
Model Specifications of Transition Systems

BOGDAN A. BRUMAR, EMIL M. POPA,

IOANA C. BRUMAR, FLORENTINA L. CACOVEAN

Department of Computer Science

Lucian Blaga University of Sibiu, Faculty of Sciences

Sibiu, str. Dr. Ion Ratiu, no. 5-7, zip code 550012, Sibiu

ROMANIA

Abstract: - Computing objects manipulated in computer science bear a lot of similarities with the

mathematical objects produced by the systems discussed so far they also are very different. Due to the

dynamic nature of the computing objects represented, the semantics of the specification languages used to

formalize systems will be a transition system performing computation actions, while the syntax will be the

linguistic expression of the actions performed by the transition system.

Key-Words: - system implementation language, system specification, system specification language, system

validation language, transition system.

1 Introduction
Systems represent computations with specific

behavioral properties the major steps involved in

this formalization are:

System specification: defines the system as a

computing object of the form:

System = <Specification, Behavior>.

System implementation: expresses the behavior

of the system such that it can be observed.

System validation: shows that the behavior of

the system has the requested properties.

Each of these steps requires a specific language for

its representation. A language in this context is a

tuple L = <Sem, Syn, L:Sem→Syn> where:

 Sem is the language semantics;

 Syn is the language syntax;

 L:Sem→Syn is a partial mapping that

expresses computing objects c ∈ Sem by means

of their linguistic expressions L(c) ∈ Syn in a

way that there exists a total mapping

ε : Syn→Sem such that ε (L(c)) = c whenever

L is defined.

 Σ is a set of states. Each s ∈ Σ is an

assignment of the variables in Π, i.e., s : Π→ D,

where D is the domain of values of the variables

in Π. If u ∈ Π then s[u] denotes the value

assigned to u by s. The relation s : Π → D can be

uniquely extended to the valuation

homomorphism Vs : W(Ξ, Π) → A(Ξ, D) where

Ξ is an operator scheme, W(Ξ, Π) is the term

generated by Ξ in symbols of Π, and A(Ξ, D) is

the values generated by Ξ on the domain D. If

e∈W(Ξ, Π) and s:Π→ D is an assignment then

s[e] denotes Vs(e). If φ is an assertion and

Vs(φ) = true then we write s |= φ and call s a

φ-state.

Due to the dynamic nature of the computing objects

represented, the semantics of the specification

languages used to formalize systems will be a

transition system performing computation actions,

while the syntax will be the linguistic expression of

the actions performed by the transition system.

2 Transition Systems
A transition system is a tuple Ts = <Π, Σ, T, Θ>

where:

 Π is a set of typed symbols called the state

variables. There are two kinds of variables in Π:

data variables used to denote data values and

control variables used to denote control values.

 T is a finite set of transitions. Each τ∈T is a

mapping τ : Σ → P(Σ) where P(Σ) is the power

set of Σ. That is, for each s∈Σ, τ(s) ⊆ Σ (τ(s) can

be the ∅). If τ(s)≠∅ and s`∈τ(s) then s` is called

a τ-successor of s. In addition, we assume that

there is τI∈T such that for each s∈Σ, τI(s) = {s}.

We call τI the idling transition. The transitions in

the set TD = T \ {τI } are called diligent.

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 60

 Θ is an assertion called the initial condition of

Ts. A state s∈Σ such that s |= Θ is called an initial

state of Ts.

Each transition τ∈T, is characterized by an assertion

relating the values of the variables in states

s : Π→ D and s`:Π→ D for each s`∈τ(s). Denote

this relation by ρ

τ. Formally, if s : Π→ D and

s`∈τ(s), s`:Π→ D, then ∀u ∈ Π (s[u], s`[u]) ∈ρτ.
Using infix notation this is expressed by

s[u] ρτ s`[u]. The assertion ρτ allows us to refer to

the values of the variables u of Π as u, the value u

before the transitionτ, and u`, the value after the

transitionτ. u` is called the primed version of u. That

is, we may think of two copies Π and Π` of the

variable of Ts and denote the transition relation of τ
by ρτ(Π, Π`). The transition relation ρτ(Π, Π`) has

the form ρτ = Cτ(Π) ∧ (= e'

1
y 1) ∧ … ∧ (= e'

k
y k)

where:

 Cτ(Π) is an assertion called the enabling

condition that depends only on the values of the

variables in the state s before the transition.

Cτ(Π) states the condition under which s may

have a τ-successor, i.e., τ(s)≠∅.

 (= e'

1
y 1) ∧ … ∧ (= e'

k
y k) is the conjunction of

the modifications performed by τ when it takes

place. Each = e'

i
y i requires that the primed value

of the variable yi to be computed using the non-

primed value of ei, i.e., ∀s`∈τ(s)(s`[yi] = s[ei]),

where y1, y2, …, yk are pair wise distinct.

Notation:

The transition relation

ρτ (Π, Π`) = Cτ(Π) ∧ (= e'

1
y 1) ∧ … ∧ (= e'

k
y k)

can be denoted by

ρτ : Cr ∧ ('y = e)

where

'y =(, ,…,) and '

1
y

'y2
'
ky e = (e1, e2,…, ek).

If r∈T and s∈Σ then if τ(s)≠∅ we say that τ is

enabled on s and if τ(s)=∅ we say that τ is disabled

on s. Notice that if ρτ : Cτ ∧ ('y = e) then τ is enabled

on s iff s |= Cr. For a set of transitions, T ⊆ T and

s∈Σ we say that T is enabled on s if there is τ ∈ T

and τ is enabled on s; T is disabled on s if for each τ
∈ T, τ is disabled on s. A state s∈Σ is called

terminal if the only enabled transition on s is the

idling transition τI. Clearly all successors of a

terminal state are terminals.

We now use a transition system to define the

computational behavior of programs:

Definition 1. Let Ts = <Π, Σ, T, Θ> be a transition

system. A computation σ of Ts is an infinite

sequence of states σ : s0, s1, … that satisfies the

following requirements:

 Initiation: s0 is initial, that is, s0 |= Θ.

 Consecution: ∀i(si+1 ∈ τ (si)) for some τ ∈ T.

The pair (si, si+1) is called a

τ-computation step, or simply

τ-step.

 Diligence: either σ contains infinitely many

diligent τ-steps for τ ∈ T or it

contains a terminal state. Since τ-
steps of a terminal state leave that

state terminal, a computation that

contains a terminal state is called

terminal.

3 System Specification
The universal language emerges into a specification

language that is widely accepted in computer

science. The specification language borrows form

computer science the idea of using keywords in

order to relate it to the natural language of its users.

This language has already penetrated the field of

computer science under the name of abstract data

types.

An action specification is a program in the language

used to express reactive systems and is provided in

the specification by the keyword Actn. An action

consists of two parts, the name, and the linguistic

expression of the action. The name of the action is

separated by double colon, ::, from its linguistic

expression. The linguistic expression of the action is

composed of a declaration part and an action part.

Formally, an action specification is a linguistic

expression of the form A :: [D][A1 || A2 || … || An]

where the following notation is used:

 A is the name of the action performed by the

system.

 D is a sequence of typed lists of variables of

the form mode List : type where φ where mode

is one of in, out, inout, local, type is a type of

value accepted in the system, and φ is an

assertion satisfied by the variables in the List.

 A1, A2,…, An are actions in terms of which the

action A is specified. Each Ai is either a call to a

previously defined action, or has the form [Di];

Si where Di is a declaration and Si is a statement

describing the action to be performed on the

variables in D ∪Di. When Ai is an action call, its

expression in A is Ai(arg) where arg is the list of

variables used by Ai for its task. Arguments can

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 61

be: in, out, inout. The in arguments are

imported and not modifiable, the out arguments

are exported and inout arguments are imported

and modifiable.

Definition 2. A process is a tuple

P = 〈Agent, Action, Status〉
 where:

 Agent is a processor capable to perform

statements composing the actions in Action and

Status is the state of this performance.

In order to perform the statements of an action, the

processor has a control mechanism that shows the

label of the statement currently executed. Denote

this control by π. Statements are simple or

composed. Each statement has the form

l : body :

l̂ , where l is a label that identifies the

statement by showing the entry point in the

statement body and l̂ is a label showing the exit

point from the statement body. The simple

statements are performed by the processor

atomically. There are three types of simple

statements in a system specification. They are called

skip, await and assignment and are defined as

follows:

 The skip statement has the form l : skip : l̂

and its performance means “skip”.

 The await statement has the form l:await e: l̂

where e is a boolean expression and its

performance means “wait until e becomes true”.

 The assignment statement has the form

l : (x1, x2, …, xn) := (e1, e2, …, en) : l̂

denoted by

l: x := e : l̂ ,

where

x =(x1, x2, …, xn), e = (e1, e2, …, en),

and for I = 1, 2, …, n, xi and ei have the same

type. This is also called a multiple assignment.

The composed statement of the specification

language is concatenation, branch, loop, choice,

parallel and block. The statement composition

generates redundant labels. To simplify this we

group together all redundant labels in equivalence

classes. A class of equivalence contains all labels

that denote the entry point or the exist point of a

statement. Each equivalence class is represented by

one label. That is, we assume that each statement S

has just one entry point and one exit point. The set

of labels denoting the entry point of S is Entry(S)

and the set of labels denoting the exit point of S is

Exit(S).

The labeling of statements is however optional. The

entry and exit points of a statement that has no labels

coincides with the textual begin and end of that

statement and its labels are considered to be the

empty string ε. This language of actions can be

freely extended in order to express various

computation performed by different systems.

4 System specification language
Formally, a system can be defined as a pair

System = 〈TS, A〉 where TS is a transition system and

A is an action expression specifying the

computations performed by the TS. Using the

systematic approach for a system construction we

develop a system by successive iterations. At each

iteration we construct a version of TS and then

express it by an appropriate action A to obtain a

process P = 〈Agent, A, Status〉. This process when

active performs the computations specified by TS.

The formalization of this specification approach

leads to a System Specification Language, SSL,

SSL = 〈SSLSem, SSLSyn, L : SSLSem → SSLSyn〉
where:

The semantics SSLSem of the SSL are transition

systems.

The syntax SSLSyn of the SSL are actions.

The function L : SSLSem → SSLSyn is determined

by the process that allows us to express transition

systems by actions. The language evaluation

function ε : SSLSem → SSLSyn is defined as

follows: if A :: [D][A1 || A2 || … || An] is an action

in SSLSyn then ε (A) is the transition system

TSA = 〈ΠA, ΣA, TA, ΘA〉 in SSLSem constructed as

follows:

 ΠA is the set of all variables declared in A

together with a control variable π that runs

over the power set of the collection of labels

LA in A.

 Each s ∈ΣA ia an assignment s : ΠA = DA

where DA = . Ax L)x(Type
A

∪∈U Π

 TA is the set of transitions determined by

the statements of A. The idling transition is

ρI : T.

 The initial condition of ΘA is

ΘA = (π = Entry(A1) ∪ … ∪ Entry(An)) ∧ φ

where φ is the conjunction of all where

assertions in the expression of A.

A computation performed by the transition system

TSA is expressed by the sequence of transition

〈π, x1,…, xn〉 〈π`, x⎯⎯→⎯ 1Sρ `
1,…, x`

n〉 … ⎯⎯→⎯ 2Sρ

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 62

where {π, x1,…, xn}|= Θ and S1, S2,… are statements

of the action performed by TSA.

An important question in our study is to determine

when two computing objects are equivalent. We call

two computing objects equivalent if the transition

systems performing their behavior are equivalent.

Two transition systems TS1 and TS2 are equivalent

when they generate the same set of computations.

Since every computation of a transition system in an

infinite sequence of state transitions where the entire

state is seen, this concept of equivalence is too

discriminating. So, the equivalence of transition

systems should be defined up to a set of state

variables that are observable. The set of observable

state variables should be specified by the user. That

is, the computations generated by two transitions

systems are considered to be the same if the values

of the observable state variables are the same.

Consequently, one can define the reduced behavior

of a transition system to be the set of its

computations where only the values taken by the

observable variables are seen. If a reduced state is

the observable part of that state then the reduced

behavior σ r of a computation σ is determined as

follows:

t1 Replace each state si of σ by its observable part

contained by restricting si to the observable

variables.

t2 Omit from the sequence of states of σ each

state that coincides with its predecessor but

differs from its successor.

The reduced behavior of a transition system TS with

respect to a given set of observable variables O is

denoted by ℜ (TS, O).

Since actions are specified in terms of other actions

this concept of equivalence should detect the

situations where two actions can be used

interchangeably. Let us assume that the variable S

runs over actions. Denote an action that depends on

S by A(S) and by A(A1) the action that is obtained

from A(S) by replacing all occurrences of S in A by

A1. Then two actions A1 and A2 are called congruent,

denoted by A1 ≈ A2, if for every

action A(S). Example of congruent actions are

provided by the associatively of the operators “;”

(concatenation), “or” (choice), “||” (parallel) used to

construct composed statements.

)A(A)A(A TS~TS
21

There are two relations among actions A1, A2 that

allow the replacement of A1 by A2, emulation and

implementation. Such a replacement is desirable

when A2 is expressed in terms of language constructs

that can be run on a given computer. The action A1

emulates the action A2 if . The

action A

)TS()TS(AA 21
ℜ=ℜ

2 implements the action A1 if

)TS()TS(AA 12
ℜ⊆ℜ .

5 System implementation language
To achieve its goal, the objects and the operations

used to specify a system should behave as the data

and operations of an abstract machine which

performs the computation task specified by the

system. In other words, the system expression

written in the system specification language should

be transformed into a computation object of an

abstract machine. The abstract machine used to

express computing objects is a programming

language implemented on an actual computer.

The programming language that allows us to express

systems as computation objects is called the system

implementation language. The process of mapping

the system specification language into the system

implementation language is called the system

implementation. We use the C programming

language as the system implementation language. C

is regarded here mere as a tool for the software

system designer.

6 System validation language
The validation of a system is the process of showing

that the system performs the function for which it

was designed. The validation process consists of

actually using the system in appropriate applications

according to the function that it performs.

The language used to express applications which use

a system in order to validate the system is called the

system validation language. Usually a system is

validated using the system implementation language.

Therefore, we use C as the software system

validation language.

References:

[1] S. Greibach, Full AFL’s and nested iterated

substitution, IEEE Conf. Record 10, Ann.Symp.

Switching Automata Theory, 1969, pp. 222-230.

[2] J. Kral, A modification of a substitution theorem

and some necessary and sufficient conditions for sets

to be context free, Math. Systems Theory, 1970,

no. 4, pp. 129-139.

[3] I. McWhirter, Substitution expressions,

J. Comput. System Sci., 1971, no. 5, pp. 629-637.

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 63

[4] T. Rus, A language Independent Scanner

generator, available at http://cs.uiowa.edu/rus/,

1999.

[5] M. Yntema, Cap expressions for context free

languages, Information and Control, 1971, no. 18,

pp. 311-318..

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 64

