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ABSTRACT 

 

It is currently stated and widely accepted by industry and 

users that the RAIM is designed to provide timely 

warnings in the situation where only one of the range 

measurements used at the current epoch is affected by an 

unacceptable bias. However, given the range of potential 

applications of RAIM in the future, in particular with the 

advent of Galileo and the generalization of Safety of Life 

applications, which should spread from the civil aviation 

community to many other professional sectors, it is very 

important to better understand the fundamental properties 

of RAIM, and in particular the potential of RAIM to 

detect multiple failures on range measurements. 

 



The purpose of the study presented in this paper is to 

analyze the performance of a RAIM in the presence of 

multiple simultaneous range errors. In particular, we 

conduct a theoretical analysis to determine in which cases 

the Least Squares Residuals RAIM detection criterion is 

not affected, and analyzed results of Monte-Carlo 

simulations in presence of up to four range failures. 

The theoretical analysis outlined above aims at 

determining in what conditions the Least Squares 

Residuals RAIM detection criterion remains unaffected 

by multiple range failures, searching for what we call 

criterion unaffecting range errors. We show that, 

provided the satellite constellation does not have any 

degenerated geometrical properties, the dimension of the 

vector sub-space of these criterion unaffecting errors is 

max(4-(N-p),0), where N is the number of tracked 

satellites and p is the number of faulty pseudorange 

measurements. The immediate conclusion is that if N-4 

pseudo range measurements are affected, or less than 

that, by a large error, there exists no error that will not 

affect the RAIM detection criterion, and globally due to 

the negligible probability that unintentional interference 

lies in a small dimension sub-space, the RAIM detection 

criterion exhibits a natural detection capability even if up 

to N-2 pseudo-range measurements are faulty. This 

theoretical result defines the properties of the errors that 

lead to zero change in the detection criterion. To jump to 

a more operational conclusion, it remains to know what 

the possibility is for multiple range errors to induce a 

detection criterion that is below the detection threshold. 

So to complement the theoretical analysis outlined above, 

we ran Monte Carlo simulations inserting up to four 

range failures and analyzing the detection capacity. The 

capacity of RAIM detection is also analyzed in the 

presence of intentional jamming. 

 

I. INTRODUCTION 
 

The pseudorange measurements made by a Global 

Navigation Satellite System (GNSS) receiver are affected 

by residual atmospheric delays, multipath, noise and 

background interference. These range errors induce errors 

in the estimated position. 

 

The International Civil Aviation Organization (ICAO) 

has stated the requirements that need to be fulfilled by a 

GNSS to be used as navigation means for specific phases 

of flight. These requirements are applicable to the GNSS 

receiver and to the GNSS signal, and are stated in terms 

of accuracy, integrity, continuity and availability. These 

requirements specify a nominal RF environment and 

feared events leading to abnormal situations. 

 

In order to satisfy the ICAO GNSS requirements from the 

en-route to the Non Precision Approach phases of flight, 

a GPS receiver needs to include a Receiver Autonomous 

Integrity Monitoring (RAIM) module. This module is 

mainly designed to warn rapidly the user in the case of an 

unacceptable measurement error, such as the error caused 

by a failure of an atomic clock onboard a GPS satellite. It 

can also include an algorithm to exclude the faulty 

measurement from the navigation solution calculation. It 

must provide the user with a Horizontal Protection Level 

(HPL), which is the estimation of the impact in the 

horizontal plane of the smallest range bias that can be 

detected. 

 

It is important to recall that the RAIM performance can 

only be guaranteed in the situation where only one of the 

range measurements used at the current epoch is affected 

by an unacceptable bias. 

 

The purpose of the study presented in this paper is to 

analyze the performance of a RAIM in the presence of 

multiple simultaneous range errors. In particular, we 

conduct a theoretical analysis to determine in which cases 

the LSR RAIM detection criterion is not affected, and 

analyzed results of Monte-Carlo simulations in presence 

of up to four range failures. 

 

The first part of this paper recalls the design parameters 

of a RAIM algorithm and the principle of classical Least 

Squares Residuals RAIM. On this basis, we then 

determine what the mathematical condition on multiple 

range measurement errors is for the LSR RAIM detection 

criterion to be equal to zero, defining what we call 

criterion unaffecting range errors. We show that, for non-

degenerated visibility matrices, the dimension of the 

vector sub-space of these criterion unaffecting range 

errors is max (4-(N-p),0), where N is the number of 

tracked satellites and p is the number of faulty 

pseudorange measurements. The natural resistance of the 

detection criterion in presence of unintentional jamming 

is then very strong. This condition is then physically 

justified, and graphically illustrated in a two dimension 

example. We also check this particular RAIM detection 

criterion performance in several cases, using a real GPS 

receiver connected to a GPS signal generator.  In order to 

move towards a more operational conclusion on this 

RAIM performance by analyzing the impact of errors that 

induce a detection criterion which is below the detection 

threshold, we then provide results of Monte-Carlo 

simulations showing that this robustness is indeed very 

large in presence of up to four faulty ranges. Then, 

detection capability in presence of intentional 

interference is discussed. A conclusion on this overall 

detection performance is then drawn, particularly in the 

context of future GNSS, comprising GPS and GALILEO, 

broadcasting signals on several frequency bands. 

 

II. PSEUDORANGE MEASUREMENTS MODEL 

 

Let us denote yi(k) the pseudo-range measurements made 

by the user receiver at each epoch k  on the signal 



coming from satellite i , and corrected from the broadcast 

satellite clock offset, ionospheric delay, tropospheric 

delay. 

These corrected measurements are modelled as: 

( ) ( ) ( ) ( )kektckky i

u

ii +∆+= ρ  

where 

• 
iρ  is the true geometrical distance between the 

satellite antenna and the user receiver antenna 

• ut∆  is the user receiver clock offset w.r.t GPS 

time. We note uu tcb ∆=  the receiver clock 

bias expressed in meters. 

• 
ie  is the sum of the measurement errors due to 

multipath, background interference, noise, 

ionospheric and atmospheric propagation delay 

residuals, satellite clock residuals. 

 

These measurements can also be expressed as a function 

of the receiver true position, and of the satellite position 

as follows: 

( ) ( ) ( ) ( ) i

u

iiii ebzzyyxxky ++−+−+−=
222

 

where 

• x , y , z  are the cartesian coordinates of the 

receiver antenna at the time of signal reception 

expressed in an ECEF reference frame. 

• 
ix , 

iy , 
iz  are the cartesian coordinates of the 

satellite antenna at the time of signal emission 

expressed in an ECEF reference frame. 

 

We gather in a vector denoted ( )kY  the corrected 

pseudorange measurements made by the receiver at time 

k. These measurements are modelled as follows: 

( ) ( ) ( )[ ]tN kykykY 1=  where N is the number 

of satellites used for positioning at the current epoch. 
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where 

( )( ) ( ) ( ) ( ) ( )kbzzyyxxkXh u

iiii +−+−+−=
222

 

The measurement model is thus expressed as: 

( ) ( )( ) ( )kEkXhkY += . 

III. LEAST SQUARES NAVIGATION SOLUTION 

 

The measurement model is not linear because the 

measurements do not linearly depend on X. Therefore, we 

implement an iterative least squares estimation technique. 

This method uses the linearization of the measurement 

model around successive estimates of the receiver 

position. 

 

Let us denote ( )kX 0
ˆ  an initial estimate of ( )kX . This 

initial estimate can be determined using past 

measurements or can be provided by other navigation 

means. 

We then denote ( ) ( ) ( )kXkXkX ∆+= 0
ˆ . Therefore, 

we can rewrite the measurement model as follows: 

( ) ( ) ( )( ) ( )kEkXkXhkY +∆+= 0
ˆ  

This model is linearized around ( )kX 0
ˆ  : 

( ) ( )( ) ( )( ) ( ) ( )kEkXkX
X

h
kXhkY +∆×

∂
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+≈ 00

ˆˆ  

The first order derivative that appears in this last equation 

is an 4×N  matrix that can be expressed as: 
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It can be shown that these derivatives can be expressed 

as: 

( )( ) ( )
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and ( )( ) 1ˆ
0 =

∂

∂
kX

b

hi

. 

The linearized model can also be rewritten as: 

( ) ( )( ) ( ) ( )kEkXHkXhkY +∆×=− 0
ˆ  

or 

( ) ( ) ( )kEkXHkY +∆×=∆  

if we note ( ) ( ) ( )( )kXhkYkY 0
ˆ−=∆  the deviation 

between the measurements made and the predicted 

noiseless measurements that the receiver would have 

made if its position and clock delay were ( )kX 0
ˆ . 



Considering this new linear model between ( )kY∆  

and ( )kX∆ , we can compute a least squares estimate 

of ( )kX∆ . 

This estimate is: 

( ) [ ] ( )kYHHHkX tt ∆×=∆
−1ˆ  

Let us denote that if the measurement error covariance 

matrix is known, then the weighted least squares estimate 

is: 

( ) [ ] ( )kYRHHRHkX tt ∆×=∆ −−− 111ˆ  

where ( ) ( )( )kECovkR = . 

This quantity ( )kX̂∆  is an estimate of ( )kX∆ , 

which is defined as the deviation between the initial 

estimate ( )kX 0
ˆ  and ( )kX . 

We can therefore imagine the implementation of 

an iterative algorithm starting from an initial 

estimate ( )kX 0
ˆ  and improving progressively this 

estimate through the comparison between the 

measurements and the predicted measurements for each 

estimated position. The iterative algorithm can be 

implemented to stop if ( )kX̂∆  is a vector that has a 

small norm. 

Another possibility is to look at ( )kY∆ , but then starts 

the RAIM. 

 

IV. RAIM ALGORITHM BASICS 

 

The norm of vector ( )kY∆  can be used as a quality test. 

Indeed, if the mathematical model of the measurements is 

correct, if the measurements are only affected by noise 

with a standard deviation adequately described by the 

model, and if the estimated position and receiver clock 

bias are close to reality, then the norm of this vector 

( )kY∆  is the of the same order as the noise.  

Indeed: 

( )XhYY ˆ−=∆  

This can be expressed as: 

( ) ( ) ( )
( ) ( ) EXXhXXh

EXhXhXhY

+∆+−∆+=

+−=−

ˆˆˆ

ˆˆ

00

 

This can be linearized as: 

( ) ( ) EXXHEXHXHXhY +∆−∆=+∆−∆≈− ˆˆˆ

 

But ( ) [ ] ( ) ( )( )[ ]kXhkYRHHRHkX tt

0

111 ˆˆ −×=∆ −−−

, 

therefore

( ) [ ] ( ) ( )[ ]kEkXHRHHRHkX tt +∆××=∆ −−− 111ˆ  

This is equivalent to 

( ) ( ) [ ] ( )kERHHRHkXkX tt ×+∆=∆ −−− 111ˆ , so 

( ) ( ) [ ] ( )kERHHRHkXkX tt ×−=∆−∆ −−− 111ˆ  

If we integrate this in the first equation, we get 

( ) [ ] EEHHHHXhY tt +−≈−
−1ˆ  

and finally, we have 

( ) [ ]( )EHHHHIXhYY tt 1ˆ −
−=−=∆  

where E is the vector containing all the measurement 

errors. 

Therefore, there is a linear relation ship between the 

measurement error vector E and the prediction error 

vector Y∆ . 
 

The RAIM test statistics is then computed using the sum 

of squared residuals which is defined by: 
2

YYYSSE T ∆=∆⋅∆=  

As we can see, if all elements of E have the same 

Gaussian distribution, are independent and with zero 

mean and standard deviation σ, then, the statistical 

distribution of SSE  is independent from the geometry of 

the constellation, for any value of N. 

With the previous assumptions on the distribution of E, 
2σSSE  is centred and

2χ -distributed with N-4 

degrees of freedom, provided the number of visible 

satellites N is at least 6. 

Note that for N=5, it is shown that 
2σSSE has a 

Gaussian distribution: )1,'(~
2

µ
σ

N
SSE

. 

The classical operational test statistic is 
4−

=
N

SSE
T . 

 

V. RANGE FAILURES UNAFFECTING THE 

DETECTION CRITERION 

 

To identify the errors that do not affect the test statistics T 

in the above mentioned RAIM, we look for the 

systematic errors E that induce no variation of Y∆ . We 

call these errors the criterion unaffecting range errors. 

 

The pseudorange measurement errors E can be modelled 

as the sum of the noise plus the range errors that do not 

originate from noise itself. So we can write 

noisebias EEE +=  

 

 

 

 

 

 



where: 

• noiseE is the vector of the noise errors 

• biasE is the vector of the range faults not 

originating from the noise, but rather from 

satellite failures or interference. These errors are 

modeled as biases at each epoch. 

 

Let us assume that the measurement error vector 

biasE  has p non-zero coordinates. This means we assume 

now that not all the GNSS pseudorange measurements 

are affected by unacceptable errors but only p GNSS 

channels. We denote the measurement error vector in that 

case
pbiasE .  

 

It is assumed that the 4 columns of the matrix H are 

independent, i.e. the partial derivatives of the non linear 

function h w.r.t. x, y, z and b are an independent family of 

vectors. This implies that 4=Hrank . Let us define the 

set of indexes { }piiiI ,,, 21=  such that 0)( ≠kp iE  

and { }
piiiI eeespanF ,,,

21
=  the linear space 

spanned by the vectors { }
piii eee ,,,

21
, where ie is the 

i-th vector of the canonical basis of
nR .  

Let us now denote [ ] tt HHHS
1−

=  the 

pseudoinverse of H. The prediction error vector Y∆ , 

which is the base for the RAIM test statistic, can be 

expressed as: 

( )EHSIY −=∆  

where E  is the vector of the measurement errors. 

 

Therefore the prediction error vector can be expressed as: 

( ) ( ) noisebiasnoisebias YYEHSIEHSIY ∆+∆=−+−=∆
The prediction error has two contributors: the noise and 

the range errors not originating from the noise. Let us 

look at the impact of the range errors 

( )
pp biasHbiasbias EPEHSIY =−=∆ , 

where HSIPH −= is the orthogonal projection onto 

the null space of Ht. Consequently, all error vectors 

pbiasE affect the detection criterion, 0≠
pbiasH EP , if the 

intersection J between IF and HIm is restricted to the 

null-vector. In [Fillatre and Nikiforov, 2005], it is shown 

that it is equivalent to assume that the set of 

rows{ }
pNjjj HHH

−
,,,

21
 is linearly independent 

for all possible set I by denoting 

( ) ( ) ( ) ( )







∂

∂

∂

∂

∂

∂

∂

∂
= 0000

ˆˆˆˆ X
b

h
X

z

h
X

y

h
X

x

h
H

jjjj

j
an

d
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the set of indexes associated to the rows of H which are 

not affected by the p pseudorange errors whose locations 

are defined by I.  

In other words, an error vector which affects p 

pseudorange measurements does not affect the criterion if 

and only if the sub-matrix KH , composed of the N-p 

other measures, is not full rank column. 

 

Given only one satellite constellation like the GNSS, it is 

straightforward to verify that each row of the matrix H is 

linear independent from the others due to the different 

orientations and positions of each satellite composing the 

constellation. Hence, it is straightforward to verify that 

the extraction of N-p rows of H by an arbitrary set I still 

generates a sub-matrix KH  such 

that { }pNHrank K −= ,4min .  

 

Consequently, an error vector always affects the 

detection criterion when N-4, or less, pseudorange 

measurements are erroneous. On the contrary, it always 

exists errors that do not affect the detection criterion 

when more than N-4 pseudorange measurements are 

affected by errors. More specifically, it will be proved 

later that the intersection J between IF and HIm has 

the dimension max(4-(N-p),0).  

 

This means that, noting N the numbers of visible 

satellites: 

• if N-4 pseudorange measurements are faulty, or 

less than that, there are no errors that do not 

affect the RAIM criterion. 

• if N-3 pseudorange measurements are faulty, the 

vector sub-space of the criterion unaffecting 

errors has a dimension 1. This means that these 

measurement errors for all the satellites are all 

linearly related to a unique arbitrary parameter, 

which seems very unlikely. 

• if N-2 pseudorange measurements are faulty, the 

vector sub-space of the criterion unaffecting 

errors has a dimension 2. This means that these 

measurement errors for all the satellites are all 

linearly related to 2 arbitrary parameters, which 

seems very unlikely also. 

• if N-1 or N pseudorange measurements are 

affected, the vector sub-space of the criterion 

unaffecting errors has a dimension 3 or 4. This 

means that these measurement errors for all the 

satellites are all linearly related to 3 or 4 

arbitrary parameters, which reduces also the 

probability for this to occur. 

 

It is important to note that some changes in error 

detectability may appear when two satellite constellations 

are used simultaneously due to the existence of two 



satellites which have the same elevation and azimuth 

with respect to the GNSS receiver. Hence, some linear 

dependencies may exist between the rows of the matrix H 

and it certainly becomes possible to extract 4 linearly 

dependant rows of H. In this case, it may exist some 

criterion unaffecting errors when only N-4 pseudorange 

measurements are affected by errors. 

 

VI. POSITION ERRORS INDUCED BY 

CRITERION UNAFFECTING RANGE FAILURES 

 

Let us now try to characterize the position errors induced 

by these measurement errors that do not affect the LSR 

RAIM detection criterion. This characteristic will be 

expressed as the linear relationship between these 

position errors and a basic vector that has dimension 4-

(N-p). This expression will be in turn used to express the 

linear space of the criterion unaffecting measurement 

errors themselves. 

 

We have seen in section IV that the position errors 

induced by measurement errors are defined as: 

EHHHXX tt 1)(ˆ −=∆−∆  

If we denote again
tt HHHS 1)( −= , then the position 

errors XX ∆−∆ ˆ  induced by the criterion unaffecting 

errors are such that XXSE
pbias ∆−∆= ˆ , and as we 

know
pbiasbias EHSIY )( −=∆ , then 

0=∆ biasY  is equivalent to 
pp biasbias EHSE .= , and 

this leads to the following relationship between the 

criterion unaffecting errors and the position error that 

they induce: 

( )XXHE
pbias ∆−∆= ˆ  

This relation can be used to split the H matrix in two 

blocks pH →1  from lines 1 to p and npH →+1  from lines 

p+1 to N: 
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Therefore, we see that ( )
NpHXX →+∈∆−∆ 1kerˆ . 

Let us now try to define this linear space of the position 

errors induced by the criterion unaffecting errors. 

Let us denote q=N-p and let us decompose the 

vector XX ∆−∆ ˆ as the collection of a vector with 

dimension q, and a vector with dimension 4-q: 

( ) 
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

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q

W

W
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4
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The Nx4 matrix H can be accordingly rewritten as the 

following 4 block matrix: 
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Note that both decompositions only exist if 4-q>0, or 

equivalently 0)(4 >−− pN . 

The previous property ( )NpHXX →+∈∆−∆ 1kerˆ can be 

expressed as: 

[ ]( ) 0ˆ
2221 =∆−∆ XXHH . 
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equivalent to 042221 =+ −qq WHWH . 

As the left corner block of H, 21H  is a square matrix with 

full rank N-p, we can write: 

qq WHHW −
−−= 422
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So the position errors can be expressed as a 

linear combination of the same vector qW −4 : 
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Therefore, the dimension of the vector sub-space of the 

position errors induced by the measurement errors that do 

not affect the detection criterion is the dimension 

of qW −4 , which is )(44 pNq −−=−  . 

 

Let us now express in the same way the linear space of 

the criterion unaffecting range measurement errors that 

do cause these position errors: 
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We see again that we are dealing with a linear sub-space 

defined as all linear combinations of qW −4 , so this linear 

sub-space of the criterion unaffecting errors has a 

dimension )(44 pNq −−=− . 

 

VII. ILLUSTRATION IN 2 DIMENSIONS 

 

To illustrate this theory on criterion unaffecting biases, 

we consider examples in simplified conditions. First of 

all, in order to simplify the interpretation of the drawings, 

we assume the user clock bias is resolved, so the user 

clock bias is considered estimated. Therefore, in absence 

of error, the position solution is at the intersection of the 

iso-range surfaces. Then, we consider that only 4 

satellites are used for positioning. 

 

Let us first consider the case without failure, as illustrated 

in figure 1. The RAIM does not detect any failure.  

Figure 1: Illustration in a 2 dimension case of an 

estimated position without range failure in the absence of 

noise. 

 

In the following, spheres are approximated as lines 

because the satellites are very far compared to the 

position errors illustrated in the figures shown. 

 

We now consider in figure 2 the case where a single 

range error appears, on satellite 3. The estimated position 

is wrong. The measurement prediction error for each 

satellite can be illustrated as the projection of that 

estimated position on the satellite iso-range surface. As 

the deviation between the predicted range and the 

observed range is too large for satellites 2 and 3, we can 

anticipate that the RAIM criterion detection is affected by 

the error. This result is expected as the RAIM is designed 

to detect one range error among all the measurements. 

 

Figure 2: Illustration in a 2 dimension case of an 

estimated position with one range failure. 

We can, on figure 2, discuss the conditions for range 

errors not to affect the detection criterion. We saw in the 

theoretical section that the detection criterion is based on 

the measurement prediction errors. For measurement 

errors not to affect the measurement prediction error, we 

see in this illustration that the estimated position must 

stay close to the iso-range surfaces of all satellites, 

including the unaffected satellites. For example, when 

only one range is affected by an error, for that error not to 

affect the detection criterion, the estimated position must 

stay close to the iso-range surfaces of the N-1 unaffected 

satellites. 

 

If at least 5 satellites are used for positioning and one of 

them induces a faulty pseudo-range measurement, the 

iso-range surfaces of the 4 unaffected satellites already 

intersect in one unique point after clock resolution, so the 

estimated position will in any case move away from that 

point, therefore the detection criterion is always affected. 

 

Also, in general, if more satellites are affected, then for 

the detection criterion not to be affected, the estimated 

position has to stay close to the iso-range surfaces of the 

unaffected satellites. For example, if only 1 satellite 

remains unaffected, the estimated position can be 

anywhere along the iso-range surface of that satellite, so 

there are 3 degrees of freedom for the estimated position 

if we include the clock, therefore 3 degrees of freedom 

for the affected ranges. If 2 satellites are unaffected, there 

are 2 degrees of freedom for the errors. If 3 satellites are 

unaffected, there is only one degree of freedom. If 4 

satellites or more are unaffected, then there is no degree 

of freedom, no possibility for the criterion unaffecting 

errors to exist. 

 

Figure 3 illustrates the case where two range failures 

occur: one on satellite 3 and one on satellite 4. The 

measurement prediction error for all 4 satellites is large, 

so the detection criterion is affected by the errors.  
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Figure 3: Illustration in a 2 dimension case of an 

estimated position with 2 failures. 

Again, when 2 ranges are affected, for them not to affect 

the detection criterion, the estimated position must stay 

on the iso-range surfaces of the other N-2 sats. But if N-2 

is greater or equal than 4, these iso-range surfaces already 

have a unique intersection, and the estimated position has 

to move away from this intersection, so the detection 

criterion sees the error in any case. 

 

We now consider in figure 4 the case where three range 

errors appear, on satellites 1, 2 and 3.  

 

Figure 4: Illustration in a 2 dimension case of an 

estimated position with 3 failures. 

In the case illustrated here, the measurement prediction 

error is large for all 4 satellites and the RAIM detection 

criterion is affected. For the detection criterion not to be 

affected, the estimated position has to stay on the iso-

range surface of the unaffected satellite (sat 4). This is 

illustrated in figure 5: the prediction error is 0 for all sat, 

so the detection criterion stays unaffected. 

 

Figure 5: Illustration in a 2 dimension case of an 

estimated position with 3 failures. 

As a conclusion, when several range failures occur, there 

are limited degrees of freedom for the pseudo-range 

errors to cause the estimated position to stay close to the 

iso-range surfaces of the unaffected satellites, except 

when all N or N-1 satellites are affected. Therefore, this 

leaves very limited occasions for the detection criterion 

not to be affected by the pseudo-range errors. 

 

One question that now remains to be answered is: when 

is the impact on the detection criterion large enough for 

that criterion to go over the threshold ? 

 

To test this and the theoretical results illustrated here, we 

conduct tests with a real receiver and a RAIM 

implemented with a threshold conform to DO229 specs. 

In a further section, we test the performance of the RAIM 

in presence of up to four range failures. 

 

VIII. PRESENTATION OF TESTS 

 

In order to check the definition of the linear sub-space of 

the criterion unaffecting errors, we have tested the 

performance of a LSR RAIM algorithm using pseudo-

range measurements from a NovAtel OEM3 receiver 

connected to a GSS signal generator. 

 

As our main goal is to test the existence of these criterion 

unaffecting errors in the linear sub-space identified 

earlier, we place the receiver in a situation where these 

errors exist. 

As the dimension of the linear space of criterion 

unaffecting errors, is in the general case, 4-(N-p), then if 

p=2, the condition for criterion unaffecting errors to exist 

is N<6. If 5 satellites are tracked, the space of the 

undetectable errors has dimension 1. 
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We conduct two simulations: one with two identical 

range errors, one with ranges errors linearly related by a 

pre-computed value. This value is the coefficient of the 

unit vector of the solution sub-space. We know that this 

linear space is defined as:  

( ) 0=×− pESHI  with ( ) tt HHHS ××=
−1

. If 

we denote SHG ×=  this is equivalent to: 
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To insert errors e1 and e2, we determine first the matrix G 

in advance, and we instruct the GSS signal generator to 

generate signals with these errors. 

 

In the same way, if we consider a case where there are 3 

range failures (p=3), the dimension of the linear space of 

the criterion unaffecting errors is 4-(N-3)=7-N. With 5 

satellites it is a 2 dimension sub-space. In the same way 

as above, we find a unit vector with 3 non zero 

components from equation ( ) 0=×− pESHI . 

 

IX. TESTS RESULTS 

 

First of all, we consider the design case of the RAIM 

with one failure in figure 6. A ramp error (5 m/s) is 

applied on 1 among the 10 tracked satellites, and we 

observe here the detection occurs 20 seconds after the 

initiation of the failure, which is quite early because the 

threshold is low. 
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Figure 6: Ramp of 5 m/s on 1 range among 10 (blue: 

HPL, black: horizontal position error, red: detection 

flag). 

Now, with 5 satellites in view, a 5 m/s ramp error is 

applied on 2 satellites, at GPS time 412 110 seconds. 

According to the values of G, the ramp on the 1st satellite 

must be equal to the ramp on the 2nd satellite multiplied 

by -2.44. Here, the ramps are identical, and as we can see 

in figure 7, the failure is detected only 2 s after its 

initiation. 
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Figure 7: 2 identical ramps of 5 m/s (blue: HPL, black: 

horizontal position error, red: detection flag). 

  

It must be noted that the same thing happens when the 

identical ramps are applied on two different satellites. 

  

It must be noted that the HPL is very high as the number 

of satellites is low (5 ou 6), but we are only interested 

here in the behaviour of the detection criterion. 

 

Now the ramp failures are applied on 3 satellites while 

using 6 of them for positioning, as shown in figure 8. 

These range errors are identical on all three satellites and 

the detection occurs 10 seconds after the initiation of the 

failure (3 ramps at 5m/s). Note the horizontal position 

error does not go over the HPL. 



3 identical ramps, 6 satellites
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Figure 8: 3 identical ramps of 5 m/s (blue: HPL, black: 

horizontal position error, red: detection flag). 

  

The performance is the same for the same constellation 

but this time with ramps applied on 3 different satellites 

(5 m/s). The detection occurs 15 seconds after the 

initiation of the errors.  

 

So the presence of these multiple range failures does 

affect the detection criterion. We now try to check the 

predicted performance in presence of undetectable errors. 

 

The ramps are applied on 3 satellites and they are related 

by the coefficients calculated previously. The position 

error is very large. We can clearly see in figure 9 that the 

failures are not detected. The horizontal position error 

grows up to 400m, and there is no indication of detection. 
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Figure 9: 3 ramps inter-related (blue: HPL, black: 

horizontal position error, red: detection flag). 

  

For the previous examples, the tests were made with 

simple configurations including few satellites (5 or 6) to 

simplify the calculation of the coefficients. But in the real 

case of GPS use for navigation, the number of satellites 

varies between 8 and 10. We show in figure 10 results of 

a simulation with a configuration of 10 satellites, 6 of 

them being affected by a ramp of 5 m/s at time 412 110. 

We can see that the detection is very quick, less than 15 

seconds after the initiation of the failure. 
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Figure 10: 6 identical ramps of 5 m/s and 10 satellites in 

view (blue : HPL, black: horizontal position error, red: 

detection flag). 

 

Indeed, with 10 satellites and 6 failures, the set of the 

undetectable errors has a dimension of 0. 

 

X. MONTE CARLO ANALYSIS OF RAIM 

PERFORMANCE 

 

The main objective of this analysis is to make a statistical 

assessment of the behaviour of RAIM facing several 

range errors. During those simulations, we introduce up 

to four simultaneous range errors with various 

amplitudes. 

 

The simulation assumptions are : 

• Constellation : ‘Optimized 24 sat’ (RTCA DO 

229) with no satellite failure 

• False alarm probability Pfa=3.333.10-7 per test 

(specification MOPS DO 229) corresponding to 

10-5 / hour in presence of SA 

• Missed detection probability Pmd=10-3 

• Noise affecting the pseudoranges: σ=8m 

• Simulation duration: 86400 s with a 1s step 

 

The RAIM detection threshold is determined in 

order to insure a given false alarm rate and is computed 

as follows: 
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The thresholds used for RAIM detection are : 

n Normalized  

threshold (a) 

Threshold (ro)  

for sigma 8m 

5 26.046 40.828 

6 29.828 30.895 

7 32.929 26.504 

8 35.701 23.900 

9 38.267 22.132 

10 40.689 20.833 

11 43.001 19.828 

12 45.226 19.021 

Table 1: Thresholds used for detection. 

 

The threshold used to determine the availability of the 

RAIM algorithm is determined as a function of the 

missed probability, of the considered alarm limit and the 

detection threshold ro presented above. The criterion used 

in our case is the 
λσ

AL
HDOPceil=∆  where λ is the 

normalized threshold computed 

as
32 10),4,( −==− mdCDF Pna λχ . 

 

The thresholds used for availability decision are: 

 Table 2: Thresholds used for availability decision. 

 

The measurement error is assumed white and gaussian 

with identical power (σ =8 m) on all visible satellites. 

The failures are simulated as biases affecting a number k 

of measurements. The failure amplitude is uniformly 

distributed between 5* σ noise  and Amax which can be 

preset. 

 
Figure 11: Distribution of failures inserted in 

observations. 

 

All results presented below are average results on the 

complete duration of the simulation. The total number of 

samples is 8640000 (100 failures by constellation, 1 

constellation per second over 24 h). Instant percentages 

can significantly vary as a function of the number of 

satellites used and the corresponding geometry. 

 

The first important result is the rate of detection of the 

RAIM for all the simulations run, that is the percentage 

of runs where the RAIM detection criterion is above the 

threshold ro. This is shown in figure 12. 

 
Figure 12: Rate of RAIM detection. 

 

Then, figure 13 shows the rate of non integrity events, 

declared as the percentage of runs where the horizontal 

position error is larger than the horizontal alert limit 

while the RAIM detection criterion is below the 

threshold. This definition does not include the time to 

alert, as failures and their consequence are only analyzed 

at the current epoch. 

 
Figure 13: Percentage of non integrity events. 

 

In order to test the statistical validity of the results, two 

cases were simulated on a double number of random 

n Normalized  

thresholds (√λ) 
Threshold for 

sigma 8m 

5 8.19 8.485 

6 8.48 8.195 

7 8.69 7.997 

8 8.86 7.844 

9 9.01 7.713 

10 9.14 7.603 

11 9.26 7.505 

12 9.38 7.409 
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samples (200 outdraws per constellation). The observed 

results are very close to the results obtained with 100 

outdraw/constellation, so the Monte Carlo methodology 

used seems appropriate. 

  

The results obtained show that the RAIM algorithms, 

although designed to guarantee integrity performance 

when facing a single failure on a single pseudo-range, 

allow to detect multiple failures. In presence of multiple 

failures, the detection performance varies as a function of 

amplitude and number of failures.  

 

The worst integrity results are obtained for failures with 

average amplitude, around 1000 m, as the position error 

can be large enough to be above the alert limit while the 

RAIM does not detect. For a large number of failures or 

strong failures amplitudes, the integrity improves 

considering the better probability of going over the 

RAIM threshold.  

 

In all simulated cases, the probability of non integrity 

(knowing a failure is present) is lower than 10-3. To get 

an absolute probability of non integrity, it remains to 

multiply that conditional probability by the probability of 

occurrence of the worst case of failure. 

 

These results are based on statistical averages and do not 

describe the worst detection performance that can be 

encountered by a specific user at a given epoch. 

 

XI. SENSITIVITY OF CRITERION 

UNAFFECTING ERRORS TO POSITION 

UNCERTAINTIES 

 

Let us assume now that the RAIM test statistics T is 

computed by using the matrix H and the decision 

unaffecting error pE  is computed by using the matrix Ĥ 

which is different from the matrix H. A question which 

naturally arises concerns the sensitivity of the decision 

function with respect to this error. In particular, the 

following scenario is assumed: the decision unaffecting 

errors pE are generated at the geographical position 

which is different from the geographical position of the 

GNSS receiver. The distance between two positions 

varies from 0 to 150 km.  The common orientation of 

these geographical positions is fixed. This scenario is 

relevant to examine the robustness of the decision 

unaffecting errors with respect to some lack of a priori 

information about the matrix H.  

 

Pseudorange errors are generated to induce an error in the 

estimated altitude of the GNSS receiver. This result is 

presented in figure 15: the induced vertical position error 

is about 1090 meters. As it is shown in figure 16, these 

errors are not detectable by the receiver’s RAIM. 

  

 
Figure 15: Error on the estimated altitude as a function 

of the distance between two geographical positions. 

 

 
Figure 16: Probability of detection as a function of the 

distance between two geographical positions 

 

This numerical illustration shows that the decision 

unaffecting errors generation method is low sensitive 

with respect to the distance between the GNSS receiver 

position and the location of the errors pE  calculation. 

 

 

CONCLUSIONS 

 

This paper has presented the results of a study that aims 

at characterizing the performance of RAIM in presence of 

multiple range failures. 

The study was conducted in two steps: first we have 

made a theoretical analysis of the linear sub-space of the 

pseudo-range measurement errors that have no effect on 

the LSR RAIM detection criterion, and then we have run 

simulations to observe the conditional rate of non-



integrity events induced by up to four simultaneous range 

failures. 

 

From the theoretical analysis presented here, we have 

shown that, provided the satellite constellation does not 

have any degenerated geometrical properties, the 

dimension of the linear sub-space of the errors that do not 

affect the decision criterion is max(4-(N-p),0), where N is 

the number of tracked satellites and p is the number of 

faulty pseudorange measurements. The immediate 

conclusion is that if N-4 pseudo range measurements are 

affected, or less than that, by a large error, there exists no 

error that will not affect the RAIM detection criterion, 

and globally due to the negligible probability that 

unintentional interference lies in a small dimension sub-

space, the RAIM detection criterion exhibits a natural 

detection capability even if up to N-2 pseudo-range 

measurements are faulty. 

 

The level of impact of the errors on the decision criterion 

has been further assessed through Monte-Carlo 

simulations over 24 hrs, inserting up to four simultaneous 

range errors. It is mainly shown that in that case, the 

conditional probability of non integrity events knowing a 

failure is present is limited to 10-3, disregarding of the 

time to alert. 

 

In addition, it has been shown that, even though the exact 

position of the user receiver may not be known accurately 

to within tens of kilometres, it would be possible to 

determine what errors on the pseudorange measurements 

would go undetected by the RAIM. 

 

A more complete analysis could be now conducted to 

characterize the theoretical definition of the linear sub-

space of the errors inducing a detection criterion below 

the detection threshold, conducting simulations 

incorporating more failures, and taking into account the 

time-to-alert. 

 

ACKNOWLEDGMENTS 

 

The authors would like to express appreciation for the 

mathematical help provided by ENAC students. 

 

REFERENCES 

 

[Fillatre and Nikiforov, 2005] L. Fillatre and I. Nikiforov. 

“Detectability of anomalies from a few noisy 

tomographic projections”, Proc.  IFAC2005, Prague 

[RTCA, 1996] RTCA SC-159 “Minimum Operational 

Performances Standards for Global Positioning 

System/Wide Area Augmentation System Airborne 

Equipment”, RTCA DO 229C 

 


