

Lipids and Lipoproteins:

Identification of Novel Cytosolic Phospholipase A 2s, Murine cPLA2 δ , ?, and ζ , Which Form a Gene Cluster with cPLA2 β

Takayo Ohto, Naonori Uozumi, Tetsuya Hirabayashi and Takao Shimizu J. Biol. Chem. 2005, 280:24576-24583. doi: 10.1074/jbc.M413711200 originally published online May 2, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M413711200

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:

- · When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material: http://www.jbc.org/content/suppl/2005/05/03/M413711200.DC1.html

This article cites 52 references, 33 of which can be accessed free at http://www.jbc.org/content/280/26/24576.full.html#ref-list-1

Identification of Novel Cytosolic Phospholipase A_2s , Murine cPLA₂ δ , ϵ , and ζ , Which Form a Gene Cluster with cPLA₂ β^{*S}

Received for publication, December 6, 2004, and in revised form, April 28, 2005 Published, JBC Papers in Press, May 2, 2005, DOI 10.1074/jbc.M413711200

Takayo Ohto‡, Naonori Uozumi‡, Tetsuya Hirabayashi§, and Takao Shimizu‡¶

From the [‡]Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan and the [§]Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan

Phospholipase A₂ hydrolyzes the sn-2 ester bond of glycerophospholipids that produce free fatty acids and lysophospholipids. Cytosolic phospholipase A₂s (cPLA₂, group IV) are a subgroup of enzymes that act on the intracellular phospholipid membrane. The best investigated cPLA₂ α (group IVA) is a key enzyme for lipid mediator production in vivo. Here we report cloning and characterization of novel murine cPLA₂s: cPLA₂ δ (group IVD), cPLA₂ ϵ (group IVE), and cPLA₂ ζ (group IVF), that form a gene cluster with $cPLA_2\beta$ (group IVB). The deduced amino acid sequences of cPLA₂ δ , ϵ , and ζ demonstrated a conserved domain structure of cPLA₂, *i.e.* one C2 domain and one lipase domain. The potential catalytic dyad, Ser and Asp, was conserved for these newly cloned cPLA₂s along with relatively high conservation for the surrounding residues. Transcripts of murine cPLA₂ δ , ϵ , and ζ appeared to be enriched in certain organs rather than ubiquitous distribution. Major Northern signals for $cPLA_2\delta$ were detected in placenta, $cPLA_2\epsilon$ in thyroid, heart, and skeletal muscle, and $cPLA_2\zeta$ in thyroid. Recombinant proteins expressed in human embryonic kidney 293 cells demonstrated molecular sizes of about 100 kDa by Western blotting and exhibited Ca²⁺-dependent PLA₂ activities on 1-palmitoyl-2-[14C]arachidonoyl-phosphatidylcholine substrate. In contrast to $cPLA_2\alpha$, $cPLA_2\zeta$ preferred phosphatidylethanolamine to phosphatidylcholine. Intracellular localization was visualized by green fluorescent-tagged proteins. Each molecule showed specific localization, and cPLA₂ δ translocated from the cytosol to the perinuclear region by calcium-ionophore stimulation. We thus discovered these functional novel cPLA₂ genes, which cluster on murine chromosome 2E5.

Phospholipase A_2 (PLA₂, EC 3.1.1.4)¹ hydrolyzes the *sn*-2 ester bond of glycerophospholipids. Mammalian PLA₂ can be

classified into four major categories: cytosolic PLA₂ (cPLA₂), Ca²⁺-independent PLA₂ (iPLA₂), secretory PLA₂ (sPLA₂), and platelet-activating factor acetylhydrolase (PAF-AH) (1, 2). So far, 20 gene loci for human PLA₂ are known: 4 cPLA₂s, 2 iPLA₂s, 10 sPLA₂s, and 4 PAF-AHs.

We focus on the cPLA₂ group with regard to lipid mediator productions and membrane remodeling. $cPLA_2\alpha$ was first identified by purification of the protein (3–5), and its PLA₂ activity is characterized by Ca²⁺ dependence and substrate preference for arachidonoyl phospholipids (6-9). A catalytically important dyad structure (Ser-228 and Asp-549) for human cPLA₂ α was identified by site-directed mutagenesis (10, 11) and x-ray crystallography (12). The association of $cPLA_2\alpha$ with its substrate is regulated by Ca^{2+} , and interaction with the C2 domain induces translocation from cytosol to the endoplasmic reticulum/Golgi apparatus (ER/Golgi) and nuclear envelope (13-16). Enzyme activity is also regulated by phosphorylation with various protein kinases (17-21). Furthermore, phosphoinositides were reported to activate human cPLA₂ α (22), and ceramide 1-phosphate was reported as an activator of human cPLA₂ α interacting with the C2 domain (23). Gene-disrupted mice of $cPLA_2\alpha$ demonstrated marked reduction in lipid mediator production, reproductive abnormality, attenuation of symptoms in acute lung injury, and other various inflammatory disease models (24–27). Thus, cPLA₂ α is one of the critical enzymes for production of lipid mediators such as prostaglandins, leukotrienes, and PAF under both physiological and pathological conditions (28, 29). Human cPLA₂ β and γ were identified from the expressed sequence tag (EST) data base (30–32). cPLA₂ β has $\mathrm{Ca}^{2+}\text{-dependent}\ \mathrm{PLA}_2$ activity in vitro, but its biological function is still unknown. $cPLA_2\gamma$, lacking the C2 domain, has Ca^{2+} -independent PLA_2 activity. A possible function for $cPLA_2\gamma$ is remodeling of membrane phospholipids (33, 34). Recently, human cPLA₂ & was identified as one of psoriasisrelated genes (35). Whereas extensive studies have been carried out for secretory PLA₂ (36, 37), only limited information is available for the cPLA₂ family. Therefore, we started searching for new cPLA₂ molecular species. Considering the difficulty of enzymological detection or cDNA library screening for gene products with low levels and/or limited patterns of tissue ex-

^{*} This work was supported in part by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T. S. and N. U.), and a grant from the ONO Medical Research Foundation (to N. U.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

S The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables I and II.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EBI Data Bank with accession number(s) AB195276 for cPLA₂ δ , AB195277 for cPLA₂ ϵ , and AB195278 for cPLA₂ ζ .

[¶] To whom correspondence should be addressed. Tel.: 81-3-5802-2925; Fax: 81-3-3813-8732; E-mail: tshimizu@m.u-tokyo.ac.jp.

¹ The abbreviations used are: PLA₂, phospholipase A₂; cPLA₂, cytosolic phospholipase A₂; iPLA₂, calcium-independent phospholipase A₂; sPLA₂, secretory phospholipase A₂; PAF-AH, platelet-activating factor acetylhydrolase; ER, endoplasmic reticulum; EST, expressed sequence

tag; BLAST, basic local alignment search tool; RT, reverse transcription; RACE, rapid amplification of cDNA ends; d.p.c., day postcoitum; HEK293, human embryonic kidney 293 cell line; CHO-K1, Chinese hamster ovary cell line; BSA, bovine serum albumin; GFP, green fluorescent protein; ORF, open reading frame; PA-PC, 1-palmitoyl-2-[¹⁴C]arachidonoyl-phosphatidylcholine; PL-PC, 1-palmitoyl-2-[¹⁴C]linoleoyl-phosphatidylcholine; PA-PE, 1-palmitoyl-2-[¹⁴C]arachidonoylphosphatidylchanolamine; PL-PE, 1-palmitoyl-2-[¹⁴C]linoleoylphosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; ER, endoplasmic reticulum; EGFP, enhanced GFP.

e

pression, we adopted a different approach from previous cPLA₂ cloning. A comprehensive homology search was carried out against murine genome and EST data bases using conserved exons within cPLA₂ α , β , and γ as queries. We discovered three $cPLA_2$ genes, termed $cPLA_2\delta$ (group IVD), $cPLA_2\epsilon$ (group IVE), and $cPLA_2\zeta$ (group IVF): the first may correspond to a murine orthologue of human cPLA₂ δ . We describe herein the structure, tissue distribution, catalytic activity, and intracellular localization of these newly cloned gene products.

EXPERIMENTAL PROCEDURES

Materials-Thirteen to fifteen-week-old male C57BL/6J mice (CLEA Japan, Tokyo, Japan) were used as RNA sources. [³²P]dCTP (~110 TBq/mmol) was purchased from Amersham Biosciences. CompleteTM protease inhibitor mixture (EDTA free) was from Roche Diagnostics. 1-Palmitoyl-2-[¹⁴C]arachidonoyl-phosphatidylcholine (1.8 GBq/mmol), 1-palmitoyl-2-[14C]linoleoyl-phosphatidylcholine (2.1 GBq/mmol), 1-palmitoyl-2-[14C]arachidonoyl-phosphatidylethanolamine (1.8 GBg/mmol), and 1-[14C]palmitoyl-2-lyso-phosphatidylcholine (2.0 GBq/mmol) were from PerkinElmer Life Sciences. 1-Palmitoyl-2-[14C]linoleoyl-phosphatidylethanolamine (2.0 GBq/mmol) was from Amersham Biosciences. Triton X-100 and bovine serum albumin (BSA, fatty acid free) were from Sigma. Ionomycin was obtained from Calbiochem (La Jolla, CA), BODIPY-brefeldin A, LysoTracker Red DND-99, and MitoTracker Red CMXRos were from Molecular Probes (Eugene, OR), 1-O-Hexadecyl-2-O-acetyl-sn-glycero-3-phosphorylcholine (PAF C-16) was obtained from Cayman Chemicals (Ann Arbor, MI).

Gene Identification-Candidates for novel members of the cPLA₂ family were compiled from BLAST searches on murine genome and murine EST data bases using cPLA₂ α , β , and γ as queries. PCR primers for cDNA cloning by RT-PCR were designed based on the search results (see below). For preparation of cDNA templates from murine organs, total RNA extracted by an acid guanidinium-phenol-chloroform method (Isogen, Nippon Gene, Tokyo, Japan) was subjected to $\mu MACS mRNA$ isolation kit (Miltenyi Biotec, Gladbach, Germany) and to oligo(dT)primed reverse transcription by Superscript II enzyme (Invitrogen, Carlsbad, CA). The organs investigated were whole brain, lung, liver, spleen, heart, kidney, intestine, thyroid, stomach, placenta (15.5-day postcoitum, d.p.c.), and E15 embryo. Fragments of cPLA₂ cDNA were amplified with KOD-plus DNA polymerase (Toyobo, Tokyo, Japan) and a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems, Foster City, CA). 5' and 3' Rapid amplification of cDNA ends (RACE) was carried out with SMART-RACE cDNA amplification kit (Clontech, Palo Alto, CA). Placenta (14.5 d.p.c.) was used for cPLA₂ δ RACE, heart and brain for $cPLA_2\epsilon$, and thyroid for $cPLA_2\zeta$. Amplified cDNA fragments were subcloned into cloning vectors, pGEM-T Easy (Promega, Madison, WI) or pCR Blunt II TOPO (Invitrogen), and their nucleic acid sequences were determined with a PRISM 3100 Genetic Analyzer (Applied Biosystems).

Northern Analyses-Murine multiple tissue Northern blots, MTN Blots Mouse (Clontech), MTN Blots Mouse II (Clontech), and Mouse Adult Tissue Blot (Seegene, Seoul, Korea) were hybridized with ³²Plabeled DNA probe (Rediprime II DNA labeling system, Amersham) for the entire open reading frames (ORFs) of each cPLA₂ following the manufacturer's instructions. Radioactive signals were visualized with a BAS-2000 imaging analyzer (Fujifilm, Tokyo, Japan).

Construction of Expression Vectors-Mammalian expression vectors were constructed using pcDNA4/HisMax A (Invitrogen) and pEGFP-C1 (Clontech) plasmid vectors. The PCR-amplified ORF of each cPLA₂ was ligated into expression vectors with the minimal flanking regions to fit in-frame with the N-terminal-tagged design with cloning sites on the opposite ends (supplementary data Table II). An expression vector for mRFP (a red fluorescent protein, cDNA provided by R. Y. Tsien (38))tagged human cPLA₂ α was designed by replacing the EGFP coding region with a pEGFP-C1-human cPLA₂ α vector. The integrity of all constructs was confirmed by DNA sequencing.

Cell Culture-Human embryonic kidney (HEK) 293 cells were maintained under 5% CO2 in air at 37 °C in Dulbecco's modified Eagle's medium (Sigma) supplemented with 10% (v/v) fetal bovine serum (Invitrogen), 50 units/ml penicillin, and 50 µg/ml streptomycin (Roche). A CHO-K1 cell line, W11A, which stably expresses guinea pig plateletactivating factor receptor (39) was maintained in Nutrient Mixture Ham's F-12 (Sigma) supplemented with 10% (v/v) fetal bovine serum, and 0.3 mg/ml geneticin (Wako, Osaka, Japan).

Transient Expression and PLA₂ Assay-HEK293 cells were seeded onto 10-cm culture dishes at a density of 2×10^6 cells/dish. After 24 h,

xon	"C2"	
h	cPLA ₂ α	DTPDPYVELFISTTPDSRKRTRHFNNDINPVWNETFEFILDPNOE
m	cPLA ₂ α	DTPDPYVELFISTTPDSRKRTRHFNNDINPVWNETFEFILDPNOE
h	cPLA ₂ B	TPSDCYVTLWLPTACSHRLQTRTVKNSSSPVWNQSFHFRIHRQLK
h	cPLA ₂ õ	SEADPYVILQLSTAPGMKFKTKTLTDTSHPVWNEAFRFLIQSQVK
m	cPLA ₂ δ	SQADPYVTVQLPTASGMKFKTQTVTNSSHPVWNETFSFLIQSQVK
m	CPLA ₂ ε	SQTDCFVTLWLPTASQKKLKTRTISNCLHPEWDESFTFQIQTQVK
m	cPLA ₂ ζ	SKADCYVRLWLPTASVSPSQTRTVVNSSDPEWNETFPYQIHGAVK
von	" 4"	
		2
h	cPLAzα	PVVAILGSGGGFRAMVGFSGVMKALYESGILDCATYVAGLSGSTW
m	CPLAZO	PVVAILGSGGGFRAMVGFSGVMKALYESGILDCATYIAGLSGSTW
n	CPLAZB	PVVAIMATGGGIRAMTSLYGQLAGLKELGLLDCVSYTTGASGSTW
n	CPLAZY	PVVAVLGSGGGLRAHIACLGVLSEMKEQGLLDAVIYLAGVSGSTW
n	CPLAZO	PVVGIMATGGGAKAMTSLYGHLALQKLGLLDCVTYFSGISGSTW
m	CPLA20	PVVGINAEGGGMKAMISLTGHLLALQKLGLLDCVTTFSGISGSTW
m	CPLAZE	PITATMATGGGTRAMTELYCELACLOFLCLLDAVTYLSCVCCCCW
m	CPLAZS	* * * * *
xon	"LB"	
h	CPI And	WVEESPYETGMAKYGTEMAPDI EGSKEEMGTVVKKYEENDI HEI M
m	CPI Aga	WVEFSPYETGMAKYGTEMAPDI EGSKEEMGTVVKKYEENPI HEI M
h	CPI A2B	WCFESPYEVGEPKYGAETPSELEGSEEFMGOLMKRLPESRTCELE
h	CPI Azy	WEFETPHHAGEPAI GAEVSTTHEGSKEKKGRI VRTHPERDI TELR
h	cPLA ₂ δ	WVEFSPYEVGFLKYGAFVPPELFGSEFFMGRLMRRIPEPRICFLE
m	cPLA ₂ δ	WVEFSPYEVGFLKYGGFVPSELFGSEFFMGRLMKRLPESOICFLE
m	CPLA2E	WFEFSPYEVGMOKYGAFIPSELFGSEFFMGRLMKRIPEPEMCYML
m	cPLA _Z ζ	WCEFTPYEVGFPKYGAYVPTELFGSEFFMGRLLHFWPEPRICYLQ
von	"1 C"	
NOIT	LC	
n	CPLA20	PDEFERIYEPLDVKSKKIHVVDSGLTFNLPYPLILRPQRGVDL11SFDFSARPSDSSPP
m	CPLA20	PDEFERITEPLDVKSKKIHVVDSGLIFNLPTPLILKPQKGVDLIISFDFSAKPSDISPP
n	CPLA2B	ATTEDGEPNQLTPSEPHECELDVGTEINTSCEPELQPTRDVDLTESEDYNEHGA
n	CPLAZY	LIKHUGIKUKIMSSKKHLHLVUAGLAINTPEPLVLPPTREVHLILSEDESAGDP
n	CPLA20	DTULUSMPSULIPREPKLULVUAATEINISSPSMFKPGKKLULILSFUYSUS
m	CPLA20	DUNEDD I PNUL I PUDPUL LE DAGE MISSO PSE PROKUDETT DE NINUSEPI
m	CPLA2E	VEVENUE TO ACTION ACTION AND A CONTRACT AND A CONTR
m	CPLA25	TOTPDACENQLIPMKDFLSLVDOGFAINSPEPLVLQPQKAVDLIVSFDTSLEGP

R

murine chromosome 2E5

Mapkbp1 Sptbn5	Ehd4		Vps39
-→ Pla2g4b	Pla2g4e	Pla2g4d	← Pla2g4f
(cPLA ₂ B)	(cPLA ₂ ε)	$(cPLA_2\delta)$	(cPLA ₂ ζ)

50 kb

----PF

----PF

FIG. 1. Queries for gene search and a cPLA₂ gene cluster. A, three relatively well conserved exons were found in the lipase domain among human cPLA₂ α , β , and γ : exons *LA*, *LB*, and *LC*. A fourth conserved exon was detected in C2 domain of human cPLA₂ α and β : exon C2. Three novel cPLA₂s, cPLA₂ δ , ϵ , and ζ , were found by BLAST searches on the human/ murine genome using these exon sequences as queries. These conserved exons translated to amino acid sequences were aligned. h, human; m, mouse; *, conserved residues for all genes; S, a consensus residue within a catalytic GXSGS motif, D, a consensus residue within a catalytic DXG motif. B, schematic representation of murine cPLA₂ gene cluster. Newly discovered cPLA₂ δ , ϵ , and ζ form a gene cluster with cPLA₂ β in murine chromosome 2E5 spanning about 0.3 Mb (ncbi.nlm.nih.gov/genome/seq/ MmBlast.html). Arrows indicate the direction of translation. Filled boxes indicate cPLA₂s and open boxes indicate other genes. Mapkbp1, mitogenactivated protein kinase-binding protein 1; Sptbn5, spectrin, beta, nonerythrocytic 5; Ehd4, EH-domain containing 4; Vps39, vacuolar protein sorting 39.

they were transfected with expression plasmids using Lipofectamine Plus reagents (Invitrogen) according to the manufacturer's protocol. Transfection medium was replaced with fresh medium 3 h after transfection. The cells were harvested with trypsin-EDTA 48 h after transfection, rinsed twice with phosphate-buffered saline, frozen with liquid nitrogen, and stored at -80 °C until use. Thawed cells were suspended in the homogenizing buffer (50 mM Tris-HCl (pH 7.5), 0.32 M sucrose, 4 mm dithiothreitol, 3 mm $MgCl_2$, 5 mm EGTA, and 1× CompleteTM protease inhibitor mixture), and then homogenized with a sonicator (OHTAKE WORKS, Yamaguchi, Japan). Centrifugations at 10,000 $\times\,g$ for 10 min and 100,000 \times g for 1 h were carried out for fractionation. Protein concentrations were determined by Bradford's method (Bio-Rad) using BSA as a calibration standard. PLA₂ activity was measured using mixed micelles each containing phospholipid and Triton X-100 in a molar ratio of 1:2 as a substrate; the final concentration of substrate was 2 μ M (54,000-63,000 dpm/reaction). The assay buffer contained

В

С

A			
cPLAzδ	1	MWSGDRRVGM	10
CPLAZE	1	MQSIPHSDEADVAGMTHASEGHHGLGTSMLVPKNPQGEEDSKLGRNCSGFEDAQDPQTAV	60
CPLAZ	T	MPWILQPKWLAGKGLPLLGAILLK	24
02000000	900	C2 Domain	1000
CPLAzð	11	ESLSPERLHGHPYQEEASVFCRLTVKILEARSLPRADLLSQADPYVTVQLPTASGMKFKT	70
CPLA2E CPLA2E	25	KTEKSEPOWKHRROFTHPYYD-LOVKVLRARNTOHTDKLSKADCYVRLWLPTASQKKLKT	83
80.00000	152	······································	0.578%
DI A.S	74		100
CPLA20	121	QTVTNSSHPVWNETFSFLTQSQVKNILELTIYDEDVTTKDDTCFKVSTDVSET-LPQQLL RTTSNCI HPFWDESFTFOTOTOVKNVLEI SVCDEDTTTONDHLI TVLYDI SKLCI RNKTH	180
CPLAZ	84	RTVVNSSDPEWNETFPYQIHGAVKNVLELALYDEDVLDS-DNVFSILFDTSTLRL-GQPC	141
	10250	.*. **.*.*.**	
CPI A28	130		190
CPLAZE	181	VK-FPLNPEGMEELEVEFLLEENFSSSETLITNGVLVSROVSCLEVHAESRRPKKKKKK	239
cPLA ₂ ζ	142	TKNFTRQQDPKE-LEVEFTLEKSQTPASEVVTNGVLVAHPCLRIQGTVTGDKTASLGELG	200
	3	* * *.*.*****.***	
cPLAzõ	190	DKLELELMLKGSYEDTOTEEPDTAFTESEHYMRGODTELNGYLRG-PRNSGWN	241
CPLAze	240	DLLVMVTDSFENTQRVPPCQEPCYPNSACFHYPKYSQPQLYA-EAPKSHC-NFRL	292
cPLA ₂ ζ	201	SRQIQ-LAVPGAYEKPQPLQPTSEPGLPVNFTFHVNPVLSPKLHIKLQEQLQVFHSGPSD	259
cPLAzδ	242	SDTSVTPFNV-PLMSLAAGKEMTIDIPAMKAPEGKLQLKTDCCPKE-LSVRLSYGLC	296
CPLAZE	293	CCCGTHRNDPVCQ-PLNCLSDGQV-TTL-PVGENYELHMKSSPCSDT-LDVRLGFSLC	346
CPLAZ	260	ELEAQISKMDKASILLSSLPLNEELIKLVDLEEGQQVSLRMKADMSSSGDLDLRLGFDLC	319
		[Lipase Domain]	
cPLAzδ	297	PEEQAFLSRRKKVVAAALKQALQLDEDLNEDEVPVVGINAEGGGMRAMISLYGHLLALQK	356
CPLA2E	347	QEEVEFVQKRKMVVAKTLSQMLQLEEGLHEDEVPIIAIMATGGGTRSMVSLYGHLLGLQK	406
CFLACS	520	* * ** * * * * * * * * * * * * * * * *	519
		exon "LA"	
CPLA28	357	LGLLDCVTYFSGISGSTWTMAHLYRDPEWSQRDLEGPISHAREHVAKTLLKEFLPEHLAS	416
CPLA2E	380	LNFLDASTTITGLSGATWIMATLTSDPEWSSKNLETVVFEAKKHVVKDKMPALFPDQLTK	400
751/572/05 /2 /3		* . ** . ** .* ** .* . ** .** .** . * * *	
		\rightarrow	2211
CPLAZO CPLAZE	41/	YRQTLKLREEQGYTVTVADLWGLVLESKLHGQVTDQKLSGQKAALERGQNPLPLYLSLNV WREDLOKHSOEGYKTTETDEWGKLTEYSLGDKKNECKLSDQRAALCRGONPLPLYLTNV	4/6
cPLA ₂ ζ	440	YSREKRAWESRGHSMSFTDLWGLIIEYFLNQEENPAKLSDQQETVSQGQNPYPIYASINV	499
CPLA28	477	KENHI ETI HEKEWVEESPYEVGEI KYGGEVPSEI EGSEEEMGRI MKRI PESOTCEI EGTW	536
CPLA 2E	527	KDDVSNQD-FREWFEFSPYEVGMQKYGAFIPSELFGSEFFMGRLMKRIPEPEMCYMLGLW	585
cPLA ₂ ζ	500	HKNISGDD-FAEWCEFTPYEVGFPKYGAYVPTELFGSEFFMGRLLHFWPEPRICYLQGMW	558
cPLAzδ	537	SNLFSVNLMDIWYDITYGKDSNNFPVDVRNSEKEFSGSAG-TSSGVEAPWLES	588
CPLAZE	586	SSIFSLNLLDAW-NLSHTSEEFFYRWTRERLHDIEDDPILPEIPRCDDNPLETTVVIP	642
CPLAZ	559	GSAFAASLYEIFLKLGGLSLSFLDWHRGSVSVTDDWPKLRKQDPTRLPTRLFTP	612
cPLA ₂ δ	589	GTALAQALKGFLTGRPFHQRSANFLHGLQLHRDYCNQRHFSTWADCNLDDTPN	641
CPLA2E	643	TTWLSNTFREILTRRPFVSEFHNFLYGMQLHTDYLQNRQFSMWKDTVLDTFPN	695
Cruncy	013	** ** ** ** * * * * * * *	012
125757577	W2352	\leftarrow	
CPLA28	642	QLTPQDPQLCLIDAGCFMNSSCPSLFRPGRQVDLIISFNYNQSLPFKGLQQSEKYSRARG	701
CPLAZE	673	OLTPMKDFLSLVDGGFAINSPFPLVLOPORAVDLIVSFDYSLEGPFEVLOVTEKYCRDRG	732
0.52	588	***. * * * <u>. *</u>	
DI Ass	702		764
CPLAZE	756	TPEPSESTI EDDNSI K-ECYVMENPOEPDAPTVALEPL VNDSERDESAPGVRRSPDELKA	814
cPLA ₂ ζ	733	IPFPRIEVDPKDSEDPRECYLFAEAEDPCSPIVLHFPLVNRTFRTHLAPGVERQTAEEKA	792
	1056768	.*** * *** * .****** ****.**	
cPLA ₂ δ	762	-GOVNLTGAASPYEMYNMTYKNEDEDRLLOI SDYNVONNOGTTI OAI RTVI KRRASETRO	820
CPLAZE	815	-GQLNIYGPKSPYATKELTYTEAAFDKLVKLSEYNILNNRDKLIQALRLAMEKKRMRSQC	873
cPLA _Z ζ	793	FGDFIINGPDTAYGMMDFTYEPKEFDRLVTLSRYNVLNNKETIRHALQLALDRRRQAGGR	852
		** ** ** **********************	
cPLAzδ	821	LGVKT	825
CPLA2E	874	PS	875
CPLA2G	853	Vou	855

	cPLA2α				
cPLA2β	25%			C2	
	37%	cPLA2β		Lipase	
cPLA2δ	28%	43%			
	31%	50%	cPLA2δ		
cPLA2E	25%	35%	38%		
	32%	45%	46%	cPLA2E	
cPLA2ζ	27%	35%	33%	33%	
	32%	45%	42%	41%	cPLA2ζ
cPLA2y	(H 0)	-	-		34
xe ==x0(297)	30%	28%	32%	31%	33%

FIG. 2. Comparison of murine $cPLA_2\delta$, ϵ , ζ , with $cPLA_2\alpha$, β , and γ . A, alignment of murine $cPLA_2\delta$, ϵ , and ζ . Suggested domains are *boxed*. Conserved residues for all proteins (*) and conserved residues for three proteins (*dots*) are indicated. *Arrows* indicate conserved exons, used for gene search. *B*, percent identity at amino acid levels among murine $cPLA_2s$. Comparisons were made separately for two parts N-terminal region (*C2*) and C-terminal region (*lipase*). The regions (*C2*, *lipase*) examined for comparisons were: $cPLA_2\alpha$ (1–185 and 186–748 amino acid residues), $cPLA_2\beta$ (1–291 and 292–782), $cPLA_2\gamma$ (– and 1–597), $cPLA_2\delta$ (1–328 and 329–825), $cPLA_2\epsilon$ (1–378 and 379–875), and $cPLA_2\zeta$ (1–351 and 352–855). *C*, dendrogram of murine $cPLA_2$, ind PAF-AH, using the all-against-all matching method (cbrg.inf.ethz.ch/Server/AllAll.html). Values show branch lengths that represent the evolutional distance between each pair of sequences. The sequence divergence is equal to the sum of the value of each branch length. Detailed structural information of murine $cPLA_2\beta$ will be published elsewhere (N. Uozumi and T. Ohto, unpublished data). sPLA₂s were not included because they have completely distinct structures from $cPLA_2$, iPLA₂, and PAF-AH.

100 mM HEPES-NaOH (pH 7.5), 1 mg/ml BSA, 4.5 mM CaCl₂, and 1 mM dithiothreitol. CaCl₂ was replaced with EGTA to examine the Ca²⁺ requirement for the enzyme activity. Lysophospholipase activity was measured using monomeric lyso-PC (2 μ M, 63,000 dpm/reaction) with a concentration of BSA in assay buffer of 0.5 mg/ml. The reaction was started by the addition of enzyme sources, and the reaction mixture was incubated at 37 °C for 30 min. The reaction was terminated with Dole's reagent, and silica gel powder was used to recover free fatty acid in an *n*-heptane layer (40, 41). Radioactivity was counted with a liquid scintillation counter LS6500 (Beckman, Fullerton, CA).

Western Blots-SDS-PAGE separated samples were transferred onto a polyvinylidene difluoride membrane (Immobilon-P, Millipore, Billerica, MA), and probed with mouse monoclonal IgG anti-Xpress antibody (Invitrogen) that recognize the XpressTM epitope (DLYD-DDDK), or BD Living ColorsTM full-length rabbit polyclonal antibody (Clontech) to detect N-terminal-tagged proteins. Immunoreactive signals were visualized with anti-mouse or rabbit IgG horseradish peroxidase-conjugated secondary antibody and ECL reagents (Amersham Biosciences).

Confocal Microscopy—CHO-K1 cells (W11A cells) at a density of 7×10^5 cells/dish were seeded onto 6-cm dishes 1 day before transfection. Two μ g each of pEGFP-murine cPLA₂ α , pEGFP-murine cPLA₂ δ , pEGFP-murine cPLA₂ ϵ , or pEGFP-C1 were transfected using Lipofectamine Plus (Invitrogen). Transfection medium was replaced with

FIG. 3. **Tissue distribution of murine cPLA**₂ δ , ϵ , and ζ mRNAs. Mouse MTN membrane (Clontech), Mouse MTN membrane II (Clontech) (A), loaded with 2 μ g of poly(A)⁺ RNA per lane, and Mouse Adult Tissue Blot (Seegene) (B), loaded with 20 μ g of total RNA per lane, were sequentially hybridized with ³²P-labeled probes. Probes for cPLA₂s covered the entire ORF of respective genes. Hybridizations with β -actin probes were carried out as controls. Two sets of MTN membranes were hybridized in this way: cPLA₂ ζ , cPLA₂ ϵ , and β -actin for set 1, cPLA₂ δ and β -actin for set 2. Signals for β -actin were essentially the same for the 2 sets of membranes, and set 2 is shown as a representative. Molecular sizes are indicated on the *left*.

fresh medium at 4 h. After incubation for 24 h, cells were harvested with trypsin/EDTA (Sigma) and seeded onto 35-mm glass-bottomed dishes (IWAKI, Tokyo, Japan) with Nutrient Mixture Ham's F-12 medium containing 10% (v/v) fetal bovine serum. Then, the cells were incubated for 24 h, and serum-starved with medium containing 0.1% BSA for an additional 24 h. The cells were stained with 1 µM BODIPYbrefeldin A or 50 nm LysoTracker Red in Hanks' balanced salt solution containing 10 mM HEPES (pH 7.4) and 0.1% BSA at 37 °C for 30 min. For experiments with murine cPLA₂ζ, CHO-K1 cells (W11A cells) were seeded onto 35-mm glass-bottomed dishes (IWAKI) at a density of 2 imes 10^5 cells/dish 1 day before transfection. One μg of pEGFP-murine cPLA $_{2}\zeta$ and 1 μg of pmRFP-human cPLA $_{2}\alpha$ were co-transfected. Transfection medium was replaced with a medium containing 10% (v/v) fetal bovine serum at 4 h. Then, cells were incubated for 18 h, and serumstarved with medium containing 0.1% BSA for an additional 6 h. Fluorescence images of green fluorescent protein (GFP), BODIPY-brefeldin A, LysoTracker Red, and mRFP were obtained using an LSM510 Laser Scanning Microscope (Carl Zeiss, Germany) with a ×63 water-immersion objective (NA = 1.2) or a $\times 100$ oil-immersion objective (NA = 1.3). GFP fluorescence was monitored by excitation at 488 nm with an argon laser, and by emission with a 505-550-nm band pass filter, or with a 505-530-nm band pass filter when measuring together with BODIPYbrefeldin A to avoid interference. BODIPY-brefeldin A, LysoTracker

Red, and mRFP, the excitation was set at 543 nm with a He/Ne laser, and emissions were taken with a 560-nm long path filter for Lyso-Tracker Red, or a 580-nm long path filter for BODIPY-brefeldin A and mRFP.

RESULTS

Gene Identification and cDNA Cloning of Novel Murine $cPLA_2$ s—Human cPLA₂ α , β , and γ share a lipase domain structure with considerable homology. Overall identities at the amino acid levels are between 30 and 34%. When aligned according to the RNA-splicing sites, higher conservations were noticed for three exons within the lipase domain (Fig. 1A, exons LA, LB, and LC). Two of these exons include residues of the catalytic dyad, the serine and aspartic acid residues in the GXSGS (exon "LA") and DXG (exon "LC") motifs, respectively. The functional significance of the exon "LB" in between has not been clarified yet. An extensive BLAST search against the draft human genome sequence using these exon sequences as queries predicted three novel ${\rm cPLA}_2$ gene loci. Equivalent loci were identified in the murine genome. Furthermore, the fourth conserved exons containing putative C2 domain were detected for each locus (exon C2, in Fig. 1A). Several EST clones, which are supposed to contain truncated transcripts of these novel genes, were also found using the BLAST search. Based on these DNA sequences, we designed PCR primers; one in the coding region and the other in the putative 3'-untranslated region. We thus obtained truncated cDNA fragments of these novel cPLA₂s by RT-PCR from murine tissues (δ from placenta (15.5 d.p.c.), ϵ from whole brain and heart, and ζ from spleen and thyroid). RACE was carried out next to design new sets of PCR primers on 5'- and 3'-untranslated regions (supplementary data Table I). DNA fragments covering putative ORF of three novel cPLA₂s were amplified and cloned, and the PCR primers are shown in supplementary data Table II. They were named cPLA₂ δ (GenBankTM accession number AB195276), cPLA₂ ϵ (GenBank accession number AB195277), and cPLA₂ ζ (Gen-Bank accession number AB195278).

The ORF for each clone was assigned so that the coding region should be the longest. The sizes of cloned ORF for murine cPLA₂ δ , ϵ , and ζ were 2,748, 2,625, and 2,565-bp long corresponding to 825 (molecular mass 93 kDa), 875 (100 kDa), and 855 (96 kDa) amino acid residues, respectively. Recently, human cPLA₂ was discovered in the psoriatic skin cDNA library (35). We figured it to be the orthologue of one of the novel murine cPLA₂s based on its chromosomal localization and homology of the primary structure. Human $cPLA_2\delta$ has the highest homology to murine cPLA₂δ: 71% identical at the amino acid level as opposed to 29-49% for other murine cPLA₂s. Chromosome localizations of these newly identified cPLA₂s, *i.e.* δ , ϵ , and ζ were determined by BLAST search on genome data bases. They were found to form a gene cluster with $cPLA_2\beta$ in murine chromosome 2E5 spanning 0.3 Mb (Fig. 1B), and they correspond to human orthologues in chromosome 15q14. Alignment of murine cPLA₂ δ , ϵ , and ζ revealed that these gene cluster members have considerable homology throughout the molecule, and they seem to have C2 plus lipase domain structures (Fig. 2A). Percent identities of amino acid sequences among cPLA₂ β , δ , ϵ , and ζ are calculated to be 33-43%, and 41-50% for the C2 and lipase domains, respectively (Fig. 2B). Lower values were obtained for comparisons with cPLA₂ α or γ : 25–28% for C2 domain of cPLA₂ α , and 30-37% for lipase domains of cPLA₂ α and γ . A dendrogram was drawn by pairwise comparisons of amino acid sequences of murine cPLA₂, iPLA₂, and PAF-AH (Fig. 2C). Six cPLA₂s form a branch separately from iPLA₂ and PAF-AH, and the gene cluster members, *i.e.* cPLA₂ β , δ , ϵ , and ζ , come closer together than the remaining cPLA₂ α and γ .

TABLE I

PLA₂ activity of transiently expressed murine cPLA₂s

These data, shown as mean \pm S.E., indicate specific activity (pmol/min/mg), pmol of cleaved ¹⁴C-labeled arachidonic acid/mg of protein of each of the centrifuge fractions, for 1 min. Centrifugal supernatants of HEK293 cell homogenates transiently transfected with expression vector for cPLA₂ α , δ , ϵ , or ζ were incubated with 1-palmitoy-2-[¹⁴C]arachidonoyl-PC mixed micelles in the presence of 4 mM free Ca²⁺ at 37 °C for 30 min. "*n*" means the number of different transfection batches used for each assay. The protein expression levels are shown in Fig. 4A. In all transfections, the expression patterns are quite similar.

	Mock	Mock $(T)^a$	$\mathrm{cPLA}_2 \alpha$	$cPLA_2\delta$	$\mathrm{cPLA}_2\epsilon~(\mathrm{T})^a$	$\mathrm{cPLA}_2\zeta$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 2.5 \pm 0.4 \\ 1.5 \pm 0.3 \\ 9 \end{array}$	$\begin{array}{c} 0.4 \pm 0.2 \\ 0.6 \pm 0.3 \\ 5 \end{array}$	$190 \pm 35 \\ 291 \pm 61 \\ 5$	$6.1 \pm 1.2 \ 5.1 \pm 1.0 \ 5$	$\begin{array}{c} 7.2 \pm 1.9 \\ 7.7 \pm 1.5 \\ 5 \end{array}$	$egin{array}{c} 26\pm11\ 55\pm22\ 5\end{array}$

^a T, 0.075% (w/v) Triton X-100 included in homogenizing buffer.

Tissue Distribution of cPLA₂ δ , ϵ , and ζ mRNAs—Expression profiles of cPLA₂s were examined at mRNA levels (Fig. 3). The cPLA₂δ transcript was not clearly detected in MTN blot filters (Clontech, mouse MTN blot and MTN blot II), but was detected in placenta (17.5 d.p.c.) using the Mouse Adult Tissue Blot (Seegene) at about 4.5 kb in size. A transcript of the cPLA₂ ϵ gene (about 5.0 kb in size) was seen predominantly in heart, skeletal muscle, testis, and thyroid, and at low expression levels in brain and stomach. Signals for $cPLA_2\zeta$ were obtained as 2 bands (about 4.0 and 8.0 kb in size). The mRNA was detected strongly in thyroid, moderately in stomach, and very weakly in large intestine and prostate. The combined lengths of RT-PCR and RACE products were 3.3, 4.4, and 3.3 kb (excluding the poly(A) tract) for cPLA₂ δ , ϵ and ζ , respectively. We assume that the combined DNA sequence of $cPLA_2\zeta$ corresponds to the shorter Northern signals.

 PLA_2 Activity of Transiently Expressed Murine $cPLA_2s$ — Mammalian transient-expression experiments were carried out with HEK293 cells and pcDNA4/HisMax expression vectors. Harvested cells were homogenized in the presence of an excess amount of EGTA by sonication, and fractionated by centrifugation at 10,000 × g for 10 min and at 100,000 × g for 1 h (see "Experimental Procedures").

The enzyme activities were measured with 1-palmitoyl-2-[¹⁴C]arachidonoyl-phosphatidylcholine (PA-PC) as a substrate. We performed a series of assays for multiple transfection batches (n = 5-9) to observe consistently elevated PLA₂ activities for both 10,000 \times *g* and 100,000 \times *g* supernatant fractions of all cPLA₂ transfectants, as shown in Table I. To be noted here, preparations for $cPLA_2\epsilon$ were made with homogenizing buffer containing 0.075% (w/v) Triton X-100. When $cPLA_2\epsilon$ expressing cells were processed with the homogenizing buffer without Triton X-100, the enzyme activity was undetectable in the supernatant fractions over mock-transfected cells. We found that addition of Triton X-100 up to 0.1% (w/v) in homogenizing buffer did not inhibit the catalytic activity and improved recovery of PLA₂ activity in the supernatants (data not shown). These effects appeared specific for $cPLA_2\epsilon$ and were not observed for cPLA₂ α , δ , ζ , or for the intrinsic PLA₂ activity of HEK293 cells (data not shown).

Expression of each cPLA₂ protein was confirmed by Western blotting detected with anti-Xpress antibody against the Nterminal tag (Fig. 4). The apparent molecular sizes of the expressed proteins were around 100 kDa (Fig. 4A), which are comparable with the estimated sizes from their deduced primary structures with tag sequences (Fig. 2A). Cell lysates and centrifugal fractions were prepared in the presence of an excess amount of EGTA in homogenizing buffer (Fig. 4B). The majority of expressed proteins were detected in 10,000 $\times g$ and 100,000 $\times g$ supernatants for cPLA₂ α , δ , and ϵ . A portion of expressed signals were detected in the 100,000 $\times g$ precipitate for cPLA₂ ϵ , even in the presence of 0.075% (w/v) Triton X-100. There was no significant difference in the fractionation patterns for cPLA₂ ϵ either with or without 0.075% (w/v) Triton

FIG. 4. Western detection of cPLA₂s on a mammalian transient-expression system. HEK293 cells transiently expressing murine cPLA₂ α , δ , ϵ , and ζ were sonicated and centrifuged for 10 min at 10,000 \times g and for 1 h at 100,000 \times g at 4 °C. Exogenously expressed proteins were detected with N-terminal Xpress tag. Molecular sizes are indicated on the *left* in kDa. A, 100,000 \times g supernatants used in Table I were loaded with 10 μ g of total protein/lane. 1, mock; 2, mock (T); 3, cPLA₂ α ; 4, cPLA₂ β ; 5, cPLA₂ ϵ (T); 6, cPLA₂ δ ; and 7, cPLA₂ ζ . These samples were used for the determination of the enzyme activity in Table I. B, fractionations of the proteins by centrifugation. L, supernatant of $800 \times g$; S2, supernatant of $10,000 \times g$; P2, precipitate of 10,000 \times g; S3, supernatant of 100,000 \times g; and P3, precipitate of $100,000 \times g$. 10 µg of proteins were loaded on *lane L*, and equivalent parts from fractionation were loaded for the other lanes. C, 100,000 \times \hat{g} supernatants used in Table III were loaded with 10 μ g of total protein/lane. 1, mock; 2, mock (T); 3, $cPLA_2\alpha$; 4, $cPLA_2\delta$; 5, $cPLA_2\epsilon$ (T); and 6, cPLA₂ ζ . (T) means that 0.075% (w/v) Triton X-100 was added to the homogenizing buffer.

X-100 in homogenizing buffer (data not shown). In contrast to other types of cPLA₂s, the cPLA₂ ζ protein was highly recovered in the 10,000 × g precipitate (Fig. 4A). Nevertheless, supernatants (S2 and S3) contained significant enzyme activity (Table I).

 Ca^{2+} Dependence of PLA₂ Activity—The deduced primary structures of murine cPLA₂ δ , ϵ , and ζ appear to contain one C2

TABLE II

 Ca^{2+} dependence of PLA_2 activity toward PAPC

These data indicate specific activity (pmol/min/mg), picomole of cleaved ¹⁴C-labeled free arachidonic acid/mg of protein, for 1 min. Supernatants of 100,000 × g centrifugation prepared from HEK293 cells transiently expressing cPLA₂ α , δ , ϵ , or ζ were incubated with 1-palmitoyl-2-[¹⁴C]arachidonoyl-PC mixed micelles in the presence of 4 mM free Ca²⁺ (+) or 4 mM EGTA (-) at 37 °C for 30 min. These results are the mean of triplicates ± S.D.

Ca^{2+}	Mock	Mock $(T)^{a}$	$\mathrm{cPLA}_2\alpha$	$cPLA_2\delta$	$cPLA_2 \epsilon (T)^a$	$\mathrm{cPLA}_2\zeta$
+ -	$\begin{array}{c} 1.0 \pm 0.2 \\ 0.6 \pm 0.1 \end{array}$	$\begin{array}{c} 0.5 \pm 0.1 \\ 0.3 \pm 0.1 \end{array}$	$\begin{array}{c} 100 \pm 6.3 \\ 1.7 \pm 0.4 \end{array}$	$\begin{array}{c} 3.0 \pm 0.5 \\ 0.8 \pm 0.1 \end{array}$	$\begin{array}{c} 6.0 \pm 0.4 \\ 1.2 \pm 0.2 \end{array}$	$\begin{array}{c} 21 \pm 17 \\ 2.0 \pm 0.4 \end{array}$

^a T, 0.075% Triton X-100 included in homogenizing buffer.

TABLE III Substrate preference of $PLA_2\delta$, ϵ , and ζ

These data indicate specific activity (pmol/min/mg), pmol of cleaved [¹⁴C]-labeled fatty acid per mg protein, for one minute. Supernatants of 100,000 × g centrifugation prepared from HEK293 cells transiently expressing cPLA₂ α , δ , ϵ , or ζ were incubated with substrates at 37 °C for 30 min. These results are the mean of triplicates ± S.D., representative of three individual experiments.

Substrates	Mock	Mock $(T)^a$	$\mathrm{cPLA}_2\alpha$	$\mathrm{cPLA}_2\delta$	$\mathrm{cPLA}_{2}\epsilon~(\mathrm{T})^{a}$	$\mathrm{cPLA}_2\zeta$
PA-PC	5.3 ± 0.5	2.1 ± 0.4	1068 ± 2.0	13.4 ± 0.5	19.2 ± 1.4	162 ± 13
PL-PC	1.5 ± 0.2	0.9 ± 0.1	216 ± 9.4	8.1 ± 3.3	8.4 ± 1.4	92 ± 66
PA-PE	0.6 ± 0.1	0.6 ± 0.1	275 ± 23	14.5 ± 5.0	5.1 ± 1.3	367 ± 27
PL-PE	0.5 ± 0.7	0.4 ± 0.3	42 ± 21	19.9 ± 3.5	4.6 ± 0.8	704 ± 32
Lyso-PC	4.5 ± 2.7	9.5 ± 1.2	65 ± 0.9	16.4 ± 1.4	29.5 ± 4.4	9.8 ± 0.8

^a T, 0.075% Triton X-100 included in homogenizing buffer.

domain for each molecule on their N termini, as is known for cPLA₂ α . The C2 domain of cPLA₂ α is functionally important in its Ca²⁺-dependent phospholipid binding properties. To examine the Ca²⁺ dependence of PLA₂ activity of cPLA₂ δ , ϵ , and ζ , CaCl₂ was replaced with EGTA in the assay buffer. The observed PLA₂ activity for 100,000 × g supernatants in the absence of Ca²⁺ was decreased nearly to vector control levels for all cPLA₂ transfectants (Table II). Essentially, the same results were obtained for 10,000 × g supernatant preparations (data not shown). These results indicate that murine cPLA₂ δ , ϵ , and ζ exhibit Ca²⁺-dependent PLA₂ activity, like cPLA₂ α and β .

Substrate Preference of Murine $cPLA_2s$ —To estimate substrate specificity for these enzymes, we prepared 100,000 × g supernatant fractions of HEK293 cell lysates expressing each $cPLA_2$ molecule (Table III). Expression levels of each enzyme were determined by Western blotting as shown in Fig. 4C. A 4–7-fold preference for arachidonyl-PC and -PE over linoleoyl counterparts were observed for $cPLA_2\alpha$, as has been previously documented (42, 43). $cPLA_2\delta$ and ϵ did not appear to have a notable preference among the four substrates tested. Interestingly, $cPLA_2\zeta$ showed higher enzyme activity for PE than PC substrates. When monomeric lyso-PC substrate was used, $cPLA_2\epsilon$ showed relatively high lyso-PLA₁ activity compared with PLA₂ activity. Lyso-PC was not a good substrate for $cPLA_2\zeta$ in the present assay conditions.

Subcellular Localization of cPLA₂ δ , ϵ , and ζ —GFP-tagged cPLA₂s were transiently expressed in CHO-K1 cells to observe subcellular localization of cPLA₂s within living cells. Western blots against N-terminal GFP tags detected expression of GFPfused cPLA₂ α , δ , ϵ , and ζ with the expected sizes, and no signals were detected for truncated proteins (data not shown). We detected comparable Ca²⁺-dependent PLA₂ activity of GFPfused cPLA₂ α , δ , ϵ , and ζ (data not shown). Murine cPLA₂ α translocated from the cytoplasm to the perinuclear regions within 1 min of 10 μ M ionomycin stimulation (Fig. 5A), as has been shown for human cPLA₂ α (15). Murine cPLA₂ δ is located in the cytoplasm in the resting state and caused translocation to the perinuclear regions by ionomycin stimulation (Fig. 5B). Staining of the cells with BODIPY-brefeldin A revealed these perinuclear regions as ER/Golgi. Although translocation targets are similar between cPLA₂ α and δ , differences were seen for the latency and ratio of cells with GFP-signal translocation. It took as long as 5 min to show clear accumulation of GFP-

 $cPLA_2\delta$ in ER/Golgi, in contrast to $cPLA_2\alpha$ that required less than 1 min. Whereas 83% (93 of 112 cells) of GFP-cPLA₂ α expressing cells showed translocation by 5 min of ionophore stimulation, 27% (32 of 119 cells) of GFP-cPLA₂δ-expressing cells showed translocation by 10 min of stimulation (p < 0.0001, Fisher's exact test). Murine cPLA₂ ϵ showed a dot-like pattern scattered throughout the cells (Fig. 5C). Staining with LysoTracker Red partly overlapped with GFP-cPLA₂ ϵ signals (Fig. 5C). In contrast, staining with BODIPY-brefeldin A and MitoTracker Red showed distinct patterns from that of GFP $cPLA_2\epsilon$ (data not shown). Therefore, $cPLA_2\epsilon$ appears to be partly associated with lysosomes, but not with ER/Golgi or mitochondoria. Simultaneous expression of red fluorescent protein-tagged human $cPLA_2\alpha$ and $GFP-cPLA_2\zeta$ showed similar distribution patterns, showing that murine $cPLA_2\zeta$ was localized in the cytoplasm at the resting state (Fig. 5D). Stimulation with ionomycin did not cause redistribution of GFP-cPLA₂ ϵ and GFP-cPLA₂ ζ until at least 10 min (data not shown).

DISCUSSION

We performed a genome data base search using the relatively conserved four exons among previously known cPLA₂s rather than the entire sequence (Fig. 1A). In this top-down strategy, we identified three novel cPLA₂s. cPLA₂ δ , ϵ , and ζ form a gene cluster with $cPLA_2\beta$ in murine chromosome 2E5 that corresponds to human chromosome 15q14 spanning about 0.3 Mb (Fig. 1B). We obtained the cDNA of these cPLA₂s along with $cPLA_2\beta$ from murine tissues by RT-PCR. Recently reported human cPLA₂ δ is located within this gene cluster (35). We assigned murine cPLA₂δ among three newly cloned cPLA₂s by homology alignments and comparison of the relative chromosomal location. The remaining two gene products are termed $cPLA_2\epsilon$ and $cPLA_2\zeta$. Their order and direction within the gene cluster are shown in Fig. 1B. The deduced amino acid sequence of cPLA₂ δ , ϵ , and ζ suggested one C2 domain on the N terminus, and one lipase domain on the remaining part. Counterparts of the catalytic dyad of cPLA $_2\alpha$ (Ser-228 and Asp-549 for human $cPLA_2\alpha$) (10, 11) and a catalytically essential amino acid residue (Arg-200 for human cPLA₂ α) (10, 11) were conserved for all cPLA₂s (Figs. 1A and 2A). Amino acid residues critical for binding Ca^{2+} in the C2 domain of human cPLA₂ α (Asp-43 and Asp-93) (44-46) were also conserved.

Expression profiles of transcripts of murine cPLA₂ δ , ϵ , and ζ

FIG. 5. Subcellular localization of murine cPLA₂ α , δ , ϵ , and ζ . Confocal images of CHO-K1 cells expressing GFP-cPLA₂ α (A) and GFP-cPLA₂ δ (B) show localization of these proteins before (*upper panels*) and after (*lower panels*) 1 (cPLA₂ α) or 5 min (cPLA₂ δ) stimulation with 10 μ M ionomycin. The cells were stained with 1 μ M BODIPY-brefeldin A for 30 min. GFP-cPLA₂ ϵ (C) was expressed in CHO-K1 cells. The cells were stained with 50 nM LysoTracker Red for 30 min. GFP-cPLA₂ ζ (D) is co-expressed with mRFP-human cPLA₂ α to show similar distribution patterns. The *scale bars* indicate a length of 10 μ m.

indicated specific patterns for the organ and molecular species (Fig. 3) in contrast to ubiquitous expression of cPLA₂ α (32). For cPLA₂ δ , placenta (17.5 d.p.c.) was the only tissue that gave a significant signal by Northern analyses (Fig. 3). Expression of human cPLA₂ δ was reported to be restricted to fetal skin, uterine cervix, and prostate under normal conditions (35), but not detected in placenta. Murine cPLA₂ δ was not observed in prostate (Fig. 3), suggesting different expression patterns between species. Among the organs we used for RT-PCR, placenta showed cPLA₂ δ -specific amplification. Small intestine and brain also produced weak but specific signals (data not shown). Together with a reported increase in psoriatic skin (35), tissue-specific expression and the inducible nature for cPLA₂ δ are

suggested. The promoter analyses and transcriptional regulation will be the next subject of our research. It is of interest that cPLA₂ ϵ and ζ have relatively high expression in thyroid. Northern analysis identified two lengths of cPLA₂ ζ transcripts in thyroid (Fig. 3). RT-PCR designed for ORF together with the untranslated region amplified the single DNA fragment (data not shown). The longer transcript might be a product of immature and/or alternative splicing. We could not obtain further evidence of its presence by PCR-based techniques. An alternative site of transcriptional initiation can also be considered. With regard to PLA₂ activities in thyroid, it was reported that thyrotropin receptor stimulating IgG from Graves' disease patients can activate PLA₂ activity (47–49). The role of PLA₂ activities and its products in the thyroid remain to be clarified.

Initial experiments using PA-PC substrate showed Ca²⁺-dependent PLA₂ activity for murine cPLA₂ δ , ϵ , and ζ (Tables I and II). Substrate specificity on the sn-2 fatty acid moiety and the sn-3 polar head group is an important point of investigation. We tested 5 different substrates in the 100,000 $\times g$ supernatant fractions as the enzyme source (Table III). Murine $cPLA_2\delta$ did not show a preference for arachidonoyl over linoleoyl phospholipid. This is in contrast to human $cPLA_2\delta$, which is reported to have 6-fold preference for PL-PC over PA-PC substrate (35). Because differences in enzyme source preparation $(10.000 \times g \text{ supernatant } (35) \text{ versus } 100.000 \times g \text{ supernatant }$ in our study) and assay conditions could have affected the results, it is still inconclusive whether human and murine $cPLA_2\delta$ have different substrate specificity. Murine $cPLA_2\epsilon$ appeared to act better on monomeric lyso-PC substrates. Considering the unique properties of this enzyme, *i.e.* requirement of Triton X-100 in the homogenizing buffer for effective extraction of enzyme activity and association with lysosomes even in the resting state, murine $cPLA_2\epsilon$ is speculated to have a higher binding affinity to lipid membrane. If this is the case, $cPLA_2\epsilon$ could have a lower rate of access to the new substrate molecule in the micelle and show apparently low PLA₂ activity. Murine $cPLA_2\zeta$ showed a preference for PE over PC substrates. Effective binding of human $cPLA_2\alpha$ with the PC molecule was shown to be mediated by Phe-35, Leu-39, Tyr-96, and Val-97 (50). These amino acid residues other than Leu-39 are not conserved in murine cPLA₂ ζ , as well as cPLA₂ δ , and ϵ . This might be the reason why preference for the PC substrate was not clearly observed for these novel cPLA₂s. We have to wait for the final conclusion by the use of purified enzymes.

Intracellular distribution is an important issue for newly identified cPLA2s, because cPLA2 are assumed to require access to membrane phospholipids. Although $cPLA_2\delta$ was consistently recovered in the cytosol fraction (S3), significant amounts of the cPLA₂ ϵ and ζ isozymes were observed in precipitate fractions (P2 and P3) as well (Fig. 4B). $cPLA_2\epsilon$ required Triton X-100 for stable recovery and enzyme activity, suggesting strong interaction of this enzyme with membranes. The major part of cPLA₂ protein expressed in HEK293 cells was recovered in the precipitate fraction at $10,000 \times g$ centrifugation (Fig. 4B). cPLA₂ ζ might self-aggregate or associate strongly with cellular organelle. In CHO cells stimulated with Ca^{2+} ionophore, GFP-cPLA₂δ translocated from cytosol to ER/Golgi membranes. The target organelles were similar to those of GFP-cPLA₂ α (Fig. 5, A and B). However, GFP-cPLA₂ δ moved slower (up to 5 min) than GFP-cPLA₂ α (within 1 min) and the population of cells that show clear translocation is 3-fold smaller in GFP-cPLA₂ (27%, 10 min) compared with GFP $cPLA_2\alpha$ (83%, 5 min). It is possible that maximal $cPLA_2\delta$ translocation may be accelerated by additional signals or conditions, such as phosphorylation, stabilization, and interaction with phosphoinositides (22, 51, 52) or phosphatidylcholine (50). On

the other hand, a unique dot-like pattern was observed for GFP-cPLA₂ ϵ distribution (Fig. 5C). Staining with organelle markers indicated that part of $cPLA_2\epsilon$ is associated with the lysosomes. It is speculated that $cPLA_2\epsilon$ participates in lysosomal functions, e.g. metabolism of endocytosed phospholipids, and regulation of fusion events between the endosomes and lysosome. Further study is required to elucidate how $cPLA_2\epsilon$ relates to lysosomal functions. GFP-cPLA₂ seemed to be present in the cytoplasm (Fig. 5D) even after stimulation with Ca²⁺ ionophore. We could not observe cPLA₂ζ translocation in PAFstimulated W11A cells, or other ionomycin-stimulated cell lines: HEK293 or mouse fibroblast L929, although GFP-tagged human cPLA_{2 α} translocates from cytosol to ER/Golgi membranes in these settings (data not shown). So far, we could not provide a clear explanation for how this enzyme shows Ca²⁺dependent PLA₂ activity (Table II). Some elements may hinder association of cPLA₂ with membrane phospholipids and/or additional intracellular signals may allow $cPLA_2\zeta$ to gain access to substrates. It is also possible that overexpression of GFP-tagged proteins show artificial distribution, and the accurate localization and translocation study wait the antibody against native enzymes.

In summary, we identified a gene cluster of cPLA₂s composed of cPLA₂ β , δ , ϵ , and ζ . Tissue expression of these gene products was confirmed by Northern analysis and RT-PCR. Exogenously expressed proteins have Ca²⁺-dependent PLA₂ activity. Substrate preference was examined with 100,000 × g supernatant fractions to find a specific pattern for each molecule. Further precise analyses are to be carried out by mixed substrate assay with mass spectrometric detection of fatty acids and lysophospholipids. At the cellular level, the key issues are transcriptional and post-translational regulation of enzyme activity by intracellular signaling systems. Further investigations on biochemical and biological functions of these enzymes should advance our understanding of phospholipid metabolism and lipid mediator functions.

Acknowledgments—We thank Drs. T. Yokomizo, S. Ishii, M. Taniguchi, Y. Okada, Y. Kita, and K. Nomura, and Y. M. Harada at The University of Tokyo, and Y. Ide at Keio University for helpful discussion and suggestions. We are grateful to M. Mashimo at Chiba University for constructing pmRFP-hcPLA₂.

REFERENCES

- 1. Six, D. A., and Dennis, E. A. (2000) Biochim. Biophys. Acta 1488, 1-19
- Diaz, B. L., and Arm, J. P. (2003) Prostaglandins Leukotrienes Essent. Fatty Acids 69, 87–97
- Clark, J. D., Milona, N., and Knopf, J. L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7708–7712
- Kramer, R. M., Roberts, E. F., Manetta, J., and Putnam, J. E. (1991) J. Biol. Chem. 266, 5268–5272
- Kim, D. K., Kudo, I., and Inoue, K. (1991) *Biochim. Biophys. Acta* 1083, 80–88
 Leslie, C. C. (1997) *J. Biol. Chem.* 272, 16709–16712
- Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M. (1991) *J. Biol. Chem.* 266, 14850–14853
- Clark, J. D., Lin, L. L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N., and Knopf, J. L. (1991) *Cell* 65, 1043–1051
- Hirabayashi, T., Murayama, T., and Shimizu, T. (2004) Biol. Pharm. Bull. 27, 1168-1173
- Sharp, J. D., Pickard, R. T., Chiou, X. G., Manetta, J. V., Kovacevic, S., Miller, J. R., Varshavsky, A. D., Roberts, E. F., Strifler, B. A., and Brems, D. N. (1994) J. Biol. Chem. 269, 23250–23254
- Pickard, R. T., Chiou, X. G., Strifler, B. A., DeFelippis, M. R., Hyslop, P. A., Tebbe, A. L., Yee, Y. K., Reynolds, L. J., Dennis, E. A., Kramer, R. M., and Sharp, J. D. (1996) *J. Biol. Chem.* **271**, 19225–19231
- 12. Dessen, A., Tang, J., Schmidt, H., Stahl, M., Clark, J. D., Seehra, J., and

Somers, W. S. (1999) Cell 97, 349-360

- Glover, S., de Carvalho, M. S., Bayburt, T., Jonas, M., Chi, E., Leslie, C. C., and Gelb, M. H. (1995) J. Biol. Chem. 270, 15359–15367
- Schievella, A. R., Regier, M. K., Smith, W. L., and Lin, L. L. (1995) J. Biol. Chem. 270, 30749–30754
- Hirabayashi, T., Kume, K., Hirose, K., Yokomizo, T., Iino, M., Itoh, H., and Shimizu, T. (1999) J. Biol. Chem. 274, 5163–5169
- Evans, J. H., Spencer, D. M., Zweifach, A., and Leslie, C. C. (2001) J. Biol. Chem. 276, 30150–30160
- Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., and Davis, R. J. (1993) Cell 72, 269–278
- Nemenoff, R. A., Winitz, S., Qian, N. X., Van Putten, V., Johnson, G. L., and Heasley, L. E. (1993) J. Biol. Chem. 268, 1960–1964
- Borsch-Haubold, A. G., Bartoli, F., Asselin, J., Dudler, T., Kramer, R. M., Apitz-Castro, R., Watson, S. P., and Gelb, M. H. (1998) J. Biol. Chem. 273, 4449-4458
- Muthalif, M. M., Hefner, Y., Canaan, S., Harper, J., Zhou, H., Parmentier, J. H., Aebersold, R., Gelb, M. H., and Malik, K. U. (2001) *J. Biol. Chem.* 276, 39653–39660
- Hefner, Y., Borsch-Haubold, A. G., Murakami, M., Wilde, J. I., Pasquet, S., Schieltz, D., Ghomashchi, F., Yates, J. R., 3rd, Armstrong, C. G., Paterson, A., Cohen, P., Fukunaga, R., Hunter, T., Kudo, I., Watson, S. P., and Gelb, M. H. (2000) J. Biol. Chem. 275, 37542–37551
- 22. Six, D. A., and Dennis, E. A. (2003) J. Biol. Chem. 278, 23842-23850
- Pettus, B. J., Bielawska, A., Subramanian, P., Wijesinghe, D. S., Maceyka, M., Leslie, C. C., Evans, J. H., Freiberg, J., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2004) J. Biol. Chem. 279, 11320–11326
- Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J., and Shimizu, T. (1997) *Nature* **390**, 618–622
- Bonventre, J. V., Huang, Z., Taheri, M. R., O'Leary, E., Li, E., Moskowitz, M. A., and Sapirstein, A. (1997) *Nature* **390**, 622–625
- Sapirstein, A., and Bonventre, J. V. (2000) Biochim. Biophys. Acta 1488, 139-148
- Uozumi, N., and Shimizu, T. (2002) Prostaglandins Other Lipid Mediat. 68–69, 59–69
- 28. Funk, C. D. (2001) Science 294, 1871–1875
- 29. Murakami, M., Kambe, T., Shimbara, S., and Kudo, I. (1999) J. Biol. Chem. 274, 3103–3115
- Song, C., Chang, X. J., Bean, K. M., Proia, M. S., Knopf, J. L., and Kriz, R. W. (1999) J. Biol. Chem. 274, 17063–17067
- Underwood, K. W., Song, C., Kriz, R. W., Chang, X. J., Knopf, J. L., and Lin, L. L. (1998) J. Biol. Chem. 273, 21926–21932
- Pickard, R. T., Strifler, B. A., Kramer, R. M., and Sharp, J. D. (1999) J. Biol. Chem. 274, 8823–8831
- 33. Stewart, A., Ghosh, M., Spencer, D. M., and Leslie, C. C. (2002) J. Biol. Chem. 277, 29526–29536
- Asai, K., Hirabayashi, T., Houjou, T., Uozumi, N., Taguchi, R., and Shimizu, T. (2003) J. Biol. Chem. 278, 8809–8814
- Chiba, H., Michibata, H., Wakimoto, K., Seishima, M., Kawasaki, S., Okubo, K., Mitsui, H., Torii, H., and Imai, Y. (2004) J. Biol. Chem. 279, 12890–12897
- 36. Murakami, M., and Kudo, I. (2001) Adv. Immunol. 77, 163-194
- 37. Valentin, E., and Lambeau, G. (2000) Biochim. Biophys. Acta 1488, 59-70
- Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7877–7882
- Takano, T., Honda, Z., Sakanaka, C., Izumi, T., Kameyama, K., Haga, K., Haga, T., Kurokawa, K., and Shimizu, T. (1994) *J. Biol. Chem.* 269, 22453–22458
- Natori, Y., Karasawa, K., Arai, H., Tamori-Natori, Y., and Nojima, S. (1983) J. Biochem. (Tokyo) 93, 631–637
- Takayama, K., Kudo, I., Kim, D. K., Nagata, K., Nozawa, Y., and Inoue, K. (1991) FEBS Lett. 282, 326–330
- Diez, E., Louis-Flamberg, P., Hall, R. H., and Mayer, R. J. (1992) J. Biol. Chem. 267, 18342–18348
- Clark, J. D., Schievella, A. R., Nalefski, E. A., and Lin, L. L. (1995) J. Lipid Mediat. Cell Signal. 12, 83–117
- Xu, G. Y., McDonagh, T., Yu, H. A., Nalefski, E. A., Clark, J. D., and Cumming, D. A. (1998) J. Mol. Biol. 280, 485–500
- Perisic, O., Fong, S., Lynch, D. E., Bycroft, M., and Williams, R. L. (1998) J. Biol. Chem. 273, 1596–1604
- Bittova, L., Sumandea, M., and Cho, W. (1999) J. Biol. Chem. 274, 9665–9672
 Di Cerbo, A., Di Girolamo, M., Guardabasso, V., De Filippis, V., and Corda, D.
- (1992) J. Clin. Endocrinol. Metab. 74, 585–59248. Kimura, T., Okajima, F., Sho, K., Kobayashi, I., and Kondo, Y. (1995) Endo-
- crinology **136**, 116–123 49. Di Cerbo, A., Di Paola, R., Menzaghi, C., De Filippis, V., Tahara, K., Corda, D.,
- and Kohn, L. D. (1999) J. Clin. Endocrinol. Metab. 84, 3283–3292 50. Stahelin, R. V., Rafter, J. D., Das, S., and Cho, W. (2003) J. Biol. Chem. 278,
- 12452-12460
- Mosior, M., Six, D. A., and Dennis, E. A. (1998) J. Biol. Chem. 273, 2184–2191
 Das, S., and Cho, W. (2002) J. Biol. Chem. 277, 23838–23846

Downloaded from http://www.jbc.org/ by guest on September 6, 2014