User Guide: OpenEIS Reference Code

Jessica Granderson
David Lorenzetti
Claudine Custodio

Lawrence Berkeley National Laboratory
Srinivas Katipamula
Hung Ngo

Robert Lutes

Pacific Northwest National Laboratory

~
' A
f(reeeee ﬂ

Pacific Northwest
BERKELEY LAB NATIONAL LABORATORY

Lawrence Berkeley National Laboratory

Prepared for:
George Hernandez
DOE Building Technologies Office
February 10, 2014

OpenElIS Reference Code v2.0

Table of Contents

PUIPOSE oottt 1
AlGOTTtNIMS OVEIVIEW ...ouvveieeercreisiessess s ssss s bbb sess s s s s 2
Time Series LOad ProfiliNg ... ssssssssssssssssssssssssssesssssssssssssssesssssssssssessens 2
3 ST UL oo 3
ENergy SIZNAtULE ... ssssssssssns 4
WeEather SENSITIVITY ... ss s s assssssnes 5
Longitudinal Benchmarkingccosssssssssssssssssssssssesssssssssssssssessssssssesans 6
Cross-Sectional BeNChMarking........eesssessssssesssssssssssssssssssssssssssssssssssssssnes 7
Peak Load BENChMATrKINGooerrrieieesisssssssessesssessses 8
Base-t0-Peak Load RAtiOs ... sesssessssssssssssssessssssssssssssssssssssssssssssssssssssnes 9
LOAd DUTAtION CUIVEvurercrrerneessenssesssssssssssesssessssssssesssesssesssessssssssssssssssssssssssssssssssessssssssssssasssens 10
LOAd Variability ..o sssssesssesssesssesssens 11
Whole-Building Energy Anomaly Detection........cueeernsnssssesssssssessssssesssssssesans 12
Outside-Air Economizer Fault Detection and Diagnosticsc.emeneenmeessesneenens 14
Data REQUITEIMENTS ... s 16
GUIAANCE fOI DIr@Ct USEIS ...vuuieeceirirssessseesseessesssessssssssssssssssssssssssessssssssssssssssesssssssssssssssssssssssssssssees 18
Data File Formatting REQUITEMENTS.......ccuurerreeeereersrsssessssssessssssssesssessssssssssssssssssssssssssees 18
Computer Hardware REQUITEIMENTS.......ccuurerreeeresrssssssssssssesssssssesssessssssssssssssssssssssssssaees 22
Installing the Execution ENVIrONMENt. ... sesssesssssssssssessssssssssssssaees 22
Installing the OpenEIS Reference Code.......mssesssssessssssssssssaens 22
COAE EXECULION .ovvreerereeeesesseesssesssse e esssese s sssss s ssssse bbb bbbt s s sanes 23
TEITNS Of USE ..euieeeieerirsessreesessssssessssss s ssss s sss s bbb 28
Attribution and REPOITING ... sssssssssssssssssssssans 28
Guidance for Product Developers and Programmers.......sessesessesens 29
TEITNS Of USE ..cureereerirrirsseeseeseessesssesssess s ssss s ssss bbb bbb 29
Attribution and REPOTTING ..o ssssssesssssssssans 29
TeChNICAl DELAILS ... 29
PSEUAO-COMAE ...ttt s e bbb bbb 31
Time Series Load ProfiliNgssssssssssssssssssssssssssssessssssssssssssssessssssas 31
8 ST Lol L =)o 31
ENergy SINATUIE ... ssssassnes 32

i OpenElIS Reference Code v2.0

ii

| ITo Y=o WD 10N o= 15 o) o WL OA1 1 7= 32

Longitudinal Benchmarkingcosesssesssssssssssssssssssssssssssssssssssssssessens 33
WeEather SENSITIVITY ... s s 34
The “rankForSpearman” Subprogram for the Spearman Algorithmccccoeeenennee. 35
Base-t0-Peak Load Ratioceireirsssssssssssssssssssssessssssssssesssssssssssssssssssssssssssssssees 36
Peak Load BeNChMArKiNgcormeersesssssessessssssssssssssssssssssessssssssssssssssssssssssssssssssees 37
LOAd Variability c.o.ceeceeceeeesiessessseesssssesssesssesssssssesssesssssssssssssssssssssssssssssssesssessssssssssssssssssssssssssssens 37
Cross-Sectional BeNChmMarking........essssssssssssssssessssssssssssssssssssssssssens 38
Other Summary Electric Load Statistics, Displayed in the Report Table..........c....... 39
Whole-Building Energy Anomaly Detectioneeesessessssessssssssssssssssssnes 39
Outside-Air Economizer Fault Detection and Diagnosticseeeensessesnnens 41

OpenElIS Reference Code v2.0

Purpose

This User Guide serves three key purposes:

1. Itdescribes the algorithms whose source code and pseudo code is made
publically available through the OpenEIS project.

2. Itdescribes how these algorithms can be used by individuals who wish to
directly apply the code to analyze building data.

3. It describes how the source code and pseudo code can be used as a reference
implementation by developers and programmers who wish to adapt these
algorithms for use in commercial tools or service offerings. Commercial
implementations may incorporate diverse and more sophisticated interfaces,
user options, and visual representations. These options are noted in the
description of each algorithm.

1 OpenElIS Reference Code v2.0

Algorithms Overview

This section presents overviews of each algorithm included in the collection of Open
Energy Information System (OpenEIS) code, summarizing how each is used to gain
insights about building energy performance, operations, and comfort.

Time Series Load Profiling

Time series load profiling is used on a daily or weekly basis to understand the
relationship between energy use and time of day. Abnormalities or changes in load
profiles can indicate inefficiencies due to scheduling errors, unexpected or irregular
equipment operation, high use during unoccupied hours, or untimely peaks.

Plots of at least 24-hour periods of interval meter data (“profiles”) are inspected and
evaluated in the context of the building’s operational hours and intended system
control schedules. Changes in load size and shape against time of day, day of week,
or season are considered. Unexplainable differences may indicate operating errors
or equipment faults, and therefore energy waste, and should be investigated.

|

Do loads decrease during
Time Series Load Profile lower occupancy periods
(e.g. weekends or pvernight)?

Il

Lw\/jv I

20

o

power [kW]
-
w
o

s
o
o

Does the width correspond

M ashould :
50} to occupancy schedule? e

during unoccupied
hours and be as close
to zero as possible

0
Al

2 2 2 2 2 2 2 2 9
Q o> oY o> o> o> o> o> o> o>
ot @51 RN P 97
<@

<® @ @@ @@ (@ P @ ¢

Date
Does the weekly profile correspond to occupancy and use for
each day for a typical week?

Figure 1. OpenEIS reference code output for time series load profiling

Time series load profiling is reviewed in detail in pages 71-79 in the Energy
Information Handbook. In the OpenEIS reference code, kilowatts (kW) are plotted on
the y-axis, with time on the x-axis. The plot is limited the most recent month of data
in the dataset. More flexible implementations might allow options such as auto-
scaling based on the amount of data, user-definable subsets of data, adjustable x-
and y-axes with different zoom factors, “calendar” views that present the time series
in rows and columns that correspond to weeks and days of the week, and more.

2 OpenElIS Reference Code v2.0

Heat Maps

Heat maps are a means of visualizing and presenting the information that is
contained in a time series load profile. The maps color-code the size of the load so
that “hot spots” and patterns are easily identified. Time of day is plotted on the x-
axis, and day or date is indicated on the y-axis (or vice versa). The heat map is
inspected and evaluated in the context of the building’s operational hours and
schedules, or intended system control schedules. Depending on the historic length
of data that is plotted (daily, weekly, or seasonal scheduling), peak and start-
up/shut down opportunities are revealed.

Heat map of data for uploaded data

210 Unusual or
unexplainable

04/22/10 5 "hot spots" may

Horizontal

banding indicates indicate poor
shutoff during equipment control
periodic days 1180
(e.g weekends) &
o 04/15/10 1165 >
g 3
{150 £
4135
04/08/10
120
105
04/01/10 3 T .

10
hour of day

Vertical banding indicates consistent daily scheduling of usage
Figure 2. OpenEIS reference code output for heat maps

Heat maps are reviewed in pages 242-243 in the Energy Information Handbook. In
the OpenEIS reference code, blue coloring corresponds to low or minimum building
load, and red coloring corresponds to high or maximum building loads. Loads are
presented in units of kW, and hours of the day are plotted on the x-axis, and specific
days on the y-axis. The plot is limited to the most recent year of data in the dataset.
More flexible implementations might allow options such as auto-scaling based on
the total amount of data, plotting of user-defined subsets of data, or scaling the color
bar from zero to the maximum observed load.

3 OpenEIS Reference Code v2.0

Energy Signature

Energy signatures are used to monitor and maintain the performance of
temperature- dependent loads such as whole-building electric or gas use, or heating
and cooling systems or components. They can reveal problems with insulation,
outside air intake, or system efficiency.

Energy use for a given time interval is plotted against the corresponding average
outdoor temperature in that period. Orderly data points reflect consistent behavior,
while highly scattered data points indicate potential inefficiency or lack of weather
sensitivity. Other useful areas to examine are “base loads” (at which the energy use
does not change with temperature) and the rate at which load changes with outside
air temperature, known as the “heating slope” and/or “cooling slope.”

Energy Signature
Weather Sensitivity =0.86

4500 -
A steep slope indicates high
4000 sensitivity to outdoor
temperature
3500 |
3000 ~
The lack of any _ If weather sensitivity > 0.7
pattern may _% 2500 the building energy use is
indicate your T 'highly’ sensitive to outside
v
building 1s not Z 2000 air temperature. There may
sensitive to =8 be opportunities to improve
outdoor 1500 building insulation. and
temperature ventilation
1000
500}
0 ;
N 0 I\ N L ,\QQ ,\:10

outside air temperature [F]

The balance point is the temperature at which the
building does not require any heating or cooling

Figure 3. OpenEIS reference code output for energy signature

Energy signatures are reviewed in detail in pages 147-155 in the Energy
Information Handbook. In the OpenEIS reference code, the energy metric is electric
kW, and the temperature metric is degrees Fahrenheit. The plot is limited to the
most recent year of data in the dataset. More sophisticated implementations might
fit line segments to the data, making explicit note of the heating and cooling slopes
and balance point. Enhanced flexibility would accommodate filtering to user-defined
subsets of data, for example.

4 OpenElIS Reference Code v2.0

Weather Sensitivity

Weather sensitivity can be characterized by the Spearman rank-order correlation
between building load and outside air temperature. This metric ranges from -1 to 1;
however, for buildings, negative values are not expected. For example, if the value of
the weather sensitivity metric is greater than 0.7, the building energy use is “highly”
sensitive to outside air temperature, and there may be insulation, ventilation, or
efficiency improvement opportunities.

In the OpenEIS reference code, the weather sensitivity metric is displayed as an
overlay to the energy signature plot—a single summary statistic that contextualizes
the shape of the energy signature. The metric is computed for the most recent year
of data in the data set.

In the idealized case where there are no duplicate load values and no duplicate
outside air temperatures, the Spearman rank-order correlation can be defined
according to the equation below, as:

o3 0]

romle—& L

© N(N*-1)
where Dis the difference between each pair of ranks

However, since duplicate temperatures and loads are likely in any sufficiently large
data set, the OpenEIS implementation uses the defining equation, which finds the
correlation coefficient (i.e., the Pearson product-moment correlation) between the
rank orders of the loads and temperatures. Repeated load values are assigned the
average rank for all the loads with that value, and similarly for temperatures. In
addition, the OpenEIS implementation excludes from the analysis any load-
temperature pair for which either the load or temperature datum is missing.

A more flexible version of this algorithm would allow filtering to user-defined sub-
sets of data, for example to find correlations only during certain hours, only during
weekdays, and so on.

5 OpenEIS Reference Code v2.0

Longitudinal Benchmarking

Longitudinal benchmarking compares the energy usage in a fixed period for a
building, system, or component to that in a comparable “baseline” or “base” period
of the same length, to determine if performance has deteriorated or improved, to set
goals for a building or system, or to monitor for unexpectedly high usage.

Energy use in the base (reference) period is expressed according to a metric of
choice, such as thousand Btu per square foot (KBtu/sf), forming a “benchmark.”
Performance is then tracked relative to the base-period benchmark.

ngitudi n i
1400000+ Longitudinal Benchmarking : 3500000

Compare energy use in the base year to that in the later years.

\ 3000000

1200000

1000000 2500000 —
" ol
= g
2 800000 2000000 8
V
e ®
@ 2
& 600000 1500000 2
3 ®
o =
g g
400000 <

1000000

A persistent or large increase in

200000 fpar height reflects growing annual
energy use and possible efficiency
opportunities.

500000

08/2010-08/2011 08/2011-08/2012
Datetime
A significant efficiency improvement would result in

adownward trend of decreasing bar height.

08/2012-08/2013

Figure 4. OpenEIS reference code output for longitudinal benchmarking

Longitudinal benchmarking is reviewed in detail in pages 51-58 in the Energy
Information Handbook. In the OpenEIS reference code annual electricity and annual
natural gas consumption is represented in kWh and kBtu, respectively, and plotted
in vertical bars. The base year is defined as the first full year of data in the dataset.
More flexible implementations would allow user-definable time periods other than
annual usage, for example using a rolling 12-month totalization of energy use as
opposed to a fixed base year.

6 OpenEIS Reference Code v2.0

Cross-Sectional Benchmarking

Cross-sectional benchmarking is used to compare a building’s energy efficiency
relative to a peer group. It is the first step in determining if performance is good or
poor, and it shows how much potential there is to improve the building’s efficiency.

Cross-sectional benchmarking results are usually expressed in terms of the
percentile rank relative to the peer group. Fiftieth percentile means that half the
buildings in the peer group are more efficient, and twenty-fifth percentile means
that only 25 percent of the buildings are more efficient. Cross-sectional
benchmarking is most often conducted at the whole-building level, commonly using
an energy use intensity (EUI) metric such as combined fuels kBtu/sf.

Cross-Sectional Benchmarking This is your building's score

ENERGY STAR Score=85

Scores of 75 or higher
qualify for Energy Star Label.

100

75
Learn more shout
this met t

ENNERGY STAR iw:eb-sxte

Scores of 50 indicate

average energy performance
50+ 1

251

ENERGY STAR Performance Levels

For the 12-month period ending:
2013-04-13

Figure 5. OpenEIS reference code output for cross-sectional benchmarking with formatting
guidelines from ENERGY STAR.

Cross-sectional benchmarking is reviewed in detail in pages 59-67 in the Energy
Information Handbook. In the OpenEIS reference code, the ENERGY STAR Target
Finder web service is accessed to compute a benchmark score from 1 to 100, based
on user-defined building characteristic inputs that account for factors such as
building size, type, and climate. The ENERGY STAR score corresponds to the
percentile rank, with higher values indicating higher efficiency. Scores of 75 or
higher qualify for the ENERGY STAR label. The OpenEIS reference code uses the
most recent year of data in the dataset, and requires a basic set of building
characteristics - gross floor area, zipcode, building type, and year of construction.
Implementations that leverage additional user inputs such as hours of operation
and number of occupants are recommended; they will give a more accurate score
that is more customized to the specific building being analyzed. A complete list of
additional building characteristics that can be sued is documented in ENERGY STAR
Portfolio Manager web services page.

7 OpenEIS Reference Code v2.0

Peak Load Benchmarking

Peak load benchmarking is used to compare a building’s peak electric load to a peer
group. High peak loads can have a significant impact on utility costs in cases where
demand charges are assessed, and are also a critical contributor to electrical
reliability during times of extreme demand on the grid.

Peak Load Benchmark [W/sf]: |

IThis is the absolute maximum electric load based on all of your data. The median for commercial buildings under

150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building o
‘ormance.
Average 3

IThe daily maximum usage load, or could 5 192.32
Long periods of usage near the maximum increase overall energy use.

Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 105.19
\vampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.

\Average daily range [kW]:
This is a rough estimate of the total load turned on and off every day. Higher values may indicate good control, but 87.13
could also indicate excessive peak usage.

Base-to-peak load ratio:
\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and 0.61
deepen shutoff periods, while also reducing peak energy use.

Load variability metric:

'This metric is used to understand regularity of operations, and the likelihood of consistency in the building's
demand responsiveness. It represents a coefficient of variation that ranges from 0 to 1, which can be interpreted 0.16
based on rule of thumb guidelines. For example, variability above 0.15 is generally considered high for commercial
buildings.

Figure 6. OpenEIS reference code output for peak load benchmarking

Peak load benchmarking is addressed in the Peak Load Analysis example on page 85
in the Energy Information Handbook. In the OpenEIS reference code, peak load is
defined as “the absolute maximum load that appears in the data set, and is
normalized by building area, for a watts per square foot (W/sf) metric.” The
EnergylQ benchmarking tool was used to generate the median peak load against
which a user’s data can be compared. The California Commercial End-Use Survey
data set was used, and the peer group was defined as: all commercial building types
and vintages, from all California climates, with floor areas less than 150,000 sf. For
this peer group, the median peak is 4.4 W/sf. In the OpenEIS reference code, peak
load benchmarking results are presented in a summary table of key metrics;
however, peak load benchmarking results may also be presented with a visual
display of the building load profile or other developer-defined presentations.

8 OpenEIS Reference Code v2.0

Base-to-Peak Load Ratios

Base-to-peak load ratios compare the minimum building load to the maximum
building load, to judge whether the building is “shut down” after hours. A ratio
closer to zero indicates a large difference between the smallest and largest building
loads, whereas a ratio closer to zero indicates a near-static, non-fluctuating load,
and therefore an opportunity to improve efficiency. Improvements can be made by
increasing the duration of scheduled equipment-off times and by increasing the
number of loads that are shut off after hours.

A “good” versus “poor” value of base-to-peak load depends on the specific building
operations and characteristics; however, ratios less than approximately 0.33
indicate that significant loads are shut off for parts of the day.

Peak Load Benchmark [W/sf]:

This is the absolute maximum electric load based on all of your data. The median for commercial buildings under
150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building
performance.

2.40

Average daily max [kW]:
'The daily maximum usage could be dominated by a single large load, or could be the sum of several smaller ones. 192.32
Long periods of usage near the maximum increase overall energy use.

Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 105.19
\vampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.
I

Average daily range [kW]:
'This is a rou = e total load turned on and off every day. Higher values may indicate good control, but
(o¢] ndicate excessive peak usage.

Base-to-peak load ratio:
\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and
deepen shutoff periods, while also reducing peak energy use.

riability metric:

This metric nderstand regularity of operations, and the likelihood of consistency in the building's
idemand responsiveness. It iGi iation that ranges from O to 1, whi i
based on rule of thumb guidelines. For example, variability above 0.15 is generally considered high for commercial
buildings.

Figure 7. OpenEIS reference code output for base-to-peak load ratio

Base-to-peak load ratios are covered under the Peak Load Analysis examples in
pages 86-87 in the Energy Information Handbook. In the OpenEIS reference code,
the base load is defined as the 5th percentile, and the peak load is defined as the
95th percentile. The absolute maximum and minimum load are purposely excluded,
to avoid one-off cases. The base and peak loads are computed for each day in the
data set. The base-to-peak load is calculated for each day, and the average of these
ratios is the average daily base-to-peak load ratio. In the reference code, the ratio is
presented in a summary table of key metrics; however, analysis of peak-to-base
loads may also be presented with a visual display of the building load profile. More
sophisticated implementations might filter weeks and holidays, or accommodate
other user-defined filtering options.

9 OpenEIS Reference Code v2.0

Load Duration Curve

Load duration curves are used to understand the number of hours or percentage of
time during which the building load is at or below a certain value. Ideally, the
highest loads should occur for a smaller fraction of the time. If the building is near
its peak load for a significant portion of the time, the HVAC equipment could be
undersized, affecting comfort; conversely, there may be systems that are running
more continuously than necessary. If the load is near peak for only a short duration
of time, there may be an opportunity to reduce peak demand charges.

In a load duration curve, the y-axis indicates the building load, and the x-axis
indicates the percent of the time (or total number of hours) that the load is at or
below that load. A curve that is steep on the left side of the plot indicates that high
loads are present a small fraction of the time; whereas, as a curve that is steep on
the right side indicates the reverse.

Load Duration Curve

200+
If the building is near its peak load
for a significant portion of the time
the HVAC equipment could be
undersized or there could be
systems that are running more
than necessary

150}
The highest loads

should occur a small
fraction of the time
100 ,1deally

power [kW]

If the load is near peak for only a
short duration of time. there may
S0 be an opportunity to reduce peak
demand charges

0 20 40 60 80 100
percent time

Figure 8. OpenEIS reference code output for load duration curve

Load duration curves are covered in the Peak Load Analysis example on page 89 in
the Energy Information Handbook. In the OpenEIS reference code, the x-axis is the
percentage of the total time that is spanned by the data; the y-axis ranges from zero
to the maximum load that appears in the data set. The plot in the OpenEIS reference
code is limited to the most recent year of data in the dataset.

10 OpenEIS Reference Code v2.0

Load Variability

Load variability is a measure of the degree to which whole-building loads are
regular and predictable. It is a metric that is used to understand regularity of
operations, and the likelihood of consistency in the building’s demand
responsiveness. It represents a coefficient of variation that ranges from 0 to 1,
which can be interpreted based on rule-of-thumb guidelines. For example,
variability above 0.15 is generally considered high for commercial buildings.

- Mewic | Vae |
Peak Load Benchmark [W/sf]:

This is the absolute maximum electric load based on all of your data. The median for commercial buildings under
150,000 sf is 4.4 W/sf. Values much higher than 4.4 therefore indicate an opportunity to improve building
performance.

2.40

Average daily max [kW]:
'The daily maximum usage could be dominated by a single large load, or could be the sum of several smaller ones. 192.32
Long periods of usage near the maximum increase overall energy use.

Average daily min [kW]:
Minimum usage is often dominated by loads that run 24 hours a day. In homes, these include refrigerators and 105.19
\vampire loads. In commercial buildings, these include ventilation, hallway lighting, computers, and vampire loads.

Average daily range [kW]:
This is a rough estimate of the total load turned on and off every day. Higher values may indicate good control, but 87.13
could also indicate excessive peak usage.

Base-to-peak load ratio:

\Values over 0.33 indicate that significant loads are shut off for parts of the day. To save energy, look to extend and 0.61
deepen shutoff peri use.
L oervanability metric:

'This metric is used to understand regularity of operations, and the likelihood of consistency in the building's
idemand responsiveness. It represents a coefficient of variation that ranges from 0 to 1, which can be interpreted 0.16
based on rule of thumb guidelines. For example, variability above 0.15 is generally considered high for commercial

B ————

Figure 9. OpenEIS reference code output for load variability

Load variability is covered in the Load Profiling example on page 78 of the Energy
Information Handbook. In the OpenEIS reference code, load variability is presented
in a summary table of key metrics.

In the OpenEIS implementation, load variability is defined as “the average of the
time-of-day load variabilities.” To find the time-of-day variability, collect all
observations for a particular hour and find the variability for that time of day, as
follows:

VAR =

where x isthe average hourly loadin the period,

and N isthe number of daysin the period

The load variability is the average of the 24 time-of-day variabilities calculated
according to the equation above.

11 OpenEIS Reference Code v2.0

Whole-Building Energy Anomaly Detection

Whole-building energy anomaly detection is used to identify deviation of actual
energy consumption from the expected consumption. Abnormal energy use can be
isolated to a specific end-use or zone, with a combination of the user’s knowledge of
the building and supplementary data such as equipment schedules and outside air
temperature. Anomaly detection is distinguished from simple alarming in that a
baseline model is used to determine expected (typical) consumption. The baseline
model accounts for key drivers of energy use such as outside air temperature and
humidity, and hour of day and day of the week.

The output from the OpenEIS reference code is a plot of the daily ‘Energy
Consumption Index’. The index is calculated as a ratio of the actual daily energy
consumption and the expected daily energy consumption. It indicates the degree of
deviation of the actual energy consumption from the expected energy consumption.
An index near one indicates the actual and expected energy consumption is nearly
equal (normal operation). As the index approaches zero the expected consumption
becomes increasingly larger than the actual consumption (actual less than expected).
This means the building is using less energy than is typical. An index value of
greater than one indicates the actual energy consumption is greater than the
expected energy consumption. The building is using more energy than expected.
For example, an index of 2.0 would indicate that the actual consumption is twice
that of the expected consumption.

Whole Building Energy Diagnostician

An index of more than one
2.0 |------means:the building is using . : .
' more energy than expected.

This indicates a deviation inthe | An index near one indicates no
. normal energy consumption deviation in normal energy
15 pattern for the building. consumption for the building.

Energy Consumption Index

An index of less than one means the

building is using less energy than

expected. This indicates a deviation

in the normal energy consumption

pattern for the building.
! L L

ey o L 2 L L L L A A
Q© QP QO QO Q© QP QO QP Q® Q0
N P L, L g, W oW W ¢ o7
L L A 4 3 3 i iy SR g
WA W W W0 W 9 W O
Time

Figure 10. OpenEIS reference code output for whole-building energy anomaly detection

12 OpenEIS Reference Code v2.0

Energy anomaly detection is reviewed in detail on pages 175-182 in the Energy
Information Handbook. In the OpenEIS reference code a “bin method” is used to
create the baseline model. To develop an accurate baseline model, at least 9 months
of data is recommended; therefore, this algorithm is best applied to data sets that
contain at least 10 months of data. The configuration variables associated with the
anomaly detection algorithm include: blended energy cost (energy and peak cost),
identification of independent variables to be used in the baseline model, cost impact
threshold, sensitivity setting, and the start and end dates for the baseline period.

13 OpenEIS Reference Code v2.0

Outside-Air Economizer Fault Detection and
Diagnostics

Outside-air economizer (OAE) fault detection and diagnostics is used to identify
problems in the operation and performance of air-handling units (AHUs) or
packaged roof-top units (RTUs). Air-side economizers use free cooling by using cool
outdoor air in place of (or to supplement) mechanical cooling when outdoor
conditions are suitable for doing so. Unfortunately, economizers often do not work
properly, causing energy-use penalties rather than savings. Common problems
include incorrect control strategies, diverse types of damper linkage and actuator
failures, and out-of-calibration sensors. These problems can be detected using
sensor data used to control the system.

The OAE output is displayed by month with each column representing one day
ascending from left to right and each square representing one hour ascending from
bottom to top. Each hour can be assigned one of three colors: green when there
were no problem detected, grey when the conditions were not favorable for the
diagnostic for that hour, and red when there was a problem detected for that hour.
The second image (Figure 12 — bottom) shows a time series plot with an estimation
of the energy impact associated with the problems detected during the diagnostic
period.

A problem is indicated for
Jan. 8" Between 1 and 2
PM. The result text filez4
indicates “Insufficient 2
outdoor air when
economizing.”

Outdoor-Air Economizer Diagnostician - Jan 2013

Missing data or
unfavorable
conditions resulted
in an inconclusive
diagnotic.

Hour Of Day

No problems
were detected
during the
diagnostic.

1 5 10 15 20 25 30

Day Of Month
% Diagnosis |

14 OpenEIS Reference Code v2.0

Energy Impact Jan 2013

4.5

s|..The estimated energy ...

impact for insufficient
sof...........| outdoorairwhen |

economizing for Jan. 8th,

kWh/h

b £ PR

(/1| T DU R RRETEEEEE Boroeeeenne N N L S I

0.0

A I L L
, oz L/ ay az. az. az

v 12, g, ey 2 2
by, %y, 2, 52, 0z, %, 8

Figure 12. OpenEIS reference code output for outside-air economizer fault detection and
diagnostics: Carpet plot to indicate the presence or absence of faults (top), and time series
plot of the energy impacts associated with existing faults (bottom).

The OAE works best when using hourly data. When using sub-hourly data the OAE
can aggregate the data. The data will be averaged over each hour of the day. If a
user chooses to input sub-hourly data, and does not want to aggregate the data, the
OAE will perform the diagnostic on each time entry (row) within the data input file.
For example, if entering 15 minute interval data and choosing not to aggregate this
data, the full set of OAE diagnostics will be performed on each 15 minute entry.

Fault detection and diagnostics is reviewed in detail on pages 183-196 in the Energy
Information Handbook; specific outside air economizer diagnostics examples are
included in pages 185-188, and 190-194. The OpenEIS reference code utilizes fault
detection and diagnostic rules derived from engineering principles of proper and
improper AHU/RTU operations.

A set of six checks are conducted to detect and diagnose faults in economizer and
ventilation operations:

1. Identify measurement problems with outside air, mixed air and return air
temperature sensors.
Determine whether the RTU/AHU is not economizing when it should be.
Determine whether the RTU/AHU is economizing when it should not be.
Determine whether the RTU/AHU is using excess outdoor air.
Determine whether the RTU/AHU is bringing in sufficient ventilation air.
Determine whether the RTU/AHU is operating outside the established
operating schedule.

oUW

15 OpenEIS Reference Code v2.0

Data Requirements

This section summarizes the data requirements associated with each of the
algorithms in the collection of OpenEIS reference code.

Table 1. Data Requirements for the OpenEIS Algorithms

Algorithm Data Requirements
Data Type Minimum Resolution
Time Series Load | Whole-building electric Hourly
Profiling
Heat Maps Whole-building electric

Energy Signature | Whole-building electric

Outside air temperature

Weather Whole-building electric
Sensitivity

Outside air temperature

Longitudinal Whole-building electric Annual
Benchmarking

Building floor area n/a
Cross-Sectional Whole-building electric Annual
Benchmarking

Whole-building gas

Gross floor area; zipcode, n/a
building type; year of
construction
Peak Load Whole-building electric Hourly
Benchmarking
Building floor area n/a

16 OpenEIS Reference Code v2.0

17

Table 1. Data Requirements for the OpenEIS Algorithms (Continued)

Algorithm

Data Requirements

Data Type

Minimum Resolution

Base-to-Peak
Load Ratios

Whole-building electric

Load Duration
Curves

Whole-building electric

Load Variability

Whole-building electric

Whole-Building
Energy Anomaly
Detection

Whole-building electric

Outside air temperature

Outside-Air
Economizer Fault
Detection and
Diagnostics

Outside air temperature

Return air, mixed air or
discharge air temperature;
outside air damper position
signal; RTU/AHU schedule;
heating and cooling
command; fan status; cooling
call

Hourly

OpenElIS Reference Code v2.0

Guidance for Direct Users

This section reviews the installation, computer hardware and software, and file
formatting requirements that must be met to run the OpenEIS source code against a
set of building energy data.

Data File Formatting Requirements

Data should be organized into the following files:
e A main data file, containing time-stamped outside air temperature, electricity,
and gas data.
e Data files to support outside-air economizer diagnostics

The main data file requirements are as follows:
e The file must have the following four columns, in this order: Date-Time,
Outside Air Temperature, Main Electricity Meter, and Natural Gas Meter.
e Columns are comma-delimited.
e The first row is reserved for the column headers. The exact text of the
column headers does not matter.
e Date-Times should be formatted as: (M)M/(D)D/YYYY (H)H:MM, with no
quote marks or other punctuation.
e QOutside Air Temperatures are floating-point numbers. Assumed to be [F].
Main Electricity Meter data are floating-point numbers. Assumed to be [kW].
e Natural Gas Meter data are floating-point numbers. Assumed to be [kBtu/hr].

The data file requirements for outside air economizer diagnostics are as follows:

* The file must have the following columns, in this order: Date-time, outside
air temperature, return air temperature, mixed air temperature or discharge
air temperature, cooling call, cooling command, heating command, supply fan
status, and outside air damper signal.

e (Columns are comma-delimited.

e The first row is reserved for the column headers. The exact text of the
column headers does not matter.

e Date-Times should be formatted as: (M)M/(D)D/YYYY (H)H:MM, with no
quote marks or other punctuation.

e QOutside air temperatures, return air temperatures, and mixed air
temperatures are floating-point numbers. Assumed to be [F].

e Qutside air damper signals are floating-point numbers. Assumed to be
[%O0pen].

e (ooling call, cooling command, heating command, and supply fan status
should be integers with ‘0’ indicating ‘OFF’ and ‘1’ indicating ‘ON’. If the
status is formatted as a floating-point number, the algorithm will internally
reformat them as integers.

An example of correctly formatted main and outside air economizer data files are
shown below in Figures 13 and 14.

18 OpenEIS Reference Code v2.0

Date,Hillside OAT [F],Main Meter [kw],Boiler Gas [kBtu/hr]

9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/29/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009
9/30/2009

15:
16:
17:
18:
19:
20:
21:
22:
23:

W~V HEWNEO

00,74.
00,75.
00,75.
00,76.
00,76.
00,76.
00,76.
00,77.
00,76.
:00,76.9,116.66,170.73

:00,77.29,119.1,246.17

:00,76.99,117.57,213.78
:00,,121.
:00,,139.

72,280.08,186.52
52,259.67,169. 82
78,221.92,113.88
19,145.24,54.74
72,121.85,11.58
3,113.72,11.17

88,111.22,21.41
16,107.01,29.2

44,108.45,81.02

98,215.91
2,385.73

:00,,151.42,477.32

:00,,162.47,701.29
:00,,189.76,691.95
:00,,221.91,624.79
:00,,228.19,454.43
:00,,236.93,468.05
:00,,239.53,308.18
:00,,246.81,268.58
:00,,249.38,229.05

:00,71.
:00,71.
:00,73.
:00,73.
:00,73.
:00,73.
:00,73.
:00,72.
:00,71.

100,71,

81,258.76,205.13
14,261.77,204.11
83,234.85,181.09
33,198.26,129.27
93,140.55,53.38

75,124.13,20.04

49,112.33,38.71

44,113.27,47.55

42,112.18,33.89

111. 39,70.27

10/1/2009 0:00, 70. 62 110. 9 175.54

Figure 13. Example of the main data file

Timestamp,OutsideAirTemp,ReturnAirTemp,MixedAirTemp,Coolcall,Compressorstatus,Heatingstatus,Fanstatus,Damper
5/19/2012 6:00,48.902,56.43727273,58.68472222,0,0,0,0,0
5/19/2012 7:00,51.12316667,59.47933333,59. 58916667,0,0,0,0,0
5/19/2012 8:00,54.70866667,61.1625,64. 34266667 0,0,0,0,0

5/19/2012 9:00,60.05372881,66. 05525424 66. 46474576,0,0:0,0,1.059322034
,65.98833333 70. 66783333 69.93766667,0,0,0,1,12.29166667

5/19/2012 10:00
:00,71.89383333,72.1775,72. 66266667,0,0,0,1,12 5

5/19/2012 11

5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012
5/19/2012

5/19/2012 23:
0:00, 66. 36733333,73.31016667,65. 55216667,1,0,0,1,100

5/20/2012
5/20/2012
5/20/2012
5/20/2012
5/20/2012

19

11:44,75.98 73. 47733333 74. 73844444,0,0,0,1,12.5

12:00,77.59733333,73.79866667,75.04066667,1,1,0,1,6.98678
13:00,79.63283333,73.99533333,75.607,1,1,0,1,6.648181667

14:00,83.023,73.821,76.05816667,1,1,0,1,4.29151

15:00,84.58783333,74.11366667,76.598
15:26,85.98037037,74.51,77.08111111,1,1,0,1,1.78567037

15:52,86.42,74.96,77.29,0,0,0,0,0
16:00,86.34666667,74.61,77.315,1,1,0,1,5.410114286

17:00,85.62283333,74.2685,77.05366667,1,1,0,1,5.5556

18:00,84.836,74.12133333,76.87783333,1,1,0,1,5.5556
19:00,83.14233333,74.27316667,76.41,1,1,0,1,5.5556

20:00,79.44283333,74.06583333,75.33466667,1,1,0,1,0.750805

21:00,74.28183333,73.77566667,73.71883333,1,1,0,1,0

21:11,70.44166667,73.475,71.68666667,1,1,0,1,17.89164167
21:20,69.34111111,74.08111111,70.02222222,1,0,0,1,82.00225556
21:23,69.94333333,74.53,69.31333333,1,1,0,1,94.0740666

21:29,69.98,74.16833333,69.37166667,1,0,0,1,91.1111]

21:58,70.4462069,74.03172414,69.96172414,1,1,0,1,100

22:00,69.99,73.83,69. 35,1,0,0,1,91 1111
22:07,69.8775,73. 7525 69.22875,1,0,0,1,91.1111
22:11,70.14, 73. 8725, 69. 72,1,1,0, s 100
22:13,70.02,73.71, 69. 44,1,0,0,1,95.55555
22:17,69.9175 73. 61 69. 225,1,1,0,1,93 333325

1:00,63.42783333,72.47583333,62.0895,1,0,0,1,100

1.27,60.45642857,71.92357143,59.04035714,1,0,0,1,100
2:00,57.990625,66.0428125,64.605625,0,0,0,0,1.909725

3100,54.2305,57. 67016667 ,62. 20583333,0,6,0,6,0

,1,1,0,1,0.015793333

7

00,68.0597619,73.58142857,67.0002381,1,0,0,1,94.28570714

Figure 14. Example of the outside air economizer data file

OpenEIS Reference Code v2.0

Figures 15 and 16 show sample configuration files for the whole-building energy
anomaly detection algorithm and the outside air economizer fault detection and
diagnostic algorithm.

[WBE]
object = 1 ;To add independent variables later. Always=1 for now.

variable = 3 ;To add independent variables later. Always=3 for now.

n_degrees = 2 ;Degrees of freedom. Always=2 for now.

deviation = 24 ;Time step used to decide next potential point to put in the bin.
time_diff_tol = 0 ;Time difference tolerance b/w model (predicted) and actual points.
oat_diff_tol = 2.5 ;0AT difference tolerance b/w model (predicted) and actual.

points cost_limit = 10 ;Energy cost threshold. Not used for now.

price = 0 ;Energy price. Always=0 for now.

threshold = 35.7965 ;Whole building energy consumption/day threshold.

Figure 15. Sample configuration file for whole-building energy anomaly detection algorithm

20 OpenEIS Reference Code v2.0

[oaf]
oaf_temp_threshold: 4.0 ;Required difference between the OAT and RAT for OAF calculation.

[0AE1]

matemp_missing: 0 ;Flag to indicate that the MAT 1is not measured.

mat_Tow: 50 ;Low 1limit check threshold for MAT sensor.

mat_high: 90 ;High 1imit check threshold for MAT sensor.

rat_low: 50 ;Low 1imit check threshold for RAT sensor.

rat_high: 90 ;High 1imit check threshold for RAT sensor.

oat_Tow: 30 ;Low 1imit check threshold for OAT sensor.

oat_high: 120 ;High Timit check threshold for OAT sensor.

[0AE2]

high_Timit: 70 ;High 1imit temperature for economizer control if economizer_type 1is set to 'l'.
economizer_type: 0 ;'0"' means differential dry bulb and 'l' means high-Timit economizer control.
oae2_damper_threshold: 30.0 ;% below 100% where damper will not be considered fully open.
oae2_oaf_threshold : 0.25 ;% below 100% where the OAF is too low for economizing.

[0AE3]
damper_minimum: 20 ;Minimum damper set position set point.

[0AE4]
minimum_oa: 0.1 ;Minimum OAF threshold.
oae4_oaf_threshold: 0.25 ;Fraction above the minimum_oa at which the OA intake 1is excessive.

[0AES]
oae5_oaf_threshold : 0.0 ;Insufficient ventilation threshold.

[0AE6]
Sunday: 0,23 ;This schedule is 24 hours, 7 days per week.
Monday: 0,23

Tuesday:0,23
Wednesday: 0,23
Thursday: 0,23
Friday: 0,23
Saturday: 0,23

[ENERGY CONFIGURATION]
EER: 10 ;Rated EER value for RTU or AHU.

tonnage: 10 ;Cooling capacity to estimate energy impact

Figure 16. Sample configuration file for outside-air economizer fault detection and diagnostic
algorithm

21 OpenEIS Reference Code v2.0

Computer Hardware Requirements

The hardware and operating system must be able to run Python and the associated
libraries, as shown below. That is, if a distribution of Python is available for a
particular machine, then there are no other host system requirements.

Installing the Execution Environment

The “execution environment” refers to the system tools used to run the OpenEIS
reference algorithms. The following tools must be installed:

e Python v2.7 (http://www.python.org/getit/).

e SciPyv0.12 (http://www.scipy.org/scipylib/download.html).

e Note that a “full stack” distribution may be available; this includes both
Python and SciPy, already configured to work together
(http://www.scipy.org/install.html).

e Numpy v1.7 (http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/).
Note that this should be installed along with SciPy.

e Matplotlib v1.2 (http://matplotlib.org/downloads.html). Note that this
should be installed along with SciPy.

e SQLite (http://www.sqlite.org/download.html)

We recommend installing Python first, and allowing the installers to put the
libraries in their default locations.

If your machine already has Python, plus either “pip” or “easy_install,” these should
provide an easy method for installing the additional libraries.

Installing the OpenEIS Reference Code

Next, install the OpenEIS reference code. The entire package can be downloaded
from http://eis.lbl.gov/openeis.html. Expanding the downloaded zip file yields a
directory containing the complete set of code and sample input files.

The directory containing the reference suite can be installed in any convenient
location in your directory tree. We recommend placing it along with your regular
documents, for example, under the “My Documents” directory on Windows, or
under the “Documents” directory on Mac OSX.

Similarly, the directory containing the reference suite can be given any name. The
instructions that follow assume the folder is called “open_eis”.

While the directory containing the reference suite can be relocated and renamed at

will, this is not true of the “open_eis_lib” subdirectory. This subdirectory contains
the scripts that implement the algorithms. Changing its name, the names of any of

22 OpenEIS Reference Code v2.0

the files it contains, or the paths to any of the files it contains, will break the
software distribution.

Code Execution

Next, run the algorithms on the sample data provided. To do so:
e Open a command-line window from which you can run Python. For example:

o0 “Terminal” on Mac OS X.

o0 “Command Prompt” on Windows (i.e., the DOS prompt).

0 “Terminal” on Ubuntu Linux.

o Some Python distributions include a Python-specific command-line
interpreter, distinct from shell utilities like “Terminal” and the DOS
command prompt. For example, IDLE is the standard Python
integrated development environment
(http://docs.python.org/2/library/idle.html). However, the rest of
these instructions assume you are using a conventional shell utility.

e (Check that you can access Python. At the command-line prompt (>), enter:
> python -V
The Python interpreter should respond with the version number. For
example:
> python -V
Python 2.7.5
If not, consult your Python installation guide.

e Navigate to the OpenEIS installation directory. For example:

© On Linux or Mac OS X:
> cd Documents/open eis

0 On Windows:
> cd “My Documents\open eis”

e (Check for the Python script called “run_demo.py”. For example, entering the
following commands should show that the file exists:

© On Linux or Mac OS X:
> 1s run demo.py

© On Windows:
> dir run demo.py

e Run the script:
> python run demo.py
e This should bring up a small window, as shown below:

23 OpenEIS Reference Code v2.0

24

r'?.é OpenEIS o | B |t

Select algorithm set + LBL " WBE " OAE

Building data

CSVfile none selected Select CSV file |

Floor area [sf]
Zipcode
Year Built

Building Type Office — |

Building name (optional)

Status

Waiting for CSV file to analyze

Run analysis Quit |

To run all algorithms (with the exception of whole building energy anomaly
detection or outside air economizer fault detection and diagnostics), select
the “LBNL” radio button.

Click the button to “Select CSV file”. In the resulting dialog box, navigate to
the subdirectory “sample_files/main_data_csv” in the “open_eis” directory.
From that subdirectory, select one of the CSV files with “load” in its name.
Fill in the building floor area (for the sample files with “Bldg90” in the name,
62000 square feet is appropriate, but the exact number is not necessary).
Fill in the building zip code.

Fill in the year built.

If desired, fill in the building name.

Click the “Run analysis” button.

The algorithms should run against the data in the selected file. When done,
the status text in the window should update to announce where to find the
results. For example:

OpenElIS Reference Code v2.0

25

74 OpenEIS o B X

Select algorithm set * LBL " WBE " OAE

r~Building data-

CSV file Bldg90_load_1week.csv Select CSV file |

Floor area [sf] %62000
Zipcode (94720
Year Built (1995
Building Type Office —i |

Building name |Building 90 ~ (optional)

~Status

Wrote results in directory "report_Bldg90_load_1week"

Run analysis Quit

e To run the whole building energy anomaly detection algorithm, select the
“WBE” radio button. This should bring up a window, as shown below:

<

7% OpenEIS o B X

Select algorithm set " LBL ¢+ WBE " OAE

Whole Building Diagnostician-

CSVfile none selected Select CSV file

Config file none selected Select config file
Model start date I (yyyy-mm-dd)
Model end date ‘ (yyyy-mm-dd)
Prediction start date (yyyy-mm-dd)
Prediction end date | (yyyy-mm-dd)

~Status

Waiting for CSV file to analyze

Run analysis l Quit

e C(lick the button to “Select CSV file.” In the resulting dialog box, navigate to
the subdirectory “sample_files/main_data_csv” in the “open_eis” directory.
From that subdirectory choose “wbe_sample_data.csv.”

e (lick the button to “Select config file.” In the resulting dialog box, navigate to
the subdirectory “sample_files/config_file_ini” in the “open_eis” directory.
From that subdirectory choose “wbe_config.ini.”

e Fill in the Model start date: 2001-01-01 00:00

OpenElIS Reference Code v2.0

26

Fill in the Model end date: 2001-12-31 23:00

Fill in the Prediction start date: 2002-01-01 00:00
Fill in the Prediction end date: 2002-12-31 23:00
Click the “Run analysis” button.
WBE should run against the data in the selected file. When done, the status
text in the window should update to announce where to find the results. For

example:

Model start date
Model end date
Prediction start date
Prediction end date

Status-

Run analysis

2001-01-01 00:00
2001-12-31 23:00
12002-01-01 00:00
2002-12-31 23:00

Wrote results in directory "report_wbe_sample_data"

-
%4 OpenElS o B X
Select algorithm set " LBL * WBE " OAE
Whole Building Diagnostician
CSV file whbe_sample_data.csv Select CSV file
Config file whbe_config.ini Select config file

(yyyy-mm-dd)
(yyyy-mm-dd)
(yyyy-mm-dd)
(yyyy-mm-dd)

To run the Outside air Economizer Diagnostician select the “OAE” radio
button. This should bring up a window, as shown below:

OpenElIS Reference Code v2.0

27

74 OpenElS o = M

Select algorithm set " LBL " WBE * OAE

Outdoor-Air Diagnostician

CSVfile none selected Select CSV file
Config file none selected Select config file
Aggregate data? " Yes * No

Status

Waiting for CSV file to analyze

Run analysis Quit

Click the button to “Select CSV file.” In the resulting dialog box, navigate to
the subdirectory “sample_files/oae_data_csv” in the “open_eis” directory.
From that subdirectory choose “hourly_aggregated.csv.”

Click the button to “Select config file.” In the resulting dialog box, navigate to
the subdirectory “sample_files/config_file_ini” in the “open_eis” directory.
From that subdirectory choose “oae_config.ini.”

In the “Aggregate data?” field select “No.” When inputting sub-hourly data
select “Yes” in the “Aggregate data?” field. The OAE will internally aggregate
the data to hourly values.

Click the “Run analysis” button.

OAE should run against the data in the selected file. When done, the status
text in the window should update to announce where to find the results. For
example:

OpenElIS Reference Code v2.0

74 OpenEIS o B R

Select algorithm set " LBL " WBE ¢ OAE

Outdoor-Air Diagnostician

CSVfile hourly_aggregated.csv Select CSV file
Config file oae_config.ini Select config file
Aggregate data? (" Yes * No

Status

Wrote results in directory "report_hourly_aggregated"

Run analysis I Quit

. v

The output from running the algorithms is a set of html reports located in the code
directory. Open these files to see the results for your building.

Terms of Use

This source code is available for free public use under a 3-clause BSD (Berkeley
Software Distribution) license; registration and agreement to the terms and
conditions are the only requirements for download.

Attribution and Reporting

The OpenEIS reference source code and pseudo-code were developed under funding
from the U.S. Department of Energy, Building Technologies Office. They are available
to the public at no charge.

Your feedback is critical to tracking the impact of this work. Please take a moment to
send the OpenEIS project team a short note to let us know how you are using these
algorithms.

28 OpenEIS Reference Code v2.0

Guidance for Product Developers and
Programmers

This section reviews the terms of use and technical details for developers and
programmers who wish to adapt the OpenEIS reference source code or pseudo-code
for use in products or services.

Terms of Use

This source code is available for free public use under a 3-clause BSD (Berkeley
Software Distribution) license; registration and agreement to the terms and
conditions are the only requirements for download.

Attribution and Reporting

The OpenEIS reference source code and pseudo-code were developed under funding
from the US Department of Energy, Building Technologies Office. They are available
to the public, at no charge.

Your feedback is critical to tracking the impact of this work - please take a moment
to send the OpenEIS project team a short note to let us know how you are using
these algorithms.

Technical Details

Informal pseudo-code for the core OpenEIS algorithms appears below. The pseudo-
code provides a high-level picture of the underlying logic for each algorithm, and
how each metric or graphic is developed.

Developers who wish to implement a more robust, user-friendly tool are
encouraged to refer to the source code developed as part of the OpenEIS algorithms
reference implementation. That source code includes:

e Implementations of the core algorithms.

e Implementations of auxiliary methods needed to run the core algorithms (for
example, reading comma-separated values (CSV) files, formatting output, and
cleaning up missing data).

e Specifications, in the form of unit tests, for the exact results expected from
the core algorithms. For example, the unit test for the weather sensitivity
metric checks that the results from the reference code match independent
calculations of the expected answer. These same tests can be adapted to
check re-implementations of the core algorithms.

29 OpenEIS Reference Code v2.0

In addition, the distribution contains several types of documentation to help
navigate the code. At a low level, each module, plus major functions, use Python
“docstrings” to embed a variety of information directly into the code:

e The types and meaning of input data (e.g., function arguments).

e The types and meaning of outputs (e.g., function return results).

e Notes and caveats that will provide insight into how to use the function.

e Enhancements that would make the module more useful in a feature-

complete implementation of the OpenEIS algorithms.

At a higher level, and maintained separately from the code, is documentation
showing the broader organization of the code, along with overviews of the functions
and how they interface. This includes versions of the pseudo-code shown in the next
section. See the “developer_doc” subdirectory.

30 OpenEIS Reference Code v2.0

Pseudo-code

This section provides pseudo-code for the reference algorithms. The pseudo-code
gives an overview of how to implement the algorithms, using high-level English
language-like descriptions.

Time Series Load Profiling

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).

Identify the data of interest:
- Take the last single month of data. This ensures that the data are visually
distinct.

Make the load profile plot:
- Make an x-y line graph of y=last-month-loads as a function of
x=Llast-month-times.

Done.

Heat Map

Get inputs:
- times, vector of times (typically a time-specific format).
- loads, vector of power data recorded at times (float).

Assume:
- Data are collected at the same time every day.

Identify the data of interest:
- Take the last year of data. This ensures that the data are visually distinct.

Break up the data into rows, each representing one day:

- Reshape times into an array timesByDay, each of whose rows corresponds
to one calendar day, with the date increasing in higher-numbered rows. Use
the local time zone to determine transitions between days. Each column of
timesByDay should correspond to a particular time of day. Note this may
require special padding for the first and last rows, if times does not
start or end exactly at midnight. If padding is needed, pad with a special
NAN (not-a-number) indicator.

- Reshape loads into an array loadsByDay, using the same row breaks and
row padding as for timesByDay.

Make the heat map:
- Define a color mapping from a power to a color. Details include the spectrum

31 OpenEIS Reference Code v2.0

of colors to be used, the min/max range of the color bar, and bin sizes for
the color bar.

- Make a density map, a binned x-y color map with x given by the time-of-day
in timesByDay, and with y given by the dates in timesByDay. The color
of each cell is defined by applying the color mapping to the appropriate
entry in LloadsByDay.

Done.

Energy Signature

Get inputs:
- oats, vector of outside air temperatures (float).
- loads, vector of corresponding power data (float).

Identify the data of interest:
- Take the most recent year of data. This ensures that the data are visually
distinct.

Make the energy signature plot:
- Make an x-y scatter plot, showing y = loads as a function of x = oats.

Done.

Load Duration Curve

Get inputs:
- loads, vector of power data (float).
- asPercent, flag indicating how to format the x-axis of the graph
(boolean). "True" means to express the duration as a percent of time.
"False" means to express duration as the number of observations.

Identify the data of interest:
- Take the most recent year of data. This limits the likelihood the data spans
different operational regimes (schedules, internal loads, etc..).

Assume:
- The loads were recorded at uniform intervals.

Sort the loads:
- Find sortedLoads by sorting loads in reverse order, i.e., from largest
to smallest. For example, if
Loads = (1, 3, 2, 4)
then
sortedLoads = (4, 3, 2, 1)

Find values for the x-axis:
- Set loadCt to the number of entries in Lloads.
- if(asPercent is “True”):

32 OpenEIS Reference Code v2.0

* Set durs to a sequence of evenly-spaced percentages, from @ to 100,
with LloadCt percentages in the sequence.

* Note that this may require finding the step change from one number in
the sequence to the next. If so, then find
step = 100 / (loadCt - 1)
When doing this calculation, be sure to avoid integer division.
For example, if
loagdCt = 4
then
step = 100/3 = 33.3333
However, integer division may give 100 / 3 = 33.

- else:
* Set durs to the sequence of integers from 1 to loadCt.

Make the load duration curve:
- Make an x-y line graph, showing y = sortedLoads as a function of
X = durs. As a practical matter, note that many plotting libraries do
not require that durs be made explicit, when durs runs from 1 to
LoadCt (i.e., when asPercent is "False").
- Typically the lower extent of the y-axis is fixed at zero power, in order
to provide context for the range of power data.

Done.

Longitudinal Benchmarking

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).
- areaFt2, floor area of corresponding space [ft"2] (float).

Assume:
- Data include at least two years of observations.

Aggregate power data into annual energy intensity:

- Separate loads into subsets of data that are 12 months long. Mark years
so that the last year ends on the last day in times. For example, if the
last observation is on 12-June, then every year should end on 12-June.

- Set years to an empty list.

- Set yearlyEnergyIntensities to an empty list.

- For each year currYear, call the appropriate data currYearlLoads:

* Set currYearEnergy to the time integral of currYearLoads.

* Set currYearIntensity to the energy intensity, i.e., to
currYearEnergy / areaFt2.

* Append currYear to years.

* Append currYearIntensity to yearlyEnergyIntensities.

Make the longitudinal benchmarking plot:
- Make a bar chart, showing y = yearlyEnergyIntensities as a function of

category = years.

Done.

33 OpenEIS Reference Code v2.0

Weather Sensitivity

Weather sensitivity is calculated by finding the Spearman rank correlation
coefficient, as follows:

Get inputs:
- xValues and yValues, two vectors of values (float). For weather
sensitivity, xValues are the outside air temperatures, and yValues
are the corresponding loads. However, note that interchanging xValues
and yValues will still give the same correlation coefficient.

Identify the data of interest:
- Take the most recent year of data. This limits the likelihood the data spans
different operational regimes (schedules, internal loads, etc..).

Assume:
- Both xValues and yValues have the same number of entries.
- Any missing or corrupted entries in xValues and yValues have
been marked as NAN (not-a-number). These entries will be excluded from
the analysis.

Mark pairs of entries for exclusion:

- Set valCt to the number of entries in both xValues and yValues.

- Set nanlLocs to an array of valCt boolean values ("T" or "F"). The
entry at each position in nanlLocs indicates whether either xValues or
yValues has a NAN in the corresponding location. For example, if
xValues = (1, 2, NAN, 4, NAN)
yValues = (51, NAN, 53, 54,NAN)
then
nanLocs = (F, T, T, F, T)

- Write a NAN to every position in xValues and yValues for which
nanLocs is "T". 1In the example above, this results in
xValues = (1, NAN, NAN, 4, NAN)
yValues = (51, NAN, NAN, 54, NAN)

Rank the remaining entries:

- Set xRanks = rankForSpearman(xValues).

- Set yRanks = rankForSpearman(yValues).

- Note the pseudo-code for subprogram rankForSpearman() appears below.

- Note both xRanks and yRanks are vectors containing valCt integers.
For any valid index 11, the entry xRanks[ii1] gives the ranking that
xValues[i1] would have if sorted into ascending order. Valid ranks run
from 1 to valCt, with the following exceptions: (1) equal values receive
the mean rank of those values; and (2) NAN entries receive a rank O.

Subtract out the mean ranks:
- Set xRanksZeroMean to xRanks minus the mean rank of xRanks. Note
that xRanks may contain zeros, due to NAN entries in xValues. Exclude
these zeros when finding the mean rank. For example, if xRanks has
valCt = 50 but two NAN entries, then the mean rank is the sum of the
entries in xRanks, divided by 48.
- Set yRanksZeroMean to yRanks minus the mean rank of yRanks.

Find the Spearman rank correlation coefficient:
- Set cosineFactor to the inner (dot) product of xRanksZeroMean with
YRanksZeroMean .
- Set xMagSq to the inner (dot) product of xRanksZeroMean with itself.
- Set yMagSq to the inner (dot) product of yRanksZeroMean with itself.
- Find the Spearman coefficient using:
spearmanCoeff = cosineFactor / sqrt(xMagSq * yMagSq)

34 OpenEIS Reference Code v2.0

Note that the Spearman coefficient is the Pearson coefficient of the
rank vectors xRanks and yRanks.
Note that a correct calculation yields -1 <= spearmanCoeff <= 1.

Return spearmanCoeff.

Done.

The “rankForSpearman” Subprogram for the
Spearman Algorithm

Get inputs:

values, vector containing valCt numbers (float).

Assume:

Any entries in values that should be excluded from the ranking
have been marked as NAN (not-a-number).

Find the sorted order of entries in values:

Set srtdToActIdx to a vector of valCt indices that would sort values,

from smallest to largest. That is, srtdToActIdx[ii] should give the index
of the iith entry in a sorted version of values.

Duplicate entries in values may be sorted in any order. That is, it is
not necessary to perform a "stable sort" that preserves the original order
of duplicate entries in values.

NAN entries in values should be excluded from the main sequence of sorted
values. 1In practice, the sorting routine may treat NAN entries as larger
(or smaller) than floating-point numbers, thus placing them at the end (or
beginning) of srtdToActIdx. The examples below assume that NAN entries
sort to the highest position.

For example, if

values = (6.6, 1.1, 3.3, NAN, 1.1)

then

srtdToActIdx = (1, 4, 2, 0, 3)

is a possible ranking. Consider 11 = 3. Since srtdToActIdx[3] = o, it
follows that values[@] = 6.6 would be at index 3 in a sorted version of
values. Note that there is one other acceptable ranking, due to the
duplicated entry 1.1 in values. Also note that, in programming languages
that index arrays from 1 (such as R or Fortran), the entries in
srtdToActIdx should be one greater than shown in the example.

Note that merely sorting values is not helpful, because the simple act of
sorting does not retain information about which index of the original
values vector provided each entry in the sorted vector.

In practice, some high-level programming environments provide sorting
routines that return the indices needed to sort a vector; this is exactly
the required srtdToActIdx.

Find the average rank order of each non-NAN entry in values:

35

Initialize ranks as a vector of valCt entries, all equal to 6.
Set LlastVal to values[srtdToActIdx[0]]. Note this should be the
smallest entry in values.

OpenElIS Reference Code v2.0

- Set startRunIdx to O.

- for currIdx running from 1 to valCt-1 (i.e., for every entry after the first):
* Set currVal to the corresponding entry in the sorted vector, i.e.,

to values[srtdToActIdx[currIdx]].
* if(currval is NAN):
- Stop looping over currIdx.

* if(currVal is different from lastVal, including if lastVal is NAN):
- Find the mean rank that should be assigned to indices startRunIdx
through currIdx-1, inclusive. The sorted rank at currIdx-1 is

currIdx, so find the mean rank as
meanRank = 0.5 * (startRunIdx + currIdx + 1)
Note that in a language that indexes arrays from 1, the sorted rank
at currIdx-1 is currIdx-1, so the mean rank is
meanRank = 0.5 * (startRunIdx + currIdx - 1)
- while(startRunIdx < currIdx):
* Set ranks[srtdToActIdx[startRunIdx]] to meanRank.
* Increment startRunIdx by 1.
- Set LlastVal to currVal, in order to mark the start of a new run
of equal values. Note that startRunIdx should already be equal to
currIdx, due to the while-loop above.

- Assign ranks to the last entries inspected in the loop above:

* Set meanRank to the mean rank, using the same formula shown above.
* while(startRunIdx < currIdx):

- Set ranks[srtdToActIdx[startRunIdx]] to meanRank.

- Increment startRunIdx by 1.

- Here, every entry of ranks should have the rank of the corresponding
entry in values, with equal values assigned their mean rank, and with
NAN values assigned a rank of ©. Continuing the example above, if
values = (6.6, 1.1, 3.3, NAN, 1.1)
then
ranks = (4, 1.5, 3, 9, 1.5)

Note that, unlike the entries in srtdToActIdx, ranks does not depend on
whether the programming language indexes arrays from © or from 1. Ranks
always range from 1 (or larger, for the smallest non-NAN entry in values)
to valCt (or less, for the largest non-NAN entry in values).

Return ranks.

Done.

Base-to-Peak Load Ratio

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).

Compute the base-to-peak load metric:
- For each day in times, find the base-to-peak ratio of the loads:
* Set dayBase to the 5th percentile of Loads for the day.
* Set dayPeak to the 95th percentile of lLoads for the day.
* Set dayBPRatio to dayBase / dayPeak.
- Average across days:

36 OpenEIS Reference Code v2.0

* Set aveDayBPRatio to the average of the dayBPRatio values.
Return aveDayBPRatio.

Done.

Peak Load Benchmarking

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).
- areaFt2, floor area of corresponding space [ft"2] (float).

Calculate statistics:
- Set peakLoad to the maximum value in Lloads.
- Set peakLoadIntensity to peaklLoad / areaFt2.

Return peakLoadIntensity.
- TODO: Code currently reports peakLoad, not peakLoadIntensity.

Done.

Load Variability

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).

Assume:
- times are hourly observations. That is, each day has 24 observations.
If the original data were recorded at finer granularity, then the loads
represent the average power for the hour in question.

Find the load variability for each unique timeOfDay in times:

- Set todlLoads to those entries from loads that were recorded at one
unique timeOfDay from times.

- Set todCt to the number of observations in todLoads.

- Set todAve to the average of todlLoads.

- Set todSumSqDev to the sum of the squares of the differences between
todLoads and todAve.

- Set todStdDev to the corrected sample standard deviation of the todLoads,
that is, to the square root of (todSumSqDev / (todCt - 1)).

- Set todVar to the variability of todLoads, that is, to todStdDev / todAve.

Find the average of the daily load variabilities:
- Set aveTodVar to the average of the todVar values.

Return aveTodVar.

37 OpenEIS Reference Code v2.0

Done.

Cross-Sectional Benchmarking

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).
- areaFt2, floor area of corresponding space [ft”2] (float).
- zipcode, 5-digit postal code of corresponding space (integer).
- bldgType, type of building from enumerated list (string).
- bldgYear, year when the building is constructed (integer).

Assume:
- Data include at least two years of observations.
- Webservice default values, if applicable, are used, in order
to limit the number of inputs required from direct users.
- Default value for bldgType is ‘Office’.

Aggregate power data into annual energy intensity:

- Separate loads into subsets of data that are 12 months long.
Mark years so that the last year ends on the last day in times.
For example, if the last observation is on 12-June, then every year
should end on 12-3June.

- Set years to an empty list.

- Set yearlyEnergyIntensities to an empty list.

- For each year currYear, call the appropriate data currYearlLoads:
* Set currYearEnergy to the time integral of currYearlLoads.
* Append currYear to years.

Generate XML files:
- Replace keywords in the targetFinderdata XML template with the
corresponding data inputs.
Set property-zipcode to zipcode.
Set property-floor-area to areaFt2.
Set property-year-built to bldgYear.
Set property-type to bldgType.
Set meter-usage to yearlyEnergy.
Set meter-type to ‘Electric’ or ‘Natural Gas’.
Set meter-energy-units to ‘kWh (thousand Watt-hours)’ or ‘kBtu (thousand Btu)’.
- Return targetFinderdata XML-formatted strings.

¥ ¥ X X X X ¥

Retrieve Energy Star Score from web services:
- Pass propertyUse string to generate propertyUse in Portfolio Manager.
- Query the energy star ‘score’ and append to PMMetrics.

Make the cross-sectional benchmarking plot:
- Make a single-bar chart, showing y = PMMetrics[‘designScore’].

Done.

38 OpenEIS Reference Code v2.0

Other Summary Electric Load Statistics, Displayed
in the Report Table

Get inputs:
- times, vector of date-times (typically a time-specific format).
- loads, vector of power data recorded at times (float).

Calculate statistics:

- For each day in times, find the metrics of interest:
* Set dayBase to the 5th percentile of Loads for the day.
* Set dayPeak to the 95th percentile of loads for the day.
* Set dayRange to dayPeak - dayBase.

- Average across days:
* Set aveDayBase to the average of the dayBase values.
* Set aveDayPeak to the average of the dayPeak values.
* Set aveDayRange to the average of the dayRange values.

Return aveDayBase, aveDayPeak, and aveDayRange.

Done.

Whole-Building Energy Anomaly Detection

Algorithm inputs:

Tout, base — Baseline outdoor-air temperature (hourly average)

Tout, post — Post-baseline outdoor-air temperature (hourly average)

Timestamp - date and time (hourly)

WBE - Whole building energy (hourly energy consumption in kWh)

tstart,baseline — Indicates start time to be used to develop baseline model (specified in

configuration file)

tend,base1ine — Indicates end time to be used to develop baseline model (specified in

configuration file)

tstart,post — Indicates start time for post-baseline (specified in configuration)

tend,post — Indicates start time for post-baseline (specified in configuration)

Trhrehsold — * value used when mapping post-baseline T, to a baseline bin to calculate
expected energy consumption

Algorithm steps:
1. Read the baseline data from the csv file:

* The Whole Building Energy Diagnhostician uses Tgut,base @S an independent
variable (the hour of week (HOW) is implicitly assumed to be a second
independent variable when creating the model) to develop a model for
predicting a building’s energy consumption (dependent variable). In the
future, the WBE Diagnostician will have the capability to use multiple
independent parameters (e.g., outdoor-air relative humidity).

2. Obtain user inputs:
* The user inputs the start and end date for the baseline period and post-
baseline period via the OpenEIS UI.

3. Read the post-baseline data to predict the expected hourly energy consumption:
* The post baseline will have an hour of the week (HOW) and a Tout,post
associated with each data entry.

WBEexpected = f(Tout,post s Tthreshold' HOW)

39 OpenEIS Reference Code v2.0

40

A bin method is used to predict the expected consumption based on the
baseline data. For each hourly prediction, the data bin is created
based on the outdoor temperature and the hour of the week.

The predicted energy consumption is the median energy consumption from
the bin associated with the corresponding post-baseline HOW for which
the energy prediction is being made and the outdoor temperature.

Calculate the median, root mean square error (RMSE), and mean bias error (MBE)

for each bin:

* RMSE, MBE along with the median are used to estimate the uncertainty
associated with the prediction of the expected energy consumption. The
median is the estimate or prediction of the consumption for that hour.

Calculate the daily predicted energy consumption and the daily actual energy

consumption:

* Using the hourly predicted energy consumption for the building to calculate
the daily energy consumption. The daily energy consumption is the sum the of
the hourly energy consumption for each hour within that day.

Compare the predicted energy consumption and the actual energy consumption and

compute the Energy Consumption Index (ECI) as a ratio of actual and predicted

energy consumption:

* ECI value along with the uncertainty can be used to detect deviations of
actual consumption from its expected normal.

Create output graphs and tables.

OpenElIS Reference Code v2.0

Outside-Air Economizer Fault Detection and
Diagnostics

Nomenclature (Order of Appearance)

Ngata — Number rows of data in the CSV file containing the input data.

FanStat; - Fan status at time step i.

OAE1l; - Result for OAE1l at time step i.

MAT; - Mixed-air temperature sensor reading at time step i.

OAT; - Outdoor-air temperature sensor reading at time step i.

RAT; - Mixed-air temperature sensor reading at time step 1i.

Fuwar - Flag indicating that the AHU or RTU does not measure mixed-air temperature.
Compressor; - Compressor status at time step i. A True value indicates the unit is
mechanically cooling.

Heating; - Heating status at time step i. A True value indicates the unit is heating.
MATLOW - Low-end threshold for MAT sensor.

MATHIGH - High-end threshold for MAT sensor.

OATLOW - Low-end threshold for OAT sensor.

OATHIGH - High-end threshold for OAT sensor.

RATLOW - Low-end threshold for RAT sensor.

RATHIGH - High-end threshold for RAT sensor.

OAE2; - Result for OAE2 at time step i.

CoolCall; - Cooling call status at time step i. A True value indicates there is call
for cooling.

Damper; - Damper signal at time step 1i.

EconomizerType - 0@ indicates differential dry bulb and 1 indicates high limit
economizer.

HighLimit - The high limit temperature for economizing if EconomizerType = 1.

OAE2 Damper threshold - Damper open to 100% threshold (default value: 5).

OAE2 Temperature threshold - Threshold to determine if conditions are OK for OAF
calculation.

OAE2 OAF threshold - Value used to determine if nearly 100% OA is used (default: 0.25).
OAF; - The calculated OAF at times step i.

abs() - Function that returns the absolute value of a numeric input.

OAE3; - Result for OAE3 at time step i.

MinimumDamper - Minimum outdoor-air damper position set point for unit.

OAE4; - Result for OAE4 at time step i.

OAE4 Temperature threshold - Threshold to determine if conditions are OK for OAF
calculation.

MinimumOA - Minimum required OA percent (default: 0.20)

OAE4 OAF threshold - Value used to determine if nearly 100% OA is used (default: 0.25).
OAE5; - Result for OAE5 at time step i.

OAE6; — Result for OAE6 at time step i.

SchedHour; - Numeric value of hour parsed from Timestamp input

TimeStamp; - Timestamp for data at time step 1i.

weekday() - function takes in timestamp and return numeric value for day-of-week.
Sunday - Saturday is 0-6.

day - numeric value returned by weekday() within OAE6 diagnostic.

weekSchedule - list of lists that contain the start and end schedule for each day-of
week

daySchedule - list with start and end time for specific day of the week.

StartHour - Start-up hour for unit (configurable).

EndHour - End hour for unit (configurable).

hour() - Function that returns the numeric hour value of a time object.

OAEl1l: Air-side Temperature Sensor (outdoor-, return-, or mixed-air)

Diagnostic
FOR i = 1 to Ngita: (loop over each data entry)
IF FanStat; = -99: (-99 is missing data indicator)
THEN OAEl; = 27 (FanStat for i™ row is missing)
NEXT i

41 OpenEIS Reference Code v2.0

ENDIF
IF FanStat; Is True:
IF (MAT; Or OAT; Or RAT;) = -99:
THEN OAEl; = 27 (Data for i™ row is missing)
NEXT i
ENDIF
IF Fyar is True And (Compressor; Or Heating;) Are True:
THEN OAEl; = 22 (Conditions not favorable for diagnostic)
NEXT i
ENDIF
IF ((MAT; < MATLOW Or MAT; > MATHIGH:
THEN OAE1l; = 23 (Mixed-air temperature sensor outside expected range)
NEXT i
ENDIF
IF ((RAT; < RATLOW Or RAT; > RATHIGH:
THEN OAEl; = 24 (Return-air temperature sensor outside expected range)
NEXT i
ENDIF
IF ((OAT; < OATLOW Or OAT; > OATHIGH:
THEN OAEl; = 25 (Outside-air temperature sensor outside expected range)
NEXT i
ENDIF
IF ((MAT; < OAT; And MAT; < RAT;) Or (MAT; > OAT; And MAT; > RAT;):
THEN OAE1l; = 21 (temperature sensor fault)
NEXT i
ELSE:
THEN OAE1l; = 20 (No fault detected)
NEXT i
ENDIF
ELSE:
THEN OAE1l; = 29 (RTU is OFF)
NEXT i
ENDIF
ENDFOR
GOTO OAE2

OAE2: Not Economizing when the RTU Should
FOR i = 1 to Ngita: (loop over each data entry)
IF FanStat; = -99: (-99 is empty data indicator)
THEN OAE2; = 37 (FanStat for i™ row is missing)
NEXT i
ENDIF
IF FanStat; Is True:
IF (CoolCall; Or Damper; Or OAT; Or RAT;) = -99:
THEN OAE2; = 37 (Data for i™ row is missing)
NEXT i
ENDIF
IF (CoolCall; Is True And OAT; < RAT; And EconomizerType = @) Or
(CoolCall; Is True And OAT; < HighLimit And EconomizerType = 1):
IF (100 - Damper; < OAE2 Damper threshold):
IF ((abs(OAT; - RAT; > OAE2 Temperature threshold) and Fys,r Is False):
IF (1.0 - OAF; < OAE2 OAF threshold And OAF; < 1.25 And OAF; > 0):
THEN OAE2; = 30 (No Fault)
NEXT i
E1SEIF (1.0 - OAF; > OAE2 OAF threshold And OAF; < 1.25 And OAF; >

0):
THEN OAE2; = 32 (OAF is too low when economizing)
NEXT i
ELSE:
THEN OAE2; = 38 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF

42 OpenEIS Reference Code v2.0

ELSEIF ((abs(OAT; - RAT; > OAE2 Temperature threshold) And
(Compressor; And Heating;) Are False And Fyar Is TRUE):
IF (1.0 - OAF; < OAE2 OAF threshold And OAF; < 1.25 And OAF; > 0):
THEN OAE2; = 30 (No Fault)
NEXT i
E1SEIF (1.0 - OAF; > OAE2 OAF threshold And OAF; < 1.25 And OAF; >

0):
THEN OAE2; = 32 (OAF is too low when economizing)
NEXT i
ELSE:
THEN OAE2; = 38 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF
ELSE:
THEN OAE2; = 36 (Damper is OK, conditions not favorable for OAF
calc.)
NEXT i
ENDIF
ELSE:
THEN OAE2; = 33 (Damper should be open to economize)
NEXT i
ENDIF
ELSE:
THEN OAE2; = 31 (No Call for cooling the unit should not economize)
NEXT i
ENDIF
ELSE:
THEN OAE2; = 39 (RTU is OFF)
NEXT i
ENDIF
ENDFOR
GOTO OAE3

OAE3: Economizing when the RTU should not
FOR i = 1 to Ngita: (loop over each data entry)
IF FanStat; = -99: (-99 is missing data indicator)
THEN OAE3; = 47 (FanStat for i™ row is missing)
NEXT i
ENDIF
IF FanStat; Is True:
IF (CoolCall; Or Damper; Or OAT; Or RAT;) = -99:
THEN OAE3; = 47 (Data for i™ row is missing)
NEXT i
ENDIF
IF CoolCall; Is True:
IF (OAT; > RAT; And EconomizerType = @) Or
(OAT; > HighLimit And EconomizerType = 1):
IF Damper; <= MinimumDamper:
THEN OAE3; = 40 (Damper is correctly at minimum)
NEXT i
ELSE:
THEN OAE3; = 41 (Damper should be at minimum)
NEXT i
ENDIF
ELSE:
THEN OAE3; = 43 (Conditions favorable for economizing)
NEXT i
ENDIF
ELSE:
IF Damper; <= MinimumDamper:
THEN OAE3; = 40 (Damper is correctly at minimum)
NEXT i

43 OpenEIS Reference Code v2.0

ELSE:
THEN OAE3; = 41 (Damper should be at minimum)

NEXT i
ENDIF
ENDIF
ELSE:
THEN OAE3; = 49 (RTU is OFF)
NEXT i
ENDIF
ENDFOR
GOTO OAE4

OAE4: Excess Outdoor-air Ventilation
FOR i = 1 to Ngita: (loop over each data entry)

44

IF FanStat; = -99: (-99 is empty data indicator)
THEN OAE4; = 57 (FanStat for i™ row is missing)
NEXT i
ENDIF
IF FanStat; Is True:
IF (CoolCall; Or Damper; Or OAT; Or RAT; Or MAT;) = -99:
THEN OAE4; = 57 (Data for i™ row is missing)
NEXT i
ENDIF
IF (CoolCall; Is True And OAT; > RAT; And EconomizerType = @) Or
(CoolCall; Is True And OAT; > HighLimit And EconomizerType = 1):
IF (Damper; > DamperMinimum):
THEN OAE4; = 53 (Damper should be at minimum)
NEXT i
ENDIF
IF ((abs(OAT; - RAT; > OAE4 Temperature threshold) and Fys,r Is False):
IF (OAF; - MinimumOA < OAE4 OAF threshold And OAF; < 1.25
And OAF; > 0):
THEN OAE4; = 50 (No Fault)
NEXT i
E1SEIF (OAF; - MinimumOA > OAE4 OAF threshold And OAF; < 1.25
And OAF; > 0):
THEN OAE4; = 51 (Excess OA being brought in by RTU)
NEXT i
ELSE:
THEN OAE4; = 58 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF
ELSEIF ((abs(OAT; - RAT; > OAE4 Temperature threshold) And
(Compressor; And Heating;) Are False And Fyr Is TRUE):
IF (OAF; - MinimumOA < OAE4 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE4; = 50 (No Fault)
NEXT i
E1SEIF (OAF; - MinimumOA > OAE4 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE4; = 51 (Excess OA being brought in by RTU)
NEXT i
ELSE:
THEN OAE4; = 58 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF
ELSE:
THEN OAE4; = 52 (Damper is OK, conditions not favorable for OAF calc.)
NEXT i
ENDIF
ELSE
THEN OAE4; = 56 (Unit should be economizing, No Fault)

OpenElIS Reference Code v2.0

NEXT i
ENDIF
ELSE:
THEN OAE4; = 59 (RTU is OFF)
NEXT i
ENDIF
ENDFOR
GOTO OAES

OAE5: Insufficient Outdoor-air Ventilation
FOR i = 1 to Ngita: (loop over each data entry)
IF FanStat; = -99: (-99 is empty data indicator)
THEN OAE5; = 67 (FanStat for i™ row is missing)
NEXT i
ENDIF
IF FanStat; Is True:
IF (CoolCall; OR Damper; OR OAT; OR RAT; OR MAT;) = -99:
THEN OAE5; = 67 (Data for i™ row is missing)
NEXT i
ENDIF
IF (CoolCall; Is True And OAT; > RAT; And EconomizerType = @) Or
(CoolCall; Is True And OAT; > HighLimit And EconomizerType = 1):
IF (Damper; > DamperMinimum):
THEN OAE4; = 63 (Damper should be at minimum)
NEXT i
ENDIF
IF ((abs(OAT; - RAT; > OAE5 Temperature threshold) and Fys,r Is False):
IF (MinimumOA - OAF; > OAE5 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE5; = 61 (Insufficient OA ventilation)
NEXT i
E1SEIF (MinimumOA - OAF; < OAE5 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE5; = 60 (No fault)
NEXT i
ELSE:
THEN OAE5; = 68 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF
ELSEIF ((abs(OAT; - RAT; > OAE4 Temperature threshold) And
(Compressor; And Heating;) Are False And Fyyr Is TRUE):
IF (MinimumOA - OAF; > OAE5 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE5; = 61 (Insufficient OA ventilation)
NEXT i
E1SEIF (MinimumOA - OAF; < OAE5 OAF threshold And
(OAF; < 1.25 And OAF; > 0)):
THEN OAE5; = 60 (No fault)

NEXT i
ELSE:
THEN OAE5; = 68 (Damper is open but OAF was unexpected value)
NEXT i
ENDIF
ELSE:
THEN OAE5; = 62 (Damper is OK, conditions not favorable for OAF calc.)
NEXT i
ENDIF
ELSE
THEN OAE5; = 66 (Unit should be economizing (No Fault))
NEXT i
ENDIF

ELSE:

45 OpenEIS Reference Code v2.0

THEN OAE5; = 69 (RTU is OFF)
NEXT i
ENDIF
ENDFOR
GOTO OAE6

OAE6: RTU Operating Outside of Schedule
FOR i = 1 to Ngita: (loop over each data entry)
IF FanStat; = -99 Or Compressor; = -99: (-99 is empty data indicator)
THEN OAE6; = 77 (FanStat or Compr for i™ row is missing)
NEXT i
ENDIF
day = weekday(TimeStamp;)
daySchedule = weekSchedule[day]
StartHour = daySchedule [0]
EndHour = daySchedule [1]
SchedHour; = hour(TimeStamp;)
IF (FanStat; Or Compressor;) Are True And
(SchedHour; < StartHour Or SchedHour; > EndHour):
THEN OAE6; = 71 (RTU is operating outside of scheduled time).
NEXT i
ELSE:
THEN OAE6; = 70 (No Fault).
NEXT i
ENDIF
ENDFOR
END OAE

46 OpenEIS Reference Code v2.0

