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Abstract. The χ2-principle generalizes the Morozov discrepancy principle to the

augmented residual of the Tikhonov regularized least squares problem. For weighting

of the data fidelity by a known Gaussian noise distribution on the measured data

and, when the stabilizing, or regularization, term is considered to be weighted by

unknown inverse covariance information on the model parameters, the minimum of

the Tikhonov functional becomes a random variable that follows a χ2-distribution

with m + p − n degrees of freedom for the model matrix G of size m × n, m ≥ n,

and regularizer L of size p×n. Then, a Newton root-finding algorithm, employing the

generalized singular value decomposition, or singular value decomposition when L = I,

can be used to find the regularization parameter α. Here the result and algorithm are

extended to the underdetermined case, m < n, with m + p ≥ n. Numerical results

first contrast and verify the Generalized Cross Validation, Unbiased Predictive Risk

Estimation and χ2 algorithms when m < n, with regularizers L approximating zero to

second order derivative approximations. The inversion of underdetermined 2D focusing

gravity data produces models with non-smooth properties, for which typical solvers

in the field use an iterative minimum support stabilizer, with both regularizer and

regularizing parameter updated each iteration. The χ2 and unbiased predictive risk

estimator of the regularization parameter are used for the first time in this context.

For a simulated underdetermined data set with noise, these regularization parameter

estimation methods, as well as the generalized cross validation method, are contrasted

with the use of the L-curve and the Morozov Discrepancy principle. Experiments

demonstrate the efficiency and robustness of the χ2-principle and unbiased predictive

risk estimator, moreover showing that the L-curve and Morozov Discrepancy Principle

are outperformed in general by the three other techniques. Furthermore, the minimum

support stabilizer is of general use for the χ2-principle when implemented without the

desirable knowledge of a mean value of the model.
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1. Introduction

We discuss the solution of numerically ill-posed and underdetermined systems of

equations, d = Gm. Here G ∈ Rm×n, with m < n, is the matrix resulting from

the discretization of a forward operator which maps from the parameter or model space

to the data space, given respectively by the discretely sampled vectors m ∈ Rn, and

d ∈ Rm. We assume that the measurements of the data d are error-contaminated,

dobs = d + n for noise vector n. Such problems often arise from the discretization of a

Fredholm integral equation of the first kind, with a kernel possessing an exponentially

decaying spectrum that is responsible for the ill-posedness of the problem. Extensive

literature on the solution of such problems is available in standard literature, e.g.

[1, 3, 8, 29, 32, 34].

A well-known approach for finding an acceptable solution to the ill-posed problem

is to augment the data fidelity term, ‖Wd(Gm − dobs)‖22, here measured in a weighted

L2 norm‡, by a stabilizing regularization term for the model parameters, ‖L(m−m0)‖22,
yielding the Tikhonov objective function

Pα(m) := ‖Wd(Gm− dobs)‖22 + α2‖L(m−m0)‖22. (1)

Here α is the regularization parameter which trades-off between the two terms, Wd

is a data weighting matrix, m0 is a given reference vector of a priori information for

the model m, and the choice of L ∈ Rp×n impacts the basis for the solution m. The

Tikhonov regularized solution, dependent on α, is given by

mTik(α) = argmin
m

{Pα(m)}. (2)

If Cd = (W T
dWd)

−1 is the data covariance matrix, and we assume white noise for the

mapped model parameters Lm so that the model covariance matrix is CL = σ2
LI =

α−2I = (W T
LWL)

−1, then (1) is

P σL(m) = ‖Gm− dobs‖2C−1
d

+ ‖L(m−m0)‖2C−1
L

. (3)

Note we will use in general the notation y ∼ N(ŷ, Cy) to indicate that y is normally

distributed with mean ŷ and symmetric positive definite (SPD) covariance matrix Cy.

Using CL = α−2I in (3) permits an assumption of white noise in the estimation for Lm

and thus statistical interpretation of the regularization parameter α2 as the inverse of

the white noise variance.

The determination of an optimal α is a topic of much previous research, when m ≥
n, and includes methods such as the L-curve (LC) [7], generalized cross validation (GCV)

[4], the unbiased predictive risk estimator (UPRE) [13, 30], the residual periodogram

(RP) [10, 27], and the Morozov discrepancy principle (MDP) [19], all of which are

well described in the literature, see e.g. [8, 32] for comparisons of the criteria and

‡ Here we use the standard definition for the weighted norm of the vector y, ‖y‖2
W

:= yTWy.
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further references. The motivation and assumptions for these methods varies; while the

UPRE requires that statistical information on the noise in the measurement data be

provided, for the MDP it is sufficient to have an estimate of the overall error level in

the data. More recently, a new approach based on the χ2 property of the functional

(3) under statistical assumptions applied through CL, was proposed by [14], for the

overdetermined case m > n with p = n. The extension to the case with p ≤ n and a

discussion of effective numerical algorithms is given in [17, 24], with also consideration

of the case when m̂ = m0 is not available. Extensions for nonlinear problems [16],

inclusion of inequality constraints [18] and for multiple regularization parameters [15]

have also been considered.

The fundamental premise of the χ2 principle for estimating σL is that provided

the noise distribution on the measured data is available, through knowledge of Cd,

such that the weighting on the model and measured parameters is as in (3), and that

the mean value m̂ is known, then P σL(mTik(σL)) is a random variable following a χ2

distribution with m + p − n degrees of freedom. Thus the expected value satisfies

P̂ σL(mTik(σL)) = m+ p− n. As a result P σL(mTik(σL)) lies within an interval centered

around its expected value, which facilitates the development of the Newton root-finding

algorithm for the optimal σL given in [17]. This algorithm has the advantage as compared

to other techniques of being very fast for finding the unique σL, provided the root

exists, requiring generally no more than 10 evaluations of P σL(mTik(σL)) to converge to

a reasonable estimate. The algorithm in [17] was presented for small scale problems in

which one can use the singular value decomposition (SVD) [5] for matrix G when L = I

or the generalized singular value decomposition (GSVD) [20] of the matrix pair [WdG;L].

For the large scale case an approach using the Golub-Kahan iterative bidiagonalization

based on the LSQR algorithm [21, 22] was presented in [24] along with the extension

of the algorithm for the non-central destribution of P σL(mTik(σL)), namely when m0

is unknown but may be estimated from a set of measurements. In this paper, the

χ2 principle is first extended to the estimation of σL for underdetermined problems,

specifically for the central χ2 distribution with known m0, with the proof of the result

in Section 2 and examples in Section 2.4.

In many cases the smoothing that arises when the basis mapping operator L

approximates low order derivatives is unsuitable for handling material properties that

vary over relatively short distances, such as in the inversion of gravity data produced by

localized sources, [11, 23, 31, 34]. A stabilizer that does not penalize sharp boundaries is

instead preferable. This can be achieved by setting the regularization term in a different

norm, as for example using the total variation, [26], already significantly studied and

applied for geophysical inversion e.g. [25, 28]. Similarly, the minimum support (MS)

and minimum gradient support (MGS) stabilizers provide solutions with non-smooth

properties and were introduced for geophysical inversion in [23] and [34], respectively.

We note now the relationship of the iterated MS stabilizer with non stationary iterated

Tikhonov regularization [6], in which the solution is iterated to convergence with a

fixed operator L, but updated residual and iteration dependent α(k) which is forced to
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zero geometrically. The technique was extended for example for image deblurring in [2]

with α(k) found using a version of the MDP and dependent on a good preconditioning

approximation for the square model matrix. More generally, the iterative MS stabilizers,

with both L and α iteration dependent, are closely related to the iteratively reweighted

norm approximation for the Total Variation norm introduced and analyzed in [33]. In

this paper the MS stabilizer is used to reconstruct non-smooth models for the geophysical

problem of gravity data inversion with the updating regularization parameter found

using the most often applied techniques of MDP and L-curve, and more recently

the GCV, [31]. Results are contrasted with those obtained for the first time in this

framework using the UPRE, and the χ2 principle. They also demonstrate that the χ2

principle can be applied without knowledge of the prior m0 for the MS iterative process.

Initialization with m0 = 0 is contrasted with an initial stabilizing choice determined by

the spectrum of the operator.

The outline of this paper is as follows. In Section 2 the theoretical development of

the χ2 principle for the underdetermined problem is presented. We note that the proof

is stronger than that used in the original literature when m ≥ n and hence improves

the general result. The algorithm uses the GSVD (SVD) at each iteration and leads to

a Newton-based algorithm for estimating the regularization parameter. A review of the

LC, MDP, GCV and UPRE methods for parameter estimation is presented in Section 2.3

and numerical examples contrasting these with the χ2 approach are in Section 2.4.

For completeness, all formulae which are necessary for implementation of the various

regularization parameter estimates using the GSVD are provided in an Appendix. The

MS stabilizer is described in Section 3 and numerical experiments contrasting the impact

of the choice of the regularization parameter within the MS algorithm for the problem

of 2D gravity inversion are described in Section 3.1. Conclusions and future work are

discussed in Section 4.

2. Theoretical Development

Although the proof of the result on the degrees of freedom for the underdetermined case

m < n effectively follows the ideas introduced [17, 24], the modification presented here

provides a stronger result which can also strengthen the result for the overdetermined

case, m ≥ n.

2.1. χ2 distribution for the underdetermined case

We first assume that it is possible to solve the normal equations

(GTW T
dWdG+ LTW T

LWLL)y = GTW T
dWdr, r := dobs −Gm0, y = m−m0 (4)

for the shifted system associated with (3). The invertibility condition for (4) requires

that L̃ := WLL and G̃ := WdG have null spaces which do not intersect

N (WLL) ∩N (WdG) = 0. (5)
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Moreover, we also assume m+p ≥ n which is realistic when L approximates a derivative

operator of order ℓ, then p = n− ℓ, and typically ℓ is small, n− ℓ ≥ 0.

Following [17] we first find the functional PWL(mTik(WL)) where mTik(WL) =

y(WL) + m0 and y(WL) solves (4), for general WL, replacing WL = α2I in (1), and

the argument within PWL indicates the functional evaluated for the given solution

mTik(WL). There are many definitions for the GSVD in the literature, differing with

respect to the ordering of the singular decomposition terms, but all effectively equivalent

to the original GSVD introduced in [20]. For ease of presentation we introduce 1k and 0k

to be the vectors of length k with 1, respectively 0, in all rows, and define q = n−m ≥ 0.

We use the GSVD as stated in [1].

Lemma 1 (GSVD). Suppose H := [G̃; L̃], where G̃ has size m× n, m < n, L̃ has size

p× n, p ≤ n with both G̃ and L̃ of full row rank m, and p, respectively, and by (5) that

H has full column rank n. The Generalized Singular Value Decomposition for H is

[G̃; L̃] = [UΥ̃XT ;V M̃XT ] (6)

Υ̃ = [0m×q Υ] , Υ = diag(υq+1, . . . , υp,1n−p) ∈ Rm×m (7)

M̃ =
[

M 0p×(n−p)

]

, M = diag(1q, µq+1, . . . , µp) ∈ Rp×p, (8)

0 < υq+1 ≤ · · · ≤ υp < 1, 1 > µq+1 ≥ · · · ≥ µp > 0, υ2i + µ2
i = 1, i = q + 1 . . . p. (9)

Matrices U ∈ Rm×m and V ∈ Rp×p are orthogonal, UTU = Im, V
TV = Ip, and

X ∈ Rn×n is invertible.

Remark 1. The indexing in matrices M and Υ uses the column index and we use the

definitions µi = 0, i = p + 1 : n and υi = 0, i = 1 : q. Moreover, by (7)-(8), we also

define υi = 1, i = p + 1 : n, and µi = 1, i = 1 : q. The generalized singular values are

given by γi = υi/µi, i = 1 : n. Of these n − p are infinite, m + p − n are finite and

non-zero, and q are zero.

We first introduce r̃ := Wdr and note the relations

Υ̃T Υ̃ + M̃TM̃ = In, G̃T G̃+ L̃T L̃ = XXT , Υ̃Υ̃T = ΥΥT , and

y = (XT )−1Υ̃TUT r̃, G̃y = UΥ̃Υ̃TUT r̃, L̃y = V M̃Υ̃TUT r̃.

Thus with s = UT r̃, with indexing from q + 1 : n for s of length m, si = uT
i−qr̃,

PWL(mTik(WL)) = r̃TU(Im − Υ̃Υ̃T )UT r̃ =

p
∑

i=q+1

µ2
i s

2
i = ‖k‖22,

k = QUTWdr, Q := diag(µq+1, . . . , µp,0n−p). (10)

To obtain our desired result on PWL(mTik(WL)) as a random variable we investigate

the statistical distribution of the components for k, following [17, Theorem 3.1] and [24,

Theorem 1] for the cases of a central, and non-central distribution, respectively, but

with modified assumptions that lead to a stronger result.
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Theorem 2.1 (central and non-central χ2 distribution of : PWL(mTik(WL)). Suppose

n ∼ N(0, Cd), ζ := (m−m0) ∼ N(m̂−m0, Cm), Lζ := L(m−m0) ∼ N(L(m̂−m0), CL),

the invertibility condition (5), and that m+ p− n > 0 is sufficiently large that limiting

distributions for the χ2 result hold. Then for

(i) m0 = m̂: PWL(mTik(WL)) ∼ χ2(Im+p−n, 0).

(ii) m0 6= m̂: PWL(mTik(WL)) ∼ χ2(Im+p−n, c), c = ‖QUTWdG(m̂−m0)‖22 := ‖c‖22.
Equivalently the minimum value of the functional PWL(mTik(WL)) is a random variable

which follows a χ2 distribution with m + p − n degrees of freedom and non-centrality

parameter c = ‖QUTWdG(m̂−m0)‖22.

Proof. By (10) it is sufficient to examine the components ki, i = q + 1, . . . , p to

demonstrate ‖k‖2 is a sum of normally distributed components with mean c and then

employ the limiting argument to yield the χ2 distribution, as in [17, 24]. First observe

that d ∼ N(Gm̂, GCmG
T ), thus r = dobs −Gm0 = d+ n−Gm0 = G(m−m0) + n ∼

N(G(m̂ −m0), Cd + GCmG
T ), Wdr ∼ N(WdG(m̂ −m0),Wd(Cd + GCmG

T )W T
d ), and

k ∼ N(QUTWdG(m̂−m0), QU
TWd(Cd+GCmG

T )W T
d UQ

T ). The result for the central

parameter c is thus immediate. For the covariance we have

Ck = QUTWd(Cd +GCmG
T )W T

d UQ
T = QQT +QΥ̃XTCmXΥ̃TQT . (11)

By assumption, L has full row rank and Cm is SPD, thus for CL := LCmL
T we can

define WL :=
√

C−1
L . Therefore

Ip = WLCLW
T
L = WLLCmL

TW T
L = L̃CmL̃

T = V M̃XTCmXM̃
TV T implies

M̃(XTCmX)M̃T = Ip. (12)

Introduce pseudoinverses for M̃ and M̃T , denoted by superscript †, and a dimensionally-

consistent block decomposition for (XTCmX), in which C11 is of size p× p,

XTCmX =

(

C11 C12

C21 C22

)

, M̃ † = In

(

M−1

0

)

Ip, (M̃T )† = Ip

(

M−1 0
)

In.

(13)

Then applying to (12)

M̃ †(M̃T )† =

(

M−2 0

0 0

)

= M̃ †M̃(XTCmX)M̃T (M̃T )† yielding

(

M−2 0

0 0

)

=

(

Ip 0

0 0

)

(XTCmX)

(

Ip 0

0 0

)

=

(

C11 0

0 0

)

.

Moreover,

QΥ̃ =

(

M11 0

0 0n−p

)(

0 Υ11 0

0 0 In−p

)

=

(

0 Υ11M11 0

0 0 0n−p

)

(14)
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where M11 := diag(µq+1, . . . , µp), and Υ11 := diag(υq+1, . . . , υp). Then with a block

decomposition of (XTCmX), in which as compared to (13) now [C13, C12] := C12 and

[C31;C21] = C21, we have for (11)

Ck = QQT +QΥ̃XTCmXΥ̃TQT

=

(

M2
11 0

0 0n−p

)

+

(

0 Υ11M11 0

0 0 0n−p

)







In−m 0 C13

0 M−2
11 C12

C31 C21 C22













0 0

Υ11M11 0

0 0n−p







=

(

M2
11 0

0 0n−p

)

+

(

Υ2
11 0

0 0n−p

)

=

(

Im+p−n 0

0 0n−p

)

,

as required to obtain the properties of the distribution for ‖k‖2.

Remark 2. Note that the result is exactly the same as given in the previous results for

the overdetermined situation m ≥ n but now for m < n with m + p ≥ n and without

the prior assumption on the properties for the pseudoinverse on CL. Namely we directly

use the pseudoinverse M̃ † and its transpose hence, after adapting the proof for the case

with m ≥ n, this tightens the results previously presented in [17, 24].

Remark 3. We note as in [24, Theorem 2] that the theory can be extended for the case

in which the filtering of the GSVD replaces uses υi = 0 for υi < τ for some tolerance τ ,

eg suppose υi < τ for i ≤ p− r then we have the filtered functional

‖k(σL)‖22 =
p−r
∑

i=q+1

s2i +

p
∑

i=p−r+1

s2i
γ2i σ

2
L + 1

:=

p−r
∑

i=q+1

s2i + ‖kFILT‖22. (15)

Thus we obtain ‖k(σL)FILT‖22 ∼ χ2(Ir, cFILT), where we use cFILT = ‖cFILT‖22 = ‖Ĩc‖22,
in which Ĩ = diag(0m−r+p−n,1r,0n−p) picks out the filtered components only.

Remark 4. As already noted in the statement of Lemma 1 the GSVD is not uniquely

defined with respect to ordering of the columns of the matrices. On the other hand it is

not essential that the ordering be given as stated to use the iteration defined by (A.9).

In particular, it is sufficient to identify the ordering of the spectra in matrices Υ and M ,

and then to assure that elements of s are calculated in the same order, as determined by

the consistent ordering of U . This also applies to the statement for (15) and for the use

of the approach with the SVD. In particular the specific form for (15) assumes that the

γi are ordered from small to large, in opposition to the standard ordering for the SVD.

2.2. Algorithmic Determination of σL

As in [24] Theorem 2.1 suggests finding WL such that ‖k(WL)‖2 as closely as

possible follows the χ2(Im+p−n, c(WL)) distribution. Let ψ := ψ(WL, θ,m, n, p) =

zθ/2
√

2(m+ p− n+ 2c(WL)) where zθ/2 is the relevant z-value for the χ2 distribution
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with m + p − n degrees of freedom. For given WL, m, n, and p, θ defines the (1 − θ)

confidence interval for ‖k(WL)‖22

(m+ p− n+ c(WL))− ψ ≤ ‖k(WL)‖22 ≤ (m+ p− n+ c(WL)) + ψ, (16)

and can be calculated for a given θ in Matlab using norminv(θ/2, 1−θ/2). In particular

norminv provides the interval containing (1− θ)100% of entries from a standard normal

distribution. e.g. with θ = .05 we obtain the interval [−1.96, 1.96], while for θ = .95

the interval is much tighter, [−.0627, .0627]. A root finding algorithm for c = 0 and

WL = σ−2
L I was presented in [17], and extended for c > 0 in [24]. The general

and difficult multi-parameter case was discussed in [15], with extensions for nonlinear

problems in [16]. We collect all the parameter estimation formulae in Appendix A.

2.3. Related Parameter Estimation Techniques

In order to assess the impact of Theorem 2.1 in contrast to other accepted techniques

for regularization parameter estimation we very briefly review key aspects of the related

algorithms which are then contrasted in Section 2.4. Details can be found in the

literature, but for completeness the necessary formulae when implemented for the GSVD

(SVD) are given in Appendix A, here using as consistent with (1) α := σ−1
L .

The Morozov Discrepancy Principle (MDP), [19], is a widely used technique

for gravity and magnetic field data inversion. α is chosen under the assumption that

the norm of the weighted residual, ‖G̃y(α) − r̃‖22 ∼ χ2(δ, 0), where δ denotes the

number of degrees of freedom. For a problem of full column rank δ = m − n, [1, p.

67, Chapter 3]. But, as also noted in [16], this is only valid when m > n and, as

frequently adopted in practice, a scaled version δ = ρm, 0 < ρ ≤ 1, can be used. The

choice of α by Generalized Cross Validation (GCV) is under the premise that

if an arbitrary measurement is removed from the data set, then the corresponding

regularized solution should be able to predict the missing observation. The GCV

formulation yields a minimization which can fail when the associated objective is nearly

flat, creating difficulties to compute the minimum numerically, [7]. The L-curve, which

finds α through the trade-off between the norms of the regularization L(m −m0) and

the weighted residuals, [7, 9], may not be robust for problems that do not generate

well-defined corners, making it difficult to find the point of maximum curvature of

the plot as a function of α. Indeed, when m < n the curve is generally smoother

and it is harder to find αopt, [12, 31]. Unlike MDP, LC and GCV, the Unbiased

Predictive Risk Estimator (UPRE) has apparently not been previously used for

focusing gravity inversion. Moreover, while MDP, LC and GCV are presented in [9] for

the underdetermined problem, we are also not aware of the use of the UPRE in more

standard contexts when m < n. However, the formulation for the UPRE easily extends

to the case with m < n, in the same way as for the GCV. In particular, as for the GCV,

a nonlinear functional must be minimized. In this case it is designed to minimize the

expected value of the predictive risk [32], and requires that information on the noise
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distribution in the data is provided. Apparently, there is no one approach that is likely

successful in all situations. Still, the GSVD (SVD) can be used in each case to simplify

the objectives and functionals e.g. [1, 9, 17, 32], hence making their repeat evaluation

relatively cheap for small scale problems, and thus of relevance for comparison in the

underdetermined situation with the proposed χ2 method (A.9).

2.4. Numerical Evaluation for Underdetermined Problems

We first assess the efficacy of using the noted regularization parameter estimation

techniques for the solution of underdetermined problems, by presentation of some

illustrative results using two examples from the standard literature, namely problems

gravity and tomo from the Regularization Toolbox, [9]. Problem gravity models a

1-D gravity surveying problem for a point source located at depth z and convolution

kernel K(s, t) = 1/z(z2 + (s − t)2)−1.5. The conditioning of the problem is worse with

increasing z. We chose z = .75 as compared to the default z = .25 and consider

the example for data measured for the kernel integrated against the source function

f(t) = sin(πt) + 0.5 sin(2πt). Problem tomo is a two dimensional tomography problem

in which each right hand side datum represents a line integral along a randomly selected

straight ray penetrating a rectangular domain. Following [9] we embed the structure

from problem blur as the source with the domain. These two test problems suggest two

different situations for under sampled data. For tomo, it is clear that an undersampled

problem is one in which insufficient rays are collected; the number of available projections

through the domain are limited. To generate the data we take the full problem for a

given n, leading to right hand side samples di, i = 1 : n and to under sample we take

those same data and use the first m data points, di, i = 1 : m, m < n. For gravity,

we again take a full set of data for the problem of size n, but because of the underlying

integral equation relationship for the convolution, under sampling represents sampling

at a constant rate from the di, i.e. we take the right hand side data d(1 : ∆i : n) for a

chosen integer sample step, ∆i. Because the L-curve and MDP are well-known, we only

present results contrasting UPRE, GCV and χ2.

2.4.1. Problem gravity We take full problem size n = 3200 and use sampling rates

∆i = 1, 2, 4, 8 and 16, leading to problems of sizes m × n, m = 3200, 1600, 800, 400,

200, so that we can contrast the solutions of the m < n case with those of the full

case m = n. The mean and standard deviation of the relative error over 25 copies of

the data are taken for noise levels η = 0.1 and η = .01. Noisy data are obtained as

dc = d + ηmax(d)Θc, c = 1 : 25, with Θc sampled from standard normal distribution

using Matlab function randn. In downsampling, dc are found for the full problem, and

downsampling is applied to each dc, hence preserving the noise across problem size. The

UPRE and GCV algorithms use 200 points to find the minimum and the χ2 is solved

with tolerance determined by θ = 0.90 in (16), corresponding to satisfaction of the root

finding condition to tolerance approximately .1257
√

2(m+ p− n). Noise levels η = .1
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and .01 correspond to white noise variance approximately .01, and .0001, respectively.

Matrices are weighted by the assumption of white noise rather than colored noise. The

results of the mean and standard deviation of the relative error for the 25 samples are

detailed in Tables 1-2 for the two noise levels, all data sample rates, and for derivative

orders in the regularization of order 0, 1 and 2. Some randomly selected illustrative

results, at down sampling rates 1, 2 and 10 for each noise level are shown in Figures 1-2.
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Figure 1. Illustrative Results for noise level .1 for randomly selected sample right

hand side in each case, but the same right hand side for each method. The exact

solutions are given by the thin lines in each plot.

The quantitative results presented in Tables 1-2, with the best results in each

case in bold, demonstrate the remarkable consistency of the UPRE and GCV results.

Application of the χ2-principle is not as successful when L = I for which the lack

of a useful prior estimate for m̂, theoretically required to apply the central version
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Figure 2. Illustrative Results for noise level .01 for randomly selected sample right

hand side in each case, but the same right hand side for each method. The exact

solutions are given by the thin lines in each plot.

of Theorem 2.1, has a far greater impact. On the other hand, for derivatives of

order ℓ = 1 and ℓ = 2 this information is less necessary and competitive results are

obtained, particularly for the lower noise level. Results in Figures 1-2 demonstrate that

all algorithms can succeed, even with significant under sampling, m = 200, but also

may fail even for m = 1600. When calculating for individual cases, rather than multiple

cases at a time as with the results here, it is possible to adjust the number of points used

in the minimization for the UPRE or GCV functionals. For the χ2 method it is possible

to adjust the tolerance on root finding, or apply filtering of the singular values, with

commensurate adjustment of the degrees of freedom, dependent on analysis of the root

finding curve. It is clear that these are worst case results for the χ2-principle because

of the lack of use of prior information.



Underdetermined parameter estimation by the χ2 principle 12

m 3200 1600 800 400 200

Method Derivative Order 0

UPRE .175(.088) .218(.158) .213(.082) .239(.098) .331(.204)

GCV .175(.088) .218(.158) .213(.082) .239(.098) .332(.205)

χ2 .223(.179) .273(.234) .331(.180) .327(.186) .290(.161)

Derivative Order 1

UPRE .202(.084) .248(.151) .238(.077) .260(.088) .336(.201)

GCV .202(.084) .248(.151) .238(.077) .260(.088) .337(.202)

χ2 .190(.052) .260(.171) .272(.093) .286(.116) .305(.065)

Derivative Order 2

UPRE .195(.111) .246(.160) .257(.087) .280(.094) .361(.188)

GCV .195(.111) .246(.160) .257(.087) .279(.093) .361(.188)

χ2 .226(.087) .258(.084) .430(.230) .338(.161) .397(.175)

Table 1. The mean and standard deviation of the relative error over 25 copies of

the data with noise level .1. In each case n = 3200 and downsampling is obtained by

sampling at a sampling rate 1, 2, 4, 8 and 16. Best results for each case in boldface.

m 3200 1600 800 400 200

Method Derivative Order 0

UPRE .149(.205) .075(.122) .199(.301) .120(.103) .139(.081)

GCV .149(.205) .075(.123) .199(.301) .120(.104) .139(.081)

χ2 .255(.165) .166(.130) .300(.272) .232(.120) .267(.176)

Derivative Order 1

UPRE .164(.197) .108(.123) .187(.258) .164(.161) .155(.067)

GCV .164(.197) .108(.123) .187(.258) .164(.161) .155(.067)

χ2 .151(.202) .088(.030) .137(.140) .119(.058) .178(.197)

Derivative Order 2

UPRE .125(.203) .063(.122) .104(.199) .102(.110) .101(.063)

GCV .125(.203) .063(.122) .104(.199) .095(.103) .101(.063)

χ2 .051(.034) .045(.030) .061(.040) .148(.209) .187(.228)

Table 2. The mean and standard deviation of the relative error over 25 copies of the

data with noise level .01. In each case n = 3200 and downsampling is obtained by

sampling at a sampling rate 1, 2, 4, 8 and 16. Best results for each case in boldface.

2.4.2. Problem tomo Figure 3 illustrates results for data contaminated by random noise

with variance .0004 and .0001, η = .02 and η = .01, respectively, with solutions obtained

with regularization using a first order derivative operator, and sampled using 100%, 75%

and 50% of the data. At these noise levels, the quality of the solutions when obtained

with m = n are also not ideal, but do demonstrate that with reduction of sampling it is

still possible to apply parameter estimation techniques to find effective solutions, i.e. all
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methods succeed in finding useful regularization parameters, demonstrating again that

these techniques can be used for under sampled data sets.

Overall the results for gravity and tomo demonstrate that GCV, UPRE and

χ2 algorithms for regularization parameter estimation can be successfully applied for

problems with fewer samples than desirable.
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Figure 3. Illustrative results in row 1 for the UPRE, in row 2 for the GCV and in row

3 for the χ2 principle. From left to right problem size 3600, 2700 and 1800, for noise

level .02 and then .01. The label gives the sample and the relative error m(error).

3. Algorithmic Considerations for the Iterative MS stabilizer

The results of Section 2.4 demonstrate the relative success of regularization parameter

estimation techniques, while also showing that in general with limited data sets

improvements may be desirable. Here the iterative technique using the MS stabilizing

operator which is frequently used for geophysical data inversion is considered. Its

connection with the iteratively regularized norm algorithms, discussed in [33], has

apparently not been previously noted in the literature but does demonstrate the

convergence of the iteration based on the updating MS stabilizing operator L:

L(k) = (diag((m(k−1) −m0)
2) + ǫ2I)−1/2. (17)

Note L(k) is of size n × n for all k, and the use of small ǫ2 > 0 assures rank(L(k)) = n,

avoiding instability for the components converging to zero, mj−(m0)j → 0. With this L

we see that L = L(m) and hence, in the notation of [34] (3) is of pseudo-quadratic form

and the iterative process is required. The iteration to find m(k) from m(k−1), as in [34],
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replacing L by L(k) := L(m(k−1)) transforms (3) to a standard Tikhonov regularization,

equivalent to the iteratively reweighted norm of [33], which can be initialized with

m(0) = 0. Theorem 2.1 can be used with m degrees of freedom.

The regularization parameter {α(k)} needed at each iteration can be found by

applying any of the noted algorithms, e.g. UPRE, GCV, χ2, MDP, LC, at the kth

iteration, using the SVD calculated for the matrix G̃(L(k))−1, here noting that solving

the mapped right preconditioned system is equivalent to solving the original formulation,

and avoids the GSVD. In particular (1) in the MS approach is replaced by

P σL(m) = ‖Gm− dobs‖2C−1
d

+ (α(k))2‖L(k)(m−m(k−1))‖2, (18)

with L(k) given by (17), and {α(k)} found according to a chosen algorithm, e.g. UPRE,

GCV, χ2, MDP, LC. In our experiments for the 2D gravity model, we contrast the use

of an initial zero estimate of the density with an initial estimate for m0 obtained from

the data and based on the generalized singular values for which the central form of the

χ2 iteration is better justified. For the case with prior information, the initial choice

for α(1) is picked without consideration of regularization parameter estimation, and the

measures for convergence are for the iterated solutions m(k), k ≥ 1.

3.1. Numerical Results: A 2D Gravity Model

We contrasted the use of the regularization parameter estimations techniques on an

underdetermined 2D gravity model. Figure 4(a)-4(b) shows this model and its gravity

value. The synthetic model is a rectangular body, 60m × 30m, that has density
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Figure 4. (a) Model of a body set in a grid of square cells each of size 10m, the

density contrast of the body is 1gr/cm3. (b) The gravity anomaly due to the synthetic

model.

contrast 1gr/cm3 with an homogeneous background. Simulation data are calculated at

50 stations with 10m spacing on the surface. The subsurface is divided into 50 × 5

cells with 10m × 10m dimension, hence in this case m = 50 and n = 250. In

generating noise-contaminated data we generate a random matrix Θ of size m × 50,

with columns Θc, c = 1 : 50, using the MATLAB function randn. Then setting

dc = d + (η1d+ η2‖d‖)Θc, generates 50 noisy samples of the right-hand side vector
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d. Results of this 20% under sampling are presented for 3 noise levels, namely

(η1 = 0.01, η2 = 0.001;η1 = 0.03, η2 = 0.005 and η1 = 0.05, η2 = 0.01).

In the experiments we contrast not only the GCV, UPRE and χ2 methods, but

also the MDP and L-curve which are the standard techniques in the related geophysics

literature. Details are as follows:

Depth Weighting Matrix Potential field inversion requires the inclusion of a depth

weighting matrix within the regularization term. We use β = 0.6 in the diagonal

matrix (Wdepth)jj = z−β
j for cell j at depth zj, and at each step form the column

scaling through G̃(k) = G̃(Wdepth)
−1(L(k))−1, where in L(k) ǫ = .02.

Initialization In all cases the inversion is initialized with am(0) = m0 which is obtained

as the solution of the regularized problem, with depth weighting, and found for

the fixed choice α(0) = (n/m)max(γi)/mean(γi), using the singular values of the

weighted G̃. All subsequent iterations calculate α(k) using the chosen regularization

parameter estimation technique.

Stopping Criteria The algorithm terminates for k = kfinal when one of the following

conditions is met, with τ = .01,

(i) a sufficient decrease in the functional is observed, Pα(k−1) − Pα(k)
< τ(1 +

Pα(k)
),

(ii) the change in the density satisfies ‖m(k−1) −m(k)‖ < √
τ(1 + ‖m(k)‖),

(iii) a maximum number of iterations, K, is reached, here K = 20.

Bound Constraints Based on practical knowledge the density is constrained to lie

between [0, 1] and any values outside the interval are projected to the closest bound.

χ2 algorithm The Newton algorithm used for the χ2 algorithm is iterated to tolerance

determined by a confidence interval θ = .95 in (16), dependent on the number

of degrees of freedom, corresponding to 0.6271 for 50 degrees of freedom. The

maximum degrees of freedom is adjusted dynamically dependent on the number of

significant singular values, with the tolerance adjusted at the same time. We note

that the number of degrees of freedom often drops with the iteration and thus the

tolerance increases, but that the difference in results with choosing lower tolerance

θ = .90, leads to almost negligible change in the results.

Exploring α At each step for the L-curve, MDP, GCV and UPRE, the solution is

found at each iteration for 1000 choices of α over a range dictated by the current

singular values, see the discussion for the L-cuve in e.g. [1, 9].

MDP algorithm To find α by the MDP we interpolate α against the weighted residual

for 1000 values for α and use the Matlab function interp1 to find the α which solves

for the degrees of freedom. Here we use δ = m so as to avoid the complication in

the comparison of how to scale m, i.e. we use ρ = 1, see Section 2.3 and (A.10).

Tables 3-5 contrast the performance of the χ2 discrepancy, MDP, LC, GCV and

UPRE methods with respect to relative error, ‖
(

mexact −m(kfinal)
)

‖2/‖mexact‖2, and
the average regularization parameter calculated at the final iteration. We also record
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the average number of iterations required to convergence. In Table 3 we also give the

relative errors after one just one iteration of the MS and with the zero initial condition.

Table 3. Mean and standard deviation of the relative error measured in the 2−norm

with respect to the known solution over 50 runs. Again the best results in each case

are indicated by the boldface entries.

Method

Noise UPRE GCV χ2 MDP LC

η1, η2 Results after just one step, non zero initial condition

0.01, 0.001 .331(.008) .325(.008) .325(.008) .355(.009) .447(.055)

0.03, 0.005 .353(.019) .354(.042) .361(.020) .418(.025) .374(.052)

0.05, 0.01 .392(.034) .409(.062) .416(.040) .478(.043) .463(.067)

Results using the non zero initial condition

0.01, 0.001 .323(.009) .314(.010) .317(.009) .352(.011) .489(.078)

0.03, 0.005 .339(.022) .338(.040) .359(.022) .413(.026) .369(.053)

0.05, 0.01 .374(.041) .393(.068) .414(.041) .470(.046) .460(.070)

Results using the initial condition m0 = 0

0.01, 0.001 .322(.001) .312(.011) .315(.001) .359(.009) .593(.014)

0.03, 0.005 .333(.020) .334(.037) .352(.021) .425(.026) .451(.067)

0.05, 0.01 .357(.030) .440(.086) .388(.034) .477(.046) .487(.082)

Table 4. Mean and standard deviation of αkfinal over 50 runs.

Noise Method

η1, η2 UPRE GCV χ2 MDP LC

0.01, 0.001 35.49(5.17) 14.93(9.85) 91.32(30.56) 53.42(7.43) 3.83(1.91)

0.03, 0.005 11.02(2.62) 4.18(2.58) 72.71(32.72) 30.90(8.21) 0.86(0.08)

0.05, 0.01 7.64(4.35) 3.28(3.05) 89.79(27.97) 25.81(14.87) 0.46(0.05)

With respect to the relative error one can see that the error increases with the noise

level, except that the LC appears to solve the second noise level situation with more

accuracy. In most regards the UPRE, GCV and χ2 methods behavior similarly, with

relative stability of the error (smaller standard deviation in the error), and increasing

error with noise level. On the other hand, the final value of the regularization parameter

is not a good indicator of whether a solution is over or under smoothed, contrast e.g.

the χ2 and GCV methods. The χ2 method is overall cheaper, fewer iterations are

required and the cost per iteration is cheap, not relying on an exploration with respect

to α, interpolation or function minimization. The illustrated results in Figure 5, for the

second noise level, η1 = .03 and η2 = .005, for a typical result, sample 37 and one of the
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Table 5. Mean and standard deviation of the number of iterations kfinal to meet the

convergence criteria over 50 runs. Again the best results in each case are indicated by

the boldface entries.

Noise Method

η1, η2 UPRE GCV χ2 MDP LC

0.01, 0.001 18.94(0.31) 14.78(5.83) 16.26(3.00) 18.32(1.10) 6.30(1.64)

0.03, 0.005 11.90(2.76) 9.22(2.86) 5.50(1.39) 7.68(1.80) 7.90(2.48)

0.05, 0.01 7.82(1.73) 8.22(2.41) 5.10(0.58) 5.72(0.97) 7.84(2.41)

few cases from 50 with larger error, sample 22, demonstrate that all methods achieve

some degree of acceptable solution with respect to moving from an initial estimate which

is inadequate to a more refined solution. In all cases the geometry and density of the

reconstructed models are close to those of the original model.

To demonstrate that the choice of the initial m0 is useful for all methods, and

not only the χ2 method we show, in Figure 6, the same results as in Figure 5 but

initialized with m0 = 0. In most cases the solutions that are obtained are less stable,

indicating that the initial estimate is useful in constraining the results to reasonable

values, however most noticeably not for the χ2 method, but for the MDP and LC

algorithms. We also illustrate the results obtained after just one iteration in Figure 7

with the initial condition m0 according to Figure 5 to demonstrate the need for the

iteration to generally stabilize the results. These results confirm the relative errors

shown in Table 3 for averages of the errors over the 50 cases.

4. Conclusions

The χ2 algorithm for estimating a regularization parameter in the context of

underdetermined Tikhonov regularization has been developed and investigated,

extending the χ2 method discussed in [14, 15, 16, 17, 18]. It has been contrasted for

standard problems from the Regularization Toolbox [9], as well as with the extension of

the UPRE to the underdetermined case, and with the GCV which is already given in

[9]. UPRE and χ2 techniques require that an estimate of the noise distribution in the

data measurements is available, while ideally the χ2 also requires a prior estimate of the

mean of the solution in order to apply the central version of the χ2 algorithm. Results

demonstrate that UPRE, GCV and χ2 techniques are useful for under sampled data

sets, with UPRE and GCV yielding very consistent results. The χ2 is more useful in the

context of the mapped problem where prior information is not required. On the other

hand, we have shown that the use of the iterative MS stabilizer provides an effective

alternative to the non-central algorithm suggested in [18] for the case without prior

information. The UPRE, GCV and χ2 generally outperform LC and MDP methods to

find the regularization parameter in the context of the iterative MS stabilizer for 2D

gravity inversion. Moreover, with regard to efficiency, the χ2 generally requires fewer
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Figure 5. Density model obtained from inverting the noise-contaminated data. The

regularization parameter was found using the UPRE in 7(a)-7(b), the GCV in 7(c)-

7(d), the χ2 in 7(e)-7(f), the MDP in 7(g)-7(h), and the L-Curve in 7(i)-7(j). In each

case the initial value m
(0)
0 is illustrated in 5(a)-5(b), respectively. The data are two

cases with noise level, η1 = .03 and η2 = .005. The example on the left is from a

typical result; namely sample 37 from the 50 noisy samples. On the right is one of

the few cases out of the 50 noisy samples for which the error is larger; here sample

22. One can see that results are overall either consistently good or consistently poor,

except that the χ2 and UPRE results are not bad in either case.

iterations, and is also cheaper to implement for each iteration because there is no need

to sweep through a large set of α values in order to find the optimal value. These results

are useful for the development of approaches for solving larger 3D problems of gravity
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Figure 6. Density model obtained from inverting the noise-contaminated data, as in

Figure 5 except initialized with m0 = 0

inversion, which will be investigated in future work. Then, the ideas have to be extended

for iterative techniques replacing the SVD or GSVD for the solution.
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Figure 7. Density model obtained from inverting the noise-contaminated data, as in

Figure 5 after just one step of the MS iteration.

Appendix A. Parameter Estimation Formulae

We assume that the matrices and data are pre weighted by the covariance of the data,

and thus use the GSVD of Lemma 1 for the matrix pair [G̃;L]. We also introduce

inclusive notation for the limits of the summations, that are correct for all choices of

(m,n, p, r), where r ≤ min(m,n) determines filtering of the least p − r − q̃ singular

values γi, q̃ = max(n−m, 0). Then m(σL) = m0 + y(σL) is obtained for

y(σL) =

p
∑

i=q̃+1

υi

υ2i + σ−2
L µ2

i

sizi +
n
∑

i=p+1

sizi =

p
∑

i=q+1

fi
si
υi
zi +

n
∑

i=p+1

sizi, (A.1)

where Z := (XT )−1 = [z1, . . . , zn], fi =
(

γ2
i

γ2
i
+σ−2

L

)

are the filter factors and si = uT
i−q̃r̃,

si = 0, i < q. Orthogonal matrix V replaces (XT )−1 and σi replaces γi, when applied

for the singular value decomposition G̃ = UΣV T with L = I.
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Let s̃i(σL) = si/(γ
2
i σ

2
L + 1), and note the filter factors with truncation are given by

fi =











0 q̃ + 1 ≤ i ≤ p− r
γ2
i

γ2
i
+σ−2

L

p− r + 1 ≤ i ≤ p

1 p+ 1 ≤ i ≤ n

(1− fi) =











1 q̃ + 1 ≤ i ≤ p− r
1

γ2
i
σ2
L+1

p− r + 1 ≤ i ≤ p

0 p+ 1 ≤ i ≤ n

. (A.2)

Then, with the assumption that if a lower limit is higher than a higher limit on a sum

the contribution is 0,

trace(Im −G(σL)) = m−
min(n,m)
∑

i=q̃+1

fi = (m− (n− (p− r))) +

min(n,m)
∑

i=p−r+1

(1− fi)

= (m+ p− n− r) +

p
∑

i=p−r+1

1

γ2i σ
2
L + 1

:= T (σL) (A.3)

‖(Im −G(σL))r̃‖22 =
p
∑

i=p−r+1

(1− fi)
2s2i +

m
∑

i=n+1

s2i +

p−r
∑

i=q̃+1

s2i (A.4)

=

p
∑

i=p−r+1

s̃2i (σL) +
m
∑

i=n+1

s2i +

p−r
∑

i=q̃+1

s2i := N(σL). (A.5)

Therefore we seek in each case σL as the root, minimum or corner of a given function.

UPRE: Minimizing (‖G̃y(σL) − r̃‖22 + 2 trace(G(σL)) − m) we may shift by constant

terms and minimize

U(σL) =

p
∑

i=p−r+1

(1− fi)
2s2i + 2

p
∑

i=p−r+1

(fi − 1) =

p
∑

i=p−r+1

s̃2i − 2

p
∑

i=p−r+1

1

γ2i σ
2
L + 1

.

(A.6)

GCV: Minimize

GCV (σL) =
‖G̃y(σL)− r̃‖22

trace(Im −G(σL))2
=
N(σL)

T 2(σL)
(A.7)

χ2-principle The iteration to find σL requires

‖k(σL)‖22 =
p
∑

i=q+1

s2i
γ2i σ

2
L + 1

,
∂‖k(σL)‖22

∂σL
= −2σL

p
∑

i=q+1

γ2i s
2
i

(γ2i σ
2
L + 1)2

= − 2

σ3
L

‖Ly(σL)‖22,

(A.8)

and with a search parameter β(j) uses the Newton iteration

σ(j+1) = σ(j)

(

1 + β(j)1

2

(

σ(j)

‖Ly(σ(j))‖2

)2

(‖k(σ(j))‖22 − (m+ p− n))

)

. (A.9)

This iteration holds for the filtered case by defining γi = 0 for q + 1 ≤ i ≤ p − r,

removing the constant terms in (15) and using r degrees of freedom in place of

m+ p− n, [24].
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MDP : For 0 < ρ ≤ 1 and δ = m, solve

‖(Im −G(σL))r̃‖22 = N(σL) = ρδ. (A.10)

L-curve: Determine the corner of the log-log plot of ‖Ly‖2 against ‖G̃y(σL) − r̃‖2,
namely the corner of the curve parameterized by





√

N(σL), σ
2
L

√

√

√

√

p
∑

i=p−r+1

γ2i s
2
i

(γ2i σ
2
L + 1)2



 .
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