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The task of compressed pattern matching is to report all the occurrences of a given

pattern P in a text T available in compressed form. Certain compression algorithms allow

for searching without prior decoding, which is practical if the search is fast enough. Some

compression algorithms can be adapted easier to the search scenario, while dealing with

others is mainly a theoretical challenge. One of the most successful approaches is using

a byte code providing compression for a text composed of words.

It is worth to realize at the start that most natural language texts are composed of words

and separators between them, so a basic question is how to efficiently handle both words

and separators. It is possible to use disjoint alphabets and unrelentingly switch between

them. A better practical choice is however the method called spaceless words [17], which

assumes that most words are followed by a single space. If this is the case, just the word is

encoded. If not (for example, the separator is a comma followed by a space), then the sepa-

rator is encoded just after the word. At the decoding time, the omitted spaces are inserted

after reconstructed words, unless the next codeword corresponds to a separator.

Word-based compression is attractive since it emulates, in a way, higher-order literal

compression, i.e., can attain significant compression ratios, while at the same time being

simpler to implement and less memory consuming, as the compression model is not pollut-

ed with hardly useful contexts. Interestingly, word-based compression even its simplest,

static order-0 implementation wins in compression ratio with popular algorithms from

Ziv–Lempel family. The property of being static implies a possibility of fast and simple

search over a text compressed in that way, and also makes direct access to the text possible

(e.g., for decoding and displaying only an excerpt of text from a middle).

Word-based compression is very practical, as long as it can be applied: its mechanism

is simple, the search is fast, the compressed text together with its word dictionary takes only

about 30% of the original representation [7], and more advanced queries can also be han-

dled with relatively little difficulty. The problem is, however, that the assumption of “text”
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made up of “words” separated with spaces, so natural and convenient for Western languag-

es (e.g., English, French), is inappropriate for oriental languages (e.g., Chinese, Korean),

DNA and protein sequences, or structured music files (MIDI). Moreover, word-based ap-

proach is not perfect also for some European languages: agglutinative ones, like Finnish or

Hungarian, or inflecting ones, like Polish or Russian. For the first group of languages, the

vocabulary is potentially infinite, and for the second group, users are often interested in

finding any of several grammar forms of a given word (usually having a common prefix). It

should be thus clear that there exist important applications for compression algorithms that

allow searching directly in the compressed stream, without assuming practically anything

about the data. Fredriksson and Grabowski [12] showed how byte codes devised for word-

based compression can be adopted to make possible fast search over arbitrary data; this

approach will be briefly presented in Sect. 2.

The most natural choice for static order-0 compression on words is Huffman coding

[16]. It achieves less than 300 of compression ratio, but the search or decompression are

not that very fast because of the need of bitwise manipulations. A more practical idea was

used in [17]. They replaced the classic, binary Huffman with 256-ary Huffman. In other

words, all Huffman codewords had either 1 bytes, or 2 bytes, etc. This way, decompression

got much simpler but searching in the compressed data was still unable to perform any skips

over text characters (bytes).
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The next modification [17] was therefore a tagged Huffman code, in which 7 out of

8 bits in each 256-ary Huffman codeword byte carried the actual information about the

symbol, and 1 bit was used as a flag to signal the first byte of a codeword. Thanks to it, the

tagged Huffman code can be accessed in any position, even if the access point is in the

middle of some codeword (examining at most a few following bytes is enough to detect

a codeword boundary). Moreover, this scheme enables searching with BM-like algorithms,

without any risk of finding false matches, as opposed to plain 256-ary Huffman. The price

for all those desirable properties is some deterioration in the compression ratio, to about

350.

Interestingly, in the family of byte codes with one bit per byte spent for a flag, the

tagged Huffman is not optimal. To notice it, it is enough to make a trivial change to the

scheme: use a flag to denote the last, not the first, byte of each codeword. In this way, the

flag bits in the stream are enough to make the code a prefix one. Consequently, all the com-

binations on the “message” bits are valid and should be used, which stands in contrast to the

tagged Huffman. This idea was presented and analyzed by Brisaboa et al. in 2003 [3], under

the name of end-tagged dense code (ETDC). Indeed, this code is “denser” than tagged Huff-

man, but also amazingly simple and easy to implement. The compression ratio improves to

32–330. Note that what is needed to generate the code is only the list of words ordered by
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frequency; the frequencies themselves are not needed. As an interesting historical note, we

cite Culpepper and Moffat [8] (2005), on ETDC: The exact origins of the basic method are

unclear, but it has been in use in applications for more than a decade, including both

research and commercial text retrieval systems to represent the document identifiers in in-

verted indexes.

Traditionally, the flag is the highest bit in a byte (although this is purely conventional)

in the described schemes. The solution in ETDC thus means that bytes in the range from

128 to 255 end a codeword, while bytes lower than 128 do not end the codeword. The

former values can be called stoppers and the latter continuers. The ranges for stoppers and

continuers is disjoint. What is important, however, is that the value 128 does not have to be

the threshold. In general, we can say about having s stoppers and c continuers, with the

only condition that s + c = 256. This generalization was proposed in [4] under the name of

a (s,c)-dense code, or shortly (s,c)-DC. Obviously, ETDC is (128,128)-DC. The authors

also use the name (s,c) stop-cont code for a code with each codeword being a sequence of

zero or more values from 0 to c – 1 terminated with exactly one value from c to s + c – 1. In

fact, it can be of some value to generalize the (s,c)-DC definition given above with replac-

ing the condition s + c = 256 with s + c = 2b, where b is any positive integer (perhaps 4

might be useful for small alphabets, or 16 for huge alphabets), but in the following we

assume byte-oriented codes, as most practical, which corresponds to setting b = 8.

This (s,c)-DC idea was discovered a year earlier by Rautio et al. [19], but their search

techniques were different than in [4] and were based on splitting each codeword into two

parts sent into separate streams. For typical distributions, s should be greater than c. For

example, in the experiments in [7], the optimal s for several large collections of English text

varies from 188 to 198, leading to at least 0.50 compression improvement in respect to

ETDC. In fact, (s,c)-DC loses very little to plain (non-tagged) 256-ary Huffman, about

0.20 of the size of the original text. Still, the loss to order-0 entropy in the word-based

model, which can be achieved by arithmetic coding, is greater, about 4–50. Unfortunately,

it seems impossible to efficiently search in an arithmetically encoded stream. Searching

in (s,c)-DC is as easy as in its predecessors, tagged Huffman and ETDC, since (s,c)-DC is

also a prefix byte-oriented code, supporting fast Boyer–Moore like searching strategies,

increasing their speed with growing pattern length (measured in bytes of the compressed

pattern representation).

An interesting question concerns the selection of the s value (while c = 256 – s is then

obtained automatically). The code allows for s 1-byte codewords, sc 2-byte codewords,

sc2 3-byte codewords, and so on. Setting a small s implies that the amount of the alphabet

symbols (i.e., words, typically) encoded with only 1 byte, will be strongly limited. On the

other hand, in such a case the number of symbols represented with 2 bytes (and not 3 or

more bytes) will be much larger than for a case of s being significantly larger. Clearly then,

the best choice depends on the symbol probability distribution.

According to current knowledge, finding the optimal s value requires a brute-force

check for all 127 possible partitions, as there are (rather artificial) distributions for which
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the compressed text size as a function of s is not a convex function and thus more than one

local minimum exists, making the standard binary search strategy fallible [7]. Fortunately,

for real distributions the function is practically always convex.

The search in (s,c)-DC (including ETDC) is slightly different than in tagged Huffman.

The latter algorithm uses tag bits to signal the codeword beginnings, i.e., it is impossible to

have the pattern misaligned. In this way, false matches are impossible with this algorithm.

Now we are going to present on an example what can happen with (s,c)-DC. Let s = 156, i.e.

the values [0...9] correspond to continuers, and the values [100...255] represent stoppers.

Imagine that the pattern is a single word and is encoded as a pair of bytes (50, 200). Now, let

us have a piece of encoded text:

... 35 50 200 ... 187 50 200 ...

Seemingly, there are two matches in the shown piece of text, and both will be found by

e.g. BMH algorithm [14], but the first of them should be rejected as being a false one.

Indeed, this can be found with peeking just the previous byte. In the first case, the examined

value is 35, i.e. belongs to continuers, which means that the found “match” was actually

a suffix of some 3-byte or longer codeword. In the second case, the previous byte is 187, i.e.

a stopper, which means that found pattern sequence starts at a codeword boundary, i.e. must

be a genuine match. This nuisance is very little in fact, since the extra checks are needed

only at potential match positions, which are rare.

It seems very hard to improve the compression ratio of (s,c)-DC while keeping its ad-

vantages like byte-orientedness and fast search support. Fortunately, it is possible to weak-

en the input assumptions without losing most of the advantages of the code but improving

the compression significantly. The idea, used in the scheme called pair-based end-tagged

dense code (PETDC) [6], was to treat frequent pairs of adjacent words as individual sym-

bols. PETDC can be classified as a variable-to-variable length code, since the input symbols

vary in their length (i.e., the number of component words – one or two) and also vary in the

output codeword length. Searching for a pattern in this scheme may bring some problems at

the encoded sequence boundaries (since a word can occur alone or be a prefix or a suffix of

possibly many word pairs), but this can be solved by referring to a multiple search algo-
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Another possibility to generate dense codes was pointed out by Culpepper and Moffat

[8]. In their solution, the first byte in a codeword keeps information about the length of the

whole codeword. Unfortunately, this idea poses trouble with efficient search [9].

Variable-length byte coding on words is also often used for sole text compression.

One of the most successful examples of this approach is the word replacing transform
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(WRT) [21]. The scheme assumes a static dictionary shared by the compressor and the de-

compressor (or, in other words, by the sender and the receiver), and words not found in the

dictionary are written verbatim. The byte-orientedness of the encoding is needed not for

searching (which is not supported in WRT, although this option seems possible) but rather

for more efficient further compression with general-purpose algorithms. It appears that

stronger compressors, e.g., from the PPM family [20], work better with less dense WRT

coding, and weaker compressors, e.g. Deflate from the LZ77 family, prefer denser coding.

To address this phenomenon, the authors of the cited work devised and implemented two
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Although simple and useful, byte codes are not the only way to go in word-based com-

pression with search support; for alternatives see e.g. [13,15].

Now we will present a way to adopt byte codes (e.g., (s,c)-DC) to work with arbitrary

data [12]. To this end, the text is partitioned into non-overlapping q-grams, where the choice

of q depends on the text characteristics (e.g., 4 or 5 is a good choice for natural texts

in European languages). There are two search algorithms used, one for patterns shorter

than 2q–1 and the other for longer ones. Short patterns are seeked with a modification of

Shift-Or automaton [1], which performs implicit decoding of the text, encoded to the au-

tomaton [10]. Long patterns must contain at least one full q-gram, and thus the problem

boils down to multiple matching over q alignments of the pattern, where each alignment is

represented by the concatenation of byte codes of the q-grams it wholly contains. Verifica-

tions for the truncated pattern prefix/suffix, and usually also for the multiple matching com-

ponent, are needed.
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In further considerations we assume that that longest codewords have 3 bytes. This is

a reasonable assumption for many data types, including natural language texts. Also, to

fix attention, we talk about “words” as symbols of the text, albeit those could be q-grams

instead.

Our proposal is based on a very simple observation: some pairs of 1-byte encoded

words, although globally frequent, may never go adjacently. For example, in English it is

unlikely to come across phrases like “a the”, “the a”, “of of” or “from of”, although all the

words in the listed phrases belong to the most frequent ones. Consequently, the pairs

of bytes representing those 2-word phrases may never occur in the encoded text. If this is

a case, the most frequent words among those encoded on triples of bytes may obtain 2-byte

codewords instead, namely those corresponding to the non-occurring pairs of most frequent

words.

Let us assume (s,c)-dense coding. There are s2 pairs of words encoded with one byte

each. The text must be scanned and the non-occurring pairs found (this can be implemented
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efficiently with e.g. a hash table). Note that, unfortunately, this idea requires the text to be

static, i.e., its application is somewhat limited.

Obviously, when codewords longer than 3 bytes occur, this idea remains applicable,

but the amount of potential optimizations grows; for example, non-occurring pairs of 1-byte

and 2-byte codewords may be used to shift some words encoded on 4 bytes to the group of

words encoded of 3 bytes. We have not considered how to solve those issues optimally,

however we believe those are mostly of theoretical interest.

The set of non-occurring word pairs must be stored with the encoded text. As it is not

very small typically, we found that using s2 bits to indicate those pairs is more succinct than

listing them directly on 2 bytes per pair. For example, with ETDC (s = 128) the resulting

overhead is 2 KB.

Finally, we note that this idea makes the coding no longer pure order-0, and as such

resembles PETDC a bit. As it will be seen in Sect. 5, our idea gives much humble improve-

ments than PETDC, but is also much easier in implementation and faster in coding and

decoding.

Another related idea [11] allows to replace a 2-byte codeword for a word with 1-byte

encoding, if only the symbol occurs in an “appropriate” context. Assume that V and W are

words having 1-byte encodings according to the baseline code (e.g., (s,c)-DC), and let those

codewords be c(V) and c(W), respectively. The phrase V W does not occur in the text. Now,

alternatively to the previous idea, the 2-byte sequence c(V)c(W) can be used to encode V X,

where X is the most frequent word in the context V among the words encoded on two bytes

with the original algorithm. We have not implemented this idea.
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The idea of tags in byte codes (or their more efficient equivalence in (s,c)-DC) is to

provide instantaneous synchronization in the compressed stream. On the other hand, it is

known that e.g. in Huffman sequences synchronization delays after a random access may be

arbitrarily long (although with probability of such an event going to zero with the number of

decoded bits going to infinity), but also it is known that in most cases the delay is rather

short. There are ways to limit the synchronization delay in the worst case for Huffman

codes, for the price of adding very small redundancy in practice; see e.g. [2]. We are not

aware about similar results for byte codes.

Now we propose a very simple modification to the (s,c)-dense code, which improves

the compression ratio for the lack of guarantee of O(1)-time synchronization. Still, as we

will see, the synchronization delay is O(1) on average.

Let us consider a probability distribution for which the longest (s,c)-DC codeword has

k bytes, and k ≥ 3. The group of longest codewords has then at most ck–1 elements. The

proposed modification increases its capacity to ck–1 · 256, without reducing the other

groups. Note that after this modification the optimal s may be somewhat greater, thus allow-

ing some symbols obtain shorter codewords.
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To fix attention, assume k = 3. The encoded text consists of 1-byte, 2-byte and 3-byte

encoded symbols, where the codewords in the respective groups are ( )is , ( ) ( )
1

i ic s , and
( ) ( ) ( )
1 2

i i ic c b , where ( )is  belong to [c...255], 
( )
1

i
c  and ( )

2
i

c  to [0...c – 1], and ( )ib  belong to [0...255].

Assume now that we have found a tentative match somewhere in the encoded text, and the

byte just preceding the match location is from [0...c – 1] range. With the standard (s,c)-DC,

we would know this is a false match, but now it can also be the last byte of a 3-byte encoded

word (i.e., a genuine match). We decode two more bytes back; if any of them is not from

[0...c – 1], then we know that our match is a false one and the verification terminates. If both

bytes are however from [0...c – 1], then we have to continue peeking previous bytes. The

procedure ends (with positive or negative result) upon encountering the first byte from the

stopper range, i.e., [c...255]. It can be shown easily, assuming Zipfian distribution of words

in the text, that the probability that a randomly extracted word from the text is encoded on

3 bytes, is up7��=/�9����	/�	�	:	ε$	"(���	ε	H	�	; �	7��'� '�$	I	 �	�/�9�	�J�	��	����<6	���9m-

ing also lack for correlation between the codeword lengths of successive words, we obtain

that the probability of a k-long run of 3-byte encoded words in a randomly pointed location

of the encoded text is upper-bounded by (1 – ε<�, which tends to zero with growing k, and

the expected value of k is O(1).

$�����
��%
���&��
��&��

We have implemented the first idea from Sect. 3 and tested its effectiveness in the word

based and q-gram based models. For the word model we used the following files, used

earlier in [12], and available in the archive http://szgrabowski.kis.p.lodz.pl/research/

data.zip: Dickens (the collected works of Charles Dickens, 10192446 bytes); XML (collec-

tion of XML files, 5345280 bytes); English and Spanish versions of the Bible (4486219 and

4276390 bytes, respectively). In the XML file, the end-of-line symbols were inconsistent,

so before further processing we converted 2-byte EOLs to #10. Additionally, we took

a couple of larger files from the Pizza & Chili Corpus [18]: those are 50 MB excerpts (pre-

fixes) of English texts, source codes, and XML, and are referred to in tables as English50,

Sources50 and XML50. For the second experiment, with q-gram models, we additionally

took 50 MB datasets of MIDI pitch values and proteins from Pizza & Chili, which are de-

noted here as Pitches50 and Proteins50. The compression results are presented in Table 1

and Table 2, respectively.

For compression on words, the spaceless model was used. The vocabulary itself was

zlib-compressed (with the maximum setting, -9), following [12]. Clearly, better dictionary

encoding schemes are possible but this requires a separate study. The words, given as input

for zlib compression, were ordered according to their rank and separated with #1 symbols,

which did not occur in any of the given files. Identical vocabulary compression was used for

q-grams but this time the separators were not used for obvious reasons.
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The improvements on words are rather disappointing, especially for ETDC. In one

case (the English Bible) the modification resulted even in a tiny loss (about 20 bytes). This

happened because the sub-vocabulary of 3-byte encoded words had only around 2,000 en-

tries for this file, and thus not the whole gained code space could be utilized.

'�(&
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With (s,c)-DC, the gains are greater which is due to two reasons. One is that the param-

eter s is greater than 128, so among the s2 word pairs there are more such that never occur

adjacently in the text. The second reason is that with a greater s, there are more items in the

group of 3-byte encoded words, hence the most frequent of them have more occurrences

than it used to be with ETDC.

The q value most often used in the experiment was 4. In [12] it was found the best

compromise for natural language texts; q=5 may provide still a bit better compression (in

spite of the bloated dictionary), but the minimum pattern length for which the faster of the

two possible algorithms is selected, is then greater. For some data types other values of q are

more suitable though. For very redundant XML data we present results for q = 4 and q = 10.

Proteins and MIDI pitches are much less compressible, hence q = 3 was also tested for

them. In both tables, gzip and bzip2 compression ratios are also given, for a reference.

The implementations were written in Python and tested on an Athlon64 3000+ with

2 GB of main memory. Implementation of the idea from Sect. 4 will require pattern search

speed measurements too, for a honest evaluation, so future works must require switching

the programming language to e.g. C++.



������	�	�
		��
	
	��	�	�	�
	� ���

�������

�������
��	��	�����	

���	�����
	��	������	��
	
	
��	�	


)��	
���
��
��

We presented a few ideas improving the compression ratio in known dense byte codes.

Experiments with one of those ideas involved ETDC and (s,c)-DC codes, but tagged byte

Huffman could also be used. The achieved improvements are greater in case of q-gram

based, rather than word based, compression. Still, in no case the gains are spectacular, but
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we defend our (implemented) idea as being very simple both conceptually and programmat-

ically, and not affecting search or decompression speed. How practical are the remaining

ideas presented in the paper remains task for future work.
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The author wishes to thank Kimmo Fredriksson for pointing out the idea of succinct

word encoding in some contexts, presented in Sect. 3.
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