InterSystems-

Health | Business | Government

DeepSee Developer Tutorial

Version 2014.1
13 September 2017

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

DeepSee Developer Tutorial

InterSystems Version 2014.1 13 September 2017
Copyright © 2017 InterSystems Corporation

All rights reserved.

ulnterSystemS‘ UICnterSystemS‘ ulnterSystemS' ulnterSystemS" l]lnterSystems

Health | Business | Government aché Ensemble HealthShare TrakCare

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems Corporation.
All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

About This Book 1
1 Getting Started 3
1.1 GEtting StATLEA couvveeeieeieeitieeiieeitee et ett ettt sttt e st e et eesabeebeesateebaesstesabaessbesnseesasesnsaesnsesnseenseas 3

1.2 ReZENETAtING DALA .euveiiiiiiiiiiiieieeie ettt ettt e st e e beesbeesbeesbeesaaessseessaesasesseesssasnseenns 4

2 Introduction to Cube Elements 5
2.1 Accessing the Patients CUDEcccooiiiiiirieiieteie ettt ettt saeete b eaeens 5

2.2 Orientation to the Model CONENLS ATEAccccveieeeieeiiiieeriieeeceeeeeieeesreeeereeesereeessseessnseeesseeeans 6
2.2.1 MEASUIES ...eeveenrieueetieieenieetenieeteseere st et stt e st s te e atese e st smeesaeeseesatennesatemnesueensesunennessnensens 6

2.2.2 DIMENSIONS «.ueerveeuiiriieienitenieniteteeitenttetesteestesseestesrtessesaeessesssessesssensesasesseensesseensesneessesseenses 6

2.3 Creating a Simple PivOt TabIEccciiiiiriiiiiiiiieeie ettt sttt e ssteeveeaee s 7

2.4 Measures aNd LEVELSc.eeiviiiciieiieeiieeiieeieesttesteestte st eseeseteeteesveeteesssaeseesssesssaesssessseesssessseesns 9

2.5 DImensions and LEVEIScccieiiiiiieiieeieeitecieeite e eseesteesieesaeeteesaeessaesbaessaesnseesssesnsaeseeas 10

2.6 THEe Al MEIMDETS ...ceeiuviiieiiieiiieeeiiieeeieeeeeieeeseteeeeteeessaeesssseeessseeeessasssseeesssesessseessssesessseessnes 12

2.7 HICTATCHIES «..eveeniiieeeiieieieeteseet ettt ettt et sttt a e ettt st e ne st eane st eanesreennesneenneene 13

2.8 PIOPETTIES ..veruvieriierieeriieeitteniteeteesite st estesteesbtesbeesstesabeessaessseesssesaseesseessseensaesasaensaesaseenssesnseenses 15

2.9 LLISHINES teuveeeurerieerieeiteerteesteenttesteessteseteessaessseessaesssesnseessseessaessseesssessseesssensesseesnsesnseesseenseensses 17
2.10 FAlters and MEMDETScccuieeveerieririerieesieereeesieeseeesseesseeeseesssessseesssesssesssessseesseessseesssesssesssns 19
2.11 Filters and Searchable IMEASUIEScceecvierveeiieerieeiieesteesteesteesseesseesseesssessseesssesssessssessseeses 20

3 Creating a Cube 23
3.1 Creating @ BasiC CUDEoocuiiiiiiiieiiieteteet ettt ettt et sttt et sbeesaeeeabs 23

3.2 Adding Levels and MEASUIEScccceevrveereerieenieriieeniiesieesieesieeseesseesseessseesseessseesseesssesssaessseenns 24

3.3 Examining the INitial CUDEcceeeviiriiiiriieriiienieeieerie ettt ste et stesaeesaresseesaeesaseesanesnsees 28

3.4 RefiNING the CUDE ...couiriiiiiiieiiee ettt sttt ettt sbe e e e 31

3.5 Adding a LiSting t0 the CUDEccueiieiiieiiiieieeeee ettt s 33

3.6 Looking at the Fact and Level Tablesc.cccccoiiiiniiiiiiiiiiiienicieeeceeeeeeeere e 35

4 Expanding the Cube Definition 39
4.1 Adding a Level to @ HIBTArChYcccoovuieriiiiiiiiniiiieenieeteete ettt sttt et seeesbaesseeneee s 39

4.2 AddIng TImME LEVEIS ...eeevieiiiiiieiieiiteteete ettt et e e e ste et teesaesbeessbessbeesaseeseesssesnseenssesnses 42

4.3 Using a ColleCtion PrOPEITYcceeruerieriirientieieeieete sttt sttt sttt ettt sbe et sbe e e sbe e e e 45

4.4 Defining REPIACEIMENLScc.eeitiruieiiiriieiiee ettt ettt ettt ettt ste et e sbeeae s bt e e s bt ebeeseeneeeae 51

4.5 AccessiNg Other CLASSEScc.eevuiriiriiiieriieiereeieee ettt ettt ettt et ne s ne s neeaneneens 56

5 Creating Subject Areas 59
5.1 INEOAUCTION .ottt ettt ettt ettt et sb et e b et eaee st saeesaeemaesaeemnenbees 59

5.2 Creating the SUDJECT ATEAS ...ecvcveereeriieerienieeiteeteesieesteesseessteesseessseesseessesnseessseesseesssesssaesssesnns 59

5.3 Examining the SUDJECT ATEAS ..cc.eeiirtiriiriieiieieee ettt ettt st st ne e s 61

5.4 Common Filter EXPIreSSIONScccueiuieiertieiirtieieeieeie ettt ettt ettt ettt et s b et sbeeee b e ee s e e e 62

6 Creating and Packaging Pivot Tables and Dashboards 67
6.1 Creating PIVOt TaDIEScccuiiiiiiiiiii ittt ettt et e be e s ebee s 67

6.2 Creating @ DaShDOATAcocuiiiiiiiiiiieiieeieete ettt ettt s be et e sbeesaaesabeessaesaneenne 68

6.3 Exporting and Packaging the Pivot Tables and Dashboardscccceeveeriiiniiencieniienienieenne 74

DeepSee Developer Tutorial

About This Book

This tutorial is intended to help developers learn the basic process of creating DeepSee models and then using them to
create pivot tables and dashboards. This book contains the following sections:

e Getting Started

e Introduction to Cube Elements
¢ Creating a Cube

¢ Expanding the Cube Definition
¢ Creating Subject Areas

¢ Creating and Packaging Pivot Tables and Dashboards

For a detailed outline, see the table of contents.

The other developer books for DeepSee are as follows:

* Getting Started with DeepSee describes how to get started.

e DeepSee Implementation Guide describes how to implement DeepSee, apart from creating the model.

e Defining DeepSee Models describes how to define all the elements used in DeepSee queries: DeepSee cubes, subject
areas, term lists, worksheets, quality measures, KPIs, and plugins.

e Using MDX with DeepSee introduces MDX and describes how to write MDX queries manually for use with DeepSee
cubes.

e DeepSee MDX Reference provides reference information on MDX as supported by DeepSee.

The following books are for both developers and users:
* DeepSee End User Guide describes how to use the DeepSee User Portal and dashboards.
e Creating DeepSee Dashboards describes how to create and modify dashboards in DeepSee.

e Using the DeepSee Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in Caché.

For general information, see the InterSystems Documentation Guide.

DeepSee Developer Tutorial 1

Getting Started

The SAMPLES namespace includes two DeepSee samples. One is the DeepSee.Study.Patient class and related classes. This
sample is meant for use as the basis of a DeepSee model. It does not initially contain any data. The DeepSee.Model package
includes sample cubes, subject areas, KPIs, pivot tables, and dashboards, for use as reference during this tutorial.

This sample is intended as a flexible starting point for working with DeepSee. You use this sample to generate as much
data or as little data as needed, and then you use the DeepSee Architect to create a DeepSee model that explores this data.
You can then create DeepSee pivot tables, KPIs, and dashboards based on this model. The sample contains enough com-
plexity to enable you to use the central DeepSee features and to test many typical real-life scenarios. This book presents
hands-on exercises that use this sample.

Important: DeepSee uses SQL to access data while building the cube, and also when executing detail listings. If your
model refers to any class properties that are SQL reserved words, you must enable support for delimited
identifiers so that DeepSee can escape the property names. For a list of reserved words, see the “Reserved
Words” section in the Caché SQL Reference. For information on enabling support for delimited identifiers,
see the chapter “Identifiers” in Using Caché SQL.

Be sure to consult InterSystems Supported Platforms for information on system requirements for DeepSee.

1.1 Getting Started

Most of the tools that you will use are contained in the Management Portal.
To log on:
1. Click the InterSystems Launcher and then click Management Portal.
Depending on your security, you may be prompted to log in with a Caché username and password.
2. Switch to the SAMPLES namespace as follows:
a. Click Switch.
b. Click SAMPLES.
c. Click OK.

DeepSee Developer Tutorial 3

Getting Started

1.2 Regenerating Data

The tutorial uses a larger, slightly more complex set of data than is initially provided in SAMPLES.

To generate data for this tutorial:

1. In the Terminal, switch to the SAMPLES namespace:

"SAMPLES"

2. Execute the following command:

do ##class (DeepSee.Populate) .GenerateAll (10000, "ADETR")

This class method generates 10000 patients. The "ADETR" string means that the sample will include allergy data (a),
diagnosis data (D), encounter data (E), details (T), and the city rainfall data (R).

3. Because we will use SQL queries that run against the tables that we have just populated, it is good practice to run the
Tune Table facility on them:

a.
b.

C.

Access the Management Portal and go to the SAMPLES namespace, as described earlier.
Click System Explorer > SQL.

Click the [Execute Query] tab.

Click Actions and then Tune All Tables.

The system then displays a dialog box where you select a schema and confirm the action.
For Schema, select the DeepSee_Study schema.

Click Finish.

Click Done.

The system then runs the Tune Table facility in the background.

DeepSee Developer Tutorial

Introduction to Cube Elements

Before you create your own cube, it is useful to examine a sample cube and see how you can use it. This chapter discusses
the following:

¢ How to access the Patients cube

¢ Orientation to the Model Contents area
e A typical pivot table

e Measures and levels

¢ Dimensions and levels

¢ All members

e Hierarchies

e Properties

e Listings

¢ Filters and members

e Filters and searchable measures

2.1 Accessing the Patients Cube

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

2. Click Home,DeepSee,Analyzer.

Click the Change Subject Area button i-i .

4. Click Patients.

A

Click OK.

The Analyzer page includes three main areas:

e The Model Contents area on the left lists the contents of the cube you selected. You can expand folders and drag and
drop items into the Pivot Builder area.

DeepSee Developer Tutorial 5

Introduction to Cube Elements

e The Pivot Builder area in the upper right provides options that you use to create pivot tables. This area consists of the
Rows, Columns, Measures, and Filters boxes.

e The Pivot Preview area in the bottom right displays the pivot table in almost the same way that it will be shown in
dashboards.

2.2 Orientation to the Model Contents Area

The Model Contents area lists the contents of the cube that you are currently viewing. For this tutorial, select Dimensions
from the drop-down list; this option displays the measures and dimensions in the given cube.

The top section shows named sets, but this tutorial does not use these. Below that, this area includes the following sections:

2.2.1 Measures

The Measures section lists all measures in the cube. For example:

Measures

€ Allergy Count

€ Awg Allergy Count
€3 Encounter Count
€ Awg Enc Count
€3 Test Score

o Awg Test Score

& Unigue Doctor Count

You can have two types of measures, indicated by different icons:

.[::. Standard measures

Calculated measures, which are defined in terms of other measures

s
[)

2.2.2 Dimensions

The Dimensions section lists the dimensions and the levels, members, and properties that they contain. (It also contains
any non-measure calculated members, as well as any sets; this chapter does not discuss these items.)

Click the triangle next to any dimension name to expand it. A dimension contains at least one level and may also include
a special member known as the All member. In the following example, the AgeD dimension includes an All member named
All Patients, as well as the levels Age Group, Age Bucket, and Age.

6 DeepSee Developer Tutorial

Creating a Simple Pivot Table

Dimensions
AgeD
9 All Patients
Age Group
Age Bucket
Age

If you expand a level, the system displays the members of that level. For example:

AgeD

% All Patients
Age Group
% () to 29
2 30 to 59
5 B0+

If a level also includes properties, the system shows those properties in blue font, at the start of the list, with a different
icon. For example, the City level includes the Population and Principal Export properties:

HomeD
ZIP
City
@ Population
® Principal Export
¢ Cedar Falls
% Centenville
% Cypress
29 Flm Heinhts

2.3 Creating a Simple Pivot Table

In this section, you create a simple pivot table that uses levels and measures in a typical way. The goal of this section is to
see how levels and measures work and to learn what a member is.

The numbers you see will be different from what is shown here.
1. Expand the DiagD dimension in the Model Contents pane.
2. Drag and drop Diagnoses to Rows.

Or double-click Diagnoses.

The system displays the following:

DeepSee Developer Tutorial 7

Introduction to Cube Elements

Diagnoses

Hone 8,425
asthma 703
CHD 323
diabetes 504
osteoporosis 200

Drag and drop Patient Count to Measures.
Or double-click Patient Count.

Drag and drop Avg Age to Measures.

Or double-click Avg Age.

The system displays the following:

Diagnoses Patient Count Avg Age

Hone 8,425 33.24
asthma 703 3479
CHD 323 67.49
diabetes 504 57.24
osteoporosis 200 7946

Click Save.
The system displays a dialog box where you specify the pivot table name.

Save the pivot table and give it a name. When you do so, you are saving the underlying query that retrieves the data,
along with the information needed to display it the way you chose. You are not saving the data.

For Folder, type Test
For Pivot Name, type Patients by Diagnosis (Patients Cube)

Click OK.

It is worthwhile to develop a formal understanding of what we see. Note the following points:

The base table is Patients, which means that all measures summarize data about patients.
Apart from the header row, each row of this pivot table displays data for one member of the Diagnoses dimension.

In all cases, a member corresponds to a set of records in the fact table. (In most cases, each record in the fact table
corresponds to one record in the base table.)

Therefore, each row in this pivot table displays data for a set of patients with a particular diagnosis.

Other layouts are possible (as shown later in this book), but in all cases, any data cell in a pivot table is associated with
a set of records in the fact table.

In a typical pivot table, each data cell displays the aggregate value for a measure, aggregated across all records used
by that data cell.

To understand the contents of a given data cell, use the information given by the corresponding labels. For example,
consider the cell in the asthma row, in the Patient Count column. This cell displays the total number of patients
who have asthma.

Similarly, consider the Avg Age column for this row. This cell displays the average age of patients who have asthma.

DeepSee Developer Tutorial

Measures and Levels

For different measures, the aggregation can be performed in different ways. For Patient Count, DeepSee sums the
numbers. For Avg Age, DeepSee averages the numbers. Other aggregations are possible.

2.4 Measures and Levels

In this section, we take a closer look at measures and levels.

1.
2.

Click New.
Drag and drop Count and Avg Age, to the Measures area.

You now see something like this:

Count Avg Age
| 10,000 35.03

This simple pivot table shows us the aggregate value for each of these measures, across all the records in the base class.
There are 10000 patients and their average age (in this example) is 35.93 years.

Compare these values to the values obtained directly from the source table. To do so:

a. In a separate browser tab or window, access the Management Portal and go to the SAMPLES namespace, as
described earlier.

b. Click System Explorer > SQL.
c. Click the [Execute Query] tab.
d. Execute the following query:

select count (*) as "count",avg(age) as avgage from deepsee_study.patient
You should see the same numbers. For example:

count avgage
1(10000|325.9349

Complete

Tip: Leave this browser tab or window open for later use.

In the Analyzer, modify the previous pivot table as follows:
a. Expand GenD on the left.

b. Drag and drop Gender to the Row area. Now you see something like the following:

Gender |Count Avg Age
Female 5,161 36.99
Male 41839 34.81

Compare these values to the aggregate values obtained from the source table. To do so:
a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

DeepSee Developer Tutorial 9

Introduction to Cube Elements

c. Click the [Execute Query] tab.

d. Click Show History.

e. Click the query you ran previously.

f. Add the following to the end of the query and then rerun the query:

group by gender

You should see the same numbers as shown in the pivot table. For example:

count avgage

1| 5161(36.99224950403797714
2| 4839|34.80719156850588965
Complete

6. For a final example, make the following change in the Analyzer:
a. Click the X button in the Rows pane. This action clears the row definition.
b. Expand ProfD and Profession.

c. Draganddrop Electrician to Rows.

The system displays something like this:

Electrician |Count Avg Age
Electrician 175 38.35

7. Compare these values to the values from the source table. To do so:
a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.
b. Click System Explorer > SQL.
c. Click the [Execute Query] tab.
d. Execute the following query:

select count (*) as "count",avg(age) as avgage from deepsee_study.patient join
deepsee_study.patientdetails

on deepsee_study.patient.patientid = deepsee_study.patientdetails.patientid
where deepsee_study.patientdetails.profession->profession='Electrician'

You should see the same numbers. For example:

count avgage
1 175|39.35428571428571429
Complete

2.5 Dimensions and Levels

In many scenarios, you can use dimensions and levels interchangeably. In this section, we compare them and see the differ-
ences.

10 DeepSee Developer Tutorial

Dimensions and Levels

1. In the Analyzer, click New.

2. Drag and drop the GenD definition to the Rows area. You should see something like this:

GenD
Female | 5112
Male | 4,588

The measure shown is Count, which is a count of patients.
3. Click New.

4. Expand the GenD dimension. You will see the following in the left area:

¥ GenD
P Gender

5. Drag and drop the Gender level to the Rows area. You should see something like this:

Gender
Female | 5112
Male | 4,888

In this case, we see the same results except for the caption above the rows.

In the Patients sample, the names of dimensions are short and end with D, and the name of a level is never identical to
the name of the dimension that contains it. This naming convention is not required, and you can use the same name
for a level and for the dimension that contains it.

6. Click New.

7. Expand the AgeD dimension. You will see the following in the left area:
L J Ege[}
L] All Patients
P Age Group
F Age Bucket
P Age
This dimension is defined differently from the GenD dimension in two ways:

e AgeD defines a special member called A11 Patients, which is an All member. An All member refers to all
records of the base class.

* AgeD defines multiple levels: Age Group, Age Bucket, and Age.

8. Drag and drop the AgeD dimension to the Rows area. You should see something like this:

AgeD

All Patients 10,000
0to 29 4 250
30 to 59 4172
60+ 1,578

DeepSee Developer Tutorial 11

Introduction to Cube Elements

When you drag and drop a dimension for use as rows (or columns), the system displays the All member for that
dimension, if any, followed by all the members of the first level defined in that dimension. In this case, the first level
is Age Group.

2.6 The All Members

An All member refers to all records of the base class. Each dimension can have an All member, but in the Patients cube,
only one dimension has an All member.

This part of the tutorial demonstrates how you can use an All member:

1. Click New.
2. Expand the AgeD dimension.
3. Drag and drop Age Group to Rows.
4. Drag and drop the measures Patient Count,Avg Age,and Avg Test Score to Measures. The system displays
something like the following:
Age Group Patient Count Avg Age Avg Test Score
0to 29 4.250 14.35 74 .65
30 to 59 4172 43.33 74.51
60+ 1,678 7217 75.00
: Click the Pivot Options button ’ .
6. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.
The system then displays a Total line, as follows:
Age Group Patient Count Avg Age Avg Test Score
0 to 29 4 250 14.35 74 .65
30 to 59 4172 43.33 74.51
60+ 1,678 7217 75.00
Total 10,000 130 224
The Total value is appropriate for Patient Count but not for the other measures. For Avg Age and Avg Test
Score, it would be more appropriate to display an average value rather than a sum.
T o
Click the Pivot Options button again.
8. In the Row Options area, clear the Summary check box and then click OK.
9. DraganddropAll Patients to Rows, below Age Group. The system then displays the A11 Patients after the
members of the Age Group level:
12 DeepSee Developer Tutorial

Hierarchies

Age Group Patient Count Avg Age Avg Test Score

0 to 29 4,250 1435 74.65
30 to 59 4172 4333 74.51
60+ 1,678 7217 75.00
All Patients 10,000 35.56 74.65

The A11 Patients row is a more useful summary line than the Total line. It shows the Patient Count, Avg
Age, and Avg Test Score measures, each aggregated across all patients.

Note: For Avg Age and Avg Test Score, in some cases, you might prefer to have an average of the values
shown in the pivot table. For example, for Avg Age, this summary line adds the ages of all patients and then
divides by 10000. You might prefer to add the values of Avg Age for the three members shown here and
then divide that by three. The All member does not help you do this; instead you would create a calculated
member (discussed later in this tutorial).

10. Click the X button in the Rows pane. This action clears the row definition.
11. Expand the DiagD dimension.

12. Drag and drop Diagnoses to the Rows pane.

13. Drag and drop A11 Patients to Rows, below Diagnoses. You then see something like the following:

Diagnoses Patient Count Avg Age Avg Test Score

None 8,440 3271 74 65
asthma 713 3517 74.44
CHD 303 69.33 74.92
diabetes 525 58.73 74 44
osteoporosis 198 79.32 75.03
All Patients 10,000 35.56 74 65

As you can see, you can use the generically named 211 Patient member with dimensions other than Age, the
dimension in which it happens to be defined.

2.7 Hierarchies

A dimension contains one or more hierarchies, each of which can contain multiple levels. The Model Contents area lists
the levels in the order specified by the hierarchy, but (to save space) does not display the hierarchy names for this cube.

Users can take advantage of hierarchies to drill to lower levels. This part of the tutorial demonstrates how this works.
1. Click New.
2. Expand the BirthD dimension in the Model Contents pane.

The system displays the following:

DeepSee Developer Tutorial 13

Introduction to Cube Elements

¥ BirthD
P Decade
P Year
P Quarter Year
P Period
P Date
3. Drag and drop Decade to Rows.
Or double-click Decade.
The system displays something like the following:
Decade
1910s 81
1920s 203
1930s hZg
1940s 6aa
1950s 1,068
1960s 1,447
1970s 1,585
1980s 1,395
1990s 1,478
2000s 1,422
2010s 135
The measure shown is Count, which is a count of patients.
4. Double-click the 1950s row (or any other row with a comparatively large number of patients). Click anywhere to the
right of the << symbols.
The system then displays the patients born in that decade, grouped by year (the next lowest level in the hierarchy), as
follows:
Decade:1950s
« 1950 7a
w 1951 96
w 1952 98
« 1953 108
« 1954 107
« 1955 100
« 1956 134
« 1957 116
« 1958 107
« 1959 124
This double-click behavior is available within pivot tables displayed on dashboards (not just within the Analyzer).
14 DeepSee Developer Tutorial

Properties

5. Double-click a row again. The system displays the patients born in that year, grouped by year and quarter:

Year:1954

o (1 1954 28
« Q2 1954 25
w (3 1954 35
o (4 1954 19

6. Double-click a row again. The system displays the patients born in that year and quarter, grouped by year and month:

Quarter Year:Q2 1954

w Apr-1954

o May-1954

« Jun-1954

7. Double-click a row again. The system displays the patients born in that year and month, grouped by actual date:

Period:May-1954

« May 11954

« May 15 1954

« May 20 1954

« May 21 1954

« May 22 1954

JEET RPN R I L T Y

8. Click the << symbols repeatedly to return to the original state of the pivot table.

2.8 Properties

A level can have properties, which you can display in pivot tables.

1. Click New.
2. Expand the HomeD dimension in the Model Contents pane.
3. Expand the City level.

The system displays the following:

DeepSee Developer Tutorial

15

Introduction to Cube Elements

¥ HomeD
> ZIP
¥ City

@ Population
@ Principal Export
% Cedar Falls

Centenville
Cypress

5% Flm Hainhte

4. Drag and drop City to Rows.

The system displays something like the following:

City

Cedar Falls

1,064

Centerville

1,136

Cypress

1,076

Elm Heights

1,179

Juniper

1,121

Magnolia

1,171

Pine

1,101

Redwood

1,110

Spruce

The measure shown is Count, which is a count of patients.

5. Drag and drop Population to Columns.
6. Draganddrop Principal Export to Columns.

The system displays the following:

1,062

7. Click the X button in the Rows pane.

City Population Principal Export
Cedar Falls 90,000 [iran

Centerville 49,000 |video games
Cypress 3,000 | gravel

Elm Heights 33,194 |lettuce

Juniper 10,333 |wheat

Magnolia 4 503 [bundt cake

Pine 16,060 | spagheti
Redwood 29,192 | peaches

Spruce 5,900 | mud

16

DeepSee Developer Tutorial

Listings

8. Drag and drop zZIP to Rows.

The system displays something like the following:

ZIp FPopulation Principal Export
32006
32007
34577
36711
38928

These properties do not have values for this level.

In pivot tables, properties are different from measures in several ways:
e Properties can have string values.
e Properties have values only for the level in which they are defined.

Depending on how a cube is defined, properties can also affect the sorting and the member names of the level to which
they belong. There are examples later in this tutorial.

2.9 Listings

This part of the tutorial demonstrates listings, which display selected records from the lowest-level data for the selected
cell or cells. To see how these work, we will first create a pivot table that uses a very small number of records. Then when
we display the listing, we will be able to compare it easily to the aggregate value of the cell from which we started.

1. Click New.

2. Dragand drop Patient Count and Avg Test Score to Measures.

3. Expand the AgeD dimension in the Model Contents pane.

4. Expand the Age level.

5. Drag and drop the member 0 to Columns. This member refers to all patients who are less than 1 year old.
Note that you must click the member name rather than the icon to its left.

The system displays something like the following:

0
Patient Count Avg Test Score
143 R4 45

6. Drag and drop the member 1 to Columns, below the member 0.

The system displays something like the following:

DeepSee Developer Tutorial 17

Introduction to Cube Elements

7.
8.

0 1
Patient Count Avg Test Score |Patient Count Avg Test Score
143 b4.45 147 60.88
Expand the BirthTD dimension.
Drag and drop the Birth Time level to Rows.
The system displays something like the following:
0 1
Birth Time Patient Count Avg Test Score |Patient Count Avg Test Score
12am b 68 7 69.86
1am 4 70.50 B8 48.13
2am 9 h9.44 B 64.63
Jam 9 76 9 75.33
dam 9 61.33 7 4814
5am 5 5460 g 71
Ram R RA AT 11 RR AR

9. Click a cell. For example, click the Patient Count cell in the 12am row, below 0.

" a8
Click the Display Listing button .
The system considers the selected context, which in this case is patients under 1 year old, who were born between
midnight and 1 am. The system then executes an SQL query against the source data. This query includes selected fields
for these patients, as follows:
|PatientlD Age |Gender Home City Test Score
1 |SUBJ_101358 0[F Spruce 80
2 [SUBJ_ 102580 0 [F Pine B4
3 |SUBJ 107116 0[F Magnalia 59
4 [SUBJ_102201 0 [Mm Centenville 67
5 |SUBJ 102666 0 {Mm Elm Heights 70
11. Count the number of rows displayed. This equals the Patient Count value in the row you started from.
12. 1]
.
Click the Display Table button B l M to redisplay the pivot table in its original state.
By default, the Patients cube uses a listing called Patient details, which includes the fields PatientID, Age,
Gender, and others, as you just saw. You can display other listings as well.
13. ’
Click the Pivot Options button to display options for this pivot table.
The system displays a dialog box.
14. For the Listing drop-down list, click Doctor details and then click OK.
The Doctor details listing displays information about the primary care physicians for the selected patients.
18 DeepSee Developer Tutorial

Filters and Members

15.

Click the same cell that you clicked earlier and then click the Display Listing button M

Now the system displays something like the following:

|PatientlD Doctor Last Name Doctor First Name Doctor Group
1 [SUBJ_101358

2 |SUBJ 102201 Massias Ralph I

3 |SUBJ_102580 Klein Gertrude 1l

4 |SUBJ_102666 Yakulis Bill I

5 |SUBJ 107116 Geoffrion Debra Il

2.10 Filters and Members

In a typical pivot table, you use members as rows, as columns, or both, as seen earlier in this chapter. Another common

use for members is to enable you to filter the data.

1.
2.
3.

In the Analyzer, click New.

Expand ColorD and Favorite Color.

Drag and drop Favorite Color to Rows.

The system displays something like the following:

This pivot table displays the members of the Favorite Color as rows. The measure shown is Count, which is a

count of patients.

Drag and drop Red to Filters.

Favorite Color

Hone 2,409
Blue 1,247
Green 1,269
Orange 1,267
Purple 1,258
Red 1,282
Yellow 1,267

The Analyzer now shows only one member of the Favorite Color level. You see something like this:

Faworite Color
Red

1,282

Make a note of the total number of patients.

Click the X button in the Rows box.

Expand AgeD.

Drag and drop Age Group to Rows.

The Analyzer now displays something like this:

DeepSee Developer Tutorial

19

Introduction to Cube Elements

Age Group

Oto 29 533
30 to 59 535
60+ 214

8.
Click the Pivot Options button ’ .

9. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.

The Analyzer now displays something like this:

Age Group

Oto 29 533
30 to 59 535
60+ 214
Total 1,282

The Total line displays the sum of the numbers in the column. Notice that the total here is the same as shown earlier.

You can use any member as a filter for any pivot table, no matter what the pivot table uses for rows (or for columns). In
all cases, the system retrieves only the records associated with the given member.

You can use multiple members as filters, and you can combine filters. For details, see Using the DeepSee Analyzer.

2.11 Filters and Searchable Measures

In DeepSee, you can define searchable measures. With such a measure, you can apply a filter that considers the values at
the level of the source record itself.

1. Click New.

The system displays the count of all patients:

All
Count 10,000

Click the Advanced Options button ﬁ in the Filters box.

3. Click Add Condition. Then you see this:

Clear
|._J n d O

/AND| [Age Group| [is| A1

20 DeepSee Developer Tutorial

Filters and Searchable Measures

4. Click Age Group, which enables you to edit this part of the expression.

The dialog box now looks something like this:

Dimension
Age Group

I Age Group j

|AND| |Age Gmup|

IUndo

5. Click the drop-down list on the left, scroll down, and click Measures.Encounter Count.As soon as you do, the
expression is updated. For example:

Measure
M .E ter Count
SaSUres.cncotnier =oun [AND] [Measures_Encounter Countl E] @

E Measures Encounter Count ﬂ

Remaove itemn

|._] n |j O

6. Click the = operator, which enables you to edit this part of the expression.

The dialog box now looks something like this:

Operator
[AND] [Measures.Encounter Countl B @

(=B

Remove item

Undo

7. Click the >= operator. As soon as you do, the expression is updated. For example:

Operator
_ [AND] [Measures.Encounter Countl @

=
EEEEEE

Remove item

Undo

8. Click 0, which enables you to edit this part of the expression.

DeepSee Developer Tutorial 21

Introduction to Cube Elements

The dialog box now looks something like this:

Value
lAND‘ [Measures_EncounterCountl [EJ @

o Aol |

Remove item

Undo

9. Type 10 into the field and click Apply.
10. Click OK.
The system then displays the total count of all patients who have at least ten encounters:
All
Count 7944
Now let us see the effect of adding a level to the pivot table.
11. Expand the AgeD dimension in the Model Contents pane.
12. Drag and drop Age Group to Rows.
The system displays something like the following:
Age Group
0to 29 3217
30 to 59 3,353
G0+ 1,374
13.
Click the Pivot Options button ’ .
14. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.
15. Click OK.
The Analyzer now displays something like this:
Age Group
0to 29 3217
30 to 59 3,353
60+ 1,374
Total 7,944
The Total line displays the sum of the numbers in the column. Notice that the total here is the same as shown earlier.
22

DeepSee Developer Tutorial

Creating a Cube

In this chapter, we create a simple cube. This chapter discusses the following topics:

Creating a basic cube
Adding levels and measures
Examining the cube
Refining the cube

Adding a listing

Looking at the fact and level tables

3.1 Creating a Basic Cube

Access the Management Portal and go to the SAMPLES namespace, as described earlier.
Click Home,DeepSee,Architect.

Click New.

The system displays a dialog box.

In this dialog box, specify the following:

¢ Definition Type: Cube — Select this.

¢ Cube Name — Tutorial

. Class Name for the Cube — Tutorial.Cube

e Source Class — Click the Browse button, select DeepSee.Study.Patient, and click OK.

Click OK.

The system creates the cube class, which you can also view and modify in Studio.

Click the bold top row in the middle area (labeled Tutorial). This selects the cube so that you can edit its details on

the right.
In the Details Pane, type None into Null replacement string.

Click Save and then click OK.

DeepSee Developer Tutorial

Creating a Cube

The system updates the cube class.

The Class Viewer, which is the left area, now displays this:

Source Class

¥ DeepSee Study Patient
[%D
:].-*'.QE
& Allergies
(1 BithDate
[BithDatelV
L] BirthDateTimeStamp
L] BirthTime
P Diagnoses
:] DiagnosesAsArray
:'I DiagnosesAslLB
:] DiagnosesAs3tring
:] Gender
> HomeCity
:1 PatientGroup
[PatientiD
P FPrimaryCarePhysician
:]TestSt:Dre

Important: The Class Viewer provide a useful view of the class properties (apart from relationship properties) of your

base class, which makes it very easy to create DeepSee elements based on those properties. It is important,
however, to know that although this view provides a convenient way to access some properties, you can
also use a source expression to access any data. These source expressions are evaluated when the cube is
built and thus do not affect your runtime performance. This tutorial demonstrates these points later.

3.2 Adding Levels and Measures

In this part of the tutorial, you add some levels and measures to the Tutorial cube.

1.

Drag and drop the following items from the Class Viewer (the left area) to the Measures heading in the Model Viewer
(the middle area):

e Age

. TestScore

This creates measures named Age and TestScore, based on the class properties with those names.
Make the following changes to the Test Score measure:

a. Click the measure name, below the Measures heading.

b. In the Details pane (the right area), change Name to Test Score

c. Click Searchable.

Create the Avg Age measure as follows:

24

DeepSee Developer Tutorial

Adding Levels and Measures

a. Drag and drop the Age property again from the Class Viewer to the Measures heading in the Model Viewer.
This step creates a new measure named Agel.

b. Click the measure name in the Model Viewer and then edit the following details in the Details Pane:
¢ For Aggregate, choose AVG.
¢ For Name, specify Avg Age.

e For Format String, specify #. ##

4. Create the Avg Test Score measure as follows:

a. Drag and drop the TestScore property again from the Class Viewer to the Measures heading in the Model
Viewer. This step creates a new measure named TestScorel.

b. Click the measure name in the Model Viewer and then edit the following details in the Details Pane:
¢ For Aggregate, choose AVG.
e For Name, specify Avg Test Score.

* For Format String, specify #. ##

Now you should have four measures:

¥ Measures

Age measure SUM Age
Avg Age measure AVG Age
Test Score measure SUM TestScore
Avg Test Score measure ANG TestScore

5. Click Save and then click OK.
The system updates the cube class.
6. Add a dimension, hierarchy, and level based on the Age property, as follows:
a. Drag and drop the Age property to the Dimensions heading.
The Architect immediately creates a dimension, hierarchy, and level, and the Model Viewer now displays the

following:

¥ Dimensions

¥ age data dimension -
HA1 hierarchy X
Age level 1 Age =

b. Click the first Age item, which is labeled data dimension.
c. In the right area, edit Name to be AgeD.

The Model Viewer now displays the following:

DeepSee Developer Tutorial 25

Creating a Cube

¥ Dimensions

¥ AgeD data dimension
H1 hierarchy
Age level Age

Depend on how you plan to use DeepSee, users might never see the names of the dimensions. In this tutorial, we
follow the convention used in the Patients sample, which assumes that we will not use a dimension as rows or
columns in pivot tables (we will instead use levels as rows or columns).

d. Select the option Enable the All level for this dimension.
e. [Edit Caption for All member to be A11 Patients.

f. Edit Display name for All member to be A11 Patients.

7. Save the cube definition in the same way that you did earlier.

8. Add a dimension, hierarchy, and level based on the Gender property. Repeat the previous steps with the following
differences:

e Drag and drop the Gender property.
* Rename the dimension to GenD.

* Do not select the option Enable the All level for this dimension.
The Model Viewer now displays the following:

¥ Dimensions

¥ AgeD data dimension
H1 hierarchy
Age level Age
¥ GenD data dimension
H1 hierarchy
Gender level Gender

9. Add a dimension, hierarchy, and level based on the HomeC1ity property. Repeat the previous steps with the following
differences:

¢ Expand the HomeCity property and then drag and drop the Name property within this folder to Dimensions
* Rename the dimension to HomeD
¢ Rename the level to City

* Do not select the option Enable the All level for this dimension.

For this new dimension, hierarchy, and level, the Model Viewer now displays the following:

¥ HomeD data dimension
H1 hierarchy
City level HomeCity Name

26 DeepSee Developer Tutorial

Adding Levels and Measures

10.

11.

12.
13.

14.

Note that in this case, the Property option uses Caché dot syntax.

Add properties to the City level:

a.
b.
c.

d.

Expand HomeCity on the left (in the Class Viewer area).
Drag Population and drop it onto the City level in the middle area.
Drag PrincipalExport and drop it onto the City level in the middle area.

Select the new PrincipalExport property and rename it to Principal Export.

Add a dimension, hierarchy, and level based on the PrimaryCarePhysician property. To do this:

Click Add Element.

For Enter New Element Name, type DocD.

Click Data Dimension.

Click OK.

Click New_Levell in the Model Viewer area.

Change Name to Doctor.

Type the following Caché ObjectScript expression into Expression:

%$source.PrimaryCarePhysician.LastName_", "_$%source.PrimaryCarePhysician.FirstName

The variable %source refers to the current record. DeepSee evaluates this expression when it builds the cube.

You could instead use the drag-and-drop procedure as you did earlier, and then edit the definitions.

Save the cube definition in the same way that you did earlier.

Compile and build the cube. To do so:

a.
b.
c.

d.

Click Compile, which starts the compilation and displays progress in a dialog box.
When the system is finished compiling, click Done.
Click Build and then click Build.

When the system is finished building the cube and its indices, click Done.

In a separate browser tab or window, open the Analyzer.

Check the upper left area, which displays the title of the currently selected cube or subject area. You should see the
following:

| Menu | Home | About | Help | Logout

View: I'!—]I e g

WCOCHLGO

Tutorial

| Dimensions El

Measures
& Count

DeepSee Developer Tutorial 27

Creating a Cube

If the title is not Tutorial, then click the Change button (ﬁ), click Tutorial, and click OK.

The left area of the Analyzer displays the current contents of this cube as follows:

Measures

€ Count

€ Age

€2 Test Score

€3 Avg Age

€2 Avg Test Score

Dimensions
AgeD
DocD
GenD
HomeD

If you do not see this, make sure that you have generated data for the sample and that you have compiled and built the cube.

3.3 Examining the Initial Cube

In this section, we examine the cube to see if there is anything we want to change.

To examine the cube, we will create simple pivot tables by dragging and dropping cube elements from the left area to the
Pivot Builder area, which consists of the Rows area and the three boxes to its right.

The first thing to notice is that the Analyzer displays a measure (Count) that we did not define. This measure is provided
automatically, and it counts the records in the base class.

Do the following to get acquainted with the new cube:
1. Click the triangle next to each dimension name in the left area.

When you are done, you should see the following:

Dimensions
AgeD
W Al Patients
Age
DocD
Doctor Group
Doctor
GenD
Gender
HomeD
City

2. Drag and drop the Age level to the Rows area. You should see something like this:

28 DeepSee Developer Tutorial

Examining the Initial Cube

Age

0 135
1 149
10 145
11 145
12 164
13 154

Notice that the members of this level as sorted as strings. For this level, it would be better to sort the members
numerically, so we will have to make an adjustment to this level.

3. Drag and drop the Doctor level to the Rows area, placing it directly on Age. (In this action, you replace Age with
Doctor.) Now you should see something like this:

Doctor

' 1,462
Adam, Susan 24
Adams, Elmo 26
Ahmed, Belinda 18
Ahmed Fdward 75

Note: Unlike the other dimensions created here, the Doct or dimension can have a very large number of members,
depending on the size of your data set. In a real-world implementation, it is unlikely that you would create a
dimension at such a low level. This tutorial uses this dimension to demonstrate a couple of key points.

The doctor name , refers to patients who do not have a recorded primary care physician (for these patients, both the
last name and first name are null for the PrimaryCarePhysician field). We will change this when we redefine
this level in the next part of the tutorial.

Whenever you create a level that is based on an identifier, it is important to consider whether that identifier is unique.
In many cases (product names, procedure codes, department names, and so on), the identifier is unique. However, it
is not safe to assume that names of people are unique. Because we have based this level directly on the doctors’ names,
DeepSee combines any doctors that have the same name.

For example, some patients could have a doctor named Agnes Djakovic, represented as row 17 in the Doctor table,
and some other patients could have a doctor with the same name, but who is represented as row 380 in the same table.
The Doctor level would have a member named Agnes Djakovic that combines those patients.

In a later part of the tutorial, we will use a more robust approach.

4. Drag and drop the Gender level to the Rows area, placing it directly on top of Doctor. This action replaces the
Doctor level with the Gender level. Now you should see something like this:

Gender
Female 5112
Male 4 BE8

We will not need to make any changes to this level.

5. Expand the City level on the left. You should see this:

DeepSee Developer Tutorial 29

Creating a Cube

¥ HomeD
¥ City

4 Population

4 Principal Export

‘¢t Cedar Falls
: Centerville
- Cypress
“2> Elm Heights
“§= Juniper
=2 Magnolia
“$* Pine
“¢* Redwood
“S- Spruce

6. Drag and drop the City level to the Rows area, placing it directly on top of Gender. Now you should see something
like this:

City

Cedar Falls 1,064
Centerville 1,136
Cypress 1,076
Elm Heights 1,179
Juniper 1,121
Magnolia 1,171
Pine 1,101
Redwood 1,110
Spruce 1,052

7. Drag and drop the Population and Principal Export properties to Columns. You should see this:

City Population Principal Export
Cedar Falls 90,000 |iron

Centerville 49 000 |video games
Cypress 3,000 | gravel

Elm Heights 33,194 | lettuce

Juniper 10,333 |wheat

Magnolia 4,503 | bundt cake

Pine 15,060 | spaghetti
Redwood 29,192 | peaches

Spruce 5,900 | mud

We will not need to make any changes to this level.

30 DeepSee Developer Tutorial

Refining the Cube

3.4 Refining the Cube

In this part of the tutorial, we will make the following changes to the cube:

Change how the members of Age are sorted.

Ensure that the Doctor level does not combine doctors who have the same name

Ensure that the Doctor level has a member named None (the cube default replacement string) rather than ,

Access the Architect, which shows the cube definition you last looked at.

First, redefine the Age level so that its members are sorted numerically. To do so:

a.

b.

Click the Age level.

Click Add Element.

For Enter , type AgeSort

Click Property.

Click OK.

The system adds the property and selects it in the Architect.
In the Details Pane, select Expression and enter the following:

SCASE (SLENGTH ($source.Age), 2:%source.Age, :"0"_%source.Age)
g g g

This expression adds leading zeros to the age, so that string sorting causes the ages to be sorted correctly. The first
age is 01, the second is 02, and so on. (The highest age in this sample is 99 years, so no age has more than two
characters.)

For Sort members by property value, select asc.
This option causes the system to use the values of this property to control how the members are sorted.

Save the cube.

Note: The Patients sample uses a different approach, and both approaches are valid.

Redefine the Doctor level again so that it cannot combine doctors who have the same name. To do so:

a.

b.

Click the Doctor level.
Select the value in the Expression field and copy it to Notepad or other temporary location.
Select Property and enter PrimaryCarePhysician

Now the Doctor level is based on the bare PrimaryCarePhysician property, which is an OREF and is unique
for each doctor.

This ensures that the level does not combine different doctors who happen to have the same name.

This step also ensures that the value is null for patients with no doctor; this means that the cube default null
replacement string is used for that member of this level.

While the Doctor level is selected, click Add Element.
For Enter New Element Name, type Doctor Name

Click Property.

DeepSee Developer Tutorial 31

Creating a Cube

g. Click OK.
The system adds the property and selects it in the Architect.

h. In the Details Pane, select Expression and enter the following:

%$source.PrimaryCarePhysician.LastName_", "_$%source.PrimaryCarePhysician.FirstName

i. Select Use as member names.

This option causes the system to use the value of this property as the name for each member.

j- For Sort members by property value, select asc.

This option causes the system to sort the members in ascending order by the value of this property.

4. Compile the cube.
When you do so, the Architect saves the cube.
5. Build the cube.
6. Go to the Analyzer and click the DeepSee > Analyzer link to refresh with the most current model.
7. Double-check the changes. You should see the following:
e When you drag and drop Age to Rows, you see the members sorted in numeric order:
Age
0 135
1 149
2 144
3 137
4 124
5 147
e When you drag and drop Doctor to Rows, you see the None member:
Doctor
None 1,505
Adam, Dan 13
Adam, Danielle 21
Adam, Keith 24
Adam, Olga £
Adam, Peter 23
Adam llma el
Depending on the generated data, you might also see duplicate doctor names. For example:
Lee, Amanda 19
Lee, Bill 16
Lee, Chris 19
Lee, Chris 24
32 DeepSee Developer Tutorial

Adding a Listing to the Cube

3.5 Adding a Listing to the Cube

A listing enables the users to see selected fields from the lowest-level data, which is useful in many scenarios. This infor-
mation can help users identify outlier records or any records where follow-up activity might be needed.

1. First, let us examine the available fields in the Patients table.

a.

Access the Management Portal and go to the SAMPLES namespace, as described earlier.
(If this is open on another browser tab, switch to that tab.)

Click System Explorer > SQL.

Click the [Execute Query] tab.

Execute the following query:

select * from deepsee_study.patient
This displays the first 1000 patients and shows the available fields.

Now try a query like the following:

select patientid, age,testscore,homecity->name as "City",
primarycarephysician->lastname as "Doctor" from DeepSee_Study.Patient

Copy the query to Notepad or to any other convenient temporary location.

Leave this browser tab or window open for later use.

2. Add a listing that uses the fields in the query we just ran:

a.

Access the Architect.

(If this is open on another browser tab, switch to that tab.)

Click Add Element.

For Enter New Element Name, type Sample Listing.

Click Listing.

Click OK.

The system adds the listing.

In the Details pane, copy the list of fields from the earlier saved query to the Field list area. Specifically, paste this:

patientid, age,testscore,homecity->name as "City", primarycarephysician->lastname as "Doctor"

The system uses this list of fields and builds the SQL query.
Compile the cube.
When you do so, the Architect saves the cube.

You do not need to rebuild the cube.

3. Verify that you can access this listing in the Analyzer. To do so:

a.

Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the
most current model.)

DeepSee Developer Tutorial 33

Creating a Cube

b. Optionally create a simple pivot table.

c. Click a cell in the pivot table preview area.

d.

The system displays something like the following:

Click the Display Listing button @

[PatientlD Age TestScore City Doctor

1 15UBd_100315 a3 67 [Cypress Zevan

2 15UBJ_100325 36 75 (Magnolia Burroughs

3 15UBJd_100341 g 50 [Spruce Hammel

4 [SUBJ_100356 8 Redwood MNovello

5 [SUBJ_100385 32 70 |Cedar Falls Townsend

6 [SUBJ_100403 11 51 [Cedar Falls Olsen

7 15UBd_100426 29 72 [Magnolia Cluine

gl ANNART T Pina Manilte
Note: The system displays the first 1000 records by default. You can change this within the Analyzer.

If you instead get a message that listings are not supported, make sure that you saved and recompiled the cube.

4. Modify the listing to sort the records in a different way:

a. Access the Architect again.

b. Click the listing in the Model Contents area.

c. In the Details pane, enter the following into Order By:

age, homecity—->name

d. Compile the cube.

When you do so, the Architect saves the cube.

5. Verify that the listing is now sorted by age, and then by city within age.

Display a listing as before. You should see something like this:

|PatientlD Age TestScore City Doctor
1 (SUBJ_107966 0 899 |Cedar Falls Vonnegut
2 [SUBJ_110142 0 88 [Cedar Falls Alton
3 [8UBJ_109388 0 88 [Cypress
4 [(SUBJ_106292 0 A6 |Juniper Young
5 15UBJ_104172 1 61 [Centerville Frith
6 [SUBJ_102058 1 Cypress Vivaldi
7 [2UBJ_103519 1 79 [Elm Heights Koenig
AI=IIRD AndTNa 1 AR TFIm Hainhts Innarznl

Scroll down to verify that patients are sorted by city within age.

34

DeepSee Developer Tutorial

Looking at the Fact and Level Tables

3.6 Looking at the Fact and Level Tables

If you are responsible for creating cube definitions, it is useful to understand how DeepSee uses the cube definition to build
the tables that DeepSee uses directly: the fact table and level tables. In this section we examine these tables.

1.

2
3.
4

Access the Management Portal and go to the SAMPLES namespace, as described earlier.
Click System Explorer > SQL.

Click the [Execute Query] tab.

Execute the following SQL query, which runs against the base table used by your cube:

select top 1 age,gender,homecity->name,primarycarephysician->lastname,
primarycarephysician->firstname, testscore from DeepSee_Study.patient

Make a note of the details:

Age Gender Mame LastName FirstName TestScore
1| 13|F Magnolia| Quince Marvin 28
Complete

In the left area, navigate to the table Tutorial Cube.Fact.
Click Open Table.

The system displays something like the following:

ID “wpartition %sourceld DxAge DxGender DxMameViaHomeCity DxPrimaryCarePhysician MxAgeM MxTestScoreM

i i 1 i i i i i 13.00 88.00
2 2 1 2 2 1 2 2 27.00
3 3 1 3 3 2 3 3 22.00 71.00
4 4 1 4 4 2 4 4 10.00 65.00
3 3 1 3 3 i 4 3 77.00 55,00
& & 1 & & 2 =] & 559.00 87.00
7 7 1 7 7 i i 4 17.00
= = 1 = = 1 & 7 39.00
9 9 1 9 9 i & =] 84.00 87.00
10f 10 1 10 10 1 2 9 11.00
11 11 1 i1 i1 i 7 10 25.00
12| 12 1 12 12 1 3 11 2.00 02.00
13| 13 1 13 13 2 i 12 8.00
141 14 1 14 14 1 = 132 19.00

This table is generated when you compile a cube and is populated when you build the cube. The fact table has one row
(called a fact) for each record that it used from the source table. In this case, each fact corresponds to one patient.

The first row in this table corresponds to the first row in the base table (who is 13 years old and who has a test score
of 88).

Note the following points:
¢ The $sourceId field indicates the ID of source record on which a fact was based.

e Each field with a name that starts Dx corresponds to a level that you defined. The fact table stores integers in these
fields, which refer to records in the level tables.

¢ Each field with a name that starts Mx corresponds to a measure that you defined. The fact table stores numbers
(rather than integers) in these fields, because that is the default type for measures.

e For some facts, the value of the MxTest Score field is null.

DeepSee Developer Tutorial 35

Creating a Cube

8.
9.

Click Close window.

Navigate to the table Tutorial_Cube.StarGender.

10. Click Open Table. The system displays something like this:

11.

ID DxGender

1 1|Female
2| 2[Male
Complete

This table contains the names of the members of the Gender level. The DxGender field of the fact table refers to the
rows in this table.

In your case, you might see Male before Female.
In this case, the Female member is first, because the first patient processed by the system is female.

When the system populates these tables, it iterates through the records in the base table. For each record, the system
looks at the definition of each level, determines a value, adds that value (if needed) to the corresponding level table,
and writes a lookup value into the level field of the fact table.

Click Close window.

12. Navigate to the table Tutorial_ Cube.StarAge. The system displays something like the following:

ID Dx781900468 DxAge

i 1]13 i3
2 2127 27
2 2|22 22
4 4|10 10
3 3|77 77
=] 6|59 559
7 7|17 i7
= 8|39 29
e 9|84 24
10] 10]11 11
11| 11]25 25
12| 12|02 2
13 13|08 =
141 14119 19

The Age level is defined by the Age field of the base class; that value is shown in the DxAge column. This level has
a level property that is used to define the sort order for the level members; that value is shown in the Dx781900468
column.

The first record in this level table corresponds to the age of 13 years, the first patient processed by the system in this
example.

13. Click Close window.

14. Navigate to the table Tutorial_ Cube.StarNameViaHomeCity. The system displays something like the following:

36

DeepSee Developer Tutorial

Looking at the Fact and Level Tables

ID Dx1438697606 DxNameViaHomeCity

DxPopulationViaHomeCity

15.
16.

Tip:

1] 1|bundt cake Magnolia 4503
2| 2|lettuce Elm Heights 33194
3| 3|spaghett Pine 15060
4| 4d|wheat Juniper 10333
5| 5|videoc games Centerville 49000
6] &|mud Spruce 5900
7| 7|gravel Cypress 3000
8| 8|peaches Redwood 29192
9l 9firon Cedar Falls 90000
Complete

The city level is defined by the HomeCity—->Name field in the base class; that value is shown in the
DxNameViaHomeCity column. This level has two level properties that are shown in the other columns.

The first record in this table is Magnolia, the home city of the first patient in the base table.
Click Close window.

Navigate to the table Tutorial_Cube.StarPrimaryCarePhysician. The system displays something like the
following:

ID Dx582175229
1|Quince, Marvin
2|Lopez, Kim 41
3|Drabek, Wolfgang 13

4], <null=
5

5]

7

DxPrimaryCarePhysician
232

Cerri, Elvira 159

Sorenson, Hannah 12
Hrncaman Tanira 282

I R L e A

The Doctor level is defined by the PrimaryCarePhysician field in the base class, which is a reference (OREF)
to an instance of the DeepSee. Study.Doctor class. The system converts the OREF to an integer and writes it into
the DxPrimaryCarePhysician column.

For this level, the member names are defined by a level property that concatenates the last name and first name, with
a comma between them. The value of this level property is stored in the Dx582175229 column.

The first doctor in this table is Quince, Marvin, the primary care physician of the first patient in the base table.

The name of the null doctor is a comma, but this name is never shown; instead, for this member, the system uses the
null replacement string that you specified.

To make the field names in these tables more useful, you can specify the option Field name in fact table for the
levels and measures that you define. Note that this option does not apply to time levels (discussed in the next
chapter), which have special internal handling.

DeepSee Developer Tutorial 37

Expanding the Cube Definition

In the previous chapter, we created and tested a simple cube. In this chapter, we expand that cube to use more parts of the
Patient data and try more DeepSee features. This chapter discusses the following topics:

Adding a level to a hierarchy
Adding time levels

Using collection properties
Using replacements

Accessing data in other tables

4.1 Adding a Level to a Hierarchy

So far, each dimension we have created has contained one hierarchy with one level. In this section, we add a level to the
hierarchy in the HomeD dimension.

1.

In the Architect, add a level to the HomeD dimension as follows:

a. In the Class Viewer, expand HomeCity.

b. Drag PostalCode and drop it onto the H1 hierarchy within the HomeD dimension.
This step adds the new level PostalCode after the City level.

c. Click postalCode.

d. In the Details pane, change Name to ZIP Code.

Compile the cube.

When you do so, the Architect saves the cube.
Build the cube.

Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most
current model.)

Expand the HomeD dimension in the left. You should see the following:

DeepSee Developer Tutorial 39

Expanding the Cube Definition

¥ HomeD
P City
P 7P Code
6. Display the ZIP Code levels as rows. You should see something like this:
1P Code
32006 1.0561
32006 1,122
32007 1,159
57T 1.075
34577 1,138
34577 1,183
36711 1,106
38928 1.080
38928 1.076
Notice that some members have the same name. It is sometimes correct to have multiple members with the same name.
In this case, however, it is an error, because ZIP codes are unique.
There are only two ways in which a level can have multiple members with the same name:
e The level name is based on a level property, which is not unique. (For an example, see the Doctor level that we
defined in the previous chapter.)
e The level has a parent level. When DeepSee creates members of a level, it considers not only the source property
or expression; it also considers the parent member.
In reality, there is a many-to-many relationship between ZIP codes and cities, so that neither is the parent of the other.
In the Patients sample, ZIP codes contain small cities as follows:
320086 -T\ Juniper
Spruce
32007 — Redwood
34577 Cypress
E E Magnolia
Pine
36711 —————— Centerville
38928 pa— Cedar Falls
Elm Heights
When we added the ZIP Code level, we placed it after the City level, which means that City is the parent of ZIP
Code. This affected how the system generated members for ZIP Code. For example, the system assumed that the
ZIP code 32006 of the city Juniper was not the same as the ZIP code 32006 of the city Spruce.
7. Go back to the Architect and correct the HomeD dimension.
a. Click the ZIP Code level.
b. Click the up arrow button.
c. Compile the cube.
When you do so, the Architect saves the cube.
40 DeepSee Developer Tutorial

Adding a Level to a Hierarchy

d. Build the cube.

8. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most
current model.)

9. Expand the HomeD dimension in the left. You should see the following, which is now correct:

¥ HomeD
P 7IP Code
P City

10. Display the ZIP Code levels as rows. Now you should see something like this, which is correct:

ZIP Code

32006 2173
32007 1,159
34577 3,396
36711 1,106
38928 2166

11. Double-click the row 34577. The system now displays the cities within this ZIP code.

ZIP Code: 34577

w Cypress 1,183
« Magnolia 1,075
« Pine 1,138

12. Optionally do the following to see how this change has affected the fact and level tables.
a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.
b. Click System Explorer > SQL.
c. In the left area, navigate to the table Tutorial_ Cube.Fact.

Notice that this table now has the field DxPostalCodeViaHomeCity in addition to DxNameViaHomeCity.
That is, the fact table stores a value for each level, even the levels are related.

d. In the left area, navigate to and open the table StarNameViaHomeCity.

The system displays something like the following:

1| 1|bundt cake Maagnolia 4503 1
2| 2|lettuce Elm Heights 33194 2
3| 3|spaghetti Pine 15060 1
4| 4|wheat Juniper 10333 3
5| 5|video games Centerville 49000 4
6| 6|mud Spruce 5900 3
7| 7laravel Cypress 3000 1
8| 8|peaches Redwood 29192 5
gl 9firon Cedar Falls 90000 2
Complete
DeepSee Developer Tutorial 4

Expanding the Cube Definition

Notice that now the table stores, for each city, the ZIP code to which that city belongs.
e. Close this table and navigate to the table Tutorial_Cube.StarPostalCodeViaHomeCity.

The system displays something like the following:

ID DxPostalCodeViaHomeCity

1[34577
2(38928
332006
436711
532007
Coemplete

Ln e (DD R

This level table is like the other level tables: one row for each level member.

4.2 Adding Time Levels

In this part of the tutorial, we add time levels to the cube.
The Patients class includes the patient’s birth date in several forms (so that you can try different formats with DeepSee):

Property BirthDate As %Date;
Property BirthDateTimeStamp As $TimeStamp;

Property BirthDateMV As $MV.Date;

DeepSee has built-in support for all three of these formats, as well as for SBHOROLOG format and others (for details, see
Defining DeepSee Models).

The class also includes the patient’s birth time, as part of the Bi rt hDateTimeStamp property or as the following property:

Property BirthTime As %$Time;

The most flexible property is BirthDateTimeStamp, because it contains both the birth date and the birth time, so we
will use that as the basis for the time levels.

1. Access the Architect and display the Tutorial cube.
2. Click Add Element.
3. For Enter New Element Name, type BirthD.
4. Click Time Dimension.
5. Click OK.

The system creates a dimension, hierarchy, and level.
6. Make the following change to the dimension:

¢ (Click the search button next to Property, click Bi rthDateTimeStamp, and click OK.

7. Make the following changes to the level:
* Rename the level to Year.

¢ For Extract value with function, select Year.

42 DeepSee Developer Tutorial

Adding Time Levels

This option means that this level is based only the patients’ birth years.

8. Add another level as follows:
a. Click the hierarchy H1 in this dimension.
b. Click Add Element.
c. For Enter New Element Name, type Month Year.
d. Click Level.
e. Click OK.

The system creates a new level in the hierarchy H1, after the existing Year level.

9. For the Month Year level, make the following change:
. For Extract value with function, select MonthYear.

This option means that this level is based on the combined birth year and month.

10. Add another hierarchy and level to the Bi rt hD dimension, as follows:
a. Click the dimension name.
b. Click Add Element.
c. For Enter New Element Name, type H2.
d. Click Hierarchy.
e. Click OK.
The system creates a new hierarchy and level.
f. For the new level, make the following changes:
¢ Rename the level to Time.
. For Extract value with function, select HourNumber.

This option means that this level is based on the time of day the patient was born.

11. Compile the cube.

When you do so, the Architect saves the cube.
12. Build the cube.
13. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most
current model.)

14. Try the new levels. You should see the following:

* When you expand Year in the left area, you see this:

DeepSee Developer Tutorial 43

Expanding the Cube Definition

¥ BirthD
¥ Year
6 NOW
“8- 1913
= 1914
8- 1915
1916
=9: 1017
NOW is a special member that refers to the current year (in this context).
e TheMonth Year level also has a NOW member, which refers to the current year and month.

* When you use Year as rows, you should see something like this:

Year

1911]
1912 4
1913]
1914 14
1915 4
1916 10
1017 2

* When you use Month Year as rows, you should see something like this:

Month Year
Feb-1911
Jul-1911
Oct-1911
Hov-1911
Dec-1911
Mar-1912

loam ANAY

U IR A TR R

* When you use Time as rows, you should see something like this:

Time

12am 438
1am 421
2am 425
Jam 418
dam 414
Sam 410

B A44

44 DeepSee Developer Tutorial

Using a Collection Property

The system does not generate tables for time levels, which have special internal handling.

4.3 Using a Collection Property

You can create levels based on collection properties. Specifically, the system can directly use either a list of the type returned
by $LIST, %List, or a character-delimited list. If a collection property stores data in some other way, it is necessary to
extract the necessary data and create one of the supported types of lists.

The DeepSee.Study.Patient class has several collection properties, including Allergies and DiagnosesAsLB.
The DiagnosesAsLB property is defined as follows:

Property DiagnosesAsLB As %List;

The Allergies property is defined as follows:

Property Allergies As list Of DeepSee.Study.PatientAllergy;

This part of the tutorial shows you how to create levels and measures that use these properties:

1. Access the Architect and display the Tutorial cube.

2. Add a dimension, hierarchy, and level that uses the DiagnosesAsLB property, as follows:

a.

b.

h.

Click Add Element.

For Enter New Element Name, type DiagD.

Click Data Dimension.

Click OK.

The system creates a dimension, hierarchy, and level.
Rename the level to Diagnoses.

While the level is selected, click the search button for Property, select the DiagnosesAsLB property, and click
OK.

For Source value is a list of type, click $LIST. This type refers to data that has the format returned by the $LIST
function or that has the type %List.

Save the cube class.

3. In the Architect, add a dimension, hierarchy, and level as before, with the following changes:

The dimension name should be A11erD.

The level name should be Allergies.

Do not specify a value for Property.

There is no property that we can use directly. It will be necessary to extract the list of allergies via an expression.
Specify the following value for Expression:

##class (Tutorial.Cube) .GetAllergies ($source.%$ID)

The system evaluates this expression once for each row in the fact table, when it builds the cube.

The variable %source refers to the current record. This expression gets the ID of the patient, invokes the utility
method (which we have not yet written), and returns a list of allergies for the patient.

DeepSee Developer Tutorial 45

Expanding the Cube Definition

Remember to select $LIST for Source value is a list of type.

Then save your cube class.

The next step will be to write this utility method.

4. Open Studio and access the SAMPLES namespace.

5. Open your cube class, Tutorial.Cube.

6. Add a method named GetAllergies (), as follows:

ClassMethod GetAllergies (ID As %Numeric) As %List

{

Set allergies=##class (DeepSee.Study.Patient) .%0penId(ID,0) .Allergies

If (allergies.Count ()=0) {Quit $LISTFROMSTRING("")}
Set list=""
For i=l:1l:allergies.Count () {

Set S$LI(list,i)=allergies.GetAt (i) .Allergen.Description

}
Quit list

Given the ID of a patient, this method returns a list of allergies of that patient, in the format expected by the level we
created.

The second argument of % Openld() specifies the level of concurrency locking to use. Because we only need to read
data from the object, we specify this value as 0, which establishes no concurrency locking and thus runs more quickly.

7. Save and compile your cube class in Studio.

8. Add a measure that contains the number of allergies that a patient has. To do so, we use the Allergies property, as

follows:

a. Return to the Architect.

b. Click Add Element.

c. For Enter New Element Name, type Avg Allergy Count.

d. Click Measure.

e. Click OK.

The new measure is added to the table.
f. Click the measure in the Model Contents area.
For Aggregate, click AVG.
For Expression, enter the following:
##class (Tutorial.Cube) .GetAllergyCount ($source.%ID)
We will have to write this method later.

i. Save the cube class in the Architect.

j- Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to
override the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can
edit in the Architect; that is, it does not override any methods you have added to the class.

k. In Studio, add the following method to your cube class:

ClassMethod GetAllergyCount (ID As $Numeric) As $Numeric

{
Set allergies=##class (DeepSee.Study.Patient) .%0OpenId(ID,0) .Allergies
Quit allergies.Count ()

46

DeepSee Developer Tutorial

Using a Collection Property

10.

11.

12.
13.

1. Save and compile the cube class in Studio.

Rebuild the DeepSee cube.
To do this, you can return to the Architect and rebuild the same way that you did before.
Or you can open a Terminal window and enter the following command in the SAMPLES namespace:

do ##class (%DeepSee.Utils) .%BuildCube ("tutorial")

Notice that the method uses the logical name of the cube (rather than the class name). Also notice that the cube name
is not case-sensitive.

Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most
current model.)

Display the Diagnoses level as rows. You should see the following:

Diagnoses

None 5,499
asthma 647
CHD 318
diabetes 506
osteoporosis 176

In your data, you might also see the epilepsy diagnosis, which is more rare.

You might instead see something like the following:

Diagnoses

k2 GlcHD 247
B cHpll ¥ osteoporosis 25
b ilasthma 618
i iasthmalid lCHD 16
BB asthmaliZcHDE Mosteoporosis 2

This occurs if you do not specify the appropriate type for Source value is a list of type.
Click New.

Display the new Allergies level as rows, and display the Count and Avg Allergy Count measures. You should
see something like the following:

DeepSee Developer Tutorial 47

Expanding the Cube Definition

14.
15.
16.
17.
18.

Allergies Count %‘a’g Allergy

None 3,879 0
additive/coloring agent 431 1.78
animal dander 454 1.73
ant bites 433 1.77
bee stings 4453 1.74
dairy products 402 1.70
dust mites 447 1.66
eggs 393 1.75
fish 455 1.75
mold 421 1.79
nil known allergies 1,485 1
peanuts 431 1.72
pollen 4685 1.73
shellfish 430 1.75
soy 450 1.71
I —— e A4 1 RE

Thenil known allergies member represents the patients who have no known allergies. Some medical information
systems use the following technique to record the fact that a patient has no known allergies:

e The system includes a special “allergen” called nil known allergies.

e A user of the system asks the patient whether he or she has any allergies, and if the answer is “No,” the user
selects the value nil known allergies.

DeepSee does not assign any special meaning to this string. The dimension treats this “allergen” in the same way as

any other allergen.

The null member (called None) represents the patients whose Allergies property is null. Because it is incorrect to
assume that these patients have no allergies, the name of this member is misleading. A better name would be No Data
Available.

Notice that the Avg Allergy Count measure is 0 for patients who belong to the null member. The Avg Allergy
Count measure should be null for these patients.

Also notice that the Avg Allergy Count measure is 1 for patients with no known allergies. This is because the
Allergies property does include the special nil known allergies allergen. The Avg Allergy Count
measure should be 0O for these patients.

Later in this section, we will correct the name of the null member and adjust our logic for the Avg Allergy Count
measure.

Return to the Architect.

Click the Allergies level.

For Null replacement string, specify No Data Available.
Save the cube class.

In Studio, edit the method GetAllergyCount () as follows:

48

DeepSee Developer Tutorial

Using a Collection Property

19.
20.
21.
22.

23.

24. Optionally do the following to see how list-based levels are represented in the fact and level tables.

ClassMethod GetAllergyCount (ID As $Numeric)

{

}

Save the cube class.

Compile the cube class in Studio or in the Architect.

If allergies.Count ()=0 {
Set allcount=""

//check to see if patient has "Nil known allergies"
//in this case, the patient has one "allergen" whose code is 000
Elseif ((allergies.Count()=1) && (allergies.GetAt(l).Allergen.Code="000"))

Set allcount=0

}

Else {
Set allcount=allergies.Count ()

Quit allcount

Build the cube in the Architect.

Access the Analyzer.

Set allergies=##class (DeepSee.Study.Patient) .%0penId(ID,0) .Allergies
//check to see if patient has any recorded allergy data
//if not, count is null

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

Display the Allergies as rows, and display the Count and Avg Allergy Count measures. Now you should see
something like the following:

a

b. Click System Explorer > SQL.

C

Avg Allergy

Allergies -

No Data Available 3,879

additive/coloring agent 431 1.78
animal dander 454 1.73
ant bites 433 197
bee stings 453 1.75
dairy products 402 1.70
dust mites 447 1.66
eggs 393 1.75
fish 455 1.75
mold 421 1.79
nil known allergies 1,485 0
peanuts 431 1.72
pollen 468 1.73
shellfish 430 1.75
soy 450 1.71
O —— e AATD 1 EE

Access the Management Portal and go to the SAMPLES namespace, as described earlier.

In the left area, navigate to and open the table Tutorial_ Cube.Fact and scroll to the field DxDiagnosesAsLB.

DeepSee Developer Tutorial

49

Expanding the Cube Definition

The system displays something like the following:

DxDiagnosesAsLB

el Dl LR SR Il e e e o T [

This field contains the diagnoses for the patients. Notice that it contains multiple values in some cases.

The table also displays the allergies level, perhaps like this:

Dx553465693

1
1,2
3
4
|4

Bl
)]

Fy

The name of this field is less obvious, because it is generated, because the level itself is based on an expression.
Because this is another list-based level, it contains multiple values in some cases.

d. Now navigate to and open the table Tutorial_Cube.StarDiagnosesAsLB.

ID DxDiagnosesAsLB

1|=<null=
2|asthma
3|diabetes
d|osteoporosis
S|CHD
Complete

LN LD R (=

This level table is like the other level tables: one row for each level member.

The level table for allergies is similar: one row for each level member.

The method we used for Avg Allergy Count was fairly simple. Consider the following method:

50 DeepSee Developer Tutorial

Defining Replacements

ClassMethod GetScore (ID As $Numeric) As %$String
{
//get customer rating data & call duration from source record
set call=##class (MyPackage.MyClass) .%OpenId(ID,0)
set professionalism=call.Professionalism
set knowledge=call.Knowledge
set speed=call.OpenDuration

If ...
//logic to check for nulls and combine these values into weighted overall score
Quit score

You could use a method like this to define a measure that indicates an overall score.

4.4 Defining Replacements

In this part of the tutorial, we use options that transform the original values for levels into other values. Here we will use
the Age property of the patient. We will define levels that place patients into buckets that are larger than one year.

The Age Group level will have the following members:
e The 0 to 29 member consists of the patients who are less than 30 years old.
e The 30 to 59 member consists of the patients who are between 30 and 59, inclusive.

e The 60+ member consists of the patients who are older than 60 years.

Similarly, the Age Bucket level will have the members 0 to 9,10 to 19, and so on.
1. Access the Architect.
2. Add another level to the AgeD dimension as follows. To do so:
a. Click the Age level. This ensures that the new level, which is less granular, will be added before the Age level.
b. Click Add Element.
c. For Enter New Element Name, type Age Group.
d. Click Level.

e. Click OK.

3. Redefine the new Age Group level to have a range expression, as follows:
a. Click the new Age Group level.
b. For Field name in fact table, specify DxAgeGroup
This will make it easier for us to see how the level definition affects the generated tables.
c. For Property, type Age.
d. Click the search button next to Range Expression.

The system displays a dialog box where you specify a set of replacements. Originally, this dialog box looks like
this:

DeepSee Developer Tutorial 51

Expanding the Cube Definition

Cube name: Tutorial
Level name: Age Group

Enter a set of replacement values.

Form of original values
& Numeric ranges (possibly open-ended)
" Strings
From To Replacement Value (Required)

e | 2

Add Replacement | Clear Changes |

Exclusive: |)] | Inclusive: [|] | Click a button to toggle between Exclusive and Inclusive.

For numeric data, for each replacement, you specify a range of original values, as well as a new value to use
instead.

Type 29 into To.
The button to the right of To is initially as follows: _}I

Click this button to change it to this: _]|

Type 0 to 29 into Replacement Value. The result is as follows:

Cube name: Tutorial
Level name: Age Group

Enter a set of replacement values.

Form of original values
& Numeric ranges (possibly open-ended)
" Strings

From To Replacement Value (Required)

d |29 1 Joto29

Add Replacement I Clear Changes |

Exclusive: |)] | Inclusive: [| 1 | Click a button to toggle between Exclusive and Inclusive.

It does not matter which button is next to From, because no value is specified for the lower end of this range.
Click Add Replacement.

In the new row, click the toggle buttons next to From and To.

Type 30 into From and type 59 into To.

Type 30 to 59 into Replacement Value.

Click Add Replacement and add the final row so that the result is as follows:

52

DeepSee Developer Tutorial

Defining Replacements

Cube name: Tutorial
Level name: Age Group

Enter a set of replacement values.

Form of original values
& Numeric ranges (possibly open-ended)

" Strings

From To Replacement Value (Required)
(| 29] foto029
[=0 59] |30t059 *
_LJs0) |80+ X

Add Replacement | Clear Changes |

Exclusive: |)] | Inclusive: [| 1 | Click a button to toggle between Exclusive and Inclusive.

m. Click OK.

The system closes the dialog box and displays a value in the Range expression field as follows:

F-'..ange expression
||:,29]:Dtn 28:[30,59]:30 to 55;[60,):60+; ¥

This value shows the syntax that DeepSee uses internally to represent the replacements that you specified.

4. Save the cube.

For the Age Bucket level, we could use the same technique. Instead, however, we will use an alternative: a source
expression that converts an age in years into a string that corresponds to the appropriate ten-year bucket.

5. In Studio, open the class DeepSee.Model.PatientsCube.
6. Look at the definition of the method Get AgeBucket (), which is as follows:

ClassMethod GetAgeBucket (age As %$Numeric) As $%String
{
If (age="") {Set return=""}
ElseIf (age<l1l0) {Set return="0 to 9"}
ElseIf (age<20) {Set return="10 to 19"}
ElseIf (age<30) {Set return="20 to 29"}
ElseIf (age<40) {Set return="30 to 39"}
ElseIf (age<50) {Set return="40 to 49"}
ElseIf (age<60) {Set return="50 to 59"}
ElseIf (age<70) {Set return="60 to 69"}
ElseIf (age<80) {Set return="70 to 79"}
ElseIf (age>=80) {Set return="80+"}
Else {Set return=""}
Quit return

Notice that the input to this method is just a number, rather than a patient identifier.

7. In the Architect, add another level to AgeD as follows:
a. Click the Age level. This ensures that the new level, which is less granular, will be added before the Age level.
b. Click Add Element.

c. For Enter New Element Name, type Age Bucket.

d. Click Level.

DeepSee Developer Tutorial 53

Expanding the Cube Definition

e. Click OK.

The new level is added just before Age, but after Age Group.
f. For Field name in fact table, specify DxAgeBucket

This will make it easier for us to see how the level definition affects the generated tables.
g. For Expression, enter the following:

##class (DeepSee.Model.PatientsCube) .GetAgeBucket ($source.Age)

Note: In practice, you are more likely to include utility methods in a central location such as the cube class that
uses them (rather than some other cube as in this case). One point of this exercise is to demonstrate that you
can invoke any class method that is accessible in this namespace. Similarly, you can invoke any routine or
system function.

8. Save the cube.
Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to override
the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can edit in the
Architect; that is, it does not override any methods you have added to the class.
9. Compile the cube.
10. Rebuild the cube.
11. Access the Analyzer.
(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most
current model.)
12. Display the new Age Group level as rows. You should now see something like the following:
Age Group
0to 29 4 260
30 to 59 4,130
60+ 1,610
13. Display the new Age Bucket level as rows. You should now see something like the following:
Age Bucket
Oto9 1,413
10t0 19 1,452
20 to 29 1,395
30 to 39 1,548
40 to 49 1,498
50 to 59 1,084
60 to 69 7449
f0to 73 553
80+ 308
14. Examine one of the new level tables to understand what the system has done:
a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.
b. Click System Explorer > SQL.
54 DeepSee Developer Tutorial

Defining Replacements

c. In the left area, navigate to and open the table Tutorial_Cube.Fact.

This table now has three fields to store the values for the levels of the AgeD hierarchy:

DxAge DxAgeBucket DxAgeGroup

dlEm L B LR
afdm = ra =
Y (PSRN S P [R5

d. Navigate to and open the table Tutorial_ Cube.DxAgeGroup.

The system displays something like the following:

ID DxAgeGroup

1| 1|0 to 29
2| 2|a0+

3| 3|30 to 59
Complete

The system used your range expression to create this data.
e. Open the table Tutorial_Cube.DxAgeBucket.

The system displays something like the following:

ID DxAgeBucket DxAgeGroup

1110 to 19
2|20 to 29
3|70to 79
4150 to 59
5|30 to 39
=]
7
8

80+
O0to 9
40 to 49
9160 to 69
Complete

e LT e e L s e e

WD [0 |l [LN | P D[R =

Because this level is not at the top of the hierarchy, it contains a reference, for each element, to the its parent
member in the Age Group level; see the DxAgeGroup column.

The system used the GetAgeBucket () method to create this data.

These two levels are defined in an equivalent fashion. That is, using the Range Expression option is equivalent to executing
your own method to provide a conversion. A method can include logic that is much more complex than simple replacements.
Consider the following method:

DeepSee Developer Tutorial 55

Expanding the Cube Definition

ClassMethod GetClassification(ID As %Numeric) As %$String
{
//get customer rating data & call duration from source record
set customer=##class (MyPackage.MyClass) .%0penId (ID,0)
set detaill=customer.Detaill
set detail2=customer.Detail2
set detail3=customer.Detail3

If ...
//logic to use these details and return a string, either "A", "B", or "C"
Quit classification

You could use a method like this to populate a level that groups customers based on an algorithm that uses multiple pieces
of information about the customers.

4.5 Accessing Other Classes

The DeepSee Architect provides easy access to most of the properties within the base class, but we can use other properties,
as well, including properties of classes that you can access only via SQL. In this part of the tutorial, we use data in the
DeepSee.Study.PatientDetails class as levels in our cube.

The DeepSee.Study.Patient and DeepSee.Study.PatientDetails classes are not connected by a class property
and do not have any formal connection. Instead, both tables have a Pat i ent ID property, which connects them by convention.
That is, to find information for a given patient, you must find the records that have the same Patient ID in these two
tables.

In this exercise, we examine the data in DeepSee.Study .PatientDetails, try various SQL queries, and wrap a query
in a method for use in defining a level. If you are more adept with SQL, you might want to skip some of the earlier steps.

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.
2. Click System Explorer > SQL.

3. Click the [Execute Query] tab.

4. Execute the following query:

SELECT PatientID FROM DeepSee_Study.Patient

5. Make a note of one of the Pat ient ID values, for future reference.
6. Execute the following query:

SELECT * FROM DeepSee_Study.PatientDetails WHERE PatientID='SUBJ_100301"'

The system displays something like the following:

ID FavoriteColor PatientID Profession
1 1|Blue SUB1_100301
Complete

7. Execute the following query:

SELECT FavoriteColor FROM DeepSee_Study.PatientDetails WHERE PatientID='SUBJ_100301"'

The system displays something like the following:

56 DeepSee Developer Tutorial

Accessing Other Classes

FavoriteColor
1|Blue

Complete

This query returns one value, the string Blue.
Now we need to write a class method that runs a similar query and returns the value obtained by the query.
This method will contain a query wrapped in &sql () . We need to make the following changes to the query:

¢ Instead of FavoriteColor, we mustuse FavoriteColor INTO :ReturnValue so that the returned value
is written to a host variable named ReturnValue.

e Instead of using 'SUBJ_100301", we must pass in the Pat ient ID field of the base class.
After executing the embedded SQL, the method should check the variable SQL.CODE, which is 0 only for a successful

query. The query would be unsuccessful if no record was found. In such a case, it would be appropriate to return an
empty string.

8. In Studio, add the following method to your cube class, Tutorial.Cube:

ClassMethod GetFavoriteColor (patientID As %String) As %String
{

&sql (SELECT FavoriteColor INTO :ReturnValue FROM DeepSee_Study.PatientDetails WHERE
PatientID=:patientID)

If (SQLCODE'=0) {

Set ReturnValue=""

}

Quit ReturnValue

}

Note: Thereis anindex onthe PatientID fieldin DeepSee.Study.PatientDetails. This enables the query
to run more quickly than it would otherwise.

If an application does include tables that can be related most easily through SQL queries, as in this example,
it probably already has indices on the relevant fields. Whenever you write a method like this, however, you
should make sure that the appropriate indices exist.

9. Save and compile the class.

10. In the Terminal, test the method as follows:

SAMPLES>write ##class (Tutorial.Cube) .GetFavoriteColor ("SUBJ_100301")
Blue

11. Access the Architect.
12. Create a new dimension, hierarchy, and level, as follows:
a. Click Add Element.
b. For Enter New Element Name, type ColorD.
c. Click Data Dimension.
d. Click OK.
The system creates a dimension, hierarchy, and level.
e. Rename the level to Favorite Color.
f. For Field name in fact table, specify DxFavColor

This will make it easier for us to see how the level definition affects the generated tables.

DeepSee Developer Tutorial 57

Expanding the Cube Definition

g. For the level, type the following into Expression:

##class (Tutorial.Cube) .GetFavoriteColor ($source.PatientID)

This expression is executed when you build the indices; see the notes about performance in the previous step.

13. Save the cube.

Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to override
the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can edit in the
Architect; that is, it does not override any methods you have added to the class.

14. Compile the cube.
15. Rebuild the cube.
The system executes your method and its embedded SQL once for each record in the base table.

16. Open the Analyzer and display the new level as rows. Now you should see something like the following:

Favorite Color

Hone 2,380
Blue 1273
Green 1,268
Orange 1,278
Purple 1,308
Red 1,249
Yellow 1,244

17. Optionally open the level table for this level:
a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.
b. Click System Explorer > SQL.
c. In the left area, navigate to and open the table Tutorial_ Cube.DxFavColor.

The system displays something like the following:

ID DxFavColor

Blue
Red
Green
Yellow
<null=
QOrange
7 |Purple
Complete

s LN R LD (R [
Lo A I N O

58 DeepSee Developer Tutorial

Creating Subject Areas

A subject area is a subcube with optional overrides to names of items. You define a subject area to enable users to focus

on smaller sets of data, for security reasons or other reasons. This chapter discusses the following topics:

e Introduction
e Creating the subject areas
¢ Examining the subject areas

¢ Alook at common filter expressions

5.1 Introduction

In this tutorial, we create two subject areas that divide the patient data by ZIP code. In the Patients sample, ZIP codes

contain small cities as follows:

32006 — Juniper
Spruce
32007 —— Redwood
34577 Cypress
:TC E Magnolia
Pine
36711 —— Centenville
38928 T Cedar Falls
Elm Heights
We will create the following subject areas:
Subject Area Name Contents
Patient Set A Patients who live in ZIP codes 32006, 32007, or 36711
Patient Set B Patients who live in ZIP codes 34577 or 38928

5.2 Creating the Subject Areas

To create the subject areas, do the following:

DeepSee Developer Tutorial

59

Creating Subject Areas

1. In the Architect, click New.
2. Click Subject Area.
3. For Subject Area Name, type Patient Set A
4. For Class name for the Subject Area, type Tutorial.SubjectA
5. For Base Cube, click Browse and select Tutorial
6. Click OK.
The system creates the subject area and saves the class.
You should see the following:
Patient Set A -
kS
Model Element Overrides Add Undo
Patient Set A Element Type
¥ Measures
¥ Dimensions
¥ Listings
In the Architect, there is no user interface for defining a filter. Instead it is necessary to type a suitable filter expression
or to copy and paste one from the Analyzer.
7. In a separate browser tab or window, access the Analyzer and then do the following:
a. Expand HomeD.
b. Drop zIP Code to the Filters box. This adds a filter box directly above the pivot table.
c. In that filter box, click the search button and then select 32006, 32007, and 36711.
Click the check mark.
This action filters the pivot table.
Important: Do not drag and drop 32006, 32007, and 36711 separately to the Filters box. Instead drag the
level as described and then select the members.
d. E
Click the Query Text button .
The system then displays a dialog box that shows the MDX query that the Analyzer is using:
SELECT FROM [Patients]
$FILTER $OR ({ [HOMED] . [H1].[ZIP Code].&[32006], [HOMED] . [H1].[ZIP Code].&[32007], [HOMED] . [H1].[ZIP
Code] .&[36711]1})
e. Copy the text after $FILTER to the system clipboard.
f. Click OK.
60 DeepSee Developer Tutorial

Examining the Subject Areas

8. In the Architect, click the line labeled Patient Set A.
9. In the Detail Pane, paste the copied text into Filter.

%OR ({ [HOMED] . [H1] . [ZIP Code].&[32006], [HOMED].[H1].[ZIP Code].&[32007], [HOMED]. [H1].[ZIP
Code] .&[36711]})

10. Click Save and then click OK.
11. Compile the subject area.
12. For the second subject area, repeat the preceding steps, with the following changes:
* For Subject Area Name, type Patient Set B
¢ For Class name for the Subject Area, type Tutorial.SubjectB
* Repeat the preceding steps with the other two ZIP codes. So, for Filter, use the following:

%OR ({ [HOMED] . [H1].[ZIP Code].&[34577], [HOMED].[H1].[ZIP Code].&[38928]})

5.3 Examining the Subject Areas

Now we examine the subject areas that we have created. The numbers you see will be different from those shown here.

1.
In the Analyzer, click the Change button i-i .

2. Click Patient Set A.
3. Click OK.
The Analyzer then displays the contents of the selected subject area.

Notice that the total record count is not as high as it is for your base cube:

All
Count 4,490

4. In the Model Contents area, expand the HomeD dimension, ZIP Code level, and City level. You should see the fol-
lowing:

DeepSee Developer Tutorial 61

Creating Subject Areas

HomeD
ZIP
8 32006
8 32007
% 36711
City
@ Population
@ Principal Export
8 Centerville
8 Juniper
8t Redwood
8 Spruce

5. Repeat the preceding steps for Patient Set B.

When you expand the HomeD dimension, ZIP Code level, and City level. You should see the following:

HomeD
ZIP
%r 34577
9 38928
City
= Population
@ Principal Export
i8* Cedar Falls
8 Cypress
i%F EIm Heights
i%* Magnolia
&+ Pine

5.4 Common Filter Expressions

In this section, we experiment with common filters in the Analyzer and see their effect on the generated queries.

1. Inthe Analyzer, open the Tutorial cube.

The Analyzer refers to both cubes and subject areas as subject areas. The formal distinction between them is relevant
only when you are creating them.

2. Click New.

The Analyzer displays Count (a count of the records):

Al
Count | 10,000

62 DeepSee Developer Tutorial

Common Filter Expressions

Before we add a filter, let us see how the query is currently defined, so that we have a basis of comparison.

3.
Click the Query Text button E
The system then displays a dialog box that shows the MDX query that the Analyzer is using:
SELECT FROM [TUTORIAL]

4. Click OK.

5. Expand ColorD and Favorite Color.
6. Drag and drop Orange to Filters.

The Analyzer now uses only patients whose favorite color is orange. It looks something like this:

All
Count | 1,303

Click the Query Text button E
The system then displays the following query:

SELECT FROM [TUTORIAL] SFILTER [COLORD].[H1].[FAVORITE COLOR].&[ORANGE]

The $FILTER keyword restricts the query. The fragment after $FILTER is a filter expression:

[COLORD] . [H1]. [FAVORITE COLOR] .& [ORANGE]

This filter expression is a member expression, because it refers to a member (the Orange member of the Favorite
Color level). A member is a set of records, and a member expression refers to that set of records.

Notice that this expression uses the dimension, hierarchy, and level names. The & [ORANGE] fragment refers to the
key of the Orange member. The Analyzer uses keys rather than names, but you can use either if the member names
are unique.

8. Click OK.
9. Add another color to the filter. To do so:
a. Click the X next to Orange in Filters.
This removes that filter.
b. Drag and drop Favorite Color to Filters. This adds a filter box directly above the pivot table.
c. In that filter box, click the search button and then select Orange and Purple.
d. Click the check mark.

This action filters the pivot table.

Important: Do not drag and drop Orange and Purple separately to the Filters box. Instead drag the level
as described and then select the members.

The Analyzer now looks something like this:

All
Count 2,558

DeepSee Developer Tutorial 63

Creating Subject Areas

The system now uses only patients whose favorite color is orange or whose favorite color is purple. (Notice that
the count is higher than it was for orange alone.)
10. Display the query text again. Now you should see the following:

SELECT FROM [TUTORIAL]
3SFILTER %OR({[COLORD].[H1].[FAVORITE COLOR].&[ORANGE], [COLORD].[H1].[FAVORITE COLOR].&[PURPLE]})

In this case, the filter expression is as follows:

%OR ({ [COLORD] . [H1] . [FAVORITE COLOR].&[ORANGE], [COLORD].[H1].[FAVORITE COLOR].&[PURPLE]})

The %OR function is an InterSystems optimization; the argument to this function is a set.

The set is enclosed by curly braces { } and consists of a comma-separated list of elements. In this case, the set contains
two member expressions. A set expression refers to all the records indicated by the elements of the set. In this case,
the set refers to all patients whose favorite color is orange and all patients whose favorite color is purple.

11. Click OK.

12. Use the filter drop-down list and clear the check box next to Purple.
Now the Analyzer uses only patients whose favorite color is orange.

13. Expand AllerD and Allergies.

14. Drag and drop mo1d to Filters, beneath Orange.

The Analyzer now looks something like this:

All
Count 52

Notice that the count is lower than we saw using just Orange alone. This pivot table displays only patients whose
favorite color is orange and who are allergic to mold.

15. Display the query text again. Now you should see the following:

SELECT FROM [TUTORIAL]
$FILTER NONEMPTYCROSSJOIN ([ALLERD] . [H1].[ALLERGIES].&[MOLD], [COLORD] . [H1].[FAVORITE COLOR] . & [ORANGE])

In this case, the filter expression is as follows:

NONEMPTYCROSSJOIN ([ALLERD] . [H1].[ALLERGIES] .&[MOLD], [COLORD] . [H1].[FAVORITE COLOR].&[ORANGE])

The MDX function NONEMPTYCROSSJOIN combines two members and returns the resulting fuple. The tuple
accesses only the records that belong to both of the given members.

Now you have seen the three most common filter expressions:

member expression

When you use a member expression as a filter, the system accesses only the records that belong to this member.

64 DeepSee Developer Tutorial

Common Filter Expressions

You can write a member expression as follows:

[dimension name] . [hierarchy name].[level name].&[member key]
Or:

[dimension name] . [hierarchy name].[level name] . [member name]

Where:
e dimension name is a dimension name.

* hierarchy name is a hierarchy name. You can omit the hierarchy name. If you do, the query uses the first level
with the given name, as defined in this dimension.

e level name is the name of a level within that hierarchy. You can omit the level name. If you do, the query
uses the first member with the given name, as defined within this dimension.

e member key is the key of a member within the given level. This is often the same as the member name.

* member name is the name of a member within the given level.

set expression

When you use a set of members as a filter, the system accesses the records that belong to any of the given members.
That is, the members are combined with logical OR.

You can write a set expression that refers to members as follows:
{member_expression,member_expression,member_ expression...}

Where member_expression is a member expression.

tuple expression

When you use a tuple as a filter, the system accesses the records that belong to all of the given members. That is,
the members are combined with logical AND.

You can write a tuple expression as follows:

NONEMPTYCROSSJOIN (member_expression,member_expression)
Or:

(member_ expression,member_expression)

For additional variations, see Using MDX with DeepSee and DeepSee MDX Reference.

DeepSee Developer Tutorial 65

Creating and Packaging Pivot Tables and
Dashboards

After creating one or more cubes, you typically create and package a set of initial pivot tables and dashboards, and users
typically create new pivot tables and dashboards as needed.

This chapter briefly leads you through the process of creating pivot tables and dashboards. It consists of the following steps:
1. Creating pivot tables

2. Creating a dashboard

3. Exporting and packaging these items

For much more information on creating pivot tables and dashboards, see Using the DeepSee Analyzer and Creating DeepSee
Dashboards.

6.1 Creating Pivot Tables

Earlier in this tutorial, we created a pivot table that uses the Patients cube. Now let us create pivot tables that use your new
cube.

1. Access the Analyzer.
Navigate to the Tutorial cube.
Expand the AgeD dimension in the Model Contents pane.

2
3
4. Drag and drop Age Group to Rows.
5

Drag Age Bucket to Rows and drop it onto the Breakout Here button H .

o

Drag and drop Count to Columns.
7. Draganddrop A11 Patients to Rows, at the bottom.

The Rows box now looks like this:

DeepSee Developer Tutorial 67

Creating and Packaging Pivot Tables and Dashboards

Rows + o X

Age Group N T X -
Age Bucket N ¥ X ‘

m..|

All Patients S £+ X Bl

1

The pivot table is as follows:

Age Group Count
Oto9 1,459
Oto29 (10to19 1,428
20to 29 1,335
J0to 39 1,524
30to 59 (40to 49 1,520
50 to 59 1,080
60 to 69 688
60+ T0to 79 604
80+ 352
All Patients 10,000

8. Click Save.
The system displays a dialog box where you specify the pivot table name.

Save the pivot table and give it a name. Here, we are saving the underlying query that retrieves the data, along with
the information needed to display it the way you chose. We are not saving the data.

9. For Folder, type Tutorial
10. For Pivot Name, type Patients by Age Group
11. Click OK.
12. Create another pivot table as follows:
¢ For Rows, use Diagnoses
¢ For Columns, use Count and Avg Age
. For Folder, select or type Tutorial

* For Pivot Name, type Patients by Diagnosis

6.2 Creating a Dashboard

In this section we create a simple dashboard.
1. Click the DeepSee link at the top of the page.
2. Click Home,DeepSee,User Portal.

The system then displays the User Portal, which lists the existing public dashboards and pivot tables.

68 DeepSee Developer Tutorial

Creating a Dashboard

3. Click Menu > New Dashboard.
The system displays a dialog box that prompts you for basic information about the new dashboard.
4. For Folder, type or select Tutorial
5. For Dashboard Name, type Sample Dashboard
6. Click OK.

The system creates, saves, and displays the dashboard, which is initially empty.

Tutorial’'Sample Dashboard

- This dashboard is empty.
Filters Use the menu to add widgets to the dashboard.

Favorites 9 * @

You have no favorites

Notice the > button on the left side of the dashboard.
7. Click the > button.

This step expands the Dashboard Editor, as follows:

DeepSee Developer Tutorial 69

Creating and Packaging Pivot Tables and Dashboards

Filters
-u Dashboard Settings >
afY widgets >
< :
Favorites Ox O©
You have no favorites
8. Click Widgets.
This step displays a list of any widgets that this dashboard currently contains (none in this case).
9. Click the + button.
This step displays a dialog box where you can choose some initial options.
10. In the dialog box, click Pivots and Charts, if this is not already expanded. The list expands to show a list of choices.
11. In this list, click Table.
12. Click the Search button Q next to Data source.
13. Click Tutorial and then click Patients by Age Group
14. Click OK to add this widget.
The system displays the dashboard like this:
70 DeepSee Developer Tutorial

Creating a Dashboard

TutorialiSample Dashboard .
Filters B
LgeCroup- Ao Bucst
0to29 [Oto9 -
100 19 =
20 to 29
J0to59 | 30 to 39 =
£ [3 ﬁ

15. Repeat the preceding steps to add the other pivot table that you created in the previous section.

The newly added widget is placed in the same default position (in the upper left) and therefore covers the previously
added widget.

16. Put the cursor into the title bar of the newly added widget and then drag this widget and drop it below the other widget.
You might want to leave space below the upper widget so that you can resize it.

17. Use the resize control in the lower right corner of each widget to resize it so that all rows are visible without scrolling.

DeepSee Developer Tutorial 71

Creating and Packaging Pivot Tables and Dashboards

TutoriaVSample Dashboard £ &
Filters B
sgscroup- agsmuonst | Count
0t029 |0tos 1465
10t019 1,469
2010 29 1,297
J0to58 |30to 39 1558
40 to 49 1,481
50 to 59 1,032
BO+ 60 to 69 747
T0t0 79 620
B0+ 331
All Patients 10,000
A e —
® 4
Favorites O x O E
Desgnoses |Count Avg Age
You have no favorites _ﬁane 8,300 17 68
asthma 745 34.40
CHD 350 6276
diabetes RE3 RE&.30
osteoporosis 213 T9.68

18. Click Menu > Save.
The system saves the dashboard immediately.
19. Do the following to add some filter controls to this dashboard:
a. Open the Dashboard Editor.
b. Click Widgets.
c. Click the Patients by Age Group widget.
d. Click Controls.
The Dashboard Editor displays a list (currently empty) of any controls defined on the selected widget.
e. Click the plus sign button above the list.
The system displays a dialog box where you specify the control.
f. For Location, select Dashboard.
g. For Target, type *

For Action, select Apply Filter.

72 DeepSee Developer Tutorial

Creating a Dashboard

i. For Filter, select ZIP Code
j- For Control Label or Icon, type ZIP Code

k. Click OK to add the control.
Now the upper left corner of the dashboard is as follows:

Tutorial/Zample Dashboard

Filters

ZIP Code

20. Repeat the preceding steps to add the Allergies and Favorite Color filters.

Now the upper left corner of the dashboard is as follows:

Tutorial/Sample Dashboard

Filters
Allergies

Q
Favorite Color

]
ZIP Code

Q

21. Reconfigure these filter controls so that each one has a default value. To reconfigure the ZIP Code filter:
a. Open the Dashboard Editor.
b. Access the definition of the Patients by Age Group widget.
c. Click Controls.
d. Click the ZIP Code control.
e. For Default Value, type 32007 and click the check mark.

f. Click Done.

For Allergies, use the default value soy

For Favorite Color, use the default value blue

As you make these changes, the system automatically saves them.
22. Test the dashboard and verify the following:

e If you use the browser’s refresh button, each filter should show the correct default value.

DeepSee Developer Tutorial 73

Creating and Packaging Pivot Tables and Dashboards

e Each filter should affect both widgets.

6.3 Exporting and Packaging the Pivot Tables and
Dashboards

1. Click Menu > Management Portal.

If you do not see this option, you are currently logged in as a user without direct access to the DeepSee development
tools. In this case, log in again to DeepSee as described earlier in this book.

2. Click DeepSee > Admin > Folder Manager.
The system then displays the Folder Manager.

3. Scroll to the Tutorial folder, which should look something like this:

v Tutorial Folder
r =/ Patients by Age Group FPivot _SYSTEM
r =/ Patients by Diagnosis Pivot _SYSTEM
r I, Sample Dashboard Dashboard _SYSTEM

The column on the right indicates the Caché user who created these items; you may see different values there.

4. Click the check box to the left of Sample Dashboard. The left area of the page now lists the pivot tables used by
this dashboard:

Details |[Directory |

Hame

Tutonal/sample Dashboard.dashboard

Created on

Today at 17:12:22

Last modified

Today at 17:47:08

Depends on

» pivot: Tutorial/Patients by Age

Group
» pivot: Tutorial/Patients by Diagnosis

Both of these pivot tables are in the same folder as the dashboard itself, which is not required.
5. Click the check box to the left of the two newer pivot tables as well.
6. For Directory, type the name of an existing directory to which you have write permission.
7. Click Export.

The system then writes three files to that directory.

74 DeepSee Developer Tutorial

Exporting and Packaging the Pivot Tables and Dashboards

You could use these files as a package for the items you have defined, but in the next set of steps, we will use a more
convenient approach.

8. In Studio, create a new class called Tutorial .DashboardsAndPivots. The class should extend
%DeepSee.UserLibrary.Container.

9. In the new class, add an XData block named Contents, as follows:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{

<items>

</items>

}

10. Save the new class.
11. Copy the dashboard and pivot table definitions from your exported files into this XData block:
a. Use a text editor to open the dashboard file (Tutorial-Sample_Dashboard.xml), which looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial" name="Sample
Dashboard"

</dashboard>

b. Copy the contents of this file, starting with the second line and ending at the end of the file. That is, do not copy
the first line, which is the XML declaration.

c. Paste the copied text into the XData block between <items> and </items>. Now you should see this:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
<dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial"
name="Sample Dashboard"

</dashboard>
</items>

}

d. Use a text editor to open one of the pivot table files, which has a similar structure (with <pivot> instead of
<dashboard>).

e. Copy the contents of this file, , starting with the second line and ending at the end of the file.

f. Paste the copied text into the XData block between </dashboard> and </items>. Now you should see
something like this:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
<dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial"
name="Sample Dashboard"

</dashboard>

<pivot xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial" name="Patients
by Age Group"

</pivot>
</items>

}

Note: You could instead insert the copied text between <items> and <dashboard>. The order of the items
has no effect on anything.

Repeat the preceding steps with the other pivot table file.

Save the class definition.

DeepSee Developer Tutorial 75

Creating and Packaging Pivot Tables and Dashboards

12. Return to the Folder Manager and refresh the page.
This clears any selections you may have made.
13. Click the check box next to each of the three items in the Tutorial folder.
14. Click Delete and then click OK to confirm.
15. In Studio, compile the class you just created.
When you do this, the system imports the dashboard and pivot table definitions contained in that class.
16. Return to the Folder Manager and refresh the page. Notice that the tutorial dashboard and pivot tables are available

again.

You can include as many dashboards and pivot tables as needed in a container class like this, and you can have multiple
container classes. There are no requirements to organize the dashboards and pivot tables in any particular way in these
container classes. For example, you do not need to place the pivot tables in the same container class as the dashboards that
use them. There is also no requirement to create these container classes at all.

76 DeepSee Developer Tutorial

