
UTAH GOVPAY:

THE OFFICIAL PAYMENT SOLUTION FOR UTAH GOVERNMENT

Technical Manual

“Extend the power of your website…by taking payments online”

This Utah GovPay Technical Manual contains the following information:

Utah GovPay: __ 1

The Official Payment Solution for Utah government_____________________________ 1

WPS Web Service Overview: __ 3

Terminology __ 4

Features__ 4

Operations ___ 5

Complex XML Types ___ 5

Sample Web Service Java Code: __ 9

WPS WEB SERVICE OVERVIEW:

The Utah GovPay WPS web service provides a secure method to pass customer transaction information

between the Agency’s web application and Utah GovPay.

The WPS is the backend link into the Utah GovPay system and was designed to prevent web users from

fraudulently altering their own transaction data. WPS has two main functions, registering transactions

and querying transactions. In the registration process, the agency’s web application sends the

transaction data to WPS and WPS returns a registration ID. The Agency’s web application then

forwards the user to Utah GovPay with the registration ID.

After a completed payment transaction, the Agency’s web application can use the registration ID to

query WPS to find out if the transaction was approved.

.

The Register Transaction process follows the following steps:

1. When the user is ready to make a payment, the agency’s web application sends details of the

payment in XML using the Soap format to the Utah GovPay Web Service or WPS.

2. The Utah GovPay WPS creates a Registration ID, stores the transaction information and

registration ID in a database and returns a registration ID back to the agency’s web application.

3. The agency’s web application redirects the user to the Utah GovPay URL and includes the

registration ID in the query string. This Utah GovPay URL will be created during the Utah

GovPay setup.

4. The Utah GovPay website uses the registration ID to retrieve the transaction data and then takes

the user through the payment process.

The Query Transaction process:

1. The agency’s web application sends a soap message with the registration ID

2. The Utah GovPay Web Service returns the results of the transaction. The details of the soap

message are listed below in the Complex XLM types under PaymentprocessingResult.

TERMINOLOGY

* Registration Id - The unique identifier used generated by WPS. The calling application should pass

this to WPS when the user is handed off.

* Calling Application – This is the outside application built by the agency.

* Web Service – A piece of software that can be accessed over the Internet by another application using

XML to send or retrieve information.

* Web Application – A web application uses a web site as a front end to interact with users across the

Internet.

FEATURES

Current features of the WPS web service are:

 * Register Transaction Details

 * Retrieve Payment Processing Result in XML for a single transaction

 * Retrieve Payment Processing Result in text for a single transaction

OPERATIONS

The following operations are available in the WPS web service.

Register a Transaction – Information about the transaction is sent from the Calling Application to WPS

and a registration ID is sent back the Calling Application. The name of this operation is “register”

Query a Transaction – The registration ID or a group of registration ID’s are sent from the Calling

Application to WPS and the results of the transaction are returned to the Calling Application. There are

two operations that can be used to retrieve information about the transaction after it has been processed.

* getTransactionsByRegistrationID returns all the transaction information in an XML format.

* getStatusByRegistrationID returns a string with one of four possible messages.

WSDL URLS PRODUCTION:

https://secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl

https://secure.utah.gov/service-wps-v2-0/services/queryTransactions?wsdl

WSDL URLS TEST:

https://test.secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl

https://test.secure.utah.gov/service-wps-v2-0/services/queryTransactions?wsdl

Operation Name Input Output Faults

register * WpsAccount

* TransactionDetail

String –

RegistrationId

Generic SOAP

fault should an

error occur

getTransactionsByRegistrationId * WpsAccount

* RegistrationID

PaymentProcessingResult Generic SOAP

fault should an

error occur

getStatusByRegistrationId * WpsAccount

* RegistrationID

String –

(not-found, error,

successful, declined)

Generic SOAP

fault should an

error occur

COMPLEX XML TYPES

Field Name Type Length Restrictio

n

Description

WPSACCOUNT

username String 128 Required Assigned by Utah Interactive

password String 128 Required Assigned by Utah Interactive

id Long Null Used by Utah Interactive- leave null

TRANSACTIONDETAIL

allowedPaymentTypes String[] 128 Optional An array of values indicating the

types of payment a user can make.

Possible values: CREDITCARD,

ECHECK

failUrl String Optional The URL to send the user to upon

failed payment. Can be set up as

default. See account setup form

id Long Null Used by Utah Interactive- leave null

items ITEM[] An array of Items, each describing

what the end user is paying for. (see

ITEM below)

paymentProccessingResultID String Null Used by Utah Interactive- leave null

prePopAddressLine1 String 128 Optional Value to use to pre-populate the credit

card address line 1 field

prePopAddressLine2 String 128 Optional Value to use to pre-populate the credit

card address line 2 field

prePopCity String 128 Optional Value to use to pre-populate the credit

card city field

prePopEmailAddress String 128 Optional Value to use to pre-populate the credit

card email address field

prePopName String 128 Optional Value to use to pre-populate the credit

card name field

prePopPostalCode String 128 Optional Value to use to pre-populate the credit

card postal/zip code field

prePopStateProvince String 128 Optional Value to use to pre-populate the credit

card state/province field

registrationId String 128 Null Created by Utah Interactive- leave

null during registration. This ID will

be returned during the Query

Payment Operation

sharedSecretName String 128 Required

for

eChecks

The name of the shared secret to

display to the user. eChecks require

users to confirm some information.

sharedSecretValue String 128 Required

for

eChecks

A value that the user should know

that is used to authenticate them when

making an eCheck payment

successMessage String 128 Optional A message to be displayed upon

successful payment. Can be set up as

default. See account setup form

successUrl String Optional The URL to send the user to upon

successful payment. Can be set up as

default. See account setup form

wpsAccountId Long Null Used by Utah Interactive- leave null

ITEM

amountEach Long Required The amount of each item (See Note 1

below)

customerId String 128 Required A value that uniquely identifies the

customer in the calling application.

Examples include license or account

numbers.

customFields Custom

Field[]

Optional An array of custom fields that are

passed into the Utah GovPay admin.

(see CUSTOMFIELD below)

description String 255 Required A description of the item

id Long Null Used by Utah Interactive- leave null

quantity Long Required The quantity of this item

transactionDetailId Long Null Used by Utah Interactive- leave null

transactionId String 128 Required

– Unique

Unique identifier for the transaction

in the calling application

transactionType String 128 Optional A code identifying the type of

transaction this is. If applicable the

FINET code should be put here.

CUSTOMFIELD

id Long Used by Utah Interactive- leave null

itemId Long Used by Utah Interactive- leave null

name String 64 Required The name of the custom field

value String 128 Required The value of the custom field

PAYMENTPROCESSINGRESULT

addressLine1 String 128 Address used for payment

addressLine2 String 128 Address used for payment

authorizationCode String 10 Code provided by payment processor

auxilaryMessage String 255

city String 128 City used for payment

completionDate Timesta

mp

Date transaction completed

country String 128 Country used for payment

error String 10 Boolean (True or False). The false

result could be caused by either a

success or a declined transaction.

(See Note 2 below)

gatewayTransactionId String 128

id Long Used by Utah Interactive- leave null

name String 128 Name used for payment

orderId String 16 Unique order ID created by Utah

interactive.

paymentSuccessful String 10 Boolean (True or False). The false

result could be caused by either a

technical error or a declined

transaction (See Note 2 below)

postalCode String 10 Zip used for payment

stateProvince String 2 State used for payment

statusMessage String 255 Message provided by payment

processor

transactionDetail transactionDetail[] All the transaction information that

was originally sent to WPS during the

register operation. (See

TRANSACTIONDETAIL above)

Note 1: The total payment amount for the transaction is calculated by multiplying each ITEM quantity

by the ITEM’s amountEach.

Note 2: There are three possible outcomes for Is_Success and Is_Error in the PaymentProcessingResult:

• If paymentSuccessful = True then the transaction was SUCCESSFUL

• If paymentSuccessful=False & Error=False then the transaction was DECLINED

• If Error=True then the transaction had a technical ERROR

SAMPLE WEB SERVICE JAVA CODE:

import gov.utah.secure.wps.model.TransactionDetail;

import gov.utah.secure.wps.model.WpsAccount;

import gov.utah.secure.wps.model.Item;

import gov.utah.secure.wps.model.CustomField;

import gov.utah.secure.wps.service.RegisterTransaction;

import gov.utah.secure.wps.service.RegisterTransactionLocator;

import gov.utah.secure.wps.service.RegisterTransactionWebService;

import java.net.URL;

import java.net.MalformedURLException;

import java.rmi.RemoteException;

public class GovPayRegister

{

 private static final String wpsAccountUsername = "";

 private static final String wpsAccountPassword = "";

 public static void main(String[] args)

 {

 /* URL for Utah Interactive's GovPay Registration Web Service */

 String url = "https://test.secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl";

 URL registrationWebServiceUrl;

 try

 {

 registrationWebServiceUrl = new URL(url);

 }

 catch (MalformedURLException e)

 {

 String s = "Unable to recognize govpay web service url " + url;

 System.err.println(s);

 e.printStackTrace();

 return;

 }

 System.out.println("Registering request");

 WpsAccount wpsAcct = constructWpsAccount();

 TransactionDetail trxDetail = constructTransactionDetail();

 RegisterTransaction service = new RegisterTransactionLocator();

 RegisterTransactionWebService webService;

 try

 {

 webService = service.getregisterTransaction(registrationWebServiceUrl);

 }

 catch (Exception e)

 {

 String s = "Unable to connect to registration web service at " + registrationWebServiceUrl;

 System.err.println(s);

 e.printStackTrace();

 return;

 }

 String registrationId;

 try

 {

 registrationId = webService.register(wpsAcct, trxDetail);

 }

 catch (RemoteException e)

 {

 String s = "Unable to register request";

 System.err.println(s + "\nWpsAccount: " + wpsAcct + "\nTransactionDetail: " + trxDetail +

"\n");

 e.printStackTrace();

 return;

 }

 System.out.println("Registration Id: " + registrationId);

 }

 private static WpsAccount constructWpsAccount()

 {

 WpsAccount wpsAcct = new WpsAccount();

 wpsAcct.setUsername(wpsAccountUsername);

 wpsAcct.setPassword(wpsAccountPassword);

 return wpsAcct;

 }

 private static TransactionDetail constructTransactionDetail()

 {

 CustomField customField1 = new CustomField();

 customField1.setName("First Field Name");

 customField1.setValue("First Field Value");

 CustomField customField2 = new CustomField();

 customField2.setName("Second Field Name");

 customField2.setValue("Second Field Value");

 CustomField customField3 = new CustomField();

 customField3.setName("Third Field Name");

 customField3.setValue("Third Field Value");

 Item item = new Item();

 item.setAmountEach(12.00);

 item.setCustomerId("12345");

 item.setDescription("My Cool Item");

 item.setQuantity(1);

 String transactionId = String.valueOf(System.currentTimeMillis());

 item.setTransactionId(transactionId);

 item.setTransactionType("Finet-001");

 item.setCustomFields(new CustomField[] {customField1, customField2, customField3});

 TransactionDetail trxDetail = new TransactionDetail();

 trxDetail.setAllowedPaymentTypes(new String[] {"CREDITCARD", "ECHECK"});

 trxDetail.setFailUrl("");

 trxDetail.setItems(new Item[] {item});

 trxDetail.setPrePopAddressLine1("123 Fake Street");

 trxDetail.setPrePopCity("Springfield");

 trxDetail.setPrePopEmailAddress("KnifeyWifey@thesimpsons.tv");

 trxDetail.setPrePopName("Knifey Wifey");

 trxDetail.setPrePopPostalCode("84000-1234");

 trxDetail.setPrePopStateProvince("UT");

 trxDetail.setSharedSecretName("");

 trxDetail.setSharedSecretValue("");

 trxDetail.setSuccessMessage("Thank you for purchasing 'My Item'");

 trxDetail.setSuccessUrl("https://example.com/coolapp/?trxId=" + transactionId);

 return trxDetail;

 }

}

