
DeepSee Developer Tutorial

Version 2014.1

13 September 2017

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

DeepSee Developer Tutorial

InterSystems Version 2014.1 13 September 2017

Copyright © 2017 InterSystems Corporation

All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,

InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,

Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems

Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,

transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,

without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent

set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.

InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such

standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising

out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS

CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION

REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,

COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion

and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)

+1-617-621-0700Tel:

+44 (0) 844 854 2917Tel:

support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Getting Started .. 3

1.1 Getting Started .. 3

1.2 Regenerating Data .. 4

2 Introduction to Cube Elements ... 5

2.1 Accessing the Patients Cube ... 5

2.2 Orientation to the Model Contents Area .. 6

2.2.1 Measures .. 6

2.2.2 Dimensions ... 6

2.3 Creating a Simple Pivot Table .. 7

2.4 Measures and Levels .. 9

2.5 Dimensions and Levels ... 10

2.6 The All Members .. 12

2.7 Hierarchies ... 13

2.8 Properties .. 15

2.9 Listings ... 17

2.10 Filters and Members ... 19

2.11 Filters and Searchable Measures .. 20

3 Creating a Cube .. 23

3.1 Creating a Basic Cube .. 23

3.2 Adding Levels and Measures .. 24

3.3 Examining the Initial Cube .. 28

3.4 Refining the Cube ... 31

3.5 Adding a Listing to the Cube .. 33

3.6 Looking at the Fact and Level Tables ... 35

4 Expanding the Cube Definition ... 39

4.1 Adding a Level to a Hierarchy .. 39

4.2 Adding Time Levels ... 42

4.3 Using a Collection Property ... 45

4.4 Defining Replacements .. 51

4.5 Accessing Other Classes ... 56

5 Creating Subject Areas .. 59

5.1 Introduction .. 59

5.2 Creating the Subject Areas ... 59

5.3 Examining the Subject Areas ... 61

5.4 Common Filter Expressions ... 62

6 Creating and Packaging Pivot Tables and Dashboards .. 67

6.1 Creating Pivot Tables .. 67

6.2 Creating a Dashboard ... 68

6.3 Exporting and Packaging the Pivot Tables and Dashboards .. 74

DeepSee Developer Tutorial iii

About This Book

This tutorial is intended to help developers learn the basic process of creating DeepSee models and then using them to

create pivot tables and dashboards. This book contains the following sections:

• Getting Started

• Introduction to Cube Elements

• Creating a Cube

• Expanding the Cube Definition

• Creating Subject Areas

• Creating and Packaging Pivot Tables and Dashboards

For a detailed outline, see the table of contents.

The other developer books for DeepSee are as follows:

• Getting Started with DeepSee describes how to get started.

• DeepSee Implementation Guide describes how to implement DeepSee, apart from creating the model.

• Defining DeepSee Models describes how to define all the elements used in DeepSee queries: DeepSee cubes, subject

areas, term lists, worksheets, quality measures, KPIs, and plugins.

• Using MDX with DeepSee introduces MDX and describes how to write MDX queries manually for use with DeepSee

cubes.

• DeepSee MDX Reference provides reference information on MDX as supported by DeepSee.

The following books are for both developers and users:

• DeepSee End User Guide describes how to use the DeepSee User Portal and dashboards.

• Creating DeepSee Dashboards describes how to create and modify dashboards in DeepSee.

• Using the DeepSee Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in Caché.

For general information, see the InterSystems Documentation Guide.

DeepSee Developer Tutorial 1

1
Getting Started

The SAMPLES namespace includes two DeepSee samples. One is the DeepSee.Study.Patient class and related classes. This

sample is meant for use as the basis of a DeepSee model. It does not initially contain any data. The DeepSee.Model package

includes sample cubes, subject areas, KPIs, pivot tables, and dashboards, for use as reference during this tutorial.

This sample is intended as a flexible starting point for working with DeepSee. You use this sample to generate as much

data or as little data as needed, and then you use the DeepSee Architect to create a DeepSee model that explores this data.

You can then create DeepSee pivot tables, KPIs, and dashboards based on this model. The sample contains enough com-

plexity to enable you to use the central DeepSee features and to test many typical real-life scenarios. This book presents

hands-on exercises that use this sample.

Important: DeepSee uses SQL to access data while building the cube, and also when executing detail listings. If your

model refers to any class properties that are SQL reserved words, you must enable support for delimited

identifiers so that DeepSee can escape the property names. For a list of reserved words, see the “Reserved

Words” section in the Caché SQL Reference. For information on enabling support for delimited identifiers,

see the chapter “Identifiers” in Using Caché SQL.

Be sure to consult InterSystems Supported Platforms for information on system requirements for DeepSee.

1.1 Getting Started

Most of the tools that you will use are contained in the Management Portal.

To log on:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with a Caché username and password.

2. Switch to the SAMPLES namespace as follows:

a. Click Switch.

b. Click SAMPLES.

c. Click OK.

DeepSee Developer Tutorial 3

1.2 Regenerating Data

The tutorial uses a larger, slightly more complex set of data than is initially provided in SAMPLES.

To generate data for this tutorial:

1. In the Terminal, switch to the SAMPLES namespace:

 zn "SAMPLES"

2. Execute the following command:

 do ##class(DeepSee.Populate).GenerateAll(10000,"ADETR")

This class method generates 10000 patients. The "ADETR" string means that the sample will include allergy data (A),

diagnosis data (D), encounter data (E), details (T), and the city rainfall data (R).

3. Because we will use SQL queries that run against the tables that we have just populated, it is good practice to run the

Tune Table facility on them:

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

c. Click the [Execute Query] tab.

d. Click Actions and then Tune All Tables.

The system then displays a dialog box where you select a schema and confirm the action.

e. For Schema, select the DeepSee_Study schema.

f. Click Finish.

g. Click Done.

The system then runs the Tune Table facility in the background.

4 DeepSee Developer Tutorial

Getting Started

2
Introduction to Cube Elements

Before you create your own cube, it is useful to examine a sample cube and see how you can use it. This chapter discusses

the following:

• How to access the Patients cube

• Orientation to the Model Contents area

• A typical pivot table

• Measures and levels

• Dimensions and levels

• All members

• Hierarchies

• Properties

• Listings

• Filters and members

• Filters and searchable measures

2.1 Accessing the Patients Cube

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

2. Click Home,DeepSee,Analyzer.

3.

Click the Change Subject Area button .

4. Click Patients.

5. Click OK.

The Analyzer page includes three main areas:

• The Model Contents area on the left lists the contents of the cube you selected. You can expand folders and drag and

drop items into the Pivot Builder area.

DeepSee Developer Tutorial 5

• The Pivot Builder area in the upper right provides options that you use to create pivot tables. This area consists of the

Rows, Columns, Measures, and Filters boxes.

• The Pivot Preview area in the bottom right displays the pivot table in almost the same way that it will be shown in

dashboards.

2.2 Orientation to the Model Contents Area

The Model Contents area lists the contents of the cube that you are currently viewing. For this tutorial, select Dimensions

from the drop-down list; this option displays the measures and dimensions in the given cube.

The top section shows named sets, but this tutorial does not use these. Below that, this area includes the following sections:

2.2.1 Measures

The Measures section lists all measures in the cube. For example:

You can have two types of measures, indicated by different icons:

Standard measures

Calculated measures, which are defined in terms of other measures

2.2.2 Dimensions

The Dimensions section lists the dimensions and the levels, members, and properties that they contain. (It also contains

any non-measure calculated members, as well as any sets; this chapter does not discuss these items.)

Click the triangle next to any dimension name to expand it. A dimension contains at least one level and may also include

a special member known as the All member. In the following example, the AgeD dimension includes an All member named

All Patients, as well as the levels Age Group, Age Bucket, and Age.

6 DeepSee Developer Tutorial

Introduction to Cube Elements

If you expand a level, the system displays the members of that level. For example:

If a level also includes properties, the system shows those properties in blue font, at the start of the list, with a different

icon. For example, the City level includes the Population and Principal Export properties:

2.3 Creating a Simple Pivot Table

In this section, you create a simple pivot table that uses levels and measures in a typical way. The goal of this section is to

see how levels and measures work and to learn what a member is.

The numbers you see will be different from what is shown here.

1. Expand the DiagD dimension in the Model Contents pane.

2. Drag and drop Diagnoses to Rows.

Or double-click Diagnoses.

The system displays the following:

DeepSee Developer Tutorial 7

Creating a Simple Pivot Table

3. Drag and drop Patient Count to Measures.

Or double-click Patient Count.

4. Drag and drop Avg Age to Measures.

Or double-click Avg Age.

The system displays the following:

5. Click Save.

The system displays a dialog box where you specify the pivot table name.

Save the pivot table and give it a name. When you do so, you are saving the underlying query that retrieves the data,

along with the information needed to display it the way you chose. You are not saving the data.

6. For Folder, type Test

7. For Pivot Name, type Patients by Diagnosis (Patients Cube)

8. Click OK.

It is worthwhile to develop a formal understanding of what we see. Note the following points:

• The base table is Patients, which means that all measures summarize data about patients.

• Apart from the header row, each row of this pivot table displays data for one member of the Diagnoses dimension.

In all cases, a member corresponds to a set of records in the fact table. (In most cases, each record in the fact table

corresponds to one record in the base table.)

Therefore, each row in this pivot table displays data for a set of patients with a particular diagnosis.

Other layouts are possible (as shown later in this book), but in all cases, any data cell in a pivot table is associated with

a set of records in the fact table.

• In a typical pivot table, each data cell displays the aggregate value for a measure, aggregated across all records used

by that data cell.

• To understand the contents of a given data cell, use the information given by the corresponding labels. For example,

consider the cell in the asthma row, in the Patient Count column. This cell displays the total number of patients

who have asthma.

Similarly, consider the Avg Age column for this row. This cell displays the average age of patients who have asthma.

8 DeepSee Developer Tutorial

Introduction to Cube Elements

• For different measures, the aggregation can be performed in different ways. For Patient Count, DeepSee sums the

numbers. For Avg Age, DeepSee averages the numbers. Other aggregations are possible.

2.4 Measures and Levels

In this section, we take a closer look at measures and levels.

1. Click New.

2. Drag and drop Count and Avg Age, to the Measures area.

You now see something like this:

This simple pivot table shows us the aggregate value for each of these measures, across all the records in the base class.

There are 10000 patients and their average age (in this example) is 35.93 years.

3. Compare these values to the values obtained directly from the source table. To do so:

a. In a separate browser tab or window, access the Management Portal and go to the SAMPLES namespace, as

described earlier.

b. Click System Explorer > SQL.

c. Click the [Execute Query] tab.

d. Execute the following query:

select count(*) as "count",avg(age) as avgage from deepsee_study.patient

You should see the same numbers. For example:

Tip: Leave this browser tab or window open for later use.

4. In the Analyzer, modify the previous pivot table as follows:

a. Expand GenD on the left.

b. Drag and drop Gender to the Row area. Now you see something like the following:

5. Compare these values to the aggregate values obtained from the source table. To do so:

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

DeepSee Developer Tutorial 9

Measures and Levels

c. Click the [Execute Query] tab.

d. Click Show History.

e. Click the query you ran previously.

f. Add the following to the end of the query and then rerun the query:

 group by gender

You should see the same numbers as shown in the pivot table. For example:

6. For a final example, make the following change in the Analyzer:

a. Click the X button in the Rows pane. This action clears the row definition.

b. Expand ProfD and Profession.

c. Drag and drop Electrician to Rows.

The system displays something like this:

7. Compare these values to the values from the source table. To do so:

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

c. Click the [Execute Query] tab.

d. Execute the following query:

select count(*) as "count",avg(age) as avgage from deepsee_study.patient join
deepsee_study.patientdetails
on deepsee_study.patient.patientid = deepsee_study.patientdetails.patientid
where deepsee_study.patientdetails.profession->profession='Electrician'

You should see the same numbers. For example:

2.5 Dimensions and Levels

In many scenarios, you can use dimensions and levels interchangeably. In this section, we compare them and see the differ-

ences.

10 DeepSee Developer Tutorial

Introduction to Cube Elements

1. In the Analyzer, click New.

2. Drag and drop the GenD definition to the Rows area. You should see something like this:

The measure shown is Count, which is a count of patients.

3. Click New.

4. Expand the GenD dimension. You will see the following in the left area:

5. Drag and drop the Gender level to the Rows area. You should see something like this:

In this case, we see the same results except for the caption above the rows.

In the Patients sample, the names of dimensions are short and end with D, and the name of a level is never identical to

the name of the dimension that contains it. This naming convention is not required, and you can use the same name

for a level and for the dimension that contains it.

6. Click New.

7. Expand the AgeD dimension. You will see the following in the left area:

This dimension is defined differently from the GenD dimension in two ways:

• AgeD defines a special member called All Patients, which is an All member. An All member refers to all

records of the base class.

• AgeD defines multiple levels: Age Group, Age Bucket, and Age.

8. Drag and drop the AgeD dimension to the Rows area. You should see something like this:

DeepSee Developer Tutorial 11

Dimensions and Levels

When you drag and drop a dimension for use as rows (or columns), the system displays the All member for that

dimension, if any, followed by all the members of the first level defined in that dimension. In this case, the first level

is Age Group.

2.6 The All Members

An All member refers to all records of the base class. Each dimension can have an All member, but in the Patients cube,

only one dimension has an All member.

This part of the tutorial demonstrates how you can use an All member:

1. Click New.

2. Expand the AgeD dimension.

3. Drag and drop Age Group to Rows.

4. Drag and drop the measures Patient Count, Avg Age, and Avg Test Score to Measures. The system displays

something like the following:

5.
Click the Pivot Options button .

6. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.

The system then displays a Total line, as follows:

The Total value is appropriate for Patient Count but not for the other measures. For Avg Age and Avg Test

Score, it would be more appropriate to display an average value rather than a sum.

7.
Click the Pivot Options button again.

8. In the Row Options area, clear the Summary check box and then click OK.

9. Drag and drop All Patients to Rows, below Age Group. The system then displays the All Patients after the

members of the Age Group level:

12 DeepSee Developer Tutorial

Introduction to Cube Elements

The All Patients row is a more useful summary line than the Total line. It shows the Patient Count, Avg

Age, and Avg Test Score measures, each aggregated across all patients.

Note: For Avg Age and Avg Test Score, in some cases, you might prefer to have an average of the values

shown in the pivot table. For example, for Avg Age, this summary line adds the ages of all patients and then

divides by 10000. You might prefer to add the values of Avg Age for the three members shown here and

then divide that by three. The All member does not help you do this; instead you would create a calculated

member (discussed later in this tutorial).

10. Click the X button in the Rows pane. This action clears the row definition.

11. Expand the DiagD dimension.

12. Drag and drop Diagnoses to the Rows pane.

13. Drag and drop All Patients to Rows, below Diagnoses. You then see something like the following:

As you can see, you can use the generically named All Patient member with dimensions other than Age, the

dimension in which it happens to be defined.

2.7 Hierarchies

A dimension contains one or more hierarchies, each of which can contain multiple levels. The Model Contents area lists

the levels in the order specified by the hierarchy, but (to save space) does not display the hierarchy names for this cube.

Users can take advantage of hierarchies to drill to lower levels. This part of the tutorial demonstrates how this works.

1. Click New.

2. Expand the BirthD dimension in the Model Contents pane.

The system displays the following:

DeepSee Developer Tutorial 13

Hierarchies

3. Drag and drop Decade to Rows.

Or double-click Decade.

The system displays something like the following:

The measure shown is Count, which is a count of patients.

4. Double-click the 1950s row (or any other row with a comparatively large number of patients). Click anywhere to the

right of the << symbols.

The system then displays the patients born in that decade, grouped by year (the next lowest level in the hierarchy), as

follows:

This double-click behavior is available within pivot tables displayed on dashboards (not just within the Analyzer).

14 DeepSee Developer Tutorial

Introduction to Cube Elements

5. Double-click a row again. The system displays the patients born in that year, grouped by year and quarter:

6. Double-click a row again. The system displays the patients born in that year and quarter, grouped by year and month:

7. Double-click a row again. The system displays the patients born in that year and month, grouped by actual date:

8. Click the << symbols repeatedly to return to the original state of the pivot table.

2.8 Properties

A level can have properties, which you can display in pivot tables.

1. Click New.

2. Expand the HomeD dimension in the Model Contents pane.

3. Expand the City level.

The system displays the following:

DeepSee Developer Tutorial 15

Properties

4. Drag and drop City to Rows.

The system displays something like the following:

The measure shown is Count, which is a count of patients.

5. Drag and drop Population to Columns.

6. Drag and drop Principal Export to Columns.

The system displays the following:

7. Click the X button in the Rows pane.

16 DeepSee Developer Tutorial

Introduction to Cube Elements

8. Drag and drop ZIP to Rows.

The system displays something like the following:

These properties do not have values for this level.

In pivot tables, properties are different from measures in several ways:

• Properties can have string values.

• Properties have values only for the level in which they are defined.

Depending on how a cube is defined, properties can also affect the sorting and the member names of the level to which

they belong. There are examples later in this tutorial.

2.9 Listings

This part of the tutorial demonstrates listings, which display selected records from the lowest-level data for the selected

cell or cells. To see how these work, we will first create a pivot table that uses a very small number of records. Then when

we display the listing, we will be able to compare it easily to the aggregate value of the cell from which we started.

1. Click New.

2. Drag and drop Patient Count and Avg Test Score to Measures.

3. Expand the AgeD dimension in the Model Contents pane.

4. Expand the Age level.

5. Drag and drop the member 0 to Columns. This member refers to all patients who are less than 1 year old.

Note that you must click the member name rather than the icon to its left.

The system displays something like the following:

6. Drag and drop the member 1 to Columns, below the member 0.

The system displays something like the following:

DeepSee Developer Tutorial 17

Listings

7. Expand the BirthTD dimension.

8. Drag and drop the Birth Time level to Rows.

The system displays something like the following:

9. Click a cell. For example, click the Patient Count cell in the 12am row, below 0.

10.

Click the Display Listing button .

The system considers the selected context, which in this case is patients under 1 year old, who were born between

midnight and 1 am. The system then executes an SQL query against the source data. This query includes selected fields

for these patients, as follows:

11. Count the number of rows displayed. This equals the Patient Count value in the row you started from.

12.

Click the Display Table button to redisplay the pivot table in its original state.

By default, the Patients cube uses a listing called Patient details, which includes the fields PatientID, Age,

Gender, and others, as you just saw. You can display other listings as well.

13.
Click the Pivot Options button to display options for this pivot table.

The system displays a dialog box.

14. For the Listing drop-down list, click Doctor details and then click OK.

The Doctor details listing displays information about the primary care physicians for the selected patients.

18 DeepSee Developer Tutorial

Introduction to Cube Elements

15.

Click the same cell that you clicked earlier and then click the Display Listing button .

Now the system displays something like the following:

2.10 Filters and Members

In a typical pivot table, you use members as rows, as columns, or both, as seen earlier in this chapter. Another common

use for members is to enable you to filter the data.

1. In the Analyzer, click New.

2. Expand ColorD and Favorite Color.

3. Drag and drop Favorite Color to Rows.

The system displays something like the following:

This pivot table displays the members of the Favorite Color as rows. The measure shown is Count, which is a

count of patients.

4. Drag and drop Red to Filters.

The Analyzer now shows only one member of the Favorite Color level. You see something like this:

Make a note of the total number of patients.

5. Click the X button in the Rows box.

6. Expand AgeD.

7. Drag and drop Age Group to Rows.

The Analyzer now displays something like this:

DeepSee Developer Tutorial 19

Filters and Members

8.
Click the Pivot Options button .

9. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.

The Analyzer now displays something like this:

The Total line displays the sum of the numbers in the column. Notice that the total here is the same as shown earlier.

You can use any member as a filter for any pivot table, no matter what the pivot table uses for rows (or for columns). In

all cases, the system retrieves only the records associated with the given member.

You can use multiple members as filters, and you can combine filters. For details, see Using the DeepSee Analyzer.

2.11 Filters and Searchable Measures

In DeepSee, you can define searchable measures. With such a measure, you can apply a filter that considers the values at

the level of the source record itself.

1. Click New.

The system displays the count of all patients:

2.
Click the Advanced Options button in the Filters box.

3. Click Add Condition. Then you see this:

20 DeepSee Developer Tutorial

Introduction to Cube Elements

4. Click Age Group, which enables you to edit this part of the expression.

The dialog box now looks something like this:

5. Click the drop-down list on the left, scroll down, and click Measures.Encounter Count. As soon as you do, the

expression is updated. For example:

6. Click the = operator, which enables you to edit this part of the expression.

The dialog box now looks something like this:

7. Click the >= operator. As soon as you do, the expression is updated. For example:

8. Click 0, which enables you to edit this part of the expression.

DeepSee Developer Tutorial 21

Filters and Searchable Measures

The dialog box now looks something like this:

9. Type 10 into the field and click Apply.

10. Click OK.

The system then displays the total count of all patients who have at least ten encounters:

Now let us see the effect of adding a level to the pivot table.

11. Expand the AgeD dimension in the Model Contents pane.

12. Drag and drop Age Group to Rows.

The system displays something like the following:

13.
Click the Pivot Options button .

14. In the Row Options area, click the Summary check box, leave Sum selected in the drop-down list, and then click OK.

15. Click OK.

The Analyzer now displays something like this:

The Total line displays the sum of the numbers in the column. Notice that the total here is the same as shown earlier.

22 DeepSee Developer Tutorial

Introduction to Cube Elements

3
Creating a Cube

In this chapter, we create a simple cube. This chapter discusses the following topics:

• Creating a basic cube

• Adding levels and measures

• Examining the cube

• Refining the cube

• Adding a listing

• Looking at the fact and level tables

3.1 Creating a Basic Cube

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

2. Click Home,DeepSee,Architect.

3. Click New.

The system displays a dialog box.

4. In this dialog box, specify the following:

• Definition Type: Cube — Select this.

• Cube Name — Tutorial

• Class Name for the Cube — Tutorial.Cube

• Source Class — Click the Browse button, select DeepSee.Study.Patient, and click OK.

5. Click OK.

The system creates the cube class, which you can also view and modify in Studio.

6. Click the bold top row in the middle area (labeled Tutorial). This selects the cube so that you can edit its details on

the right.

7. In the Details Pane, type None into Null replacement string.

8. Click Save and then click OK.

DeepSee Developer Tutorial 23

The system updates the cube class.

The Class Viewer, which is the left area, now displays this:

Important: The Class Viewer provide a useful view of the class properties (apart from relationship properties) of your

base class, which makes it very easy to create DeepSee elements based on those properties. It is important,

however, to know that although this view provides a convenient way to access some properties, you can

also use a source expression to access any data. These source expressions are evaluated when the cube is

built and thus do not affect your runtime performance. This tutorial demonstrates these points later.

3.2 Adding Levels and Measures

In this part of the tutorial, you add some levels and measures to the Tutorial cube.

1. Drag and drop the following items from the Class Viewer (the left area) to the Measures heading in the Model Viewer

(the middle area):

• Age

• TestScore

This creates measures named Age and TestScore, based on the class properties with those names.

2. Make the following changes to the TestScore measure:

a. Click the measure name, below the Measures heading.

b. In the Details pane (the right area), change Name to Test Score

c. Click Searchable.

3. Create the Avg Age measure as follows:

24 DeepSee Developer Tutorial

Creating a Cube

a. Drag and drop the Age property again from the Class Viewer to the Measures heading in the Model Viewer.

This step creates a new measure named Age1.

b. Click the measure name in the Model Viewer and then edit the following details in the Details Pane:

• For Aggregate, choose AVG.

• For Name, specify Avg Age.

• For Format String, specify #.##

4. Create the Avg Test Score measure as follows:

a. Drag and drop the TestScore property again from the Class Viewer to the Measures heading in the Model

Viewer. This step creates a new measure named TestScore1.

b. Click the measure name in the Model Viewer and then edit the following details in the Details Pane:

• For Aggregate, choose AVG.

• For Name, specify Avg Test Score.

• For Format String, specify #.##

Now you should have four measures:

5. Click Save and then click OK.

The system updates the cube class.

6. Add a dimension, hierarchy, and level based on the Age property, as follows:

a. Drag and drop the Age property to the Dimensions heading.

The Architect immediately creates a dimension, hierarchy, and level, and the Model Viewer now displays the

following:

b. Click the first Age item, which is labeled data dimension.

c. In the right area, edit Name to be AgeD.

The Model Viewer now displays the following:

DeepSee Developer Tutorial 25

Adding Levels and Measures

Depend on how you plan to use DeepSee, users might never see the names of the dimensions. In this tutorial, we

follow the convention used in the Patients sample, which assumes that we will not use a dimension as rows or

columns in pivot tables (we will instead use levels as rows or columns).

d. Select the option Enable the All level for this dimension.

e. Edit Caption for All member to be All Patients.

f. Edit Display name for All member to be All Patients.

7. Save the cube definition in the same way that you did earlier.

8. Add a dimension, hierarchy, and level based on the Gender property. Repeat the previous steps with the following

differences:

• Drag and drop the Gender property.

• Rename the dimension to GenD.

• Do not select the option Enable the All level for this dimension.

The Model Viewer now displays the following:

9. Add a dimension, hierarchy, and level based on the HomeCity property. Repeat the previous steps with the following

differences:

• Expand the HomeCity property and then drag and drop the Name property within this folder to Dimensions

• Rename the dimension to HomeD

• Rename the level to City

• Do not select the option Enable the All level for this dimension.

For this new dimension, hierarchy, and level, the Model Viewer now displays the following:

26 DeepSee Developer Tutorial

Creating a Cube

Note that in this case, the Property option uses Caché dot syntax.

10. Add properties to the City level:

a. Expand HomeCity on the left (in the Class Viewer area).

b. Drag Population and drop it onto the City level in the middle area.

c. Drag PrincipalExport and drop it onto the City level in the middle area.

d. Select the new PrincipalExport property and rename it to Principal Export.

11. Add a dimension, hierarchy, and level based on the PrimaryCarePhysician property. To do this:

a. Click Add Element.

b. For Enter New Element Name, type DocD.

c. Click Data Dimension.

d. Click OK.

e. Click New_Level1 in the Model Viewer area.

f. Change Name to Doctor.

g. Type the following Caché ObjectScript expression into Expression:

%source.PrimaryCarePhysician.LastName_", "_%source.PrimaryCarePhysician.FirstName

The variable %source refers to the current record. DeepSee evaluates this expression when it builds the cube.

You could instead use the drag-and-drop procedure as you did earlier, and then edit the definitions.

12. Save the cube definition in the same way that you did earlier.

13. Compile and build the cube. To do so:

a. Click Compile, which starts the compilation and displays progress in a dialog box.

b. When the system is finished compiling, click Done.

c. Click Build and then click Build.

d. When the system is finished building the cube and its indices, click Done.

14. In a separate browser tab or window, open the Analyzer.

Check the upper left area, which displays the title of the currently selected cube or subject area. You should see the

following:

DeepSee Developer Tutorial 27

Adding Levels and Measures

If the title is not Tutorial, then click the Change button (), click Tutorial, and click OK.

The left area of the Analyzer displays the current contents of this cube as follows:

If you do not see this, make sure that you have generated data for the sample and that you have compiled and built the cube.

3.3 Examining the Initial Cube

In this section, we examine the cube to see if there is anything we want to change.

To examine the cube, we will create simple pivot tables by dragging and dropping cube elements from the left area to the

Pivot Builder area, which consists of the Rows area and the three boxes to its right.

The first thing to notice is that the Analyzer displays a measure (Count) that we did not define. This measure is provided

automatically, and it counts the records in the base class.

Do the following to get acquainted with the new cube:

1. Click the triangle next to each dimension name in the left area.

When you are done, you should see the following:

2. Drag and drop the Age level to the Rows area. You should see something like this:

28 DeepSee Developer Tutorial

Creating a Cube

Notice that the members of this level as sorted as strings. For this level, it would be better to sort the members

numerically, so we will have to make an adjustment to this level.

3. Drag and drop the Doctor level to the Rows area, placing it directly on Age. (In this action, you replace Age with

Doctor.) Now you should see something like this:

Note: Unlike the other dimensions created here, the Doctor dimension can have a very large number of members,

depending on the size of your data set. In a real-world implementation, it is unlikely that you would create a

dimension at such a low level. This tutorial uses this dimension to demonstrate a couple of key points.

The doctor name , refers to patients who do not have a recorded primary care physician (for these patients, both the

last name and first name are null for the PrimaryCarePhysician field). We will change this when we redefine

this level in the next part of the tutorial.

Whenever you create a level that is based on an identifier, it is important to consider whether that identifier is unique.

In many cases (product names, procedure codes, department names, and so on), the identifier is unique. However, it

is not safe to assume that names of people are unique. Because we have based this level directly on the doctors’ names,

DeepSee combines any doctors that have the same name.

For example, some patients could have a doctor named Agnes Djakovic, represented as row 17 in the Doctor table,

and some other patients could have a doctor with the same name, but who is represented as row 380 in the same table.

The Doctor level would have a member named Agnes Djakovic that combines those patients.

In a later part of the tutorial, we will use a more robust approach.

4. Drag and drop the Gender level to the Rows area, placing it directly on top of Doctor. This action replaces the

Doctor level with the Gender level. Now you should see something like this:

We will not need to make any changes to this level.

5. Expand the City level on the left. You should see this:

DeepSee Developer Tutorial 29

Examining the Initial Cube

6. Drag and drop the City level to the Rows area, placing it directly on top of Gender. Now you should see something

like this:

7. Drag and drop the Population and Principal Export properties to Columns. You should see this:

We will not need to make any changes to this level.

30 DeepSee Developer Tutorial

Creating a Cube

3.4 Refining the Cube

In this part of the tutorial, we will make the following changes to the cube:

• Change how the members of Age are sorted.

• Ensure that the Doctor level does not combine doctors who have the same name

• Ensure that the Doctor level has a member named None (the cube default replacement string) rather than ,

1. Access the Architect, which shows the cube definition you last looked at.

2. First, redefine the Age level so that its members are sorted numerically. To do so:

a. Click the Age level.

b. Click Add Element.

c. For Enter , type AgeSort

d. Click Property.

e. Click OK.

The system adds the property and selects it in the Architect.

f. In the Details Pane, select Expression and enter the following:

$CASE($LENGTH(%source.Age),2:%source.Age,:"0"_%source.Age)

This expression adds leading zeros to the age, so that string sorting causes the ages to be sorted correctly. The first

age is 01, the second is 02, and so on. (The highest age in this sample is 99 years, so no age has more than two

characters.)

g. For Sort members by property value, select asc.

This option causes the system to use the values of this property to control how the members are sorted.

h. Save the cube.

Note: The Patients sample uses a different approach, and both approaches are valid.

3. Redefine the Doctor level again so that it cannot combine doctors who have the same name. To do so:

a. Click the Doctor level.

b. Select the value in the Expression field and copy it to Notepad or other temporary location.

c. Select Property and enter PrimaryCarePhysician

Now the Doctor level is based on the bare PrimaryCarePhysician property, which is an OREF and is unique

for each doctor.

This ensures that the level does not combine different doctors who happen to have the same name.

This step also ensures that the value is null for patients with no doctor; this means that the cube default null

replacement string is used for that member of this level.

d. While the Doctor level is selected, click Add Element.

e. For Enter New Element Name, type Doctor Name

f. Click Property.

DeepSee Developer Tutorial 31

Refining the Cube

g. Click OK.

The system adds the property and selects it in the Architect.

h. In the Details Pane, select Expression and enter the following:

%source.PrimaryCarePhysician.LastName_", "_%source.PrimaryCarePhysician.FirstName

i. Select Use as member names.

This option causes the system to use the value of this property as the name for each member.

j. For Sort members by property value, select asc.

This option causes the system to sort the members in ascending order by the value of this property.

4. Compile the cube.

When you do so, the Architect saves the cube.

5. Build the cube.

6. Go to the Analyzer and click the DeepSee > Analyzer link to refresh with the most current model.

7. Double-check the changes. You should see the following:

• When you drag and drop Age to Rows, you see the members sorted in numeric order:

• When you drag and drop Doctor to Rows, you see the None member:

Depending on the generated data, you might also see duplicate doctor names. For example:

32 DeepSee Developer Tutorial

Creating a Cube

3.5 Adding a Listing to the Cube

A listing enables the users to see selected fields from the lowest-level data, which is useful in many scenarios. This infor-

mation can help users identify outlier records or any records where follow-up activity might be needed.

1. First, let us examine the available fields in the Patients table.

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

(If this is open on another browser tab, switch to that tab.)

b. Click System Explorer > SQL.

c. Click the [Execute Query] tab.

d. Execute the following query:

select * from deepsee_study.patient

This displays the first 1000 patients and shows the available fields.

e. Now try a query like the following:

select patientid, age,testscore,homecity->name as "City",
primarycarephysician->lastname as "Doctor" from DeepSee_Study.Patient

f. Copy the query to Notepad or to any other convenient temporary location.

Leave this browser tab or window open for later use.

2. Add a listing that uses the fields in the query we just ran:

a. Access the Architect.

(If this is open on another browser tab, switch to that tab.)

b. Click Add Element.

c. For Enter New Element Name, type Sample Listing.

d. Click Listing.

e. Click OK.

The system adds the listing.

f. In the Details pane, copy the list of fields from the earlier saved query to the Field list area. Specifically, paste this:

patientid, age,testscore,homecity->name as "City", primarycarephysician->lastname as "Doctor"

The system uses this list of fields and builds the SQL query.

g. Compile the cube.

When you do so, the Architect saves the cube.

You do not need to rebuild the cube.

3. Verify that you can access this listing in the Analyzer. To do so:

a. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the

most current model.)

DeepSee Developer Tutorial 33

Adding a Listing to the Cube

b. Optionally create a simple pivot table.

c. Click a cell in the pivot table preview area.

d.

Click the Display Listing button .

The system displays something like the following:

Note: The system displays the first 1000 records by default. You can change this within the Analyzer.

If you instead get a message that listings are not supported, make sure that you saved and recompiled the cube.

4. Modify the listing to sort the records in a different way:

a. Access the Architect again.

b. Click the listing in the Model Contents area.

c. In the Details pane, enter the following into Order By:

age,homecity->name

d. Compile the cube.

When you do so, the Architect saves the cube.

5. Verify that the listing is now sorted by age, and then by city within age.

Display a listing as before. You should see something like this:

Scroll down to verify that patients are sorted by city within age.

34 DeepSee Developer Tutorial

Creating a Cube

3.6 Looking at the Fact and Level Tables

If you are responsible for creating cube definitions, it is useful to understand how DeepSee uses the cube definition to build

the tables that DeepSee uses directly: the fact table and level tables. In this section we examine these tables.

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

2. Click System Explorer > SQL.

3. Click the [Execute Query] tab.

4. Execute the following SQL query, which runs against the base table used by your cube:

select top 1 age,gender,homecity->name,primarycarephysician->lastname,
primarycarephysician->firstname, testscore from DeepSee_Study.patient

Make a note of the details:

5. In the left area, navigate to the table Tutorial_Cube.Fact.

6. Click Open Table.

The system displays something like the following:

This table is generated when you compile a cube and is populated when you build the cube. The fact table has one row

(called a fact) for each record that it used from the source table. In this case, each fact corresponds to one patient.

The first row in this table corresponds to the first row in the base table (who is 13 years old and who has a test score

of 88).

7. Note the following points:

• The %sourceId field indicates the ID of source record on which a fact was based.

• Each field with a name that starts Dx corresponds to a level that you defined. The fact table stores integers in these

fields, which refer to records in the level tables.

• Each field with a name that starts Mx corresponds to a measure that you defined. The fact table stores numbers

(rather than integers) in these fields, because that is the default type for measures.

• For some facts, the value of the MxTestScore field is null.

DeepSee Developer Tutorial 35

Looking at the Fact and Level Tables

8. Click Close window.

9. Navigate to the table Tutorial_Cube.StarGender.

10. Click Open Table. The system displays something like this:

This table contains the names of the members of the Gender level. The DxGender field of the fact table refers to the

rows in this table.

In your case, you might see Male before Female.

In this case, the Female member is first, because the first patient processed by the system is female.

When the system populates these tables, it iterates through the records in the base table. For each record, the system

looks at the definition of each level, determines a value, adds that value (if needed) to the corresponding level table,

and writes a lookup value into the level field of the fact table.

11. Click Close window.

12. Navigate to the table Tutorial_Cube.StarAge. The system displays something like the following:

The Age level is defined by the Age field of the base class; that value is shown in the DxAge column. This level has

a level property that is used to define the sort order for the level members; that value is shown in the Dx781900468

column.

The first record in this level table corresponds to the age of 13 years, the first patient processed by the system in this

example.

13. Click Close window.

14. Navigate to the table Tutorial_Cube.StarNameViaHomeCity. The system displays something like the following:

36 DeepSee Developer Tutorial

Creating a Cube

The City level is defined by the HomeCity->Name field in the base class; that value is shown in the

DxNameViaHomeCity column. This level has two level properties that are shown in the other columns.

The first record in this table is Magnolia, the home city of the first patient in the base table.

15. Click Close window.

16. Navigate to the table Tutorial_Cube.StarPrimaryCarePhysician. The system displays something like the

following:

The Doctor level is defined by the PrimaryCarePhysician field in the base class, which is a reference (OREF)

to an instance of the DeepSee.Study.Doctor class. The system converts the OREF to an integer and writes it into

the DxPrimaryCarePhysician column.

For this level, the member names are defined by a level property that concatenates the last name and first name, with

a comma between them. The value of this level property is stored in the Dx582175229 column.

The first doctor in this table is Quince, Marvin, the primary care physician of the first patient in the base table.

The name of the null doctor is a comma, but this name is never shown; instead, for this member, the system uses the

null replacement string that you specified.

Tip: To make the field names in these tables more useful, you can specify the option Field name in fact table for the

levels and measures that you define. Note that this option does not apply to time levels (discussed in the next

chapter), which have special internal handling.

DeepSee Developer Tutorial 37

Looking at the Fact and Level Tables

4
Expanding the Cube Definition

In the previous chapter, we created and tested a simple cube. In this chapter, we expand that cube to use more parts of the

Patient data and try more DeepSee features. This chapter discusses the following topics:

• Adding a level to a hierarchy

• Adding time levels

• Using collection properties

• Using replacements

• Accessing data in other tables

4.1 Adding a Level to a Hierarchy

So far, each dimension we have created has contained one hierarchy with one level. In this section, we add a level to the

hierarchy in the HomeD dimension.

1. In the Architect, add a level to the HomeD dimension as follows:

a. In the Class Viewer, expand HomeCity.

b. Drag PostalCode and drop it onto the H1 hierarchy within the HomeD dimension.

This step adds the new level PostalCode after the City level.

c. Click PostalCode.

d. In the Details pane, change Name to ZIP Code.

2. Compile the cube.

When you do so, the Architect saves the cube.

3. Build the cube.

4. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

5. Expand the HomeD dimension in the left. You should see the following:

DeepSee Developer Tutorial 39

6. Display the ZIP Code levels as rows. You should see something like this:

Notice that some members have the same name. It is sometimes correct to have multiple members with the same name.

In this case, however, it is an error, because ZIP codes are unique.

There are only two ways in which a level can have multiple members with the same name:

• The level name is based on a level property, which is not unique. (For an example, see the Doctor level that we

defined in the previous chapter.)

• The level has a parent level. When DeepSee creates members of a level, it considers not only the source property

or expression; it also considers the parent member.

In reality, there is a many-to-many relationship between ZIP codes and cities, so that neither is the parent of the other.

In the Patients sample, ZIP codes contain small cities as follows:

When we added the ZIP Code level, we placed it after the City level, which means that City is the parent of ZIP

Code. This affected how the system generated members for ZIP Code. For example, the system assumed that the

ZIP code 32006 of the city Juniper was not the same as the ZIP code 32006 of the city Spruce.

7. Go back to the Architect and correct the HomeD dimension.

a. Click the ZIP Code level.

b. Click the up arrow button.

c. Compile the cube.

When you do so, the Architect saves the cube.

40 DeepSee Developer Tutorial

Expanding the Cube Definition

d. Build the cube.

8. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

9. Expand the HomeD dimension in the left. You should see the following, which is now correct:

10. Display the ZIP Code levels as rows. Now you should see something like this, which is correct:

11. Double-click the row 34577. The system now displays the cities within this ZIP code.

12. Optionally do the following to see how this change has affected the fact and level tables.

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

c. In the left area, navigate to the table Tutorial_Cube.Fact.

Notice that this table now has the field DxPostalCodeViaHomeCity in addition to DxNameViaHomeCity.

That is, the fact table stores a value for each level, even the levels are related.

d. In the left area, navigate to and open the table StarNameViaHomeCity.

The system displays something like the following:

DeepSee Developer Tutorial 41

Adding a Level to a Hierarchy

Notice that now the table stores, for each city, the ZIP code to which that city belongs.

e. Close this table and navigate to the table Tutorial_Cube.StarPostalCodeViaHomeCity.

The system displays something like the following:

This level table is like the other level tables: one row for each level member.

4.2 Adding Time Levels

In this part of the tutorial, we add time levels to the cube.

The Patients class includes the patient’s birth date in several forms (so that you can try different formats with DeepSee):

Property BirthDate As %Date;

Property BirthDateTimeStamp As %TimeStamp;

Property BirthDateMV As %MV.Date;

DeepSee has built-in support for all three of these formats, as well as for $HOROLOG format and others (for details, see

Defining DeepSee Models).

The class also includes the patient’s birth time, as part of the BirthDateTimeStamp property or as the following property:

Property BirthTime As %Time;

The most flexible property is BirthDateTimeStamp, because it contains both the birth date and the birth time, so we

will use that as the basis for the time levels.

1. Access the Architect and display the Tutorial cube.

2. Click Add Element.

3. For Enter New Element Name, type BirthD.

4. Click Time Dimension.

5. Click OK.

The system creates a dimension, hierarchy, and level.

6. Make the following change to the dimension:

• Click the search button next to Property, click BirthDateTimeStamp, and click OK.

7. Make the following changes to the level:

• Rename the level to Year.

• For Extract value with function, select Year.

42 DeepSee Developer Tutorial

Expanding the Cube Definition

This option means that this level is based only the patients’ birth years.

8. Add another level as follows:

a. Click the hierarchy H1 in this dimension.

b. Click Add Element.

c. For Enter New Element Name, type Month Year.

d. Click Level.

e. Click OK.

The system creates a new level in the hierarchy H1, after the existing Year level.

9. For the Month Year level, make the following change:

• For Extract value with function, select MonthYear.

This option means that this level is based on the combined birth year and month.

10. Add another hierarchy and level to the BirthD dimension, as follows:

a. Click the dimension name.

b. Click Add Element.

c. For Enter New Element Name, type H2.

d. Click Hierarchy.

e. Click OK.

The system creates a new hierarchy and level.

f. For the new level, make the following changes:

• Rename the level to Time.

• For Extract value with function, select HourNumber.

This option means that this level is based on the time of day the patient was born.

11. Compile the cube.

When you do so, the Architect saves the cube.

12. Build the cube.

13. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

14. Try the new levels. You should see the following:

• When you expand Year in the left area, you see this:

DeepSee Developer Tutorial 43

Adding Time Levels

NOW is a special member that refers to the current year (in this context).

• The Month Year level also has a NOW member, which refers to the current year and month.

• When you use Year as rows, you should see something like this:

• When you use Month Year as rows, you should see something like this:

• When you use Time as rows, you should see something like this:

44 DeepSee Developer Tutorial

Expanding the Cube Definition

The system does not generate tables for time levels, which have special internal handling.

4.3 Using a Collection Property

You can create levels based on collection properties. Specifically, the system can directly use either a list of the type returned

by $LIST, %List, or a character-delimited list. If a collection property stores data in some other way, it is necessary to

extract the necessary data and create one of the supported types of lists.

The DeepSee.Study.Patient class has several collection properties, including Allergies and DiagnosesAsLB.

The DiagnosesAsLB property is defined as follows:

Property DiagnosesAsLB As %List;

The Allergies property is defined as follows:

Property Allergies As list Of DeepSee.Study.PatientAllergy;

This part of the tutorial shows you how to create levels and measures that use these properties:

1. Access the Architect and display the Tutorial cube.

2. Add a dimension, hierarchy, and level that uses the DiagnosesAsLB property, as follows:

a. Click Add Element.

b. For Enter New Element Name, type DiagD.

c. Click Data Dimension.

d. Click OK.

The system creates a dimension, hierarchy, and level.

e. Rename the level to Diagnoses.

f. While the level is selected, click the search button for Property, select the DiagnosesAsLB property, and click

OK.

g. For Source value is a list of type, click $LIST. This type refers to data that has the format returned by the $LIST

function or that has the type %List.

h. Save the cube class.

3. In the Architect, add a dimension, hierarchy, and level as before, with the following changes:

• The dimension name should be AllerD.

• The level name should be Allergies.

• Do not specify a value for Property.

There is no property that we can use directly. It will be necessary to extract the list of allergies via an expression.

• Specify the following value for Expression:

##class(Tutorial.Cube).GetAllergies(%source.%ID)

The system evaluates this expression once for each row in the fact table, when it builds the cube.

The variable %source refers to the current record. This expression gets the ID of the patient, invokes the utility

method (which we have not yet written), and returns a list of allergies for the patient.

DeepSee Developer Tutorial 45

Using a Collection Property

• Remember to select $LIST for Source value is a list of type.

Then save your cube class.

The next step will be to write this utility method.

4. Open Studio and access the SAMPLES namespace.

5. Open your cube class, Tutorial.Cube.

6. Add a method named GetAllergies(), as follows:

ClassMethod GetAllergies(ID As %Numeric) As %List
{
 Set allergies=##class(DeepSee.Study.Patient).%OpenId(ID,0).Allergies
 If (allergies.Count()=0) {Quit $LISTFROMSTRING("")}
 Set list=""
 For i=1:1:allergies.Count() {
 Set $LI(list,i)=allergies.GetAt(i).Allergen.Description
 }
 Quit list
}

Given the ID of a patient, this method returns a list of allergies of that patient, in the format expected by the level we

created.

The second argument of %OpenId() specifies the level of concurrency locking to use. Because we only need to read

data from the object, we specify this value as 0, which establishes no concurrency locking and thus runs more quickly.

7. Save and compile your cube class in Studio.

8. Add a measure that contains the number of allergies that a patient has. To do so, we use the Allergies property, as

follows:

a. Return to the Architect.

b. Click Add Element.

c. For Enter New Element Name, type Avg Allergy Count.

d. Click Measure.

e. Click OK.

The new measure is added to the table.

f. Click the measure in the Model Contents area.

g. For Aggregate, click AVG.

h. For Expression, enter the following:

##class(Tutorial.Cube).GetAllergyCount(%source.%ID)

We will have to write this method later.

i. Save the cube class in the Architect.

j. Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to

override the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can

edit in the Architect; that is, it does not override any methods you have added to the class.

k. In Studio, add the following method to your cube class:

ClassMethod GetAllergyCount(ID As %Numeric) As %Numeric
{
 Set allergies=##class(DeepSee.Study.Patient).%OpenId(ID,0).Allergies
 Quit allergies.Count()
}

46 DeepSee Developer Tutorial

Expanding the Cube Definition

l. Save and compile the cube class in Studio.

9. Rebuild the DeepSee cube.

To do this, you can return to the Architect and rebuild the same way that you did before.

Or you can open a Terminal window and enter the following command in the SAMPLES namespace:

 do ##class(%DeepSee.Utils).%BuildCube("tutorial")

Notice that the method uses the logical name of the cube (rather than the class name). Also notice that the cube name

is not case-sensitive.

10. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

11. Display the Diagnoses level as rows. You should see the following:

In your data, you might also see the epilepsy diagnosis, which is more rare.

You might instead see something like the following:

This occurs if you do not specify the appropriate type for Source value is a list of type.

12. Click New.

13. Display the new Allergies level as rows, and display the Count and Avg Allergy Count measures. You should

see something like the following:

DeepSee Developer Tutorial 47

Using a Collection Property

The nil known allergies member represents the patients who have no known allergies. Some medical information

systems use the following technique to record the fact that a patient has no known allergies:

• The system includes a special “allergen” called nil known allergies.

• A user of the system asks the patient whether he or she has any allergies, and if the answer is “No,” the user

selects the value nil known allergies.

DeepSee does not assign any special meaning to this string. The dimension treats this “allergen” in the same way as

any other allergen.

The null member (called None) represents the patients whose Allergies property is null. Because it is incorrect to

assume that these patients have no allergies, the name of this member is misleading. A better name would be No Data

Available.

Notice that the Avg Allergy Count measure is 0 for patients who belong to the null member. The Avg Allergy

Count measure should be null for these patients.

Also notice that the Avg Allergy Count measure is 1 for patients with no known allergies. This is because the

Allergies property does include the special nil known allergies allergen. The Avg Allergy Count

measure should be 0 for these patients.

Later in this section, we will correct the name of the null member and adjust our logic for the Avg Allergy Count

measure.

14. Return to the Architect.

15. Click the Allergies level.

16. For Null replacement string, specify No Data Available.

17. Save the cube class.

18. In Studio, edit the method GetAllergyCount() as follows:

48 DeepSee Developer Tutorial

Expanding the Cube Definition

ClassMethod GetAllergyCount(ID As %Numeric)
{
 Set allergies=##class(DeepSee.Study.Patient).%OpenId(ID,0).Allergies
 //check to see if patient has any recorded allergy data
 //if not, count is null

 If allergies.Count()=0 {
 Set allcount=""
 }
 //check to see if patient has "Nil known allergies"
 //in this case, the patient has one "allergen" whose code is 000
 Elseif ((allergies.Count()=1) && (allergies.GetAt(1).Allergen.Code="000")) {
 Set allcount=0
 }
 Else {
 Set allcount=allergies.Count()
 }

 Quit allcount
}

19. Save the cube class.

20. Compile the cube class in Studio or in the Architect.

21. Build the cube in the Architect.

22. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

23. Display the Allergies as rows, and display the Count and Avg Allergy Count measures. Now you should see

something like the following:

24. Optionally do the following to see how list-based levels are represented in the fact and level tables.

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

c. In the left area, navigate to and open the table Tutorial_Cube.Fact and scroll to the field DxDiagnosesAsLB.

DeepSee Developer Tutorial 49

Using a Collection Property

The system displays something like the following:

This field contains the diagnoses for the patients. Notice that it contains multiple values in some cases.

The table also displays the allergies level, perhaps like this:

The name of this field is less obvious, because it is generated, because the level itself is based on an expression.

Because this is another list-based level, it contains multiple values in some cases.

d. Now navigate to and open the table Tutorial_Cube.StarDiagnosesAsLB.

This level table is like the other level tables: one row for each level member.

The level table for allergies is similar: one row for each level member.

The method we used for Avg Allergy Count was fairly simple. Consider the following method:

50 DeepSee Developer Tutorial

Expanding the Cube Definition

ClassMethod GetScore(ID As %Numeric) As %String
{
 //get customer rating data & call duration from source record
 set call=##class(MyPackage.MyClass).%OpenId(ID,0)
 set professionalism=call.Professionalism
 set knowledge=call.Knowledge
 set speed=call.OpenDuration

 If ...
 //logic to check for nulls and combine these values into weighted overall score
 Quit score
}

You could use a method like this to define a measure that indicates an overall score.

4.4 Defining Replacements

In this part of the tutorial, we use options that transform the original values for levels into other values. Here we will use

the Age property of the patient. We will define levels that place patients into buckets that are larger than one year.

The Age Group level will have the following members:

• The 0 to 29 member consists of the patients who are less than 30 years old.

• The 30 to 59 member consists of the patients who are between 30 and 59, inclusive.

• The 60+ member consists of the patients who are older than 60 years.

Similarly, the Age Bucket level will have the members 0 to 9, 10 to 19, and so on.

1. Access the Architect.

2. Add another level to the AgeD dimension as follows. To do so:

a. Click the Age level. This ensures that the new level, which is less granular, will be added before the Age level.

b. Click Add Element.

c. For Enter New Element Name, type Age Group.

d. Click Level.

e. Click OK.

3. Redefine the new Age Group level to have a range expression, as follows:

a. Click the new Age Group level.

b. For Field name in fact table, specify DxAgeGroup

This will make it easier for us to see how the level definition affects the generated tables.

c. For Property, type Age.

d. Click the search button next to Range Expression.

The system displays a dialog box where you specify a set of replacements. Originally, this dialog box looks like

this:

DeepSee Developer Tutorial 51

Defining Replacements

For numeric data, for each replacement, you specify a range of original values, as well as a new value to use

instead.

e. Type 29 into To.

The button to the right of To is initially as follows:

f.

Click this button to change it to this:

g. Type 0 to 29 into Replacement Value. The result is as follows:

It does not matter which button is next to From, because no value is specified for the lower end of this range.

h. Click Add Replacement.

i. In the new row, click the toggle buttons next to From and To.

j. Type 30 into From and type 59 into To.

k. Type 30 to 59 into Replacement Value.

l. Click Add Replacement and add the final row so that the result is as follows:

52 DeepSee Developer Tutorial

Expanding the Cube Definition

m. Click OK.

The system closes the dialog box and displays a value in the Range expression field as follows:

This value shows the syntax that DeepSee uses internally to represent the replacements that you specified.

4. Save the cube.

For the Age Bucket level, we could use the same technique. Instead, however, we will use an alternative: a source

expression that converts an age in years into a string that corresponds to the appropriate ten-year bucket.

5. In Studio, open the class DeepSee.Model.PatientsCube.

6. Look at the definition of the method GetAgeBucket(), which is as follows:

ClassMethod GetAgeBucket(age As %Numeric) As %String
{
 If (age="") {Set return=""}
 ElseIf (age<10) {Set return="0 to 9"}
 ElseIf (age<20) {Set return="10 to 19"}
 ElseIf (age<30) {Set return="20 to 29"}
 ElseIf (age<40) {Set return="30 to 39"}
 ElseIf (age<50) {Set return="40 to 49"}
 ElseIf (age<60) {Set return="50 to 59"}
 ElseIf (age<70) {Set return="60 to 69"}
 ElseIf (age<80) {Set return="70 to 79"}
 ElseIf (age>=80) {Set return="80+"}
 Else {Set return=""}
 Quit return
}

Notice that the input to this method is just a number, rather than a patient identifier.

7. In the Architect, add another level to AgeD as follows:

a. Click the Age level. This ensures that the new level, which is less granular, will be added before the Age level.

b. Click Add Element.

c. For Enter New Element Name, type Age Bucket.

d. Click Level.

DeepSee Developer Tutorial 53

Defining Replacements

e. Click OK.

The new level is added just before Age, but after Age Group.

f. For Field name in fact table, specify DxAgeBucket

This will make it easier for us to see how the level definition affects the generated tables.

g. For Expression, enter the following:

##class(DeepSee.Model.PatientsCube).GetAgeBucket(%source.Age)

Note: In practice, you are more likely to include utility methods in a central location such as the cube class that

uses them (rather than some other cube as in this case). One point of this exercise is to demonstrate that you

can invoke any class method that is accessible in this namespace. Similarly, you can invoke any routine or

system function.

8. Save the cube.

Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to override

the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can edit in the

Architect; that is, it does not override any methods you have added to the class.

9. Compile the cube.

10. Rebuild the cube.

11. Access the Analyzer.

(If this is open on another browser tab, switch to that tab and click the DeepSee > Analyzer link to refresh with the most

current model.)

12. Display the new Age Group level as rows. You should now see something like the following:

13. Display the new Age Bucket level as rows. You should now see something like the following:

14. Examine one of the new level tables to understand what the system has done:

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

54 DeepSee Developer Tutorial

Expanding the Cube Definition

c. In the left area, navigate to and open the table Tutorial_Cube.Fact.

This table now has three fields to store the values for the levels of the AgeD hierarchy:

d. Navigate to and open the table Tutorial_Cube.DxAgeGroup.

The system displays something like the following:

The system used your range expression to create this data.

e. Open the table Tutorial_Cube.DxAgeBucket.

The system displays something like the following:

Because this level is not at the top of the hierarchy, it contains a reference, for each element, to the its parent

member in the Age Group level; see the DxAgeGroup column.

The system used the GetAgeBucket() method to create this data.

These two levels are defined in an equivalent fashion. That is, using the Range Expression option is equivalent to executing

your own method to provide a conversion. A method can include logic that is much more complex than simple replacements.

Consider the following method:

DeepSee Developer Tutorial 55

Defining Replacements

ClassMethod GetClassification(ID As %Numeric) As %String
{
 //get customer rating data & call duration from source record
 set customer=##class(MyPackage.MyClass).%OpenId(ID,0)
 set detail1=customer.Detail1
 set detail2=customer.Detail2
 set detail3=customer.Detail3
 ...

 If ...
 //logic to use these details and return a string, either "A", "B", or "C"
 Quit classification
}

You could use a method like this to populate a level that groups customers based on an algorithm that uses multiple pieces

of information about the customers.

4.5 Accessing Other Classes

The DeepSee Architect provides easy access to most of the properties within the base class, but we can use other properties,

as well, including properties of classes that you can access only via SQL. In this part of the tutorial, we use data in the

DeepSee.Study.PatientDetails class as levels in our cube.

The DeepSee.Study.Patient and DeepSee.Study.PatientDetails classes are not connected by a class property

and do not have any formal connection. Instead, both tables have a PatientID property, which connects them by convention.

That is, to find information for a given patient, you must find the records that have the same PatientID in these two

tables.

In this exercise, we examine the data in DeepSee.Study.PatientDetails, try various SQL queries, and wrap a query

in a method for use in defining a level. If you are more adept with SQL, you might want to skip some of the earlier steps.

1. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

2. Click System Explorer > SQL.

3. Click the [Execute Query] tab.

4. Execute the following query:

SELECT PatientID FROM DeepSee_Study.Patient

5. Make a note of one of the PatientID values, for future reference.

6. Execute the following query:

SELECT * FROM DeepSee_Study.PatientDetails WHERE PatientID='SUBJ_100301'

The system displays something like the following:

7. Execute the following query:

SELECT FavoriteColor FROM DeepSee_Study.PatientDetails WHERE PatientID='SUBJ_100301'

The system displays something like the following:

56 DeepSee Developer Tutorial

Expanding the Cube Definition

This query returns one value, the string Blue.

Now we need to write a class method that runs a similar query and returns the value obtained by the query.

This method will contain a query wrapped in &sql(). We need to make the following changes to the query:

• Instead of FavoriteColor, we must use FavoriteColor INTO :ReturnValue so that the returned value

is written to a host variable named ReturnValue.

• Instead of using 'SUBJ_100301', we must pass in the PatientID field of the base class.

After executing the embedded SQL, the method should check the variable SQLCODE, which is 0 only for a successful

query. The query would be unsuccessful if no record was found. In such a case, it would be appropriate to return an

empty string.

8. In Studio, add the following method to your cube class, Tutorial.Cube:

ClassMethod GetFavoriteColor(patientID As %String) As %String
{
 &sql(SELECT FavoriteColor INTO :ReturnValue FROM DeepSee_Study.PatientDetails WHERE
PatientID=:patientID)
 If (SQLCODE'=0) {
 Set ReturnValue=""
 }
 Quit ReturnValue
}

Note: There is an index on the PatientID field in DeepSee.Study.PatientDetails. This enables the query

to run more quickly than it would otherwise.

If an application does include tables that can be related most easily through SQL queries, as in this example,

it probably already has indices on the relevant fields. Whenever you write a method like this, however, you

should make sure that the appropriate indices exist.

9. Save and compile the class.

10. In the Terminal, test the method as follows:

SAMPLES>write ##class(Tutorial.Cube).GetFavoriteColor("SUBJ_100301")
Blue

11. Access the Architect.

12. Create a new dimension, hierarchy, and level, as follows:

a. Click Add Element.

b. For Enter New Element Name, type ColorD.

c. Click Data Dimension.

d. Click OK.

The system creates a dimension, hierarchy, and level.

e. Rename the level to Favorite Color.

f. For Field name in fact table, specify DxFavColor

This will make it easier for us to see how the level definition affects the generated tables.

DeepSee Developer Tutorial 57

Accessing Other Classes

g. For the level, type the following into Expression:

##class(Tutorial.Cube).GetFavoriteColor(%source.PatientID)

This expression is executed when you build the indices; see the notes about performance in the previous step.

13. Save the cube.

Because you have edited the class in Studio, the Architect displays a dialog box that asks whether you want to override

the stored definition. Click OK. The Architect overrides only the parts of the class definition that you can edit in the

Architect; that is, it does not override any methods you have added to the class.

14. Compile the cube.

15. Rebuild the cube.

The system executes your method and its embedded SQL once for each record in the base table.

16. Open the Analyzer and display the new level as rows. Now you should see something like the following:

17. Optionally open the level table for this level:

a. Access the Management Portal and go to the SAMPLES namespace, as described earlier.

b. Click System Explorer > SQL.

c. In the left area, navigate to and open the table Tutorial_Cube.DxFavColor.

The system displays something like the following:

58 DeepSee Developer Tutorial

Expanding the Cube Definition

5
Creating Subject Areas

A subject area is a subcube with optional overrides to names of items. You define a subject area to enable users to focus

on smaller sets of data, for security reasons or other reasons. This chapter discusses the following topics:

• Introduction

• Creating the subject areas

• Examining the subject areas

• A look at common filter expressions

5.1 Introduction

In this tutorial, we create two subject areas that divide the patient data by ZIP code. In the Patients sample, ZIP codes

contain small cities as follows:

We will create the following subject areas:

ContentsSubject Area Name

Patients who live in ZIP codes 32006, 32007, or 36711Patient Set A

Patients who live in ZIP codes 34577 or 38928Patient Set B

5.2 Creating the Subject Areas

To create the subject areas, do the following:

DeepSee Developer Tutorial 59

1. In the Architect, click New.

2. Click Subject Area.

3. For Subject Area Name, type Patient Set A

4. For Class name for the Subject Area, type Tutorial.SubjectA

5. For Base Cube, click Browse and select Tutorial

6. Click OK.

The system creates the subject area and saves the class.

You should see the following:

In the Architect, there is no user interface for defining a filter. Instead it is necessary to type a suitable filter expression

or to copy and paste one from the Analyzer.

7. In a separate browser tab or window, access the Analyzer and then do the following:

a. Expand HomeD.

b. Drop ZIP Code to the Filters box. This adds a filter box directly above the pivot table.

c. In that filter box, click the search button and then select 32006, 32007, and 36711.

Click the check mark.

This action filters the pivot table.

Important: Do not drag and drop 32006, 32007, and 36711 separately to the Filters box. Instead drag the

level as described and then select the members.

d.

Click the Query Text button .

The system then displays a dialog box that shows the MDX query that the Analyzer is using:

SELECT FROM [Patients]
%FILTER %OR({[HOMED].[H1].[ZIP Code].&[32006],[HOMED].[H1].[ZIP Code].&[32007],[HOMED].[H1].[ZIP
 Code].&[36711]})

e. Copy the text after %FILTER to the system clipboard.

f. Click OK.

60 DeepSee Developer Tutorial

Creating Subject Areas

8. In the Architect, click the line labeled Patient Set A.

9. In the Detail Pane, paste the copied text into Filter.

%OR({[HOMED].[H1].[ZIP Code].&[32006],[HOMED].[H1].[ZIP Code].&[32007],[HOMED].[H1].[ZIP
Code].&[36711]})

10. Click Save and then click OK.

11. Compile the subject area.

12. For the second subject area, repeat the preceding steps, with the following changes:

• For Subject Area Name, type Patient Set B

• For Class name for the Subject Area, type Tutorial.SubjectB

• Repeat the preceding steps with the other two ZIP codes. So, for Filter, use the following:

%OR({[HOMED].[H1].[ZIP Code].&[34577],[HOMED].[H1].[ZIP Code].&[38928]})

5.3 Examining the Subject Areas

Now we examine the subject areas that we have created. The numbers you see will be different from those shown here.

1.

In the Analyzer, click the Change button .

2. Click Patient Set A.

3. Click OK.

The Analyzer then displays the contents of the selected subject area.

Notice that the total record count is not as high as it is for your base cube:

4. In the Model Contents area, expand the HomeD dimension, ZIP Code level, and City level. You should see the fol-

lowing:

DeepSee Developer Tutorial 61

Examining the Subject Areas

5. Repeat the preceding steps for Patient Set B.

When you expand the HomeD dimension, ZIP Code level, and City level. You should see the following:

5.4 Common Filter Expressions

In this section, we experiment with common filters in the Analyzer and see their effect on the generated queries.

1. In the Analyzer, open the Tutorial cube.

The Analyzer refers to both cubes and subject areas as subject areas. The formal distinction between them is relevant

only when you are creating them.

2. Click New.

The Analyzer displays Count (a count of the records):

62 DeepSee Developer Tutorial

Creating Subject Areas

Before we add a filter, let us see how the query is currently defined, so that we have a basis of comparison.

3.

Click the Query Text button .

The system then displays a dialog box that shows the MDX query that the Analyzer is using:

SELECT FROM [TUTORIAL]

4. Click OK.

5. Expand ColorD and Favorite Color.

6. Drag and drop Orange to Filters.

The Analyzer now uses only patients whose favorite color is orange. It looks something like this:

7.

Click the Query Text button .

The system then displays the following query:

SELECT FROM [TUTORIAL] %FILTER [COLORD].[H1].[FAVORITE COLOR].&[ORANGE]

The %FILTER keyword restricts the query. The fragment after %FILTER is a filter expression:

[COLORD].[H1].[FAVORITE COLOR].&[ORANGE]

This filter expression is a member expression, because it refers to a member (the Orange member of the Favorite

Color level). A member is a set of records, and a member expression refers to that set of records.

Notice that this expression uses the dimension, hierarchy, and level names. The &[ORANGE] fragment refers to the

key of the Orange member. The Analyzer uses keys rather than names, but you can use either if the member names

are unique.

8. Click OK.

9. Add another color to the filter. To do so:

a. Click the X next to Orange in Filters.

This removes that filter.

b. Drag and drop Favorite Color to Filters. This adds a filter box directly above the pivot table.

c. In that filter box, click the search button and then select Orange and Purple.

d. Click the check mark.

This action filters the pivot table.

Important: Do not drag and drop Orange and Purple separately to the Filters box. Instead drag the level

as described and then select the members.

The Analyzer now looks something like this:

DeepSee Developer Tutorial 63

Common Filter Expressions

The system now uses only patients whose favorite color is orange or whose favorite color is purple. (Notice that

the count is higher than it was for orange alone.)

10. Display the query text again. Now you should see the following:

SELECT FROM [TUTORIAL]
%FILTER %OR({[COLORD].[H1].[FAVORITE COLOR].&[ORANGE],[COLORD].[H1].[FAVORITE COLOR].&[PURPLE]})

In this case, the filter expression is as follows:

%OR({[COLORD].[H1].[FAVORITE COLOR].&[ORANGE],[COLORD].[H1].[FAVORITE COLOR].&[PURPLE]})

The %OR function is an InterSystems optimization; the argument to this function is a set.

The set is enclosed by curly braces {} and consists of a comma-separated list of elements. In this case, the set contains

two member expressions. A set expression refers to all the records indicated by the elements of the set. In this case,

the set refers to all patients whose favorite color is orange and all patients whose favorite color is purple.

11. Click OK.

12. Use the filter drop-down list and clear the check box next to Purple.

Now the Analyzer uses only patients whose favorite color is orange.

13. Expand AllerD and Allergies.

14. Drag and drop mold to Filters, beneath Orange.

The Analyzer now looks something like this:

Notice that the count is lower than we saw using just Orange alone. This pivot table displays only patients whose

favorite color is orange and who are allergic to mold.

15. Display the query text again. Now you should see the following:

SELECT FROM [TUTORIAL]
%FILTER NONEMPTYCROSSJOIN([ALLERD].[H1].[ALLERGIES].&[MOLD],[COLORD].[H1].[FAVORITE COLOR].&[ORANGE])

In this case, the filter expression is as follows:

NONEMPTYCROSSJOIN([ALLERD].[H1].[ALLERGIES].&[MOLD],[COLORD].[H1].[FAVORITE COLOR].&[ORANGE])

The MDX function NONEMPTYCROSSJOIN combines two members and returns the resulting tuple. The tuple

accesses only the records that belong to both of the given members.

Now you have seen the three most common filter expressions:

member expression

When you use a member expression as a filter, the system accesses only the records that belong to this member.

64 DeepSee Developer Tutorial

Creating Subject Areas

You can write a member expression as follows:

[dimension name].[hierarchy name].[level name].&[member key]

Or:

[dimension name].[hierarchy name].[level name].[member name]

Where:

• dimension name is a dimension name.

• hierarchy name is a hierarchy name. You can omit the hierarchy name. If you do, the query uses the first level

with the given name, as defined in this dimension.

• level name is the name of a level within that hierarchy. You can omit the level name. If you do, the query

uses the first member with the given name, as defined within this dimension.

• member key is the key of a member within the given level. This is often the same as the member name.

• member name is the name of a member within the given level.

set expression

When you use a set of members as a filter, the system accesses the records that belong to any of the given members.

That is, the members are combined with logical OR.

You can write a set expression that refers to members as follows:

{member_expression,member_expression,member_expression...}

Where member_expression is a member expression.

tuple expression

When you use a tuple as a filter, the system accesses the records that belong to all of the given members. That is,

the members are combined with logical AND.

You can write a tuple expression as follows:

NONEMPTYCROSSJOIN(member_expression,member_expression)

Or:

(member_expression,member_expression)

For additional variations, see Using MDX with DeepSee and DeepSee MDX Reference.

DeepSee Developer Tutorial 65

Common Filter Expressions

6
Creating and Packaging Pivot Tables and

Dashboards

After creating one or more cubes, you typically create and package a set of initial pivot tables and dashboards, and users

typically create new pivot tables and dashboards as needed.

This chapter briefly leads you through the process of creating pivot tables and dashboards. It consists of the following steps:

1. Creating pivot tables

2. Creating a dashboard

3. Exporting and packaging these items

For much more information on creating pivot tables and dashboards, see Using the DeepSee Analyzer and Creating DeepSee

Dashboards.

6.1 Creating Pivot Tables

Earlier in this tutorial, we created a pivot table that uses the Patients cube. Now let us create pivot tables that use your new

cube.

1. Access the Analyzer.

2. Navigate to the Tutorial cube.

3. Expand the AgeD dimension in the Model Contents pane.

4. Drag and drop Age Group to Rows.

5.
Drag Age Bucket to Rows and drop it onto the Breakout Here button .

6. Drag and drop Count to Columns.

7. Drag and drop All Patients to Rows, at the bottom.

The Rows box now looks like this:

DeepSee Developer Tutorial 67

The pivot table is as follows:

8. Click Save.

The system displays a dialog box where you specify the pivot table name.

Save the pivot table and give it a name. Here, we are saving the underlying query that retrieves the data, along with

the information needed to display it the way you chose. We are not saving the data.

9. For Folder, type Tutorial

10. For Pivot Name, type Patients by Age Group

11. Click OK.

12. Create another pivot table as follows:

• For Rows, use Diagnoses

• For Columns, use Count and Avg Age

• For Folder, select or type Tutorial

• For Pivot Name, type Patients by Diagnosis

6.2 Creating a Dashboard

In this section we create a simple dashboard.

1. Click the DeepSee link at the top of the page.

2. Click Home,DeepSee,User Portal.

The system then displays the User Portal, which lists the existing public dashboards and pivot tables.

68 DeepSee Developer Tutorial

Creating and Packaging Pivot Tables and Dashboards

3. Click Menu > New Dashboard.

The system displays a dialog box that prompts you for basic information about the new dashboard.

4. For Folder, type or select Tutorial

5. For Dashboard Name, type Sample Dashboard

6. Click OK.

The system creates, saves, and displays the dashboard, which is initially empty.

Notice the > button on the left side of the dashboard.

7. Click the > button.

This step expands the Dashboard Editor, as follows:

DeepSee Developer Tutorial 69

Creating a Dashboard

8. Click Widgets.

This step displays a list of any widgets that this dashboard currently contains (none in this case).

9. Click the + button.

This step displays a dialog box where you can choose some initial options.

10. In the dialog box, click Pivots and Charts, if this is not already expanded. The list expands to show a list of choices.

11. In this list, click Table.

12.
Click the Search button next to Data source.

13. Click Tutorial and then click Patients by Age Group

14. Click OK to add this widget.

The system displays the dashboard like this:

70 DeepSee Developer Tutorial

Creating and Packaging Pivot Tables and Dashboards

15. Repeat the preceding steps to add the other pivot table that you created in the previous section.

The newly added widget is placed in the same default position (in the upper left) and therefore covers the previously

added widget.

16. Put the cursor into the title bar of the newly added widget and then drag this widget and drop it below the other widget.

You might want to leave space below the upper widget so that you can resize it.

17. Use the resize control in the lower right corner of each widget to resize it so that all rows are visible without scrolling.

DeepSee Developer Tutorial 71

Creating a Dashboard

18. Click Menu > Save.

The system saves the dashboard immediately.

19. Do the following to add some filter controls to this dashboard:

a. Open the Dashboard Editor.

b. Click Widgets.

c. Click the Patients by Age Group widget.

d. Click Controls.

The Dashboard Editor displays a list (currently empty) of any controls defined on the selected widget.

e. Click the plus sign button above the list.

The system displays a dialog box where you specify the control.

f. For Location, select Dashboard.

g. For Target, type *

h. For Action, select Apply Filter.

72 DeepSee Developer Tutorial

Creating and Packaging Pivot Tables and Dashboards

i. For Filter, select ZIP Code

j. For Control Label or Icon, type ZIP Code

k. Click OK to add the control.

Now the upper left corner of the dashboard is as follows:

20. Repeat the preceding steps to add the Allergies and Favorite Color filters.

Now the upper left corner of the dashboard is as follows:

21. Reconfigure these filter controls so that each one has a default value. To reconfigure the ZIP Code filter:

a. Open the Dashboard Editor.

b. Access the definition of the Patients by Age Group widget.

c. Click Controls.

d. Click the ZIP Code control.

e. For Default Value, type 32007 and click the check mark.

f. Click Done.

For Allergies, use the default value soy

For Favorite Color, use the default value blue

As you make these changes, the system automatically saves them.

22. Test the dashboard and verify the following:

• If you use the browser’s refresh button, each filter should show the correct default value.

DeepSee Developer Tutorial 73

Creating a Dashboard

• Each filter should affect both widgets.

6.3 Exporting and Packaging the Pivot Tables and

Dashboards

1. Click Menu > Management Portal.

If you do not see this option, you are currently logged in as a user without direct access to the DeepSee development

tools. In this case, log in again to DeepSee as described earlier in this book.

2. Click DeepSee > Admin > Folder Manager.

The system then displays the Folder Manager.

3. Scroll to the Tutorial folder, which should look something like this:

The column on the right indicates the Caché user who created these items; you may see different values there.

4. Click the check box to the left of Sample Dashboard. The left area of the page now lists the pivot tables used by

this dashboard:

Both of these pivot tables are in the same folder as the dashboard itself, which is not required.

5. Click the check box to the left of the two newer pivot tables as well.

6. For Directory, type the name of an existing directory to which you have write permission.

7. Click Export.

The system then writes three files to that directory.

74 DeepSee Developer Tutorial

Creating and Packaging Pivot Tables and Dashboards

You could use these files as a package for the items you have defined, but in the next set of steps, we will use a more

convenient approach.

8. In Studio, create a new class called Tutorial.DashboardsAndPivots. The class should extend

%DeepSee.UserLibrary.Container.

9. In the new class, add an XData block named Contents, as follows:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
</items>
}

10. Save the new class.

11. Copy the dashboard and pivot table definitions from your exported files into this XData block:

a. Use a text editor to open the dashboard file (Tutorial-Sample_Dashboard.xml), which looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial" name="Sample
 Dashboard" ...
...
</dashboard>

b. Copy the contents of this file, starting with the second line and ending at the end of the file. That is, do not copy

the first line, which is the XML declaration.

c. Paste the copied text into the XData block between <items> and </items>. Now you should see this:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
 <dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial"
name="Sample Dashboard" ...
 ...
 </dashboard>
</items>
}

d. Use a text editor to open one of the pivot table files, which has a similar structure (with <pivot> instead of

<dashboard>).

e. Copy the contents of this file, , starting with the second line and ending at the end of the file.

f. Paste the copied text into the XData block between </dashboard> and </items>. Now you should see

something like this:

XData Contents [XMLNamespace = "http://www.intersystems.com/deepsee/library"]
{
<items>
 <dashboard xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial"
name="Sample Dashboard" ...
 ...
 </dashboard>
 <pivot xmlns="http://www.intersystems.com/deepsee/library" folderName="Tutorial" name="Patients
 by Age Group" ...
 ...
 </pivot>
</items>
}

Note: You could instead insert the copied text between <items> and <dashboard>. The order of the items

has no effect on anything.

g. Repeat the preceding steps with the other pivot table file.

h. Save the class definition.

DeepSee Developer Tutorial 75

Exporting and Packaging the Pivot Tables and Dashboards

12. Return to the Folder Manager and refresh the page.

This clears any selections you may have made.

13. Click the check box next to each of the three items in the Tutorial folder.

14. Click Delete and then click OK to confirm.

15. In Studio, compile the class you just created.

When you do this, the system imports the dashboard and pivot table definitions contained in that class.

16. Return to the Folder Manager and refresh the page. Notice that the tutorial dashboard and pivot tables are available

again.

You can include as many dashboards and pivot tables as needed in a container class like this, and you can have multiple

container classes. There are no requirements to organize the dashboards and pivot tables in any particular way in these

container classes. For example, you do not need to place the pivot tables in the same container class as the dashboards that

use them. There is also no requirement to create these container classes at all.

76 DeepSee Developer Tutorial

Creating and Packaging Pivot Tables and Dashboards

