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Abstract: - Computing objects manipulated in computer science bear a lot of similarities with the 

mathematical objects produced by the systems discussed so far they also are very different. Due to the 

dynamic nature of the computing objects represented, the semantics of the specification languages used to 

formalize systems will be a transition system performing computation actions, while the syntax will be the 

linguistic expression of the actions performed by the transition system. 
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1   Introduction 
Systems represent computations with specific 

behavioral properties the major steps involved in 

this formalization are: 

System specification: defines the system as a 

computing object of the form:  

System = <Specification, Behavior>. 

System implementation: expresses the behavior 

of the system such that it can be observed. 

System validation: shows that the behavior of 

the system has the requested properties.  

Each of these steps requires a specific language for 

its representation. A language in this context is a 

tuple L = <Sem, Syn, L:Sem→Syn> where: 

 Sem is the language semantics; 

 Syn is the language syntax; 

 L:Sem→Syn is a partial mapping that 

expresses computing objects c ∈ Sem by means 

of their linguistic expressions L(c) ∈ Syn in a 

way that there exists a total mapping             

ε : Syn→Sem  such that ε (L(c)) = c whenever     

L is defined. 

        

 Σ is a set of states. Each s ∈ Σ is an 

assignment of the variables in Π, i.e., s : Π→ D, 

where D is the domain of values of the variables 

in Π. If u ∈ Π then s[u] denotes the value 

assigned to u by s. The relation s : Π → D can be 

uniquely extended to the valuation 

homomorphism Vs : W(Ξ, Π) → A(Ξ, D) where 

Ξ is an operator scheme, W(Ξ, Π) is the term 

generated by Ξ in symbols of Π, and A(Ξ, D) is 

the values generated by Ξ on the domain D. If     

e∈W(Ξ, Π) and s:Π→ D is an assignment then 

s[e] denotes Vs(e). If φ is an assertion and     

Vs(φ) = true then we write s |= φ and call s a      

φ-state. 

Due to the dynamic nature of the computing objects 

represented, the semantics of the specification 

languages used to formalize systems will be a 

transition system performing computation actions, 

while the syntax will be the linguistic expression of 

the actions performed by the transition system. 

 

 

 

 

2   Transition Systems 
A transition system is a tuple Ts = <Π, Σ, T, Θ> 

where: 

 Π is a set of typed symbols called the state 

variables. There are two kinds of variables in Π: 

data variables used to denote data values and 

control variables used to denote control values. 

 T is a finite set of transitions. Each τ∈T is a 

mapping τ : Σ → P(Σ) where P(Σ) is the power 

set of Σ. That is, for each s∈Σ, τ(s) ⊆ Σ (τ(s) can 

be the ∅). If τ(s)≠∅ and s`∈τ(s) then s` is called 

a τ-successor of s. In addition, we assume that 

there is τI∈T such that for each s∈Σ, τI(s) = {s}. 

We call τI the idling transition. The transitions in 

the set TD = T \ {τI } are called diligent. 
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 Θ is an assertion called the initial condition of 

Ts. A state s∈Σ such that s |= Θ is called an initial 

state of Ts. 

Each transition τ∈T, is characterized by an assertion 

relating the values of the variables in states             

s : Π→ D and s`:Π→ D for each s`∈τ(s). Denote 

this relation by ρ

   

τ. Formally, if s : Π→ D and 

s`∈τ(s), s`:Π→ D, then ∀u ∈ Π (s[u], s`[u]) ∈ρτ. 
Using infix notation this is expressed by                

s[u] ρτ s`[u]. The assertion ρτ allows us to refer to 

the values of the variables u of Π as u, the value u 

before the transitionτ, and u`, the value after the 

transitionτ. u` is called the primed version of u. That 

is, we may think of two copies Π and Π` of the 

variable of Ts and denote the transition relation of τ 
by ρτ(Π, Π`). The transition relation ρτ(Π, Π`) has 

the form ρτ = Cτ(Π) ∧ ( = e'

1
y 1) ∧ … ∧ ( = e'

k
y k) 

where: 

 Cτ(Π) is an assertion called the enabling 

condition that depends only on the values of the 

variables in the state s before the transition. 

Cτ(Π) states the condition under which s may 

have a τ-successor, i.e., τ(s)≠∅. 

 ( = e'

1
y 1) ∧ … ∧ ( = e'

k
y k) is the conjunction of 

the modifications performed by τ when it takes 

place. Each = e'

i
y i requires that the primed value 

of the variable yi to be computed using the non-

primed value of ei, i.e., ∀s`∈τ(s)(s`[yi] = s[ei]), 

where y1, y2, …, yk are pair wise distinct. 

Notation:  

The transition relation  

ρτ (Π, Π`) = Cτ(Π) ∧ ( = e'

1
y 1) ∧ … ∧ ( = e'

k
y k) 

can be denoted by  

ρτ : Cr ∧ ( 'y = e )  

where 

'y =( , ,…, ) and '

1
y

'y2
'
ky e = (e1, e2,…, ek). 

If r∈T and s∈Σ then if τ(s)≠∅ we say that τ is 

enabled on s and if τ(s)=∅ we say that τ is disabled 

on s. Notice that if ρτ : Cτ ∧ ( 'y = e ) then τ is enabled 

on s iff s |= Cr. For a set of transitions, T ⊆ T and 

s∈Σ we say that T is enabled on s if there is τ ∈ T 

and τ  is enabled on s; T is disabled on s if for each τ 
∈ T, τ  is disabled on s. A state s∈Σ is called 

terminal if the only enabled transition on s is the 

idling transition τI. Clearly all successors of a 

terminal state are terminals. 

We now use a transition system to define the 

computational behavior of programs: 

Definition 1. Let Ts = <Π, Σ, T, Θ> be a transition 

system. A computation σ of Ts is an infinite 

sequence of states σ : s0, s1, … that satisfies the 

following requirements: 

 Initiation: s0 is initial, that is, s0 |= Θ. 

 Consecution: ∀i(si+1 ∈ τ (si)) for some τ ∈ T. 

The pair (si, si+1) is called a           

τ-computation step, or simply      

τ-step. 

 Diligence: either σ contains infinitely many 

diligent τ-steps for τ ∈ T or it 

contains a terminal state. Since τ-
steps of a terminal state leave that 

state terminal, a computation that 

contains a terminal state is called 

terminal. 

 

 

3   System Specification 
The universal language emerges into a specification 

language that is widely accepted in computer 

science. The specification language borrows form 

computer science the idea of using keywords in 

order to relate it to the natural language of its users. 

This language has already penetrated the field of 

computer science under the name of abstract data 

types.  

An action specification is a program in the language 

used to express reactive systems and is provided in 

the specification by the keyword Actn. An action 

consists of two parts, the name, and the linguistic 

expression of the action. The name of the action is 

separated by double colon, ::, from its linguistic 

expression. The linguistic expression of the action is 

composed of a declaration part and an action part. 

Formally, an action specification is a linguistic 

expression of the form A :: [D][A1 || A2 || … || An] 

where the following notation is used:  

 A is the name of the action performed by the 

system. 

 D is a sequence of typed lists of variables of 

the form mode List : type where φ where mode 

is one of in, out, inout, local, type is a type of 

value accepted in the system, and φ is an 

assertion satisfied by the variables in the List. 

 A1, A2,…, An are actions in terms of which the 

action A is specified. Each Ai is either a call to a 

previously defined action, or has the form [Di];       

Si where Di is a declaration and Si is a statement 

describing the action to be performed on the 

variables in D ∪Di. When Ai is an action call, its 

expression in A is Ai(arg) where arg is the list of 

variables used by Ai for its task. Arguments can 

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006       61



be: in, out, inout. The in arguments are 

imported and not modifiable, the out arguments 

are exported and inout arguments are imported 

and modifiable. 

Definition 2. A process is a tuple  

P = 〈Agent, Action, Status〉 
     where:  

     Agent is a processor capable to perform 

statements composing the actions in Action and 

Status is the state of this performance. 

In order to perform the statements of an action, the 

processor has a control mechanism that shows the 

label of the statement currently executed. Denote 

this control by π. Statements are simple or 

composed. Each statement has the form        

l : body : 

              

l̂ , where l is a label that identifies the 

statement by showing the entry point in the 

statement body and l̂  is a label showing the exit 

point from the statement body. The simple 

statements are performed by the processor 

atomically. There are three types of simple 

statements in a system specification. They are called 

skip, await and assignment and are defined as 

follows: 

 The skip statement has the form l : skip : l̂  

and its performance means “skip”. 

 The await statement has the form l:await e: l̂  

where e is a boolean expression and its 

performance means “wait until e becomes true”. 

 The assignment statement has the form 

l : (x1, x2, …, xn) := (e1, e2, …, en) : l̂  

denoted by  

l: x := e : l̂ , 

where  

x =(x1, x2, …, xn), e = (e1, e2, …, en), 

and for I = 1, 2, …, n, xi and ei have the same 

type. This is also called a multiple assignment. 

The composed statement of the specification 

language is concatenation, branch, loop, choice, 

parallel and block. The statement composition 

generates redundant labels. To simplify this we 

group together all redundant labels in equivalence 

classes. A class of equivalence contains all labels 

that denote the entry point or the exist point of a 

statement. Each equivalence class is represented by 

one label. That is, we assume that each statement S 

has just one entry point and one exit point. The set 

of labels denoting the entry point of S is Entry(S) 

and the set of labels denoting the exit point of S is 

Exit(S). 

The labeling of statements is however optional. The 

entry and exit points of a statement that has no labels 

coincides with the textual begin and end of that 

statement and its labels are considered to be the 

empty string ε. This language of actions can be 

freely extended in order to express various 

computation performed by different systems.  

 

 

4   System specification language 
Formally, a system can be defined as a pair      

System = 〈TS, A〉 where TS is a transition system and 

A is an action expression specifying the 

computations performed by the TS. Using the 

systematic approach for a system construction we 

develop a system by successive iterations. At each 

iteration we construct a version of TS and then 

express it by an appropriate action A to obtain a 

process P = 〈Agent, A, Status〉. This process when 

active performs the computations specified by TS. 

The formalization of this specification approach 

leads to a System Specification Language,   SSL, 

SSL = 〈SSLSem, SSLSyn, L : SSLSem → SSLSyn〉  
where: 

The semantics SSLSem of the SSL are transition 

systems. 

The syntax SSLSyn of the SSL are actions. 

The function L : SSLSem → SSLSyn is determined 

by the process that allows us to express transition 

systems by actions. The language evaluation 

function ε : SSLSem → SSLSyn is defined as 

follows:  if A :: [D][A1 || A2 || … || An] is an action 

in SSLSyn then ε (A) is the transition system                  

TSA = 〈ΠA, ΣA, TA, ΘA〉 in SSLSem constructed as 

follows: 

 ΠA is the set of all variables declared in A 

together with a control variable π that runs 

over the power set of the collection of labels 

LA in A. 

 Each s ∈ΣA ia an assignment s : ΠA = DA 

where DA = . Ax L)x(Type
A

∪∈U Π

 TA is the set of transitions determined by 

the statements of A. The idling transition is 

ρI : T. 

 The initial condition of ΘA is                 

ΘA = (π = Entry(A1) ∪ … ∪ Entry(An)) ∧ φ          

where φ is the conjunction of all where 

assertions in the expression of A. 

A computation performed by the transition system 

TSA is expressed by the sequence of transition        

〈π, x1,…, xn〉 〈π`, x⎯⎯→⎯ 1Sρ `
1,…, x`

n〉 … ⎯⎯→⎯ 2Sρ
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where {π, x1,…, xn}|= Θ and S1, S2,… are statements 

of the action performed by TSA. 

An important question in our study is to determine 

when two computing objects are equivalent. We call 

two computing objects equivalent if the transition 

systems performing their behavior are equivalent. 

Two transition systems TS1 and TS2 are equivalent 

when they generate the same set of computations. 

Since every computation of a transition system in an 

infinite sequence of state transitions where the entire 

state is seen, this concept of equivalence is too 

discriminating. So, the equivalence of transition 

systems should be defined up to a set of state 

variables that are observable. The set of observable 

state variables should be specified by the user. That 

is, the computations generated by two transitions 

systems are considered to be the same if the values 

of the observable state variables are the same. 

Consequently, one can define the reduced behavior 

of a transition system to be the set of its 

computations where only the values taken by the 

observable variables are seen. If a reduced state is 

the observable part of that state then the reduced 

behavior σ r of a computation σ is determined as 

follows: 

t1 Replace each state si of σ by its observable part 

contained by restricting si to the observable 

variables. 

t2 Omit from the sequence of states of σ each 

state that coincides with its predecessor but 

differs from its successor. 

The reduced behavior of a transition system TS with 

respect to a given set of observable variables O is 

denoted by ℜ (TS, O). 

Since actions are specified in terms of other actions 

this concept of equivalence should detect the 

situations where two actions can be used 

interchangeably. Let us assume that the variable S 

runs over actions. Denote an action that depends on 

S by A(S) and by A(A1) the action that is obtained 

from A(S) by replacing all occurrences of S in A by 

A1. Then two actions A1 and A2 are called congruent, 

denoted by A1 ≈ A2, if for every 

action A(S). Example of congruent actions are 

provided by the associatively of the operators “;” 

(concatenation), “or” (choice), “||” (parallel) used to 

construct composed statements. 

)A(A)A(A TS~TS
21

There are two relations among actions A1, A2 that 

allow the replacement of A1 by A2, emulation and 

implementation. Such a replacement is desirable 

when A2 is expressed in terms of language constructs 

that can be run on a given computer. The action A1 

emulates the action A2 if . The 

action A

)TS()TS( AA 21
ℜ=ℜ

2 implements the action A1 if 

)TS()TS( AA 12
ℜ⊆ℜ . 

 

 

5   System implementation language 
To achieve its goal, the objects and the operations 

used to specify a system should behave as the data 

and operations of an abstract machine which 

performs the computation task specified by the 

system. In other words, the system expression 

written in the system specification language should 

be transformed into a computation object of an 

abstract machine. The abstract machine used to 

express computing objects is a programming 

language implemented on an actual computer. 

The programming language that allows us to express 

systems as computation objects is called the system 

implementation language. The process of mapping 

the system specification language into the system 

implementation language is called the system 

implementation. We use the C programming 

language as the system implementation language. C 

is regarded here mere as a tool for the software 

system designer. 

 

 

6   System validation language 
The validation of a system is the process of showing 

that the system performs the function for which it 

was designed. The validation process consists of 

actually using the system in appropriate applications 

according to the function that it performs. 

The language used to express applications which use 

a system in order to validate the system is called the 

system validation language. Usually a system is 

validated using the system implementation language. 

Therefore, we use C as the software system 

validation language. 
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