
A Security Architecture for Query Tools used to Access Large

Biomedical Databases
Shawn N. Murphy, MD, Ph.D. and Henry C. Chueh, MD, M.S.

Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA.

Disseminating information from large biomedical

databases can be crucial for research. Often this

data will be patient-specific, and therefore require

that the privacy of the patient be protected. In

response to this requirement, HIPAA released

regulations for the dissemination of patient data. In

many cases, the regulations are so restrictive as to

render data useless for many purposes. We propose

in this paper a model for obfuscation of data when

served to a client application, that will make it

extremely unlikely that an individual will be

identified. At Partners Healthcare Inc, with over 1.4

million patients and 400 research clinician users, we

implemented this model. Based on the results, we

believe that a web-client could be made generally

available using the proposed data obfuscation

scheme that could allow general usage of large

biomedical databases of patient information without

risk to patient privacy.

INTRODUCTION

At the core of hospital sponsored clinical

research programs are services for recruiting patients

for clinical research studies. At Partners Healthcare

Inc. in Boston, a corporation that includes both the

Massachusetts General Hospital (MGH), and the

Brigham and Women’s Hospital (BWH), there has

been created a clinical data warehouse named the

Research Patient Data Registry (RPDR). This data

warehouse contains all of the inpatient and outpatient

data identified as desirable for research as defined by

a previous study (1). This data includes diagnoses,

medications, procedures, and laboratory tests. It

contains about 270 million patient-concept

associations from 26 million patient encounters

encompassing about 1.4 million patients.

Faculty members at the MGH or BWH are able to

find cohorts for their research studies through a

visual interface (query tool) supported from any

networked Microsoft Windows client workstation in

the hospitals. The model for the user interface

consists of a hierarchical tree of items for the users to

choose from, where items are dragged into a set of

containers that roughly model a Venn diagram.

Aggregate numbers of patients who match the query

criteria are returned in a series of display widgets.

The individual patients that represent the aggregates

can later be identified, provided the Institutional

Review Board has approved the study request.

Figure 1 – Queries to the clinical data warehouse

are made through this web query tool, where items

arranged hierarchically in the left panel are dragged

into the group panels on the right to construct a

Boolean query. This query is asking for the number

of BWH patients who are also female. Results are

shown in the lower right displays. Approximate

numbers are returned to prevent the identification of

specific patients using the query tool.

 A fairly general user base has evolved, as many

faculty members did not want to use the tool

themselves, but rather wished to delegate that task to

a fellow or research associate. Another security

concern is that traditional audit logs have a difficult

time proving that a person is searching for a specific

individual with the query tool, making it more

necessary to prevent such an attack at the point of

the lookup. These two factors heightened concerns

about patient confidentiality using a general query

tool, and it became imperative that a single individual

could not be identified through the user interface.

An attack on the system would occur by

someone entering criteria into the query tool that

would result in only one matching person. For

example, a person wishes to know if someone in their

neighborhood has manic-depression, and that person

knows the birthday of the son of this woman. They

might start by asking the query tool for how many 30-

year-old females in the 02054 area code had a normal

delivery on September 3, 1988. If this resulted in only

one matching person, then they would ask how many

30-year-old females in the 02054 area code had a

normal delivery on September 3, 1988, plus have

manic-depression. If this also resulted in one

matching person then they would know that the

person in their neighborhood had manic-depression.

An approach to preventing the identification of

individuals in the database could be to de-identify

patients in the database with a system that complies

with HIPAA’s 18 points for data de-identification (2).

Although this would be a good start, there are two

sets of problems with this. The first set of problems

results from the destruction of important clinical data.

This results mostly from the destruction of location

information (zip codes) and the destruction of date

information. Just attempting to recruit patients in the

general area of the hospital for research studies relies

on zip codes, not to mention more complex

epidemiological studies. The destruction of date

information is equally problematic. The HIPAA

regulations state that dates should be rounded to the

month if not to the year. However, very often a query

will want to identify which event occurred first as a

means of finding cause and effect. For example, in a

study on drug adverse events, one may want to find

all cases where a rise in liver function tests followed

the initiation of a drug by 1-3 days. The second set of

problems is that even with the destruction of all the

above information, there is still no guarantee that

someone cannot be identified in the database. As

greater quantities of data are added, the chance that a

set of clinical values (such as an SGOT of 367 and an

SGPT of 1325) will not be able to uniquely define a

patient becomes very low.

Another approach might be to use table

ambiguation by suppression of selected cells (3).

However, this approach would also result in the

destruction of large amounts of clinical data. Because

cells that uniquely distinguish a patient from other

patients are the cells to be suppressed, the most

interesting clinical data would be specifically targeted

for destruction. This would severely limit the

usefulness of the data for many purposes, such as

has been extensively analyzed by Ohno-Machado et.

al. (4). Furthermore, this approach is also susceptible

to re-identification of patients that have supposedly

been de-identified (5).

Other approaches include allowing the patient to

look at those who have accessed their records,

possible spotting their neighbor from the above

example. There is a high maintenance cost to such a

system (issuing passwords, etc.), but even this heroic

solution will not work with query tools which touch

thousands if not millions of different patient records

with every query.

Our solution to thwarting an attack on this kind

of system was to take advantage of the following set

of properties of the query tool, and inventing a

solution that fit around these properties. Although

the fact that these properties must exist in the query

tool limits the usefulness of the solution, these are

properties many query tools would have (on the web

for example) where aggregate numbers of patients

need to be returned. The required properties are:

1) It is sufficient that the query tool only

returns numbers of distinct patients.

2) The number of distinct patients is

useful even when the number is within a probable

range of 2 or 3 patients. This range can be varied

to obtain optimized signal to noise ratios for

detecting an attack.

The requirement that the query tool return distinct

patients and not some other item such as hospital

encounters or events depends on the nature of the

item. One may generalize and conclude that any set

of independent items is a candidate to be used as the

reported item. However, there are some kinds of

relationships between reported items (such as if the

same hospitalization is reported as multiple

encounters in the database) that could be exploited to

attack our data obfuscation system.

METHODS

We developed a method of data obfuscation that

was generally applicable to query tools that meet the

above requirements. Additionally the server

application should satisfy the following technical

requirements:

1) The server application that will

produce the numbers for the query tool must

allow the numbers to be changed in a

programmatic fashion before they are sent to the

query tool. An obfuscator is going to be placed

between the server output and the query tool, so

these numbers need to be assessable.

2) An audit trail with a minimum of user

ID, date/time of query, and true number of

patients returned by the queries needs to be kept.

A program is going to continuously analyze this

audit trail.

In an abstract sense, the key to the data

obfuscation method is to make attempts to discern

individuals in the database a recognizable pattern by

a computer algorithm. The method works by having

the server not pass true numbers of patients to the

query tool, but rather numbers that would be (if the

same query were performed repeatedly) distributed

around the true number of patients. For example, if

one queried to find out how many people carried the

diagnosis of manic-depression at Partners Healthcare

Inc., one might get the result of 3,487, 3,488, 3,488,

3,490, or 3,489 patients. The exact nature of this range

is the subject of much discussion below, but the

range would be quasi-centered on the true number of

3,489. In order to find the true number, one would

need to run the same query repeatedly. It is here

where a computer algorithm would recognize this

attack and mark the user whose queries returned the

same true (not reported) number repeatedly as a

suspicious pattern.

Forcing a user to do the same query multiple

times if they are trying to obtain the true number

creates a detectable pattern. This is because the

chance that the same number of patients will be

returned from many different queries of a large

database is low, except perhaps for queries that return

zero patients. The mean number of attempts required

to hone in on the true number will increase as the

range gets larger. This suggests that the range

should be large, which, however, needs to be

balanced with user dissatisfaction of receiving a wide

range of approximate numbers. If one studies the

functions available for creating the range, one finds

the optimal function is one derived from a Gaussian

one as discussed in figure 2. The reason that this

function is optimal is essentially that specific features

of any other distributions could be exploited to allow

fewer attempts for finding the true number.

As the numbers that are being returned to the

query tool are obfuscated, a history table of true

numbers is maintained. This history table is seen

only by the system, and contains for each query the

date/time, the user ID, and the number of patients

truly returned by the queries. A trigger each time a

query is performed queries this history table. The

query looks at the numeric results of queries

performed by that user to see if the exact same

number of patients were returned in previous queries

within a specific time period. Depending on the time

range employed for obfuscation, when a certain

number of queries return the exact same number of

patients, the user is prevented from performing further

queries. Eventually, the account is reviewed and the

lock is released if it is determined that the same

number of patients were returned by the queries

purely by coincidence.

We did a Monte Carlo simulation (6) of an attack,

where a user is repeatedly performing the same query

to find the average number of patients in the repeats.

When the range of the Gaussian function that

randomizes the results has a standard deviation of

1.33 (giving values about the true number as shown in

figure 2), we found that it would take an average of

12.3 repeats before the average of the results

converged on the true number of patients. Restated,

if one performs the same query repeatedly, then a

series of numbers, representing the obfuscated

numbers of patients, are going to be returned. If one

takes the running average of these numbers, they will

eventually converge on the true number. The running

average will become less that 0.5 patients from the

true number of patients in a consistent fashion after

about 12 numbers are returned. This estimate may

actually be somewhat low because it would take a few

more returned numbers before the attacker was

confident that convergence had indeed been

obtained. The threshold of tolerance for queries

returning the same number of patients depends on the

risk one wants to take that a patient will be identified

in the database, vs. the inconvenience to the user and

hassle to the auditors of access denial based on the

same numbers returned coincidentally.

Figure 2 – An obscuration function is used to

create small values that will be added or subtracted

from the true number of patients to prevent patient

identification. We found that functions derived from

the Gaussian function were the least vulnerable to

attack. Other examples of functions include the Step

function and the Pyramid function. The Step

function has a 4% chance of being cracked in just 2

tries (when #patients+2 and #patients–2 are

obtained). The Pyramid function has a 1.2% chance

of being cracked in 2 tries, but almost 6% in 4 tries

(calculated via binomial probability function). A

Gaussian derived function with roughly the same

range of values cannot be definitively cracked in any

finite number of tries.

RESULTS

Using our query tool as an example, we

investigated how large, biomedical databases could

be set up to be explored for aggregate patient

numbers without allowing the identity of an individual

to be revealed. We do not mean to indicate that an

interesting finding will not boil down to a single

patient. Rather, a detailed investigation of a single

patient without potentially revealing the identity of

that person would be an almost impossible task.

Cases that require this kind of detailed investigation

of a very small domain of patients are not candidates

for study through our query tool, although our query

tool may give approximate numbers of patients to

determine if enough patients exist to fulfill a study

designed for those patients.

Given that we are interested in investigating large

patient samples and trends, we studied various

methods to obfuscate the results. Our initial

approach was to de-identify all of the patients in the

database, removing obvious identifiers. This will

prevent a direct attack, where someone breaks into

the database itself to perform a quick lookup of a

patient. However, if someone had more time they

could use gender, date of birth, and zip code to

identify many patients (7). This kind of attack would

even be possible through the query tool client

application without direct access to the database.

Our next approach was to blur some of our

demographic variables, such as convert birth dates to

ages, and present any queries that returned 2 or fewer

patients as < 3, in theory trying to enforce a bin size

of 2. This approach suffered from the weakness that

a clever person could create a “step” of patients from

a previous query which would return a constant

number of patients, 10 for example. This step could

then be logically OR’d with criteria of the patient to be

identified. Then, to find if our example person had

manic-depression, the count would go from 10 to 11.

If one implemented some kind of rounded output, an

attacker would just need to determine the position

and direction of the rounding and put a step exactly

where the rounding occurred.

Our final solution was randomizing the output

within a certain range using a Gaussian function.

This would force any person to statistically search for

the mean output if they wanted to find the true

answer. By forcing an attacker to perform a query

repeatedly in hopes that an average can be

ascertained, the system will see the query returning

the same number of patients repeatedly. When

queries are seen returning the same number of

patients repeatedly it removes the access of the user

to the system.

Although this method may seem overly complex

in some ways, the task of obfuscating data in a

foolproof manner is extremely difficult. The method

we have described also has some vulnerabilities that

need to be explored. One vulnerability is that we

allow a larger number of queries to be performed that

return zero patients. Unfortunately, naï ve users who

are performing incorrect queries will often have zero

patients returned. Having the table-watching agent

terminate access to these users would be too

sensitive a response. However, attacks around zero

are more likely to succeed. Therefore we modify our

range algorithm to have a wider obfuscation at values

close to zero, and indicate the greater range by

returning “<3” when the obfuscated number is less

that 3.

Another vulnerability is that prior knowledge of

data in the database may allow “steps” to be pre-

conceived, and thus queries that do not return the

same number of patients could be used to get the true

mean from several queries. For example, if one wished

to know the manic-depressive status of the 30 year

old female in the 02054 area code, and one knew the

manic-depressive status of 30 year old females in

numerous other area codes, one could add each of

these area codes to several queries. Thus if one knew

that the 02055 area code had 2 manic-depressives, and

the 02056 area code had 10 manic-depressives, the

result of 3 and 12 when each query was performed

with the 02054 area code added, might suggest that 1

manic-depressive lived in the 02054 area code

(obtained once the known numbers were subtracted

out). Since the queries returned different numbers of

patients, the agent watching the numbers of patients

returned by the queries would not catch this attack.

This type of attack would require that one had

extensive specific knowledge of numbers of patients

in other areas regarding specifically what one wanted

to discern in a given individual. Our environment at

Partners Healthcare Inc. makes this an unlikely

scenario. On the other hand, this may be an important

scenario if the query tool were to be used on a

nationwide database. Someone may know all the

manic-depressives in Florida, and use these to

construct “steps” to illicitly find the manic-depressive

status of someone in Massachusetts. To counter

such an attack, one would implement a rounding

function on the results, such as rounding to the

nearest 10. An attack would need to operate at the

margin of the rounding, and the agent would be look

for a pattern of numbers of patients returned at the

margins of the rounding.

Finally, there is a potential vulnerability

concerning breakdowns of patients into different

categories by the query tool, such as by males and

females. Our strategy for addressing this

vulnerability is to add the obfuscating value for the

total patient number across random breakdown

numbers, and then to obfuscate the breakdown

numbers by the same Gaussian function used to

obfuscate the total. This approach will prevent the

breakdown totals from being used to further converge

on the true number of total patients. However, the

effect will be to produce less and less reliable

numbers as one drills into increasing detail in the

breakdown presentation.

DISCUSSION

The objective of our data obfuscation is to allow

a general population of users to have access to

aggregate data about patients without threatening the

confidentiality of the individual patient. It has been

repeatedly shown that de-identified data can often be

combined with other publicly available data to

identify the individual (8). Attempts to obfuscate the

raw data in a database can result in a deterioration of

the potential knowledge that might be extracted from

the database (4). As databases contain greater

amounts of specific clinical information about specific

patients it would become necessary to increasingly

alter the clinical data to allow the patients to fit into

larger “bins”.

Hospital data consortiums have long been

available in the form of de-identified data dumps from

hospital admission records and the like. However, it

has been shown that most of these data sets are

prone to re-identification and therefore violate our

concept of privacy (7,8). An alternative to large data

dumps is to allow such data to be requested from

server-side services that are more easily amenable to

data obfuscation and monitoring. Designed correctly,

these services could greatly decrease the risk of

divulging private information.

Acceptable methods of obfuscation will be

dependent on the types of data that need to be

served back to the client application. The methods

described in this paper apply to clients that need sets

of distinct patients where exact numbers of patients

are not required.

Naï ve approaches to data obfuscation are often

to restrict the types of data elements that may be used

in a query. Our example of looking for manic-

depressives in certain zip codes may spur a naï ve

response to restrict the use of zip codes. But this is a

“slippery slope”, because any data can potentially be

used in combination with other data to identify

patients, such as child delivery dates, hospital

admission dates (8), lab values, etc. The richer the

database is with data, the more problematic this

becomes.

The data obfuscation method discussed in this

paper does not limit the logic of the query, nor the

data elements or values that can be used in the query.

It depends exclusively on the numeric quantity of the

results. In our environment, this data obfuscation

allows general research queries to be performed with

relatively little risk to patient confidentiality. This

allows a greater domain of users and a greater comfort

level from our sponsors. This model allows

sophisticated data to be stored intact in the database

such as gene sequences and bio-markers of various

kinds. Without this obfuscation method, there would

be steep reservations about including increasingly

patient-specific data in large databases for the MGH

and BWH research community.

This work was supported by Partners Healthcare Inc.

References

1. Murphy, S. N., Morgan, M. M., Barnett, G. O.,

Chueh, H. C. Optimizing Healthcare Research

Data Warehouse Design through Past COSTAR

Query Analysis. Proc AMIA Fall Symp. 1999;

892-6.

2. Rules and Regulations. Federal Register 65(250),

Section 164.514, 82818, Dec 28, 2000.

3. Fischetti M,Salazar J.Model and algorithms for

the 2-dimensional cell suppression problem in

statistical disclosure control. Mathematical

Programming 1999; 84:283-312.

4. Ohno-Machado, L., Dreiseitl,S., Vinterbo, S.,

Effects of Data Anonymization by Cell

Suppression on Descriptive Statistics and

Predictive Modeling Performance, Proc AMIA

Fall Symp 2001; 503-7.

5. Dreiseitl,S., Vinterbo, S., Ohno-Machado, L.,

Disambiguation Data: Extracting Information from

Anonymized Sources, Proc AMIA Fall Symp

2001; 144-8.

6. J. E. Gentle, Random Number Generation and

Monte Carlo Methods (Statistics and

Computing), Springer-Verlag, 1998

7. Sweeney L. Guaranteeing anonymity when

sharing medical data, the DataFly system. Proc.

AMIA Fall Symposium. 1997; 51-5.

8. Malin, B., and Sweeney, L. Re-Identification of

DNA through an Automated Linkage Process,

Proc AMIA Fall Symp 2001; 423-7.

