from valence e of step 1 .

8 valence e from step 1

- 6 e used in step 2 (2 e per bond)

2 e left

Step 4. Count number of e needed in skeletal structure (step 2) to give each atom an octet ( 2 e for H ). If that number $=$ e left in step 3 , distribute them.

- all H are
- N needs 2 e for octet
- 2 e left in step 3
- add as lone pair on $\qquad$

Example B Hydrogen cyanide HCN (wirten in order bonded)
Step 1 total valence $\mathrm{e}=1+4+5=10 \mathrm{e}$ (no charge)
Step $2 \mathrm{H}-\mathrm{C}-\mathrm{N}$
Step 310 e available

- $\frac{\mathrm{e} \text { used in step } 2}{6 \text { e left }}$

Step 4 H has $2 \mathrm{e}=$ complete
C in step 2 needs 4 e
N in step 2 needs 6 e
need 10 e to complete all octets
We are short $\square$ e

Step 5 For each 2 e short, share one more pair by forming multiple bonds. Add 2 more bonds.
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$
Step 6 Distribute remaining e to complete octets.
10 e available (step 1)
$-\quad$ e used (step 5)

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:
$$

Example C (drill problem) Chlorite ion $\mathrm{ClO}_{2}$
valence e : $7+2(6)+1=20$ e

$$
\frac{-4 \mathrm{e} \text { used }}{16 \text { e left }}
$$

## $\mathrm{O}-\mathrm{Cl}$

 complete this structureO needs
Cl needs


Ch 5.7 Bonding in Compounds with Polyatomic Ions Present Both ionic and covalent bonds are present.

$$
\begin{aligned}
& \mathrm{K}^{+} \quad: \quad \ddot{\mathrm{O}}-\stackrel{.}{\mathrm{Cl}}:- \\
& \begin{array}{c}
1 \\
: \\
0
\end{array}
\end{aligned}
$$

## Supplemental Material Resonance Structures

A single Lewis structure does not always adequately represent a substance and the concept of resonance is used to describe the bonding in such molecules.

Resonance structures are two or more Lewis structures that represent the same ion or molecule equally well.

Examples:



ozone $\mathrm{O}_{3}$
$\square$ ion $\mathrm{CO}_{3}{ }^{2-}$



# Ch 5.8 Molecular Geometry is the 3-D arrangement of atoms within a molecule 

Molecular models of methane


We can predict the molecular geometry using a molecule's Lewis structure and the Valence Shell Electron-Pair Repulsion theory $\qquad$ theory)

- Electrons repel each other
- Electrons tend to be as far apart as possible
- Electron pairs control $\qquad$


Central atom
(a) Linear

(b) Trigonal planar

3 electron pairs or VSEPR groups


4 electron pairs or VSEPR groups
(c) Tetrahedral

Figure 5.8

## Steps in predicting molecular geometry

- draw a Lewis structure
- determine the number of VSEPR groups bonding and nonbonding pairs count equally single, double, and triple bonds count equally as one group
- predict which arrangement of VSEPR groups minimizes repulsion
A. Molecules with two VSEPR groups are linear
$: \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}$ :
bond angle $\square$

2 VSEPR groups around the central atom

## B. Molecules with three VSEPR groups are either trigonal planar or angular

$\mathrm{H}_{2} \mathrm{CO}$ (formaldehyde)


3 VSEPR groups

(b) Trigonal planar


Trigonal planar bond angle ~ $\qquad$


# ___ VSEPR groups around N <br> 2 bonding, 1 nonbonding 


(b) Trigonal planar

bent or angular shape bond angle $\sim 120^{\circ}$

## C. Molecules with four VSEPR groups have three possible geometries:

- Tetrahedral (no nonbonding e pairs)
- Trigonal pyramidal (__ nonbonding e pair)
- Angular or bent (__ nonbonding e pairs)

methane
tetrahedral
$109.5^{\circ}$


ammonia

water

trigonal pyramidal
$107^{\circ}$

bent
$104.5^{\circ}$


## Molecules with more than one central atom

| Acetylene | Hydrogen peroxide | Hydrogen azide |
| :---: | :---: | :---: |
|  |  |  |
| Linear C  <br> center Linear $\mathbf{C}$ <br> center  | $\underset{\text { center }}{\text { Angular }} \begin{gathered}\text { Angular } O \\ \text { center }\end{gathered}$ | $\underset{\text { center }}{\text { Angular }} \quad \underset{\text { center }}{\text { Linear }} \mathbf{N}$ |
| $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ |  |  |
| Zero bends in the chain | Two bends in the chain | One bend in the chain |



## Ethane

4 VSEPR groups for carbon atom

Tetrahedral arrangement around each carbon atom.

ball-and-stick model of
Ethane

## Ch 5.9 Electronegativity


$\square 0.8$ to 1.9 $\square$ $\square 2.4$ to 4.0

Electronegativity is a measure of the relative attraction that an atom has for the $\qquad$ electrons in a bond.

## Ch 5.10 Bond Polarity


pure covalent

polar covalent

ionic

Differences in Electronegativity
$\ldots$ covalent bonds (similar values) $\leq 0.4$
$0.4<$ $\qquad$ covalent bonds < 1.5
$1.5<$ "Borderline area" $<2.0$ (ionic or polar covalent)
$\square$ bonds $>2.0$

Depicting bond polarity

$$
\begin{aligned}
& \delta+\quad \delta- \\
& \mathrm{H}-\mathrm{F}
\end{aligned}
$$

or

H-F

Ch 5.11 Molecular Polarity depends on two factors:

- Bond polarity
- Molecular $\qquad$
A. Polar bond + unsymmetrical distribution of electronic charge $=\quad$ molecule



# B. Polar bond + symmetrical distribution of electronic charge $=\quad$ molecule 



Polarity cancels in a trigonal planar molecule with 3 identical atoms or groups attached.


Polarity cancels in a tetrahedral molecule with 4 identical atoms or groups attached.


## Ch 5.12 Naming Binary Molecular Compounds

Different compounds exist for most pairs of $\qquad$ Examples of N -O compounds: $\mathrm{NO} \mathrm{NO}_{2} \quad \overline{\mathrm{~N}_{2} \mathrm{O}_{3}} \begin{array}{llll}\mathrm{N}_{2} \mathrm{O}_{4} & \mathrm{~N}_{2} \mathrm{O}_{5}\end{array}$

## $\mathrm{N}_{2} \mathrm{O}_{3}$

## dinitrogen trioxide

1. prefix + full name of least electronegative nonmetal
2. prefix + stem name of more electronegative nonmetal + suffix of "ide"

| Prefix | Number |
| :--- | :---: |
| mono- | 1 |
| di- | 2 |
| tri- | 3 |
| tetra- | 4 |
| penta- | 5 |
| hexa- | 6 |
| hepta- | 7 |
| octa- | 8 |
| nona- | 9 |
| deca- | 10 |

Table 5.1 Common numerical prefixes for 1-10

Table 5.2 Accepted Common Names

| Compound <br> Formula | Accepted <br> Common Name | Memorize? |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | water |  |
| $\mathrm{H}_{2} \mathrm{O}_{2}$ | hydrogen peroxide | Yes |
| $\mathrm{NH}_{3}$ | ammonia | Yes |
| $\mathrm{N}_{2} \mathrm{H}_{4}$ | hydrazine | No |
| $\mathrm{CH}_{4}$ | methane | Yes |
| $\mathrm{C}_{2} \mathrm{H}_{6}$ | ethane |  |
| $\mathrm{PH}_{3}$ | phosphine | - |
| $\mathrm{AsH}_{3}$ | arsine | - |

