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Abstract. We present a global variational approach to the L
2-gradient flow

of the area functional of cartesian surfaces through the study of the so called

weighted energy-dissipation (WED) functional. In particular, we prove a re-
laxation result which allows us to show that minimizers of the WED converge
in a quantitatively prescribed way to gradient-flow trajectories of the relaxed
area functional. The result is then extended to general parabolic quasilinear
equations arising as gradient flows of convex functionals with linear growth.

1. Introduction

This note concerns the L2-gradient flow of the area functional,

A(u) :=

ˆ

Ω

�
1 + |∇u|2 dx.

Here, u : Ω → R is defined in some bounded open set of R
d with Lipschitz boundary

∂Ω and the domain of A is assumed to be D(A) := {u ∈ W 1,1(Ω) | u = ϕ on ∂Ω},
where the equality on the boundary is to be intended in the usual sense of traces
and ϕ ∈ W 1,1(Ω) is a prescribed boundary value. The gradient flow of A gives rise
to the time-dependent minimal surface equation,

∂tu − div

�
∇u�

1 + |∇u|2

�
= 0 a.e. in Ω × (0, T ), (1.1)

along with the initial and boundary condition u = ϕ on the parabolic boundary of
ΩT := Ω × (0, T ).

Problem (1.1) admits, in general, no classical solution unless ∂Ω is (basically) of
non-negative mean curvature (but see also [12, 16, 17] for more general conditions).
Indeed, as the functional A is convex and proper but fails to be lower semicontinuous
on L2(Ω), its gradient flow generally does not admit strong solutions.

A first possible way out from this obstruction relies on relaxation. Namely, one
could consider the gradient flow in L2(Ω) of the relaxed area functional,

A(u) :=

ˆ

Ω

�
1 + |∇u|2 dx + |Dsu|(Ω) +

ˆ

∂Ω

|ϕ − u|dHd−1,
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along with D(A) := BV (Ω), where Dsu := Du−∇uLd denotes the singular part of
the Radon measure Du (the boundary integral in A is to be intended in the sense
of traces throughout and without extra notation). Now, the functional A is lower
semicontinuous on L2(Ω) and convex. Hence, the classical nonlinear semigroup
theory [8] applies and the gradient flow of A is well-posed.

A second option is that of formulating the gradient flow of A with the help of
the so-called weighted energy-dissipation (WED) formalism [20]. This consists in
translating the whole evolution problem in a global-in-time minimization plus a
limit passage. In particular, one looks for minimizing trajectories t �→ uε(x, t) with
u = ϕ on the parabolic boundary of ΩT of the global-in-time WED functional

W ε(u) :=

ˆ T

0

e−t/ε

�
1

2
�ut�

2
L2(Ω) +

1

ε
A(u)

�
dt

and ascertain the so-called causal limit limit uε → u. Details on this approach
are recalled in Section 2. Note that W ε is convex and proper but again generally
not lower semicontinuous in L1(ΩT ). Hence, one is forced to minimize its L1(ΩT )
relaxation W ε before taking the ε-limit. Indeed, as W ε is lower semicontinuous
and coercive in H1(0, T ;L2(Ω)), the functional W ε coincides with the relaxation of
W ε in H1(0, T ;L2(Ω)) as well.

The main aim of this paper is to prove that these two a priori different approaches
indeed coincide. This is translated into our main result as follows.

Theorem 1.1 (Convergence). Let uε minimize W ε along with uε(·, 0) = ϕ at time

t = 0. Then uε → u uniformly in L2(Ω) where u solves

u�(t) + ∂A(u) � 0 in L2(Ω), a.e. in (0, T ), u(0) = ϕ. (1.2)

Theorem 1.1 consists in a novel limiting variational formulation of the evolution
of cartesian surfaces with vertical velocity equal to the (double of the) mean cur-
vature. As such, we expect it to be interesting in view of possible approximating
procedures. Although we do not believe that the minimization of Wε will turn
out to be numerically convenient with respect to the direct solution of (1.2) (by
the implicit Euler method, say), we have to point out that indeed the convergence
result of Theorem 1.1 is valid in much greater generality, and in particular can be
adapted to sequences of approximate minimizers. The precise statement of this
fact along with extra motivations and comments are given in Section 2. Here we
anticipate that the crucial tool in the direction of the proof of Theorem 1.1 is the
following relaxation result.

Theorem 1.2 (Relaxation).

W ε(u) =

ˆ T

0

e−t/ε

�
1

2
�ut�

2
L2(Ω) +

1

ε
A(u)

�
dt.

This last result is proved separately in Section 3 and could be formulated as the

relaxation of the WED functional is the WED functional of the relaxation. One
could be tempted to extend this paradigm to general situations. However, this is
generally not the case as shown by a counterexample of Mielke & Ortiz [19].

In the last section of the paper, we generalize Theorem 1.2 to the case of convex
functionals F with linear growth at infinity. Indeed, such WED approach can be
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used for an entire class of parabolic quasilinear equations of the form:

ut = div
�
a(x,∇u)

�
a.e. in Ω × (0, T ), (1.3)

along with the same initial and boundary condition u = ϕ, where a(x, ξ) =
∇ξf(x, ξ) with f convex in ξ and having at most linear growth at infinity. Apart
from the time-dependent minimal surface equation, another prototypical example
in this class is the total variation flow,

ut = div

�
∇u

|∇u|

�
, a.e. in Ω × (0, T ).

Formally, (1.3) arises as the L2-gradient flow of the functional

F (u) :=

ˆ

Ω

f(x,∇u(x)) dx,

and the trajectories of the relaxed energy F can be recovered by the casual limit of
the approximate minimizers of the corresponding WED functional once we prove
an analogous relaxation result for

Iε(u) =

ˆ T

0

e−T/ε

�
�ut�

2
L2(Ω)

2
+

F (u)

ε

�
dt.

We point out that the WED approach has already been exploited in the frame-
work of evolution by mean curvature. Indeed, Ilmanen uses the WED functional
in [14] for proving existence and partial regularity of the so-called Brakke mean
curvature flow of varifolds. In comparison with Ilmanen’s paper, our results are
weaker on one side as we concentrate on finite-time evolution of cartesian surfaces
only. On the other hand, our functional frame is more classical as we deal with
graphs of BV functions and the related convergence results are of a quantitative
nature. Moreover, we recall that the interest on the WED approach (or, as it will
turn out to be equivalent, to elliptic-in-time regularizations of evolution problems)
starts at least from the classical monograph by Lions & Magenes [18] (linear),
the already cited [14] and Hirano [13] (gradient flows). As mentioned, the general
discussion of the WED functional approach to gradient flows is in [21] whereas two
applications are in [9]. As for the doubly nonlinear dissipative evolution case, one
shall mention the rate-independent theory of Mielke & Ortiz [19] (see also [20]),
as well as the general convergence results of [2, 1]. Finally, the semilinear hyperbolic
case has been tackled via the WED approach in [22].

2. WED formalism and main results

Let us start this section by recalling the WED theory for gradient flows from
[21]. Assume we are given a real Hilbert space H with scalar product (·, ·) and
corresponding norm � · �H . Moreover, let the functional F : H → (−∞,∞] be
proper and convex. Starting from some given initial datum u0 ∈ D(F ) := {u ∈
H | F (u) < ∞}, we shall be concerned with the classical gradient flow,

u� + ∂F (u) � 0 in H, a.e. in (0, T ), u(0) = u0. (2.1)

Here, the equation is intended to be solved in H, the prime stands for time-
differentiation, and the symbol ∂ denotes the subdifferential in the sense of Convex
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Analysis, namely

v ∈ ∂F (u) ⇐⇒ u ∈ D(F ) and (v, w − u) ≤ F (w) − F (u) ∀w ∈ H.

Problem (2.1) stands as the paradigm of nonlinear dissipative evolution and
may arise as the variational formulation of a variety of parabolic problems. As
such, the well-posedness of (2.1) has been extensively considered. In case F is
lower semicontinuous, the operator ∂F is maximal monotone. Hence, the classical
nonlinear semigroup theory applies and strong solutions to (2.1) exists uniquely and

continuously depending on the initial datum [15, 10, 7, 8]. Note that u0 ∈ D(∂F )
would be enough for proving the well-posedness of (2.1) in the lower semicontinuous
setting.

The case of non lower semicontinuous functionals F is more delicate and has
recently emerged as a new interesting benchmark, especially in connection with
micro-structure evolution. At the stationary level, states which minimize the en-
ergy F may not exists and one resorts in relaxing F . The situation is less clear at the
evolution level and a natural idea seems that of introducing a suitable global-in-time
variational functional on entire trajectories whose minimizers solve (2.1) (and then
possibly relax it). This perspective has been followed by Mielke & Ortiz [19] who
reformulated a large class of evolution problems as (limits of) minimizers of a class
of global-in-time functionals featuring the sum of the (scaled) energy and the dissi-
pation, integrated in time via an exponentially decaying weight. The resulting so-
called weighted energy-dissipation (WED) functionals Iε : H1(0, T ;H) → (−∞,∞]
read, in the case of the gradient flow (2.1), as

Iε(v) :=

ˆ T

0

e−t/ε

�
1

2
�v��2

H +
1

ε
F (v)

�
dt. (2.2)

Note that, whenever restricted to the closed convex set

K := {u ∈ H1(0, T ;H) | u(0) = u0}, (2.3)

the WED functionals Iε are uniformly convex by virtue of the term �v��2
H , namely,

without assuming any strict convexity of F .

In case F is lower semicontinuous and bounded below, the WED functional
admits a unique minimizer uε ∈ K which, in particular, solves the Euler-Lagrange
system:

−εu��
ε + u�

ε + ∂F (uε) � 0 a.e. in (0, T ), (2.4)

uε(0) = u0, (2.5)

u�
ε(T ) = 0. (2.6)

Namely, the minimizer of Iε in K solves an elliptic-in-time regularization of the
gradient flow (2.1). As the problem above is of second order in time, an extra
boundary condition (2.6) at the final point T arises.

Note that, at all levels ε > 0, causality is lost. This motivates the name of causal

limit for the limit ε → 0 into (2.4)-(2.6). The main result of [21] consists in proving
that by performing the causal limit one indeed recovers the solution of (2.1). More
precisely, by letting uε be the unique minimizer of Iε in K one has the quantitative
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error bound
max

t∈[0,T ]
�u(t) − uε(t)�H ≤ Cε1/2,

where u is the unique solution of the gradient flow (2.1) and the error constant C
depends just on F (u0) and T . The above convergence rate is sharp and is indeed
valid in much greater generality (non autonomous case, more general initial data)
in the interpolation space (C([0, T ];H), H1(0, T ;H))η,1 [6] for 0 ≤ η < 1 with order

ε(1−η)/2.

The situation is clearly much more complicated when F is not lower semicon-
tinuous as Iε may fail to admit a minimizer in K. A possible solution is that of
considering quantitatively qualified approximate minimizers. Namely, we say that
vε ∈ K are ε3-approximate minimizers if

Iε(vε) ≤ inf
K

Iε + ε3.

Let us denote by Iε the relaxation of Iε in H1(0, T ;H). If Iε happens to be itself the

WED functional of a convex and lower semicontinuous functional �F , we have that
[21, Cor. 5.5] any sequence of ε3-approximate minimizers vε converges uniformly

to �u, namely the gradient-flow evolution driven by �F . In particular, if uε minimizes
Iε on K, we have that

max
t∈[0,T ]

��u(t) − uε(t)�H ≤ Cε1/2.

One may now wonder whether �u is the gradient-flow trajectory driven by the

relaxed energy F or not. In other words, one could ask if F ≡ �F , that is to say if,
by taking the relaxation of the WED functional, we are actually dealing with the
WED functional on the relaxed energy. We shall remark right away that this is not
generally the case as the counterexample in [19, Thm. 5.1] shows. On the other

hand, some first nontrivial examples of F ≡ �F are detailed by Conti & Ortiz

[9]. In particular, they consider both a model of martensite branching in a one-
dimensional bar and the two-dimensional description of the phenomenon of island

growth and coarsening during the epitaxial growth of thin films. In both cases, they
provide an explicit characterization of the relaxation Iε which itself turns out to be
the WED functional on the relaxed energy.

The aim of this note is to present yet another example of the circumstance

F ≡ �F in the context of mean curvature evolution. In particular, by referring to
the notation of Section 1, Theorem 1.2 entails that the relaxation W ε of the WED
functional W ε is itself a WED functional on the relaxed area functional A. A proof
of the crucial Theorem 1.2 is detailed in Section 3 below. Given the relaxation
result, Theorem 1.1 follows from the above recalled theory of [21]. In particular,
the statement of Theorem 1.1 can be sharpened as follows.

Theorem 2.1 (Convergence, sharper statement). Let H = L2(Ω) and vε be ε3-

approximate minimizers of W ε on K as in (2.3). Then, there exists C > 0 depend-

ing on A(u0) and T but not on ε such that

max
t∈[0,T ]

�u(t) − vε(t)�H ≤ Cε1/2,

where u is the unique solution of

u�(t) + ∂A(u) � 0 a.e. in (0, T ), u(0) = u0.
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The same uniform convergence result holds for the minimizers uε of the relaxed

WED functional W ε on K.

Note that a direct characterization of the subdifferential ∂A has been provided
by Demengel & Temam in [11].

3. Relaxation: the area functional

We shall now turn to the proof of the relaxation Theorem 1.2 which, as com-
mented above, is the core ingredient for the validity of the convergence Theorem 2.1.

We recall the following notation. In the sequel Ω ⊂ R
d is a bounded open domain

with Lipschitz boundary and, for T ∈ (0,∞), R
d
T := R

d × (0, T ), ΩT := Ω× (0, T ),
∂ΩT := ∂Ω × (0, T ) and ∂pΩT is the usual parabolic boundary of ΩT ,

∂pΩT := ∂ΩT ∪ (Ω × {0}).

For the initial value and the boundary data, we fix ϕ ∈ W 1,1(Ω) ∩ L2(Ω) and let
u0 = ϕ.

Given the global-in-time WED functional W ε, we consider its relaxation W ε in

L1(ΩT ) and the WED functional �W ε of the relaxed area functional A, respectively
given by

W ε(u) := inf

�
lim inf
j→∞

W ε(uj) | uj → u in L1(ΩT )

�
,

�W ε(u) :=

ˆ T

0

e−t/ε

�
ˆ

Ω

|ut|
2

2
dx +

A(u)

ε

�
dt,

where the domains of definition are respectively given by

D(W ε) := {u ∈ L1(0, T ;W 1,1(Ω)) | ut ∈ L2(ΩT ), u = ϕ on ∂pΩT },

D(W ε) = D(�W ε) := {u ∈ L1(0, T ;BV (Ω)) | ut ∈ L2(ΩT ), u(·, 0) = u0}.

Once again, let us note that W ε indeed coincides with the H1(0, T ;L2(Ω))-relaxation
of W ε.

Remark 3.1. For what concerns the domain D(Wε), we point out that time-

dependent boundary data ϕ ∈ L1(0, T ;W 1,1(Ω)) may be considered as well.

With this notation, Theorem 1.2 reads

�W ε ≡ W ε.

Since �W ε is clearly lower semicontinuous in L1(ΩT ), it follows that �W ε ≤ W ε.
Therefore, in order to establish the theorem, we need only to prove the converse
inequality, which, in turn, is equivalent to show the following claim: for every
u ∈ D(W ε), there exists a sequence uj ∈ D(W ε) such that uj → u strongly in
L1(ΩT ) and

lim inf
j→∞

W ε(uj) ≤ �W ε(u). (3.1)

Remark 3.2. For later purposes, we stress that, by taking into account the in-

equality �W ε ≤ W ε, any sequence satisfying (3.1) realizes in fact the equality.
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We shall proceed in three steps. At first, we define zj to be a suitable regular-
ization by convolution of u. Then, in Subsection 3.2 we perform a shift in time of
zj and a linear interpolation in order to construct functions vj achieving the initial
datum vj(x, 0) = u0(x). Finally, in Subsection 3.3 we modify vj into a sequence
uj such that uj = ϕ on ∂pΩT . The main point is to check that we can make these
constructions in such a way that inequality (3.1) holds.

3.1. Bulk construction. Let u ∈ D(W ε) be given and, without introducing new
notation, assume u to be extended with respect to space to u ∈ L1(0, T ;BV (Rd))
along with

|Du(·, t)|(∂Ω) = 0 for every t ∈ (0, T ). (3.2)

Note that this can be done since Ω is a Lipschitz domain [3, Prop. 3.21, p. 131].

Next we fix a decreasing sequence τj → 0+, a radially symmetric non-negative

mollifier ρ ∈ C∞
c (Rd) with

´

Rd ρ = 1, and let ρj(x) := τ−d
j ρ(x/τj). We start by

defining zj := ρj ∗ u, namely

zj(x, t) =

ˆ

Rd

ρj(x − y)u(y, t) dy.

Clearly, we have that zj ∈ L1(0, T ;W 1,1(Ω)) and zj → u in L1(ΩT ). Moreover,
since ρj is independent of time, one directly checks that zj,t → ut strongly in
L2(ΩT ). On the other hand, by the standard estimate on the convolution (see, for
instance, [3, Thm. 2.2, p. 42]), we have that, for every t ∈ (0, T ),

ˆ

Ω

�
1 + |∇zj(x, t)|2 dx ≤

ˆ

Nε(Ω)

�
1 + |∇u(x, t)|2 dx + |Dsu|(Nε(Ω)),

where Nε(Ω) := {x ∈ R
d | dist(x,Ω) < ε} denotes the ε neighborhood of Ω. Hence,

integrating in dtε := e−t/εdt, we deduce from (3.2) that

lim sup
j→∞

ˆ

ΩT

�
1 + |∇zj |2 dxdtε ≤

ˆ

ΩT

�
1 + |∇u|2 dxdtε+

ˆ T

0

|Dsu|(Ω) dtε. (3.3)

Remark 3.3. Note that, by semicontinuity of A, the inequality in (3.3) is fact an

equality.

3.2. Initial value. Let us now modify the sequence zj in such a way that the
initial value u0 is achieved. To this aim, let

s2
j :=

ˆ

Ω

|u0(x) − zj(x, 0)|2dx.

Note that, since zj(·, 0) = ρj ∗ u0 and u0 ∈ L2(Ω), we have that sj → 0 as j → ∞.
We shall define the functions vj by shifting zj in time by sj and then recovering
the initial value u0 in a linear fashion. In particular, if sj = 0 we set vj = zj .
Otherwise, we set

vj(x, t) :=






zj(x, t − sj) for sj ≤ t,
sj − t

sj
u0(x) +

t

sj
zj(x, 0) for 0 ≤ t < sj .
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Clearly, vj(·, 0) = u0. We claim that

vj → u strongly in L1(ΩT ), (3.4)

vj,t → ut strongly in L2(ΩT ), (3.5)

lim sup
j→∞

ˆ

ΩT

�
1 + |∇vj |2 dxdtε

≤

ˆ

ΩT

�
1 + |∇u|2 dxdtε +

ˆ T

0

|Dsu|(Ω) dtε. (3.6)

Indeed, since u ∈ C([0, T ];L1(Ω)), the convergence (3.4) follows easily from the
following estimate

�u − vj�L1(ΩT ) =

ˆ sj

0

�u(·, t) − vj(·, t)�L1(Ω)dt +

ˆ T

sj

�u(·, t) − zj(·, t − sj)�L1(Ω)dt

≤ C sj �u0�L1(Ω) +

ˆ T

sj

�u(·, t) − u(·, t − sj)�L1(Ω)dt + �u − zj�L1(ΩT ) → 0.

In the same way, (3.5) follows from the continuity of translations in L2, namely,
ˆ T

sj

�ut(·, t) − vj,t(·, t)�
2
L2(Ω)dt

≤

ˆ T

sj

�ut(·, t) − ut(·, t − sj)�
2
L2(Ω)dt + �ut − zj,t�

2
L2(ΩT ) → 0,

and, from the choice of sj ,
ˆ sj

0

�vj,t − ut�
2
L2(Ω) ≤ 2

ˆ sj

0

�ut(·, t)�
2
L2(Ω) dt + 2

ˆ sj

0

�vj,t(·, t)�
2
L2(Ω) dt

≤ o(1) + 2

ˆ sj

0

ˆ

Ω

����
u0(x) − zj(x, 0)

sj

����
2

dxdt = o(1) + 2sj → 0.

Finally, inequality (3.6) is an easy consequence of (3.3) and the convexity of the
relaxed area functional which in particular implies that

ˆ sj

0

A(vj(·, t)) dt ≤ sj

�
A(u0)

2
+

A(ρj ∗ u0)

2

�
→ 0.

3.3. Boundary value matching. Now we modify the sequence vj in a neighbor-
hood of ∂ΩT in order to match the boundary data ϕ. To this aim, let δ(x) :=
dist(x, ∂Ω). Note that δ ∈ W 1,∞(Ω) with

|∇δ(x)| ≤ 1 for almost every x ∈ Ω.

For all µ < 1 small enough, we consider a decreasing, convex cut-off function
ηµ ∈ C1([0,∞)) such that

ηµ(0) = 1, η�
µ(0) = −1/µ and ηµ(t) = 0 for t ≥ µ + µ2.

For µj → 0+ given by

µ2
j := �u − vj�L1(ΩT ), (3.7)

we define

σj(x, t) :=
�
ϕ(x) − vj(x, t)

�
ηµj

�
δ(x)

�
.
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Clearly σj ≡ ϕ − vj on ∂ΩT and, from vj(x, 0) = u0(x) = ϕ(x), it follows that
σj(·, 0) ≡ 0. We claim the following:

σj → 0 strongly in L1(ΩT ), (3.8)

σj,t → 0 strongly in L2(ΩT ), (3.9)

lim sup
j→∞

ˆ

ΩT

|∇σj(x, t)|dxdtε ≤

ˆ

∂ΩT

|ϕ(x) − u(x, t)|dHd−1(x) dtε. (3.10)

The proof of convergences (3.8) and (3.9) is straightforward. Indeed, by the con-
struction of σj we have that

ˆ

ΩT

|σj |dxdt =

ˆ

Ω2µj

|σj |dxdt ≤

ˆ

Ω2µj

|ϕ − vj |dxdt

≤

ˆ

Ω2µj

|ϕ − u|dxdt + �u − vj�L1(ΩT ),

where, for all µ > 0, we have set Ωµ := {x ∈ Ω | δ(x) < µ}. Note that, from the
Lipschitz regularity of ∂Ω it follows that there exit constants C, µ0 > 0 such that

|Ωµ| ≤ C µ for every µ ≤ µ0.

In particular this implies that |Ωµ| → 0 as µ → 0. Hence, convergence (3.8) follows.
Analogously, since vj,t → ut in L2(ΩT ), from

σj,t(x, t) = −vj,t(x, t) ηµj

�
δ(x)

�
,

we deduce the convergence (3.9).

As for the inequality (3.10), we start by noticing that, since ηµj
◦ δ ∈ W 1,∞(Ω),

then σj ∈ L1(0, T ;W 1,1(Ω)) and, by the chain rule,

ˆ

ΩT

|∇σj |dxdtε ≤

ˆ T

0

ˆ

Ω
µj+µ2

j

|∇ϕ −∇vj | |ηµj
|dxdtε

+

ˆ T

0

ˆ

Ω
µj+µ2

j

|ϕ − vj | |η
�
µj

◦ δ| |∇δ|dxdtε =: I1,j + I2,j .

Recalling the construction of vj , which is obtained from the regularization zj and
a linear interpolation with u0, the first integrand I1,j can be easily estimated as
follows:

I1,j ≤

ˆ T

0

ˆ

Ω2µj

�
|∇ϕ| + |∇vj |

�
dxdtε ≤

ˆ T

0

ˆ

Ω2µj

|∇ϕ|dxdtε +

+

ˆ T

0

|Du(·, t)|(Nτj
(Ω2µj

)) dtε.

Therefore, since limj |Du(·, t)|(Nτj
(Ω2µj

)) = |Du(·, t)|(∂ΩT ) = 0 for every t ∈

(0, T ) and |Du(·, t)|(Nτj
(Ω2µj

)) ≤ |Du(·, t)|(Rd) ∈ L1(0, T ), we conclude from the
Dominated Convergence Theorem that I1,j → 0.
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For what concerns I2,j , we notice that by (3.7) we can proceed as follows:

I2,j ≤

ˆ T

0

1

µj

ˆ

Ω
µj+µ2

j

�
|ϕ(x) − u(x, t)| + |u(x, t) − vj(x, t)|

�
dxdtε

≤

ˆ T

0

1

µj

ˆ

Ω
µj+µ2

j

|ϕ(x) − u(x, t)|dxdtε + µ−1
j �u − vj�L1(ΩT )

=

ˆ T

0

1

µj

ˆ

Ω
µj+µ2

j

|ϕ(x) − u(x, t)|dxdtε + µj .

Then, the inequality (3.10) is proved once we show that

lim sup
j→∞

ˆ T

0

1

µj

ˆ

Ω
µj+µ2

j

|ϕ(x) − u(x, t)|dxdtε ≤

ˆ

∂ΩT

|ϕ − u|dHd−1 dtε. (3.11)

Form the trace theory of BV functions we have, for every t ∈ (0, T ),

1

µj

ˆ

Ω
µj+µ2

j

|ϕ(x) − u(x, t)|dx →

ˆ

∂Ω

|ϕ(x) − u(x, t)|dHd−1(x).

Moreover, we can argue as follows

1

µj

ˆ

Ω
µj+µ2

j

|ϕ(x) − u(x, t)|dx

≤ C

ˆ

∂Ω

|ϕ(x) − u(x, t)|dHd−1(x) + C

ˆ

Ω

|∇ϕ(x)|dx + C |Du(·, t)|(Ω),

for some constant C > 0 depending on ∂Ω, and dominated convergence entails
inequality (3.11).

Now we set uj := vj + σj . Clearly, uj ∈ L1(0, T ;W 1,1(Ω)) and by conver-
gences (3.8) and (3.9) we deduce the strong convergences uj → u and uj,t → ut

in L1(ΩT ) and L2(ΩT ), respectively. By construction vj = ϕ on ∂ΩT . Moreover,
since σj(·, 0) ≡ 0, we also have that uj(·, 0) = u0.

In particular, we have checked that
ˆ

ΩT

|uj,t|
2dxdtε →

ˆ

ΩT

|ut|
2dxdtε,

and, using inequality (3.10) and
�

1 + |a + b|2 ≤
�

1 + |a|2 + |b| for any a, b ∈ R
d,

lim sup
j→∞

ˆ

ΩT

�
1 + |∇uj |2 dxdtε

≤ lim sup
j→∞

�
ˆ

ΩT

�
1 + |∇vj |2 dxdtε +

ˆ

ΩT

|∇σj |dxdtε

�

(3.6),(3.10)

≤

ˆ

ΩT

�
1 + |∇u|2 dxdtε +

ˆ T

0

|Dsu|(Ω) dtε +

ˆ

∂ΩT

|ϕ − u|dHd−1 dtε.

Eventually, we have proved that

lim sup
j→∞

W ε(uj) ≤ �W ε(u),

thus concluding the proof of Theorem 1.2.
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4. Convex functionals with linear growth

In this section we generalize the results of the previous sections to the case of
general linear growth functionals. We focus, indeed, our attention to the following
problem: �

ut = div
�
a(x,∇u)

�
in ΩT ,

u = ϕ on ∂pΩT ,
(4.1)

where Ω and ϕ are as in Section 3 and a(x, ξ) = ∇ξf(x, ξ) with f convex in ξ and
having at most linear growth at infinity. Together with the area functional, other
examples in this class are the already mentioned total variation flow f(ξ) = |ξ|, as
well as the Lagrangians

f(x, ξ) =
�

1 + αij(x)ξiξj , f(x, ξ) =
�

1 + x2 + |ξ|2,

where the coefficients αij are continuous and elliptic and αij = αji. The reader is
referred to [4] for additional examples and details.

Problem (4.1) formally arises as the L2-gradient flow of the functional

F (u) :=

ˆ

Ω

f(x,∇u(x)) dx, D(F ) := W 1,1(Ω) ⊂ L2(Ω). (4.2)

Since the area functional is a special case of (4.2) for f(x, ξ) =
�

1 + |ξ|2, all the
considerations for (1.1) hold as well for (4.1). In particular, the lack of semiconti-
nuity in L2(ΩT ) due to the linear growth condition prevents from applying directly
the nonlinear semigroup theory.

Here we show that the WED functional can be employed in order to recover the
gradient flow trajectories in L2(Ω) of the relaxed energy F . Exactly as for the area
functional, this amounts to prove a relaxation result for

Iε(u) =

ˆ T

0

e−T/ε

�
�ut�

2
L2(Ω)

2
+

F (u)

ε

�
dt.

We shall start by recalling some notation for functionals defined on measures.
Given a continuous function g : O×R

m → [0,∞), O ⊆ R
n open, and a R

m-valued
Radon measure µ on O, we define

ˆ

O

g(x, µ) :=

ˆ

O

g

�
x,

dµ

d |µ|

�
d|µ|(x).

It is easy to verify that when g is positively 1-homogeneous with respect to ξ,
namely if g(x, λξ) = λ g(x, ξ) for every (x, ξ) ∈ O×R

m and λ > 0, then, by writing
the classical decomposition µ = µaLn + �µs|µs| where −→µ s := µs/|µs|, it holds

ˆ

O

g(x, µ) =

ˆ

O

g

�
x,

µa

|µa|

�
|µa|dx +

ˆ

O

g (x, �µs) d|µs|

=

ˆ

O

g (x, µa) dx +

ˆ

O

g (x, �µs) d|µs|. (4.3)

Let now f : Ω × R
d → [0,∞) be a continuous function. We shall assume that

(H1) f is convex in ξ for every x ∈ Ω;
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(H2) f has linear growth in ξ, i.e. there exists M > 0 such that

1

M
|ξ| − M ≤ f(x, ξ) ≤ M (1 + |ξ|) ∀ (x, ξ) ∈ Ω × R

d.

By convexity, the recession function f∞ : Ω̄ × R
d → [0,∞)

f∞(x, ξ) := lim
t→∞

1

t
f(x, t ξ)

is well-defined and we let f̄ : Ω̄ × R
d × [0,∞) → [0,∞) given by

f̄(x, ξ, t) :=





f

�
x,

ξ

t

�
t if t > 0,

f∞(x, ξ) if t = 0.

We shall additionally assume that

(H3) f̄ is continuous.

Under assumptions (H1)-(H3), the relaxation of F is L1(Ω) is given by [5],

F (u) =

ˆ

Ω

f(x,∇u(x)) dx +

ˆ

Ω

f∞(x,
−−→
Dsu(x)) d|Dsu|(x)

+

ˆ

∂Ω

f∞(x, n(x) [ϕ(x) − u(x)]) dHd−1(x), D(F ) = BV (Ω).

Here, n(x) is the external unit normal to ∂Ω in x.

Moreover, we set

Iε(u) := inf

�
lim inf
j→∞

Iε(uj) | uj → u in L1(ΩT )

�
,

along with the domains of definition

D(Iε) := D(W ε) and D(Iε) := D(W ε).

The main result of this section reads as follows.

Theorem 4.1 (Relaxation, linear-growth functionals).

Iε(u) =

ˆ T

0

e−T/ε

�
�ut�

2
L2(Ω)

2
+

F (u)

ε

�
dt.

We postpone the proof of this result to Subsection 4.1 below. However, we shall
comment here that the above relaxation result together with the general theory of
[20] entail the convergence of qualified approximate minimizers of Iε to suitably
weak variational solutions of (4.1). In particular, we have the following.

Theorem 4.2 (Convergence, linear-growth functionals). Let H = L2(Ω) and vε

be ε3-approximate minimizers of Iε on K as in (2.3). Then, there exists C > 0
depending on F (u0) and T but not on ε such that

max
t∈[0,T ]

�u(t) − vε(t)�H ≤ Cε1/2,

where u is the unique solution of

u�(t) + ∂F (u) � 0 in L2(Ω), a.e. in (0, T ), u(0) = u0.
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The same uniform convergence result holds for the minimizers uε of the relaxed

WED functional Iε on K.

Let us mention that, under suitable additional smoothness and structure as-
sumptions on f , an explicit characterization of the subdifferential ∂F in L2(Ω) is
provided in [4, Prop. 6.8, p. 175].

4.1. Relaxation: linear-growth functionals. This subsection contains the proof
of Theorem 4.1 which can be restated as

Iε(u) ≡ �Iε(u) :=

ˆ T

0

e−t/ε

�
ˆ

Ω

|ut|
2

2
dx +

F (u)

ε

�
dt, D(�Iε) := D(W ε).

As the semicontinuity of �Iε implies that �Iε(u) ≤ Iε(u) for every u ∈ L1(ΩT ), it
is sufficient to show the opposite inequality. Namely, for every u ∈ D(Iε), we need
to find a sequence uj ∈ D(Iε) such that uj → u in L1(ΩT ) and

lim inf
j→∞

Iε(uj) = �Iε(u). (4.4)

We claim that (4.4) is an easy consequence of the construction in the proof of
Theorem 1.2 and and Reshetnyak’s continuity theorem [3, Thm. 2.39, p. 68],
namely

Theorem 4.3 (Reshetnyak continuity). Let O ⊆ R
n be open and νj, ν be R

m-

valued finite Radon measures in O such that

νj → ν weakly-∗ in O and �νj�(O) → �ν�(O).

Then, for every continuous and bounded function f : Ω × S
d−1 → R, it holds

lim
j→∞

ˆ

O

f

�
x,

dνj

d|νj |
(x)

�
d|νj |(x) =

ˆ

O

f

�
x,

dν

d|ν|
(x)

�
d|ν|(x).

Now, given v ∈ BV (Ω), we define the R
d+1-valued measure in R

d given by

µ = (∇v(t), 1)Ld Ω + ( �Dsv, 0) |Dsv| + ((φ − v) n, 0)Hd−1 ∂Ω.

Analogously, given u ∈ L1(0, T ;BV (Ω)), we consider the R
d+1-valued measure

ν := µ(t) ⊗ dtε on R
d
T , where µ(t) is as above for v = u(·, t), i.e.

ν(A) :=

ˆ T

0

µ(t)
�
A ∩ (Rd × {t})

�
dtε ∀ A ⊆ R

d
T Borel.

From (4.3) (note that f̄ is 1-positively homogeneous) it is easy to verify that
ˆ T

0

F (u(·, t))dtε =

ˆ

ΩT

f̄(x, ν). (4.5)

Let now u ∈ D(Iε), uj be the sequence constructed in Section 3, and ν, νj the
corresponding measures. Recall that:

(a) uj ≡ ϕ on ∂pΩ,
(b) uj → u strongly in L1(ΩT ),
(c) uj,t → ut strongly in L2(ΩT ),

(d)
´ T

0
A(uj)dtε →

´ T

0
A(u)dtε (recall Remark 3.2).
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From (b) it follows easily that νj → ν weakly-∗. By (4.5) applied to the area
functional and (d), one has that �νj�(ΩT ) → �ν�(ΩT ). Hence, from the represen-
tation (4.5) and Theorem 4.3, we infer that (note that F (uj) = F (uj))

lim
j→∞

ˆ T

0

F (uj)dtε =

ˆ T

0

F (u)dtε,

which together with (c) gives (4.4).

References

[1] G. Akagi and U. Stefanelli. A variational principle for doubly nonlinear evolution. Appl. Math.

Lett., to appear, 2010.

[2] G. Akagi and U. U. Stefanelli. Weighted energy-dissipation functionals for doubly nonlinear
evolution. Preprint IMATI-CNR, 2PV10/2/0, 2010.

[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity

problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press,
New York, 2000.

[4] F. Andreu-Vaillo, V. Caselles, and J. M. Mazón. Parabolic quasilinear equations minimizing

linear growth functionals, volume 223 of Progress in Mathematics. Birkhäuser Verlag, Basel,
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