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Abstract - Synchronous Dataflow, a subset of dataflow, is a commonly used model of

computation in block diagram DSP programming environments. Because of the limited

amount of memory in embedded DSPs, a key problem during software synthesis from

SDF specifications is the minimization of the memory used by the target code. We

develop a powerful formal technique called buffer merging that attempts to overlay

buffers in the SDF graph systematically in order to drastically reduce data buffering

requirements. This technique is complementary to lifetime-analysis based approaches,

and we show that it can be fruitfully combined to yield a hybrid algorithm that results

in less memory usage than either technique used alone. We give polynomial-time algo-

rithms based on this formalism, and show that code synthesized using this technique

results in a 45% reduction, on average, of the buffering memory consumption com-

pared to existing techniques.

INTRODUCTION

Block diagram environments for DSPs have proliferated recently, with indus-

trial tools like DSPCanvas from Angeles Design Systems, and COSSAP [13] from

Synopsys, and academic tools like Ptolemy [4] from UC Berkeley, and GRAPE [6]

from K. U. Leuven. Reasons for their popularity include ease-of-use, intuitive

semantics, modularity, and strong formal properties of the underlying dataflow

models.

Memory is an important metric for generating efficient code for DSPs used in

embedded applications since most DSPs have very limited amounts of on-chip

memory, and adding off-chip memory is frequently not a viable option due to the

speed, power, and cost penalty this entails. High-level language compilers, like C

compilers have been ineffective for generating good DSP code [17]; this is why

most DSPs are still programmed manually in assembly language. However, this is a

tedious, error-prone task at best, and the increasing complexity of the systems being

implemented, with shorter design cycles, will require design development from a

higher level of abstraction.

Most block diagram environments for DSPs that allow software synthesis, use
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the technique of threading for constructing software implementations. In this

method, the block diagram is scheduled first. Then the code-generator steps

through the schedule, and pieces together code for each actor that appears in the

schedule by taking it from a predefined library. The code generator also performs

memory allocation, and expands the macros for memory references in the gener-

ated code.

Clearly, the quality of the code will be heavily dependent on the schedule used.

Hence, we consider in this paper scheduling strategies for minimizing memory

usage. Since the scheduling techniques we develop operate on the coarse-grain,

system level description, these techniques are somewhat orthogonal to the optimi-

zations that might be employed by tools lower in the flow. For example, a general

purpose compiler usually cannot make use of the global control and dataflow that

our scheduler can exploit. Thus, the techniques we develop in this paper are com-

plementary to the work being done on developing better procedural language com-

pilers for DSPs [8][9]. Since the individual actors are programmed in procedural

languages like ‘C’, the output of our SDF compiler is sent to a procedural language

compiler to optimize the internals of each actor, and to possibly further optimize the

code at a global level (for example, by performing global register allocation.)

The specific problem addressed by this paper is the following. Given a schedule

for an SDF graph, there are several strategies that can be used for implementing the

buffers needed on the edges of the graph. Previous work on minimizing these buff-

ers has used two models: implementing each buffer separately [1][3][15], or using

lifetime analysis techniques for sharing buffers [5][11][14]. In this paper, we

present a third strategy—buffer merging. This strategy allows sharing of input and

output buffers systematically, something that the lifetime-based approaches of

[5][11][14] are unable to do. The reason that lifetime-based approaches break down

when input/output edges are considered is because they make the conservative

assumption that an output buffer becomes live as soon as an actor begins firing, and

that an input buffer does not die until the actor has finished execution. Hence, the

lifetimes of the input and output buffers overlap, and they cannot be shared. How-

ever, as we will show in this paper, this assumption can be relaxed if we look at the

production and consumption pattern of individual tokens, and significant reuse

opportunities exist as a result. However, the merging approach of this paper is in

some sense, a dual of lifetime-based approaches because the merging technique is

not able to exploit global sharing opportunities based on the topology of the graph

and the schedule. It can only exploit sharing opportunities at the input/output level.

Thus, we give a hybrid algorithm that combines both of these techniques and show

that dramatic reductions in memory usage is possible compared to either technique

used by itself.

In-place memory management strategies using array index instances are used in

the Cathedral environment [16]; these strategies are applied to nested loop con-

structs in Silage. The merging approach presented in this paper is different from the

approach of [16] in that it is specifically targeted to the high regularity and modu-

larity present in single appearance schedule implementations (at the expense of

decreased generality). In particular, the overlapping of SDF input/output buffers by

shifting actor read and write pointers does not emerge in any straightforward way
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from the more general techniques developed in [16]. Our form of buffer merging is

especially well-suited for incorporation with the SDF vectorization techniques (for

minimizing context-switch overhead) developed at the Aachen University of Tech-

nology [13] since the absence of nested loops in the vectorized schedules allows for

more flexible merging of input/output buffers.

Ritz et al. [14] give an enumerative method for reducing buffer memory in SDF

graphs; however, memory is a tertiary concern in their work and their techniques

are not competitive with techniques that optimize for memory as a primary goal [3].

In [15], Sung et al. explore an optimization technique that combines procedure

calls with inline code for single appearance schedules; this is beneficial whenever

the graph has many different instantiations of the same basic actor. Thus, using

parametrized procedure calls enables efficient code sharing and reduces code size

even further. All of the scheduling techniques mentioned in this paper can use this

code-sharing technique also, and our work is complementary to this optimization.

Dataflow is a natural model of computation to use as the underlying model for a

block-diagram language for designing DSP systems. The blocks in the language

correspond to actors in a dataflow graph, and the connections correspond to

directed edges between the actors. These edges not only represent communication

channels, conceptually implemented as FIFO queues, but also establish precedence

constraints. An actor fires in a dataflow graph by removing tokens from its input

edges and producing tokens on its output edges. The stream of tokens produced this

way corresponds naturally to a discrete time signal in a DSP system. In this paper,

we consider a subset of dataflow called synchronous dataflow (SDF) [7]. In SDF,

each actor produces and consumes a fixed number of tokens, and these numbers are

known at compile time. In addition, each edge has a fixed initial number of tokens,

called delays.

NOTATION AND BACKGROUND

 Fig. 1(a) shows a simple SDF graph. Each edge is annotated with the number of

tokens produced (consumed) by its source (sink) actor. Given an SDF edge , we

denote the source actor, sink actor, and delay (initial tokens) of  by ,

, and . Also,  and  denote the number of tokens pro-

duced onto  by  and consumed from  by . If

 for all edges , the graph is called homogenous. In gen-

eral, each edge has a FIFO buffer; the number of tokens in this buffer defines the

state of the edge. Initial tokens on an edge are just initial tokens in the buffer. The

size of this buffer can be determined at compile time, as shown below. The state of

the graph is defined by the states of all edges.

A schedule is a sequence of actor firings. We compile an SDF graph by first

constructing a valid schedule — a finite schedule that fires each actor at least once,

does not deadlock, and produces no net change in the number of tokens queued on

each edge (i.e, returns the graph to its initial state). We represent the minimum

number of times each actor must be fired in a valid schedule by a vector ,

indexed by the actors in  (we often suppress the subscript if  is understood).

These minimum numbers of firings can be derived by finding the minimum posi-

tive integer solution to the balance equations for , which specify that  must

e

e src e( )
snk e( ) del e( ) prd e( ) cns e( )

e src e( ) e snk e( )
prd e( ) cns e( ) 1= = e

q
G

G G

G q
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satisfy , for all edges  in . The vector

, when it exists, is called the repetitions vector of , and can be computed effi-

ciently [3].

CONSTRUCTING MEMORY-EFFICIENT LOOP STRUC-

TURES

In [3], the concept and motivation behind single appearance schedules (SAS)

has been defined and shown to yield an optimally compact inline implementation of

an SDF graph with regard to code size (neglecting the code size overhead associ-

ated with the loop control). An SAS is a schedule in which each actor appears only

once when loop notation is used. Figure 1 shows an SDF graph, and valid schedules

for it. The notation  represents the firing sequence . Similarly, 

represents the schedule loop with firing sequence . Schedules 2 and 3 in

figure 1 are single appearance schedules since actors  appear only once. An

SAS like the third one in Figure 1(b) is called flat since it does not have any nested

loops. In general, there can be exponentially many ways of nesting loops in a flat

SAS.

Scheduling can also have a significant impact on the amount of memory

required to implement the buffers on the edges in an SDF graph. For example, in

Figure 1(b), the buffering requirements for the four schedules, assuming that one

separate buffer is implemented for each edge, are 50, 40, 60, and 50 respectively.

OPTIMIZING FOR BUFFER MEMORY

Following [3][10], we give priority to code-size minimization over buffer mem-

ory minimization. Hence, the problem we tackle is one of finding buffer-memory-

optimal SAS, since this will give us the best schedule in terms of buffer-memory

consumption amongst the schedules that have minimum code size. Following [3]

and [10], we also concentrate on acyclic SDF graphs since algorithms for acyclic

graphs can be used in the general SAS framework developed in [3].

For an acyclic SDF graph, any topological sort  immediately leads to a

valid flat SAS given by . Each such flat SAS leads to a set of

SASs corresponding to different nesting orders.

In [10] and [3], the buffering cost was defined as the sum of the buffer sizes on

each edge, assuming that each buffer is implemented separately, without any shar-

ing. In this paper, we use an alternative cost for implementing buffers. Our cost is

based on overlaying buffers so that spaces can be re-used when the data is no longer

needed. This technique is called buffer merging, since, as we will show, merging

an input buffer with an output buffer will result in significantly less space required

than their sums.

prd e( )q src e( )( ) cns e( )q snk e( )( )= e G

q G

Fig 1. An example used to illustrate the interaction between scheduling SDF
graphs and the memory requirements of the generated code.

20 10 1020
A B C

Valid Schedules

(1): ABCBCCC (2): A(2 B(2 C))

(3): A(2 B)(4 C) (4): A(2 BC)(2 C)(a) (b)

2B BB 2 B 2C( )( )
BCCBCC

A B C, ,

a b c…
q a( )a( ) q b( )b( )…
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MERGING AN INPUT/OUTPUT BUFFER PAIR

Consider the second schedule in figure 1(b). If each buffer is implemented sepa-

rately for this schedule, the required buffers on edges  and  will be of sizes

20 and 20, giving a total requirement of 40. Suppose, however, that it is known that

 consumes its 10 tokens per firing before it writes any of the 20 tokens. Then,

when B fires for the first time, it will read 10 tokens from the buffer on , leaving

10 tokens there. Now it will write 20 tokens. At this point, there are 30 live tokens.

If we continue observing the token traffic as this schedule evolves, it will be seen

that 30 is the maximum number that are live at any given time. Hence, we see that

in reality, we only need a buffer of size 30 to implement  and . Indeed, the

diagram shown in figure 2 shows how the read and write pointers for actor 

would be overlaid, with the pointers moving right as tokens are read and written. As

can be seen, the write pointer, X(w,BC) never overtakes the read pointer X(r,AB),

and the size of 30 suffices. Hence, we have merged the input buffer (of size 20)

with the output buffer (of size 20) by overlapping a certain amount that is not

needed because of the lifetimes of the tokens.

In past work on dataflow, the execution of an actor is treated as atomic for most

purposes. However, as the above example shows, it is useful to know when pre-

cisely tokens are produced and consumed during an actor’s execution as this

enables better memory management. This idea can be formalized using the con-

sumed-before-produced (CBP) parameter [2].

The CBP parameter

We define a parameter called the consume-before-produce (CBP) value; this

parameter is a property of the SDF actor and a particular input/output edge pair of

that actor. Informally, it gives the best known lower bound on the difference

between the number of tokens consumed and number of tokens produced over the

entire time that the actor is in the process of firing. Formally, let  be an SDF actor,

and let  be an input edge of  and  an output edge of . Let the firing of 

begin at time 0 and end at time . Define  ( ) to be the number of tokens

that have been consumed (produced) from (on)  ( ) by time . Then,

we define

(1)

We can then formally state the size of the buffer that results when input/output

buffers are merged using the CBP parameter and parameters computed from the

SAS; these results may be found in [12]. Since stating these formulas requires a

certain amount of loop scheduling machinery to be developed and described, we

omit this here due to space considerations as it is not necessary for the main result

AB BC

B

AB

AB BC

10 20

X(r,AB)X(w,BC)

Fig 2. The merged buffer for implementing edges AB and BC in figure 1.
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B
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in this paper, which is to develop a merging algorithm for arbitrary, acyclic SDF

graphs. It suffices to know that we can compute the size of the merged buffer for an

input/output edge pair, given the CBP parameter and an SAS.

Consider a pair of input/output edges  for an actor . Let ,

 . Let  denote the buffer resulting

from merging the buffers  and , on edges  and  respectively. Define 

to be the size of buffer .

Lemma 1:[12] The size of the merged buffer is no greater than the sum of the

buffer sizes implemented separately.

Define the augmentation function  to be the amount by which the

output buffer  has to be augmented due to the merge . That is,

.

Theorem 1:The merge operator is associative; i.e, if  is a chain

of four actors, , and  are the respective buffers, then

.

Theorem 2:[12] Let  be a path (a chain of actors and edges) in

the SDF graph. Let  be the buffer on the output edge of actor , and let  be a

given SAS (according to which the  are determined). Then,

(2)

ACYCLIC GRAPHS

In this section, we develop the merging technique for arbitrary, delayless, acy-

clic SDF graphs. The techniques we develop here can easily be extended to handle

graphs that have delays [12]. SASs for SDF graphs that contain cycles can be con-

structed in an efficient and general manner by using the loose interdependence

scheduling framework of [3].

When acyclic graphs are considered, there are two dimensions that come into

play for designing merging algorithms. The first dimension is the choice of the

topological ordering of the actors; each topological ordering leads to a set of SASs.

This dimension has been extensively dealt with before in [3], where two heuristic

approaches were devised for determining good topological orderings. While these

heuristics were optimized for minimizing the buffer memory cost function where

each buffer is implemented separately, they can be used with the new merged cost

function as well. We leave for future work to design better heuristics for the merged

cost function, if it is possible.

The second dimension is unique to the merge cost function, and is the issue of

the set of paths that buffers should be merged on. In other words, given a topologi-

cal sort of the graph, and a nested SAS for this graph, there still remains the issue of

what paths buffers should be merged on. Since an acyclic graph can have an expo-

nential number of paths, it is necessary to have efficient techniques for determining

ei eo, Y X src ei( )=

Z snk eo( )= snk ei( ) Y src eo( )= = bi bo⊕
bi bo ei eo b

b

A b
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these paths. In the following section, we develop a bottom up approach that com-

bines lifetime analysis techniques from [11] and the merging approach to generate

implementations that arguably extract the maximum benefit of both approaches.

A bottom-up approach

We describe a technique for determining merge paths that also combines life-

time analysis techniques from [11]. Briefly, the lifetime analysis techniques devel-

oped in [11] construct an SAS optimized using a particular shared-buffer model that

exploits temporal disjointedness of the buffer lifetimes. The method then constructs

an intersection graph that models buffer lifetimes by nodes and edges between

nodes if the lifetimes intersect in time. FirstFit allocation heuristics [11] are then

used to perform memory allocation on the intersection graph. The shared buffer

model used in [11] is useful for modeling the sharing opportunities that are present

in the SDF graph as a whole, but is unable to model the sharing opportunities that

are present at the input/output buffers of a single actor. The model has to make the

conservative assumption that all input buffers are simultaneously live with all out-

put buffers of an actor while the actor has not fired the requisite number of times in

the periodic schedule. This means that input/output buffers of a single actor cannot

be shared under this model. However, the buffer merging technique developed in

this paper models the input/output edge case very well, and is able to exploit the

maximum amount of sharing opportunities. However, the merging process is not

well suited for exploiting the overall sharing opportunities present in the graph, as

that is better modeled by lifetime analysis. Hence, the bottom-up approach we give

here combines both these techniques, and allows maximum exploitation of sharing

opportunities at both the global level of the overall graph, and the local level of an

individual input/output buffer pair of an actor.

The algorithm is stated in figure 3. It makes several passes through the graph,

each time merging a suitable pair of input/output buffers. For each merge, a global

memory allocation is performed using the combined lifetime of the merged buffer.

That is, the start time of the merged buffer is the start time of the input buffer, and

the end time is the end time of the output buffer (the procedure chngIntsect-

Graph performs this). If the allocation improves, then the merge is recorded (pro-

cedure recordMerge). After examining each node and each pair of input/output

edge pairs, we determine whether the best recorded merge improved the allocation.

If it did, then the merge is performed (procedure mergeRecorded), and another

pass is made through the graph where every node and its input/output edge pairs is

examined. The algorithm stops when there is no further improvement.

Running time analysis

The loops labelled (1), (2), and (3) take

(3)

steps, where  is the in-degree of actor  and  is the out-degree

of actor . In the worst possible case, we can show that this sum is ,

indeg vi( ) outdeg vi( )⋅

i 1=

V

∑
indeg v( ) v outdeg v( )

v O V 3( )
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assuming a dense, acyclic graph. If the graph is not dense, and the in- and out-

degrees of the actors are bounded by pre-defined constants, as they usually are in

most SDF specifications, then equation 3 would be . The merging step in

line (4) can be precomputed and stored in a matrix since merging a buffer with a

chain of merged buffers just involves merging the buffer at the end of the chain and

summing the augmentation. This precomputation would store the results in an

 matrix, and would take time  in the average case, and

 time in the worst case. So line (4) would end up taking a constant

amount of time since the precomputation would occur before the loops. The inter-

sectionGraph procedure can take  time in the worst case. While this could

be improved by recognizing the incremental change that actually occurs to the life-

times, it is still hampered by the fact that the actual allocation heuristic still takes

time . The overall while loop can take  steps since each edge could

end up being merged. Hence, the overall running time, for practical systems, is

 which is  for sparse graphs. Improvement, if any, can be

achieved by exploring ways of implementing the FirstFit heuristic to work incre-

mentally (so that it does not take ); however, this is unlikely to be possible

Fig 3. A bottom-up approach that combines buffer merging with lifetime analysis.

Procedure mergeBottomUp(SDF Graph , SAS )

computeIntersectionGraph( )

while (true)

for each node (1)

for each input edge  of (2)

for each output edge  of (3)

(4)

chngIntsectGraph( )

if ( )

recordMerge( )

fi

restore( )

end for
end for

end for

if ( )

mergeRecorded()
else

break

G S
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E E× O E 2 Vlog⋅( )
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O E 2( )

O E 2( ) O E( )

O V E 3⋅( ) O V 4( )
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as the merged buffer will have a different lifetime and size, and the allocation has to

be redone from scratch each time.

EXPERIMENTAL RESULTS

We have tested this algorithm on several practical benchmark examples; table 3

shows these results. The first four systems are quadrature mirror filterbank systems

used for audio and image coding. The fourth example is a satellite receiver from

[14]. The last two examples are a an overlapped-add FFT implementation, and a

phased array system for detecting signals. The second column gives the best cost

obtainable when no buffer sharing is used, and each buffer is implemented sepa-

rately. The third column gives the best shared implementation using the techniques

in [11]. The fourth column shows the results obtained using the bottom-up algo-

rithm. As can be seen, the improvement of the techniques in this paper over previ-

ous work is on average around 45% (last column), and as high as 54%.

CONCLUSION

We have developed a novel algorithm for applying the buffer merging technique

in acyclic SDF graphs. The algorithm we have given is a hybrid algorithm that

combines lifetime analysis techniques with the merging technique to determine an

optimal set of merges. We have shown that the benefit of using buffer merging can

result in up to a 50% improvement over previous methods buffer optimization.

Earlier work on SDF buffer optimization has focused on the separate buffer

model, and the lifetime model, in which buffers cannot share memory space if they

simultaneously contain live data. Our work on buffer merging in this paper has for-

mally introduced a third model of buffer implementation in which input and output

buffers can be overlaid in memory even if their lifetimes overlap. We have shown

that our merging techniques can produce large improvements over the separate-

buffer and lifetime-based implementation. However, buffer merging does not ren-

der separate-buffers or lifetime-based buffer sharing obsolete. Separate buffers are

useful for implementing edges that contain delays efficiently. Furthermore, they

Table 3: Performance on practical systems

System  non-shared shared  shared and merged % Imp

q23 1271 492 245 50.2

q12 342 58 30 48.3

q235 492 240 110 54.2

q235_5d 8967 5690 3790 33.4

satrec 1542 991 720 27.3

FFT 1222 514 258 49.8

phArr 2496 2071 1234 40.4
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provide a tractable cost function with which once can rigorously prove useful

results on upper bound memory requirements [3]. Lifetime-based sharing is a dual

of the merging approach, as mentioned already, and can be fruitfully combined with

the merging technique to develop a powerful hybrid approach that is better than

either technique used alone, as we have demonstrated with the bottom-up algo-

rithm.
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