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Unemployment and Hysteresis: 

A Nonlinear Unobserved Components 

Approach1 

 

Silvestro DI SANZO*,Alicia PEREZ-ALONSO** 

Abstract 

A new test for hysteresis based on a nonlinear unobserved components model is proposed. 

Observed unemployment rates are decomposed into a natural rate component and a cyclical 

component. Threshold type nonlinearities are introduced by allowing past cyclical 

unemployment to have a different impact on the natural rate depending onthe regime of the 

economy. The impact of lagged cyclical shocks on thecurrent natural component is the measure 

of hysteresis. To derive anappropriate p-value for a test for hysteresis two alternative 

bootstrapalgorithms are proposed: the first is valid under homoskedastic errorsand the second 

allows for heteroskedasticity of unknown form. A MonteCarlo simulation study shows the good 

performance of both bootstrapalgorithms. The bootstrap testing procedure is applied to data 

fromItaly, France and the United States. We find evidence of hysteresis forall countries under 

study. 
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1 INTRODUCTION 

In the mid 1970’s European unemployment started a transition from rates in the order of 1-

2% to rates in the order of 10-15% in the 1990’s. More recently, according to Eurostat, the euro 
area seasonally-adjusted unemployment rate stood at 7.5% in September 2008. This 

experience reveals a slow tendency of actual unemployment to revert to a stable underlying 

unemployment rate, if any. Many theories have emerged to provide an economic explanation 

which could account for this observed unemployment persistence. Most of the work in the 

relevant literature assumes that it can be attributed to changes in the natural rate of 

unemployment and/or changes in the cyclical rate of unemployment. Based on this framework, 

two main approaches are the natural rate theory and the unemployment hysteresis theory. 

The first approach assumes that output fluctuations generate cyclical movements in the 

unemployment rate, which in the long run, will tend to revert to its equilibrium. The crux of the 

natural rate hypothesis is that the cyclical unemployment rate and the natural unemployment 

rate evolve independently. Hence, the tendency of the natural rate to remain at a high level is 

the result of permanent shocks on the structure of the labour market, whereas transitory shocks 

only cause a temporary deviation from a unique equilibrium, see Friedman (1968), Bean et al. 

(1987) and Layard et al. (1991). 

The second approach assumes that the cyclical unemployment rate and the natural 

unemployment rate do not evolve independently. The basic idea is that a change in the cyclical 

component of the unemployment rate may be permanently propagated to the natural rate (see 

Amable et al. 1995 and Roed 1997 for a survey). Therefore, a direct implication of the 

hysteresis hypothesis is that short-run adjustments of the economy can take place over a very 

long period. Consequently, aggregate demand policy, traditionally considered as ineffective in 

changing the natural rate of unemployment, can have a permanent effect on it. 

In this paper, we focus on the second approach. The concept of hysteresis is brought to the 

forefront of labour market theory through a paper by Blanchard and Summers (1986). They 

consider an insider-outsider model of wage bargaining between insiders and the firm with 

outsiders playing no role
2
.Given the presence of labour turnover costs, a shock that reduces the 

number of insiders one period raises the optimal insider-wage in subsequent periods, which 

prevents unemployed workers from being hired. In the particular casewhere insider status 

always coincides with current employment, employment follows a random walk. Based on this 

framework, a great number of empirical studies have investigated whether unemployment 

series, which is mainly modelled as a linear ARMA-type process, exhibits a unit root (see Roed 

1997 and references therein). However, this practice of checking for the presence of hysteresis 

using linear ARMA-type processes has an important shortcoming: natural and cyclical shocks 

are summarized in the innovation with no distinction. Given that hysteresis in unemployment 

arises when a change in cyclical unemployment induces a permanent change in the natural rate, 

the presence of a unit root in the unemployment rate, modelled as a linear dynamic system, 

could be generated by accumulation of natural shocks and be completely independent of 

                                                           

2
For further details on the insider-outsider theory of employment see Lindbeck and Snower (1988). 
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whether there is hysteresis. Hence, separating the respective effects of transitory and 

permanent shocks on the natural rate of unemployment is the only way to assess if changes in 

it are due to cyclical (this is the case of hysteresis) or natural shocks or both. So, we need an 

econometric model that discriminates between natural and cyclical sources of influence on the 

unemployment rate. 

Jaeger and Parkinson (1994, henceforth JP) put this idea into perspective and adopt an 

unobserved components model to test the validity of the hysteresis hypothesis
3
. They generate 

a pure statistical decomposition of the actual unemployment rate into a natural rate component 

and a cyclical component, which are both treated as latent variables. They also assume a 

particular structure to describe the variation over time of these latent variables. The hysteresis 

effect is introduced by allowing cyclical unemployment to have a lagged effect on the natural 

rate, which is assumed to contain a unit root. They only consider symmetric responses of the 

natural rate as regards cyclical unemployment fluctuations. Thus, they implicitly assume 

hysteresis is a linear phenomenon, and this assumption may be too restrictive. 

We propose an extended version of JP’s model introducing nonlinearities. There is a wide 
range of theoretical and empirical evidence that shows that the unemployment rate displays 

asymmetries in adjustment dynamics, and thus hysteresis may be characterized by nonlinear 

dynamics when it exists. Following, we look at some of the various explanations for the 

nonlinearity of the unemployment rate. Firstly, there are asymmetric adjustment labour costs, 

such as hiring and firing costs (see Johansen 1982, Bentolila and Bertola 1990, and 

Hamermesh and Pfann 1996). Secondly, there is asymmetry in job creation and destruction, for 

instance, Mortensen and Pissarides (1993) emphasize the time it takes for a firm to find a good 

match to explain why jobcreation takes longer than job destruction. Similarly, Caballero and 

Hammour (1994) develop a model in which jobs are destroyed at a higher rate during 

recessions than expansions. Finally, Bean (1989) stresses asymmetry in capital destruction. 

The theoretical arguments stressing the nonlinearity of unemployment have been matched by 

plenty of empirical evidence. Using nonparametric techniques, the seminal paper of Neftci 

(1984) finds unemployment rises to be sudden, and falls to be gradual; see also Sichel (1989) 

and Rothman (1991). Various parametric nonlinear time series models of unemployment have 

also been estimated in the literature by Hansen (1997), Bianchi and Zoega (1998), Koop and 

Potter (1999), Papell et al. (2000), Caner and Hansen (2001), Skalin and Teräsvirta (2002), 

Coakley and Fuertes (2006), Caporale and Gil-Alana (2007), among others. All these studies 

assume Markov-switching, threshold or smooth transition specifications. 

This theoretical and empirical evidence suggests that any satisfactory model for the 

unemployment rate has to be able to account for nonlinearity. The contribution of this paper is to 

extend JP’s model by introducing nonlinearities using a threshold autoregressive (TAR) model
4
. 

In particular, we allow past cyclical unemployment to have a different effect on the natural rate, 

which depends on the regime of the economy. We consider two regimes reflecting favorable 

and unfavorable times, which have been defined based on previous changes in unemployment. 

We choose this particular form of nonlinearity because TAR models are the most widely used 

class of models in the nonlinear time series literature on the dynamics of unemployment, given 

                                                           

3
See Harvey (1989) for a detailed description of the Unobserved Component models. 

4
For an extensive discussion of TAR models we refer to Tong (1990). 
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that they can exhibit the type of dynamic asymmetries that theoretical models suggest, and are 

computationally easy to work with (see references above). Furthermore, Petruccelli (1992) 

shows that threshold specifications may be viewed as an approximation to a more general class 

of nonlinear models. We propose a test for assessing the presence of regime specific 

nonlinearity within the phenomenon of hysteresis when it exists. The relevant null hypothesis is 

a one-regime model against the alternative of two regimes, i.e. the null hypothesis of linearity is 

tested against a threshold alternative. Testing for threshold type nonlinearities raises a 

particular problem known in the statistics literature as hypothesis testing when a nuisance 

parameter is not identified under the null hypothesis (see, Davies 1977 and 1987, Andrews and 

Ploberger 1994, Chan 1990, and Hansen 1996). If the model is not identified under the null, the 

asymptotic distribution of classical tests is unknown, so tabulated critical values are unavailable. 

To circumvent this problem, we use bootstrap methods to approximate the null distribution of 

the test statistic. More precisely, we use the resamplingalgorithm proposed by Stoffer and Wall 

(1991) for linear state-space models. Finally, we use this bootstrap testing procedure to check 

for the presence of hysteresis in Italy, France and the United States. 

The rest of this paper is organized as follows. Section 2 briefly describes JP’s model and 
proposes an extended version that introduces hysteresis allowing for threshold type nonlinearity. 

Section 3 proposes two alternative bootstrap procedures to compute the p-value for a linearity 

test under our hysteresis model. Empirical results for Italy, France and the United States are 

presented in Section 4. The conclusion is provided in the last section. Appendix A discusses the 

design of the Monte Carlo experiments that are used to investigate the small sample 

performance of the bootstrap version of the test statistic, and presents the results of some 

limited simulations. Estimation methods are relegated to Appendix B. Appendix C contains all 

the tables and figures. 

2 AN EXTENSION OF JAEGER AND PARKINSON’S MODEL 

JP propose a pure statistical decomposition of the unemployment rate to evaluate the data 

for evidence on hysteresis effects. They assume the actual unemployment rate to be the sum of 

two unobservable components: a non-stationary natural rate component,  , and a stationary 

cyclical component,   , 

 

The natural rate component is defined as a random walk plus a term capturingpossible 

hysteresis effects, 

 

Coefficient  measures, in percentage points, how much the natural rate increases if the 

economy experiences a cyclical unemployment rate of 1.0 percent. The size of this coefficient is 

their measure of hysteresis. 

The cyclical component of the unemployment rate is defined as a stationary second-order 
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autoregressive process5, 

 

To identify the model, the system is completed by augmenting it with a version of Okun’s 
law, which relates cyclical unemployment and output growth, 

 

where   stands for the output growth rate at date 6. Equation (2.4) defines the output 

growth rate as an autoregressive process of order one plus a term capturing the influence of the 

cyclical rate of unemployment. Since the cyclical component is assumed to be stationary, we 

consider    instead of     as in JP’s model in order to avoid a problem of over-differentiation. 

The disturbances    ,     and     are assumed to be mutually uncorrelated shocks, which are 

normally distributed with variances    ,     and    , respectively. 

To test the hysteresis hypothesis, i.e. past cyclical movements on unemployment have a 

permanent impact on the natural rate, JP perform a significance test on parameter , 

 

If parameter  is significantly different from zero, they argue there existsa hysteresis effect 

on the unemployment rate. Note that JP's model is lineargiven that past cyclical unemployment 

changes have the same impact, in absoluteterms, on the natural unemployment rate. For 

example, a variation inthe cyclical component of 1% or (-1)% causes a variation in the natural 

rateof   or (    , respectively. 

Relaxing the linearity assumption may allow a better estimation of hysteresis if it exists. It is 

widely acknowledged that the unemployment rate displays asymmetries in adjustment dynamics. 

In particular, fast-up, slow-down dynamics. As pointed out in the introduction, among the 

multitude of alternative nonlinear models available, we choose the class of models with TAR 

dynamics. Hence, to relax the assumption of linearity, we introduce threshold type nonlinearities 

into JP’s model. These are introduced by allowing past cyclical unemployment to have a 
different impact on the natural rate, which depends on the regime of the economy. To that end, 

equation (2.2) becomes 

 

where      is the threshold variable assumed to be stationary,   stands for the threshold 

parameter and    is the usual indicator function taking the valueone when holds and zero 

otherwise. Equations (2.1), (2.3) and (2.4) remain the same together with assumptions about 

shocks. 

This model is estimated via maximum likelihood (ML) in the frameworkof the Kalmanfilter7. 

More precisely, we employ a modified Kalman filter to incorporate a deterministic cut-off of the 

sample that corresponds to araw indicator for favorable and unfavorable periods, which is 

based on themethodology implemented for the estimation of TAR models. We choose thelong 

                                                           

5
To select the order of the autoregressive process, the Akaike and Schwarz information criteria and the diagnostic 

checking tests proposed by Harvey (1985) are employed. As in JP, we find that an AR(2) process for the cyclical 
component fits the data well for all the countries under study. 
6
Our results regarding the nature of the hysteresis phenomenon are rather stable even when the model is estimated 

using different identification equations such as the Phillips curve and the Beveridge curve. 
7
See Appendix A for a detailed description of this estimation methodology. 
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difference          with     {   }as our threshold variable    . This variable is an indicator of 

the state of the economy to identify the regimes. The integer   is called the threshold delay lag. 

Whether the threshold variable is lower or higher than the threshold parameter   determines 

whether an observation belongs to one regime or the other. We consider an economy with two 

regimes, one related to high long differences (regime 1), i.e. an unfavorable regime, and the 

other with low long differences (regime 2), i.e. a favorableregime. Parameters  and   are 

unknown so they are estimated along with the other parameters of the model. The maximization 

is best solved through agrid search over the two-dimensional space     . To execute a grid 

search weneed to fix a region over which to search. It is important to restrict the set ofthreshold 

candidates a priori so that each regime contains a minimal numberof observations. For each 

value of , we restrict the search to values of lying on *   +, where   is the  th quantile of     , 

and   is the      th quantile. In our applications we choose       . Then we estimate the 

model for each pair       belonging to the grid    *   +    {   }  and retain the one that 

provides the highest log-likelihood value. 

In this framework, we want to test the null hypothesis of a linear modelversus the alternative 

of a nonlinear one, that is: 

 

If we reject    (the null of linearity), there is evidence for the presence of hysteresis in the 

unemployment rate, which displays a nonlinear behaviour. This finding is consistent with cyclical 

shocks being propagated asymmetrically to the natural rate. In this case, JP’s model is 
misspecified and any inference based on the parameters of their model may lead us to wrong 

conclusions. If it is not rejected, the next step is to estimate the linear model proposed by JP 

and test for hysteresis following the strategy they propose. If we reject     , the natural rate 

component is affected by movements in the cyclical componentand thus hysteresis in 

unemployment occurs. If it is not rejected, there is noplace for hysteresis. 

Here we propose a Wald type test statistic for testing  . Note that under this null hypothesis 

the threshold parameter given by   and the delay   remain unidentified. As a result, the 

asymptotic distribution of conventional test statistics is not   . This is a well-known problem in 

the literature on testingfor regime switching type of nonlinearities; here we test for a single 

regimeagainst the alternative of two regimes. This problem is usually handled byviewing the test 

statistic as a random function of the nuisance parametersand basing inference on a particular 

functional of the test statistic such as,for instance, its supremum over      (see, Davies 1977 

and 1987, Andrews and Ploberger 1994, Chan 1990, and Hansen 1996). Letting W     denote 

the Wald type test statistic obtained for each      , we base our inferences on                       . To our knowledge the null asymptotic distribution of SupW is unknown under 

the above framework. To circumvent this problem,we suggest using bootstrap methods to 

approximate the sampling distributionof SupW under   .. 
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3 TESTING FOR LINEARITY 

As the asymptotic distribution of the SupW test statistic is unknown in thepresent framework, 

in this section we discuss two bootstrap methods to calculatep-values. As a general rule, 

resampling should always reflect the nullhypothesis, according to Hall and Wilson (1991). Under 

the null hypothesis oflinearity we have JP's model, and Stoffer and Wall (1991) establish the 

validityof a resampling scheme for the innovations sequence of linear state-spacemodels. Other 

work using the bootstrap to study the problem of testing forlinearity includes Hansen (1999), 

Caner and Hansen (2001) and Hansen andSeo (2002). 

To approximate the sampling distribution of the SupW test statistic, wesuggest using either 

a parametric residual bootstrap, or alternatively a wildbootstrap. The parametric residual 

bootstrap requires a complete specificationof the model under H0.This is JP's model but relaxing 

the strong assumptionthat the error terms are normally distributed. While the assumptions of 

themodel also include homoskedasticity, we do not think that it is prudent toimpose this 

condition when constructing test statistics. It is therefore desirableto calculate a bootstrap 

distribution of SupW allowing for the possibility oferror terms with an unknown pattern of 

heteroskedasticity. The disadvantageof the parametric residual bootstrap is that if the pattern is 

unknown, it cannotbe imitated in the bootstrap data-generating process under H0.A 

techniqueused to overcome this difficulty is the so-called wild bootstrap proposed byWu (1986) 

and developed by Liu (1988). 

The finite sample performance of the test statistic obtained from the twobootstrap 

algorithms is investigated with Monte Carlo experiments in AppendixA. The simulation results 

suggest that the bootstrap test statistic worksquite well concerning size and power in our 

framework. Of course, we have noguarantee that it works in general. 

3.1 The state-space model 

The state-space model is defined by the equations 

 

where                     is a vector of unobserved state variables and           is a 

vector of observed variables. Equation (3.1) is known as the transition equation and equation 

(3.2) is known as the measurement equation.The coefficients of the model are stored in the 

constant matrices 

 

The vectors                 and             represent white noise processes with                       and           , where 
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Note that under the null hypothesis of linearity         . To simplify the notation, let                            be the vector with the model coefficients and the correlation 

structure under   , and                               be the vector of parameters under the 

alternative of nonlinearity. 

3.2 Two bootstrap algorithms 

The first algorithm we propose is the parametric residual bootstrap (RB). It consists of the 

following steps: 

Bootstrap I (RB) 

Step 1 

We compute the SupW test statistic. To compute it we need only to estimate the model 

under   . For each given value of         , let  ̂       denote the ML estimate of   . We 

compute the pointwise Wald test statistic as          ̂      (    ̂ ( ̂      )   )     ̂        , where   is the selector matrix                       and    ̂ ( ̂      )  is the robust variance-covariance matrix estimator 

proposed by White (1982). Davies (1977, 1987) suggest testing    by                      . 
 

Step 2 

We use the Kalmanfilter to construct the standardized residualsunder   . We first obtain 

linear forecasts of the state vector at time based on all the available information up to time   , 

say       ,and the mean square error matrix associated with each of these forecasts, say      . 

We also obtain from the Kalmanfilter the innovations                   , the innovations 

covariance matrix ∑              , the Kalman gain matrix            ∑      and the 

updating of the state variable                 . We also derive the innovations form 

representation of the observations as 

 

Let  ̂  denote the ML estimate of   . Evaluating          and      at  ̂ , we obtain   ̂   ̂   ̂  
and  ̂   . We construct the standardized residuals by setting     ̂       ̂. By using standardized 

residuals, we guarantee that all model residuals have, at least, the same first two moments. 

 

Step 3 

The bootstrap errors {           } are independent values obtainedby resampling, with 

replacement, from the set of standardized residuals{          }. 
 

Step 4 

To construct the bootstrap data set under  , say {           } we use equations (3.3) 

and (3.4). Let  ̂  ̂ and  ̂ be the matrices of coefficients evaluated at ̂ , and       contains 

the first 3 values of the state variables (thus, these are prespecified and set equal to the initial 
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conditionsfor the Kalmanfilter). The remaining elements of the vector       are constructed by 

computing a first-order autoregressive process given by (3.3): 

 

The vector   is constructed by computing a first-order autoregressive process,with initial 

conditions fixed at the observed values, and then by adding theresults to the corresponding 

elements of      . That is, the row tth of y isgiven by (3.4): 

 

All initial conditions are kept fixed throughout the bootstrap replications. 

 

Step 5 

The bootstrap sample {           } is then used to calculate the statistic SupW* using the 

same procedure as to calculate SupW on theactual series. 

 

Step 6 

Repeating steps 3 through 5 for    , …, B, gives a sample{              } of SupW 

values. This sample mimics a random sample of draws of SupW under  . We compute the 

bootstrap p-value as                      , that is the fraction of       values that 

are greater than the observed value SupW. We carry out B = 1000 bootstrap replications. 

The wild bootstrap (WB) is an alternative way of obtaining the bootstrapdistribution of the 

SupW test statistic allowing for the possibility ofheteroskedasticity of unknown form. This 

bootstrap algorithm differs fromthe former in the resampling scheme of the residuals and in the 

use of a (conditionally) fixed design on the regressors to obtain the bootstrap data set. 

 

Bootstrap II (WB) 

Step 3’ 
To construct the wild bootstrap errors{ ̃          }, we firstgenerate   independent and 

identically distributed random variables from a fixed distribution, such that         and                . 8 We next define  ̃     ̂  , where   ̂  is the tthnon-standardized residual 

calculated in step 2. Thus, the errors ̃   satisfy     ̃     ,     ̃      ̂   and     ̃      ̂  , where       denotes the expectation under the bootstrap distribution. 

 

Step 4’ 
To construct the bootstrap data set{ ̃          }: 

I. Set the initial condition        and, for        , set  ̃        ̂     , that is, 

unobserved bootstrap components are generated with conditionally setdesign on 

the estimated unobserved components in step 2: ̃        ̂ ̂       ̂ ̂  ̃  . 
II. Using a conditional resampling on               , derive  ̃    ̂ ̃        ̂      ̃          . 

                                                           

8
In particular, the variable    was sampled from Mammen’s (1993, p.257) two-pointdistribution attaching masses    √      and    √     at the points–  √       and  √      , respectively. 
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4 EMPIRICAL RESULTS 

Our study concerns Italy, France and the United States. The economic seriesemployed are 

the quarterly unemployment rate (U) and real gross domesticproduct (GDP). Data for Italy 

(1970:1-2007:2) come from Prometeia, and data for France (1978:1-2007:2) and U.S. (1965:1-

2007:2) come from OECD Main Economic Indicators. All data are obtained as seasonally 

adjusted and all the variables exept the unemployment rate are in natural logs. 

We have decomposed the unemployment rate assuming that the natural rate contains a unit 

root. This assumption must be tested. We employ the methodology proposed by Caner and 

Hansen (2001) to test for a unit root in a single-equation two-regime TAR model. They restrict 

their analysis to univariate time series. Therefore, we adapt their method to our framework of 

state-space models by mimicking the method. We obtain that the unemployment rate series 

displays a non-stationary behaviour for all countries. We perform an augmented Dickey-Fuller 

(ADF) unit root test for the GDP series, which also displays a non-stationary behaviour for all 

countries. Results are presented in Table 1. 

Tests for hysteresis are reported in Table 2. The p-values presented in Table 2 are 

calculated following the bootstrap technique described in Section 3. For comparison reasons, 

we also report the p-values obtained with the linear model of JP. Diagnosis checking of the 

residuals of the linear model leads us to implement a wild bootstrap for the U.S. and a 

parametric residual bootstrap for France and Italy. According to bootstrap p-values, the 

hysteresis effect is significant at the 1% level for all countries. As argued in Section 2, under the 

presence of nonlinearity, JP’s model may lead to obtain spurious inference results. In fact, note 
that JP’s methodology fails to detect hysteresis for the case of Italy, France and U.S.. 

Results concerning the estimated models for Italy, France and U.S. are available in Table 3. 

For the case of Italy, the ML estimate of the threshold parameter is ̂      with a 90% bootstrap 

confidence interval [0:023; 0:247].Our estimate of the delay parameter is  ̂   . Hence, the 

threshold model splits the regression into two regimes depending on whether or not the 

threshold variable is higher than this threshold parameter. That is, we consider we arein regime 

1 when             and in regime 2 when             .  

ForItaly, there are less observations in regime 1 (41%) than in regime 2 (59%), which 

means that this country spent more periods of time in the favorableregime. This is also the case 

for U.S. and France. Analyzing the estimated hysteresis parameter, we observe a point of great 

interest. Both parameters are positive and the one associated with Regime 1 is greater than that 

of Regime 2. This points to asymmetric responses of the natural rate as regards cyclical 

unemployment movements in the following direction: the natural rate does not decrease in 

favorable cyclical periods as much as it increases in unfavorablecyclical periods. The size of the 

coefficients suggests that this mechanism ismore pronounced in France than in U.S. and Italy. 

In fact, for Italy, the natural rate decreases (2.512%) in unfavorable periods, while cyclical 

shockshave an impact of (1.476%) in favorable periods. In the U.S., these values are (1.343%) 

and (0.562%), respectively. On the other hand, for France, we find(3.540%) and (1.570%), 

respectively. 

In Figures 1-3, the estimate of the natural rate is depicted against the recessionary periods 

for each country. Apart from the U.S., for which the NBER Business Cycle Dating Committee 

has been dating expansion and recessions, which have been generally recognized as the 

official U.S. business cycle dates, there is no widely accepted reference chronology of the 
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classical business cycle for other countries. To overcome this problem, we date the turning 

points by using the dating algorithm of Harding and Pagan (2002) that isolates the local minima 

and maxima in a quarterly series, subject to reasonable constraints on both the length and 

amplitude of expansions and contractions. For the U.S., periods of increasing natural rate 

correspond to, but generally lag, the NBER recession periods. This is consistent with the 

classification of the unemployment rate as a lagging indicator at troughs. 

Our findings have three important implications. Firstly, our empirical evidence supports 

theoretical models of hysteresis that describe it as a nonlinear phenomenon (see Bentolila and 

Bertola 1990, and Caballero and Hammour 1994 among others). As we pointed out in the 

introduction, in these models, hysteresis arises when cyclical shocks are propagated 

asymmetrically to the natural rate. Secondly, since statistical linear models are not able to de-

scribe the dynamic asymmetries of the unemployment rate, nonlinear models are needed to 

correctly represent and test hysteresis phenomena. Here, JP’s hysteresis test may lead to 
obtain misleading inference results. Thirdly, our results are important for policy-makers. When 

hysteresis is present in the labour market, monetary policies, traditionally considered as 

ineffective, can be used to combat unemployment without immediate inflationary consequences. 

This evidence is in contrast with non-accelerating inflation rate of unemployment (NAIRU) 

models where shocks are not long-lived, and thus the unemployment rate reverts back to its 

underlying equilibrium level (see Friedman 1968). 

5 CONCLUSIONS 

In this paper we propose a new test for hysteresis based on a nonlinear unobserved 

components model. We extend the model of Jaeger and Parkinson (1994) by introducing 

threshold type nonlinearities into the specification of the natural rate component. We do this by 

allowing past cyclical unemployment to have a different effect on the current natural rate 

depending on the regime ofthe economy. Under this framework, a test on the hysteresis 

parameter implies to perform a test for linearity. In particular, the null hypothesis of interest is 

that of a one-regime model versus the alternative of two regimes. Testing for the presence of a 

threshold effect involves nuisance parameters which are not identified under the null hypothesis 

of linearity, so the asymptotic distribution of standard tests is unknown under the null, precluding 

tabulation of critical values. We rely on bootstrapping techniques to calculate an appropriate p-

value for the test statistic. In particular, we propose two bootstrap procedures: the first is valid if 

the errors are homoskedastic and the second allows for general forms of heteroskedasticity. To 

assess the usefulness of the bootstrap test for linearity, finite sample results are reported in a 

simple Monte Carlo study. Our study concerns Italy, France and the United States. The 

empirical results show that the presence of hysteresis cannot be rejected for all the countries 

under study. 

 

  



 

  

 

16 
 

A. MONTE CARLO EVIDENCE 

In this section we report on a Monte Carlo simulation study designed to evaluatethe small 

sample performance of both bootstrap procedures in the problemof testing for linearity. We start 

with a brief description of the design of theexperiment, then proceed with the discussion of the 

results. 

Design of the experiment 

The time series considered in our analysis are generated according to the state-

spacemodel given by equations (3.1) and (3.2), under the null and the alternativehypotheses. 

Let    and    denote the class of linear and nonlinearstate-space models, respectively. Thus, 

in our experiments we use    and   as data-generating processes (DGPs) 

with                       , where 

 

We aim at testing the null hypothesis of linearity. As discussed at the endof Section 2, the 

null hypothesis is true if and only if     . Hence,    is nested in   . We use the statistic 

SupW based on an estimated   setting    , and compute the p-value using both the residual 

bootstrap and the wild bootstrap. The size of the test is investigated when the data are 

generatedaccording to   , while turning to the power properties of the test under  . 

To ensure the relevance of the simulations, the parameter values are chosento correspond 

to models that have been fitted successfully to real-worldtime series. More specifically, we 

choose the estimated parameters for theU.S. obtained by JP as the DGP under the null 

hypothesis       . AsDGP under the alternative hypothesis, we use the estimated model for 

U.S.              . That is, respectively, 

 

To study the effect of the size of the difference      on the performance of the test, we 

vary  between (1:062; 1:562); while  remains constant at its fixed value. Each of these values 

gives rise to             and           , respectively. 

The experiments proceed by generating artificial series of length     according to    or    with      , and initial values set to zero.  

Wethen discard the first 50 pseudo-data points in order to attenuate the effectof initial 

conditions and the remaining   points are used to compute the teststatistic. We simulate the 

proportion of rejections of the test at the 5%; 10%and 20% significance levels. The estimation of 

the rejection probabilities iscalculated from       bootstrap replications and       

simulation runs.The processing time becomes excessive when greater values of   or   are 

used. 
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Simulation results 

In Table 4 we present simulation evidence concerning the empirical size andpower of the 

test under both RB and WB. We observe a reasonable approximationof the nominal level at all 

significance levels considered. Deviationsfrom the null hypothesis are detected with high 

probability across the variousparameterizations. We observe that in all cases under 

consideration the testbased on the wild bootstrap approach yields slightly lower rejection 

probabilitiesthan the residual bootstrap test. Thus, with homoskedastic errors, thepenalty 

attached to using the wild bootstrap is very small. As expected, theperformance of both 

bootstrap procedures improves as the difference betweenthe values of parameters in the two 

regimes increases. 

B. ESTIMATION PROCEDURES 

In this appendix we present different filters that have been proposed in the relevant 

literature for estimating the sort of model described in Section 2.Firstly, we examine the 

Kalmanfilter, which allows us to estimate JP's model.Secondly, we introduce the threshold 

Kalmanfilter, which is a Kalmanfiltermodified to include a threshold state equation. 

The Kalman filter 

In 1960, R.E. Kalman published a famous paper describing a recursive solutionto the 

discrete data linear filtering problem. Since that time, greatly dueto advances in digital 

computing, the Kalmanfilter has been the subject ofextensive research and applications, 

particularly in the area of autonomous orassisted navigation. 

The Kalmanfilter is a set of mathematical equations that provides an efficient recursive 

computational procedure for estimating the state of a process,in a way that minimizes the mean 

squared error (MSE)9. The filter is verypowerful in several aspects: it supports estimations of 

past, present, and evenfuture states, and it can do so even when the precise nature of the 

systemmodelled is unknown. 

To start with, consider an       vector of observed variables at date  ,   . 
These observable variables are related to a possibly unobserved       vector  , known as 

the state vector, via a measurement equation, 

 

where    and    are matrices of parameters of dimensions       and      ,respectively;   is a       vector containing exogenous or lagged dependentvariables, 

and   is an      white noise disturbance vector with           for   , and   otherwise. 

Despite the fact that the variables of    are, ingeneral, not observable, they are known to be 

generated by a first-order Markovprocess, 

 

where   and    are matrices of parameters of dimensions      and      , respectively. 

                                                           

9
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The       vector    is a white noise disturbance vector with            for    , and   

otherwise. Equation (B.2) is known as thetransition equation. 

The disturbances   and   are assumed to be uncorrelated at all lags, i.e.           for all   and  . 

Further assumptions on measurement and transitiondisturbances are as follows: i) they are 

uncorrelated with the exogenousvariables; ii) they are assumed to be normally distributed in 

order to calculatethe likelihood function. 

The state-space form that represents the dynamics of the univariate timeseries   is 

composed of equations (B.1) and (B.2). There are two sets ofunknowns: the parameters of the 

model  ,   ,  ,  ,    and   (these matrices will be referred as the system matrices), and the 

elements of thestate vector  . We will assume for now that the particular numerical valuesof the 

system matrices are known. The goal of the Kalmanfilter procedureis to form a forecast of the 

unobserved state vector at time   based on theinformation at date    . The information set at 

time    is given by matrix                                             . Let  ̂      denote the linear 

forecast of the state vector   based on          , and        denote the MSE matrix associated 

with this forecast. 

Given that the filter is a recursion, it is started assuming initial valuesfor the mean and 

variance of the state variables,  ̂    and     , respectively. We can therefore conduct the 

Kalmanfilter in four major steps. Firstly, wecalculate the one-period-ahead forecast of the 

unobserved state vector and itsassociated MSE at    : 

 

Secondly, we calculate the one-period-ahead forecast of the measurementvariable at   : 

 

Thirdly, once the new observation   becomes available at date  , we calculatethe innovation 

and the innovation covariance matrix: 

 

Finally, we update the state estimate and the estimate MSE: 

 

where                is known as the Kalman gain matrixsince a certainfraction of the 

difference between the observed and the predicted measurementvariable is added to the 

previous prediction of the state vector. ̂    and      are inputs of the next filter iteration. 

Hence, if the system matrices are known the Kalmanfilter will yield asoutcome the 

sequences{ ̂     }    
 and {      }    

. 

We can view the Kalman filter as a sequential updating procedure that consists of forming a 

prior guessabout the state of nature and then adding a correction to that guess, thiscorrection 

being determined by how well the guess has performed in predictingthe next observation. 

However, the state-space model is not entirely estimatedsince we do not usually know the 

parameters of the system matrices. Assuming that {     }     are normally distributed, then the 
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distribution of    conditional on           is Normal with mean given by (B.3) and variance given 

by (B.4).We use the prediction error decomposition to construct the logarithm of thedistribution 

function as follows: 

 

To estimate the parameters of the system matrices, we maximize the log-

likelihoodfunction                         with respect to the underlying unknown parameters 

using nonlinear optimization techniques. 

The threshold Kalman filter 

Nonlinearities can be introduced into state-space models in a variety of ways.One of the 

most important classes of models has Gaussian (or Normal) disturbancesbut allows the system 

matrices to depend on past observations availableat time   . This class of models is known in 

time series literatureas conditionally Gaussian 10. These models have the attractive property 

ofstill being tractable by the Kalmanfilter. In our model, we only introduceregime-switching in the 

state equation. The state-space representation is thefollowing: 

 

where     stands for a stationary threshold variable. Despite the fact thatthe coefficient 

matrix associated with     

depends on observations up to andincluding    , it may be regarded as being fixed once 

we are at time    . The same hypotheses about the disturbance vectors    and    are 

retained. 

Hence the derivation of the Kalmanfilter proceeds as in the previous sectionbut a simple 

modification is introduced.As mentioned above, the goal of the Kalmanfilter procedure is to 

derive aforecast of the unobserved state vector   based on the information set     .  

Here the goal is to form a forecast of  conditional not only on          but also on the 

regime of the economy. Let  be a dummy variable that refers tothe regime of the economy, 

i.e.    if       , and     if       . 

We calculate the conditional forecast of the state variables and its conditionalerror 

covariance, or MSE, matrix as follows: 

 

where    refers to the transition matrix in each regime. 

The conditional forecast of observed variables is given by: 

 

  

                                                           

10
See Harvey (1989, Section 3.7.) for a more detailed description of this class of models. 
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Once observable variables are realized at date  , we can calculate the conditionalerror 

forecast and its conditional variance: 

 

Finally, we update the previous conditional forecast of unobserved variablesand its 

conditional variance as follows: 

 

with                    . These last two terms correspond to the inputs of the next filter 

iteration. 

In our particular case,              . To estimate parameters   and   we first construct 

a grid     ⨂  over the two-dimensional space     , where   and   are the grids for   and  , 

respectively.  

We proceed in twosteps. Firstly, we estimate the model for each candidate      belonging 

to the selected grid. That is, conditionally on      we maximize the log-

likelihoodfunction                                  with respect to the underlyingunknown 

parameters using nonlinear optimization techniques. Secondly, weretain the values of the 

threshold parameter and the delay lag that providethe highest log-likelihood. That is, ̂ and  ̂ are 

given by: 
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