
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-1, October 2012

290

Abstract— This project is for hybrid storage architecture, to

make use of both shared-nothing and shared-disk architectures.

The user can either upload file or can just synchronize the

original copy from the master computer synchronized before.

All the changes made on the original file will be reflected on the

file stored on server. All files stored on the cloud server are

broken into packets of some definite size and these packets will

be distributed on various hard disks this data are replicated

using the RAID-1 concept, which are merged as a whole again

whenever the user makes an access to the file on the on-line

copy or makes changes to the original copy which is

synchronized with the application. The packets are encrypted

using a block of ECB encrypted cipher text; all the blocks are

dependent on all the previous blocks.

Index Terms—Cloud Computing, Replication, hybrid

architecture, DES, CBC..

I. INTRODUCTION

A. What is Cloud Computing?

Cloud computing[2] is an emerging computing paradigm in

which resources of the computing infrastructure are provided

as services of the internet. Cloud computing allows

consumers and businesses to use applications without

installation and access their personal files at any computer

with internet access. As promising as it is, this paradigm also

brings forth many new challenges for data security and

access control when users outsource sensitive data for

sharing on cloud servers which is not within the same trusted

domain as data owners. To keep sensitive user data

confidential against untrusted servers, cryptographic

methods are used by disclosing data decryption keys only to

authorized users.

B. Cloud Computing Architecture

Cloud computing architecture is divided into two sections:

the front end and the back end. They connect to each other

through a network usually called the Internet. The front end

includes the client‘s computer (or computer network) and
the application required to access the cloud computing

system. On the back end of the system are the various

computers, servers and the data storage systems that create

the cloud of the computing services. A central server

administers the system, monitoring traffic and client

demands to ensure everything runs smoothly. It follows a set

 Ms. Anisaara Nadaph, Computer Engg., K.J College Of Engg. And

Management Research, Pune, Pune, India

Prof. Vikas Maral, Computer Engg., K.J College Of Engg. And

Management Research, Pune, Pune, India

of rules called protocols and uses a special kind of software

called middleware. Middleware allows networked computers

to communicate with each other. A.Types of Clouds:

There are four main type of cloud:

Public cloud: In Public cloud the computing infrastructure

is hosted by the cloud vendor at the vendor‘s premises. The
customer has no visibility and control over where the

computing infrastructure is hosted. The computing

infrastructure is shared between any organizations.

Private cloud: The computing infrastructure is dedicated to

a particular organization and not shared with other

organizations.

Hybrid cloud[2] : Organizations may host critical

applications on private clouds and applications with

relatively less security concerns on the public cloud. The

usage of both private and public clouds together is called

hybrid cloud.

Community cloud[2] : It involves sharing of computing

infrastructure in between organizations of the same

community. For example all Government organizations

within the state of Maharashtra may share computing

infrastructure on the cloud to manage data related to citizens

residing in Maharashtra.

The Contribution Of this Project will gives us 3 results

i. Combining shared-nothing and shared-data in parallel

database systems, would greatly add benefit for many

emerging data-intensive applications and will give boost to

the development of parallel file systems.
ii. Here we propose hybrid storage architecture for parallel

databases to carry the combination of both two

architectures(shred-nothing and shared-disk architecture) the

design of the proposed storage scheme, will improve data

access modes, data organization, and query processing

methods..

iii. Replication of data will ensure data reliability of data.

II. RELATED WORK

A. Architecture

Shared-nothing [1],[4] and shared-disk[5] are the two

widely-used storage architectures in parallel databases. Both

two architectures have their own positive and negative

features, but neither of them has the edge on the other in all

aspects. Figure 1(a) shows a sketch of the shared-nothing

A Business Model for Hybrid Shared-Nothing

and Shared-data Storage and replication Scheme

for Large-scale Data Processing
Anisaara Nadaph, Vikas Maral

A Business Model for Hybrid Shared-nothing and Shared-data Storage and replication Scheme for Large-scale Data Processing

291

storage architectures.

In a shared-nothing system, the data set is usually

partitioned[1] into several subsets and each node keeps one

subset in its native disks. Generally, the shared-nothing

systems provide a high degree of parallelism for both I/O

and computing. Nevertheless, the shared-nothing systems

also have multiple nodes transaction, data shipping, and data

skew issues. In a shared-disk system, data is stored in a large

centralized storage, which is accessible by all database

nodes.

Advantage of shared-nothing architecture is that since every

node has direct access to all disks, there is no need of data

partitioning according to the number of nodes, which

eliminates the data skew problem. Figure 1(b) shows a

sketch of the shared-disk storage architectures.

Disadvantage of shared-disk systems, however, are low I/O

bandwidth and poor scalability.

B. Parallel Database

Parallel database [1],[11] machine architectures have

evolved from the use of exotic hardware to a software

parallel data flow architecture based on conventional shared-

nothing hardware. These new designs provide impressive

speedup and scale up when processing relational database

queries

Early stage of parallel database: The bandwidth and latency

of network is worse than accessing data to local disks, hence

it is natural to avoid accessing data from a remote disk

through network. For that reason, the shared-nothing and the

shared-disk architectures were presented separately.

However, network transmission bandwidth grows rapidly

during the past years.

Today’s Scenario : reading data from remote disks is no

longer limited by network in a cluster environment. The

tradeoffs between shared-disk and shared-nothing storage

architectures need to be reevaluated. On the other hand, in

the domain of data-intensive scientific computing, parallel
file systems, such as Lustre, PVFS2, and GPFS, are widely

used for high I/O performance. Compared with parallel

databases, parallel file systems are shared-nothing structured

(as shown in Figure 1), but they also unite all disks on

multiple nodes and provide a single namespace.

Based on the design of parallel file systems, we propose
hybrid storage architecture for large-scale parallel databases,

by integrating parallel database with parallel file system
techniques together. It adopts shared-nothing for the upper

layer database instances, but also provides data sharing

through a lower-layer parallel file system. Therefore, the
proposed hybrid system can work both as a shared-nothing

system if each database node only accesses data on its own

disks, and as a shared-disk system if the database nodes

access data from the global namespace of the parallel file
system.

C. Partitioned Methods

In shared-nothing systems, data is partitioned and distributed

across all the database nodes. DeWitt and Gray introduced

three well known partitioning methods:

a. Round-robin partitioning:

 In round-robin partitioning, There is no partitioning

criteria. Round-robin-partitioned tables have no partition

key. To each partition rows are assigned in a round-robin

manner so that each partition contains a more or less equal

number of rows and load balancing is achieved. Because

there is no partition key, rows are distributed randomly

across all partitions.

 In addition, round-robin partitioning offers:

i. Multiple insertion points for future inserts

ii. A way to enhance performance using parallelism

iii. A way to perform administrative tasks, such as

updating statistics and truncating data on individual

partitions

 b. Range partitioning:

Rows in a range-partitioned table or index are distributed

among partitions according to values in the partitioning key

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-1, October 2012

292

columns. The partitioning column values of each row are

compared with a set of upper and lower bounds to determine

the partition to which the row belongs.

i. Every partition has an inclusive upper bound, which is

specified by the values <= clause when the partition is

created.

ii. Every partition except the first has a non-inclusive

lower bound, which is specified implicitly by the values <=

clause on the next-lower partition.

Range partitioning is particularly useful for high-

performance applications in both OLTP and decision-

support environments. Select ranges carefully so that rows

are assigned equally to all partitions—knowledge of the data

distribution of the partition key columns is crucial to

balancing the load evenly among the partitions.

Range partitions are ordered; that is, each succeeding

partition must have a higher bound than the previous

partition.

c. Hash partitioning:

With hash partitioning, use of hash function to specify the

partition assignment for each row. You select the

partitioning key columns, but Adaptive Server chooses the

hash function that controls the partition assignment.

Hash partitioning is a good choice for:

i. Large tables with many partitions—particularly in

decision-support environments

ii. Efficient equality searches on hash key columns

iii. Data with no particular order, for example,

alphanumeric product code keys

If you choose an appropriate partition key, hash

partitioning distributes data evenly across all partitions.

However, if you choose an inappropriate key—for example,

a key that has the same value for many rows—the result may

be skewed data, with an unbalanced distribution of rows

among the partitions.

Besides, there are some combined strategies on multiple

columns. When a query comes, it will be routed to the

appropriate database nodes according to the data partitioning

scheme. Complex queries, e.g. ‗multi-join‘ or ‗nested‘, are
often executed as recursive computing and re-distributing

phases on multiple database nodes. It is unlikely to find a

universal partitioning strategy suitable for all query types.

As dataset and query pattern vary with the time, a good

partitioning scheme in the past may become sub-optimal,

resulting in load imbalance and performance degradation.

Dynamic or adaptive algorithms were introduced to deal

with the load balance problems. Nowadays, there are

numerous database clusters using the shared-nothing

architecture, such as IBM DB2 UDB, Mysql Cluster, and

Teradata products, etc.

 In shared-disk systems, data is stored in shared disks,

and every node has full access to the entire data. There is no

need to partition data across multiple database nodes, which

eliminates the data skew problems. During query processing,

the collaboration of different nodes relies on inter-nodal

message and shared data access. Data sharing between

memories on different nodes can deliver a superior

performance in shared-disk system. Cache fusion is a

memory-sharing technique applied by Oracle RAC version,

which can largely improve the query performance, because

the high transmission speed and low latency of network

make it much faster than data write back to shared disk and

re-read courses. Currently, the shared-disk systems usually

adopt storage area network (SAN) to provide high I/O

performance, and it is costly due to dedicated hardware.

D. Parallel and Distributed File Systems

IParallel file systems
[5]

, such as Lustre, PVFS2, and GPFS,

are widely used in large-scale and data-intensive

applications, to provide high I/O capabilities to high

performance computing (HPC) clusters. Normally, parallel

file systems provide high I/O performance by striping data

files over multiple storage nodes, and accessing these data

strips in parallel. I/O clients can access files by logic address

as in a single namespace, without the knowledge of physical

layout.

The transparency of data block placement is a convenient

feature for users. Google file system (GFS)[8] and Hadoop

distributed file system (HDFS)[9] are scalable distributed

file systems for large distributed web search engine

applications.

Both GFS and HDFS are designed with big file chunks

(chunk size is 64MB) and MapReduce programming model.

The write-once-read-many data access manner means no

data modifications, in addition, MapReduce programming

model are not designed for low latency. For those reasons,

GFS and

HDFS are not suitable for general purpose parallel

databases.

There are some research efforts in integrating database

and parallel file system technologies. Some scientific

computing systems employ databases for metadata

management and parallel file systems for data storage

respectively. Hive and HBase are built on HDFS and based

on MapReduce model. They are designed for special

purpose, and the query types and query processing manners

are different from traditional databases. In addition, they are

not suitable for low latency applications.

The proposed hybrid architecture is different from others

work. It is designed for general parallel databases. It has a

shared-nothing design in the hardware layer, and provides

data sharing through the underlying parallel file system. It

has the merits of both shared-nothing and shared-disk

parallel database

III. PROPOSED WORK

A. System Architecture

In the scheme that we are adopting we are using shared-

nothing at the hardware layer, but parallel file system to
unite all scattered disks to provide data sharing capability.

Figure 2 illustrates the system architecture of the proposed

hybrid storage scheme, which can leverage the advantages of

A Business Model for Hybrid Shared-nothing and Shared-data Storage and replication Scheme for Large-scale Data Processing

293

both the shared-nothing hardware structure and the shared-

data facility of parallel file systems. In the proposed hybrid
database, each node runs a database instance, and serves as

both a parallel file system I/O server and an I/O client.
Therefore, all database instances can access data in the

parallel file system, namely data can be shared among
different nodes conveniently. In a word, it is shared-nothing

in hardware layer, but it is also a shared-data system.

Usually, in parallel file systems, data are striped across
multiple I/O servers in a round-robin way, thus one file is

divided into several sub-files on these servers. In the
proposed hybrid system, one file in parallel file system is
called global file, and a sub-file on one node is called local
file. Thus, a global file is mapped into a set of local files, as
shown in Figure 3. We introduce two data access modes in

the proposed hybrid systems: local mode and global mode.

• Local Mode: each database node accesses data via a

local file descriptor on its native disks.
• Global Mode: each database node accesses data via a

global file descriptor in the global namespace.
Data access pattern can be either local mode or global

mode, by calling read/write functions on a local file
descriptor or a global file descriptor respectively. Which

data access mode to use for query execution is determined

by system query optimizer, based on the costs of query

execution of the two modes. With high-speed

interconnection techniques, the proposed hybrid scheme can

obtain the advantages of both shared-nothing and shared-

disk systems.

A. Data Organization

In relational databases, data files are composed of record
pages. We design the stripe size in parallel file systems the
same as the record page size in the hybrid system, thus

database tables are naturally striped across all database

nodes.

Figure 4 shows the organization of the relational tables in

the proposed hybrid system
[6]

. Each table can be stored as a

global file, which is striped by record pages. Hence each
local table is a subset of original table, which could be

regarded as a sub-table for each database node. Especially,

record assigned across pages is not recommended, because it

would lead to complex data access behaviors like data

shipping and distributed locks.

For that reason, we reserve a small area in each page,

which is also useful for updating records with variable

lengths. The percentage of reserved area in a record page is

configurable, like that in current commercial databases. With
the design of record page striping and reserved area, each

node can be regarded as a standalone sub-database in local

data access mode. The data dictionary is modified to support
two data access modes in the proposed scheme. For local

data access, each node is a standalone sub-database, and it

should keep all the metadata information in the local data

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-1, October 2012

294

dictionary. This design can eliminate the data dependency

among different nodes. Furthermore, some additional

information should be included on each node for global

access. For example, file information in data dictionary on
each node must contain a local file name and a global file
name, as shown in Figure 4, to support for both two data

access modes. This data organization is quite different from

existing GFS and HDFS. In GFS and HDFS, storage nodes

do not contain the global data set information; they have to

turn to the dedicated metadata server for remote data access.

B.Replication strategy

Using the RAID level 1 (Mirroring) data are stored twice on

two disk i.e. data disk and mirror disk. If a disk fails, the

controller uses controller uses the data drive or the mirror

drive for data recovery and continues operation.

Advantages of RAID1 are

a. Offers excellent read speed and write-speed that is

comparable to that of a single disk.

b. In case a disk fails, data do not have to be rebuild,

they just have to copy the data to the replacement

disk

c. It is very simple technology

As we can see of this project it is only essential to maintain

the backup copy and there is no need of parity check to be

done hence RAID-1 is the feasible storage technique.

IV. DATA ENCRYPTION STANDARD (DES)

The Data Encryption Standard (DES) [3] is the name of

the Federal Information Processing Standard (FIPS) 46-3,

which describes the data encryption algorithm (DEA). The

DES has been extensively studied since its publication and is

the most widely used symmetric algorithm in the world. The

DES has a 64-bit block size key during execution. DES is a

symmetric cryptosystem
[7]

, specifically a 16-round Feistel

Cipher. When used for communication, both sender and

receiver must know the same secret key, which can be used

to encrypt and decrypt the message, or to generate and verify

a Message Authentication Code (MAC). The DES can also

be used for Single – user encryption, such as to store files on

a hard disk in encrypted form .The DES has a 64-bit block

size and uses a 56 bit key during execution.

V. IMPLEMETATION

i. User uploads a doc file and gives a password for the file

to be uploaded.

ii. File is split into 16parts at server-side using zip4j

library

 Class ZipFile

Base class to handle zip files. Some of the operations

supported in this class are:

 Create Zip File

 Add files to zip file

 Add folder to zip file

 Extract files from zip files

 Remove files from zip file

iii. Each part is encrypted using CBC (DES) encryption

algorithm. The encryption of the 16 parts is as follows:

In Cipher Block Chaining mode
[2]

 of operation of DES,

each block of ECB encrypted ciphertext is XORed with the

next plain text block to be encrypted, thus making all the

blocks dependent on all the previous blocks .this means that

in order to find the plaintext of a particular block, you need

to know the ciphertext, the key and the cipher text for the

previous block. The first block to be encrypted has no

previous cipher text, so the plaintext is XORed with a 64-bit

number called the initialization vector (referred as IV).So if

data is transmitted over network or phone line and there is a

transmission error, the error will be carried forward to all

the subsequent blocks since each block is dependent upon

the last .this mode of operation is more secure than ECB

(electronic code book) because the extra XOR step adds one

more layer to the encryption process.

Compositions of Encryption and Decryption :

Encryption E = eH1 o eH2 …………… o eH16

 Decryption D = dH16 o dH15 o ……………o dH1

Header H is derived from the Password. Here we have 16

rotations. So we need 16 Leaders (H1 to H16) from

Password.

H1 = First two bits of Password.

A Business Model for Hybrid Shared-nothing and Shared-data Storage and replication Scheme for Large-scale Data Processing

295

H2 = Second two bits of Password

H3 = Third two bits of Password and so on

Steps:

1. Get the Plaintext.

2. Get the Password.

3. Convert the Characters into binary form.

4. Derive the headers (H1 to H16) from the Password.

5. Apply the Formula to get the encrypted and

decrypted message.

Encryption:

Fig.7. Encryption using CBC

Decryption:

Fig.8.Decryption using CBC

iv. Each part is stored separately on different servers.

v. Hardware is shared-nothing architecture.

vi. A software layer makes the hardware as shared-

everything architecture.

vii. While retrieving a file a query is fired on software

layer which gathers all parts from the hardware layer.

viii. Each part has two bytes of password saved which

while retrieving is checked again.

ix. A backup of each part is stored on different server

using RAID-1 Level.

x. Incase a part of file is not retrieved or lost during the

process then the backup server is used to retrieve the packet.

xi. The file is merged after checking the password, if the

password is not matched then the file is not shown to the

user.

VI. CONCLUSION

As cloud is an emerging trend of the decade a more secure

and easily accessible storage for enterprises and Individuals

is in need. As off now data security has become the most

important issue of Cloud Computing

 The main contribution of this is the new view of data

security solution with encryption, which is important and can

be used as reference for designing the complete security

solution.

This Study proposes a novel hybrid shared-

nothing/shared-data scheme for large-scale and data-

intensive applications, is to advantages of both shared-

nothing and shared-disk architectures. We adopt a shared-

nothing architecture as the hardware layer and leverage a

parallel file system as the storage layer to combine the

scattered disks on all database nodes. With the idea of the

new hybrid architecture, we first introduce two data access
modes: global and local data access modes, which enable the

new system can work as both a shared- nothing system and a

shared-disk system. Second, we present the methodology of

organizing data files in the underlying parallel file system so
that each node can run as a standalone sub-database.

ACKNOWLEDGMENT

The Author is thankful to Prof. Vika Maral who has

guided Author for the survey. Also to Prof. Das and Prof.

Mehtre from ―K.J. College of Engg. And Management
Research, Pune‖ for their help and suggestions.

REFERENCES

[1]. Huaiming Song, Xian-He Sun, Yong Chen ―A Hybrid Shared-

nothing/Shared-data Storage Scheme for Large-scale Data Processing‖
Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM

International Symposium on 23-26 May 2011, 616 – 617

[2]. Neha Jain and Gurpreet Kaur ―Implementing DES Algorithm in Cloud
for Data Security‖ VSRD-IJCSIT, Vol. 2 (4), 2012, 316-321

[3]. Eman M. Mohamed ―Modern Encryption Techniques for Cloud
Computing Randomness and Performance‖ e Informatics and Systems
(INFOS), 2012 8th International Conference on 14-16 May 2012, CC-

1 - CC-6

[4]. Michale G .Norman ―Much Ado Shared-Nothing‖ ACM SIGMOD
Record Homepage archive Volume 25 Issue 3, Sept. 1996 , 16 – 21

[5]. Matthieu Exbrayat ― A Parallel Extension for Existing Relational
Database Management Systems‖ Information Technology, 1997.
BIWIT '97., Proceedings of the Third Basque International Workshop

on Digital Object Identifier: 10.1109/BIWIT.1997.614053 , 1997 , 75-

81

[6]. David J. DeWitt ――Data placement in shared-nothing parallel database

systems‖. The VLDB Journal —aG. O. Young, ―Synthetic structure of
industrial plastics (Book style with paper title and editor),‖ in

Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964,

pp. 15–64.

[7]. W.-K. Chen, Linear Networks and Systems (Book style). Belmont,

CA: Wadsworth, 1993, pp. 123–135.

[8]. H. Poor, An Introduction to Signal Detection and Estimation. New

York: Springer-Verlag, 1985, ch. 4.

[9]. B. Smith, ―An approach to graphs of linear forms (Unpublished work
style),‖ unpublished.

Anisaara Nadaph : Student of K.J College of Engg. And Management

Research, Pune.

a. M.E (Computer Engg. Pursuing) from Pune University

b. B.E(Computer) from Pune University

c. Teaching Experience – 7 years

d. Seminar Guide Prof. Vikas Maral

Prof. Vikas Maral : Lecturer in K.J College of Engg. And Management

Research, Pune.

