
��������	
������
���	����������	
���������	��������	����	�	����	� �	

	

	
	
	
	

	

	
!��"��#����	

	
$#�����%	&�

��	'��	(���	�	&��)��"�	

	
	

	
	
	
	

	
	
	

	
	

	
	

	
	

	
	

	

	

*���	��������	��	��������#	��%	
	

*��	$�������	�"���"�	����#�����	+$��,	
*��	$��	-$.$/�$	�������	
!��
���	��#�"�
	�������	
��	0�	1230!�	���4�"�	

*��	-5(0��������	��	���������"�	��#	1��������	�"���"�	

Table of Contents
Preface 1

Long Papers 4

B. Tekinerdogan, M. Aksit, "Managing Variability in Product Line Scoping" 5

K. Schmid, I. John, "Generic Variability Management and Its Application to

Product Line Modelling"

13

M. Becker, "Towards a General Model of Variability in Product Families" 19

A. Maccari, A. Heie, "Managing Infinite Variability" 28

K. Koskimies, "Supporting Variability Management in XML" 35

S. Demeyer, "Extensibility via a Meta-level Architecture" 42

T. Weiler, "Modelling Architectural Variability for Software Product Lines" 53

S.A. Roubtsov, E.E. Roubtsova, "Modeling Evolution and Variability of

Software Product Lines Using Interface Suites"

62

D. Beuche, H. Papajewski, "Variability Management with Feature Models" 72

T. Asikainen, T. Soininen, T. Männistö, "Towards Managing Variability using

Software Product Family Architecture Models and Product Configurators"

84

T. Ziadi, J. M. Jézéquel, F. Fondement, "Product Line Derivation with UML" 94
Short Papers 103

A. Ramdane-Cherif, S. Benarif, N. Levy, “Software Variability Management

using a Platform Based Autonomous Agents”

104

H. Baerbak Christensen, “Software Testing Requires Variability” 116

E. Dolstra, G. Florijn, E. Visser, “Timeline Variability: The variability of

Binding Time of Variation Points”

119

J. Matevska-Meyer, W. Hasselbring, ”Enabling Reconfiguration of Component-

Based Systems at Runtime”

123

N. Loughran, A. Rashid, “Supporting Evolution in Software using Frame

Technology and Aspect Orientation”

126

C. Thomson, “Managing Software Change for Variability” 130

T. Widen, Supporting Variability Management at Nokia 131

J. Eriksson, O. Lindeberg, Y. Dittrich, “Leaving the Variability Management to

the End-User; A Comparison Between Different Tailoring Approaches”

133

L. Hotz, A. Günter, T. Krebs, “A Knowledge-based Product Derivation Process

and Some Ideas How to Integrate Product Development”

136

Preface

Welcome to the 1
st
 workshop on Software Variability Management. During this

workshop we hope that interesting discussion takes place. We have received a number of

very interesting long papers, which are included in these proceedings, as well as a

number of short papers that may be used as a starting point for the discussions. About

two thirds of the workshop is dedicated to the paper presentations. However, there will be

ample opportunity for discussion during the breaks lunches and dinner. Also we hope that

the paper presentations themselves will spark discussion.

What is variability

Most modern software needs to support increasing amounts of variability, i.e. locations in

the software where behavior can be configured. This trend leads to a situation where the

complexity of managing the amount of variability becomes a primary concern that needs

to be addressed. Two causes for the increasing amount of variability are the delaying of

design decisions to the latest point that is economically feasible and the transfer of

variability from mechanics and hardware to the software in embedded systems. Examples

of the first category include software product families, the configuration wizards and

tools in most commercial software, the configuration interface of software components in

component-based software engineering and even the dynamic, run-time composition of

web-services. Examples of the second category can be found in many embedded systems,

including car electronics, telecommunications and consumer electronics.

Software variability is the ability of a software system or artifact to be changed,

customized or configured for use in a particular context. A high degree of variability

allows the use of software in a broader range of contexts, i.e. the software is more

reusable. Variability can be viewed as consisting of two dimensions, i.e. space and time.

The space dimension is concerned with the use of software in multiple contexts, e.g.

multiple products in a software product family. The time dimension is concerned with the

ability of software to support evolution and changing requirements in its various contexts.

The reason for identifying software variability management as a core topic is twofold.

First, within the software engineering research community, we have come to realize that

the fundamental issue in a range of reuse approaches, including object-oriented

frameworks, component-based software engineering and software product families, is the

management of the provided variability. Basically, the reusability of any software artifact

is determined by its ability to support the variability required from it. Second, in several

industrial organizations, the complexity of variability management is becoming such that

more systematic approaches are required as the limitations of ad-hoc approaches

experienced daily. For instance, the number of variation points for industrial software

product families may range in the thousands.

Workshop Program
We have put together a very interesting program covering a wide variety of variability

related topics. We are very pleased to have attracted so much response from the research

community. On day one of the workshop, there will be two plenary sessions where the

authors will present their papers. The format of the presentations will be a short 10 to 15

minutes presentation followed by discussion. The second half of the day is reserved for

workgroup sessions. On day two we will start with two more plenary sessions. After that

we will discuss the results from the workgroup sessions on day 1.

February 13th
9.00 - 9.30 Workshop Registration

9.30 - 10.00 Introduction by Jan Bosch

10.00 - 11.25 Plenary Session 1

1 B. Tekinerdogan, M. Aksit, "Managing Variability in Product Line Scoping"

2 K. Schmid, I. John, "Generic Variability Management and Its Application to Product

Line Modelling"

3 M. Becker, "Towards a General Model of Variability in Product Families"
11.25 - 11.30 Coffee break

11.30 - 12.45 Plenary Session 2

4 A. Maccari, A. Heie, "Managing Infinite Variability"

5 K. Koskimies, "Supporting Variability Management in XML"

6 S. Demeyer, "Extensibility via a Meta-level Architecture"
12.45 - 14.00 Lunch

14.00 Workgroup sessions

18.00 Dinner

�

February 14th
8.45 - 9.00 Start of day 2

9.00 - 10.15 Plenary Session 3

7 T. Weiler, "Modelling Architectural Variability for Software Product Lines"

8 S.A. Roubtsov, E.E. Roubtsova, "Modeling Evolution and Variability of

Software Product Lines Using Interface Suites"

9 D. Beuche, H. Papajewski, "Variability Management with Feature Models"
10.15 - 10.30 Coffee

10.30 - 11.20 Plenary Session 4

10 T. Asikainen, T. Soininen, T. Männistö, "Towards Managing Variability using

Software Product Family Architecture Models and Product Configurators"

11 T. Ziadi, J. M. Jézéquel, F. Fondement, "Product Line Derivation with UML"
11.20 - 12.15 Reports from workgroups

12.15 - 12.30 Conclusion

12.30 Lunch

End of Workshop

15.45 Ph.D. defense Jilles van Gurp

Conclusion
We hope that you will enjoy the workshop very much. As you may know we are also

involved in a special issue of Elsevier’s Science of Computer Programming on Software

Variability Management. We may invite individual authors to submit their paper. In

addition, we would like to draw your attention to the upcoming ICSE workshop on

Software Variability Management.

Editors:

 Jilles van Gurp

 Jan Bosch

Full Papers

 1

Managing Variability in Product Line Scoping
using Design Space Models

Bedir Tekinerdo
�
an

Dept. of Computer Engineering,
Bilkent University,

Bilkent 06800, Ankara, Turkey
bedir@cs.bilkent.edu.tr

Mehmet Ak ✁ it

TRESE Software Engineering,
Dept. of Computer Science, University of Twente, P.O.

Box 217, 7500 AE,

Enschede, The Netherlands
aksit@cs.utwente.nl

Abstract
 Product-line engineering aims to reduce the cost of
manufacturing of software products by exploiting
their common properties. Obviously, to define a
product line, the product alternatives that need to be
produced must be identified first. This is generally
realized either by a product requirements analysis or
a domain analysis process. Product requirements
analysis focuses on specific products or product
characteristics and therefore may fail short to
identify those products that are not explicitly stated
in the product requirements. Domain models on the
other hand are inherently too abstract to identify the
product alternatives and reason about these
explicitly. To provide a balanced scoping we propose
to integrate both approaches and present the so-
called design space models (DSMs) as a
complementary technique to existing product line
scoping techniques. We explain our ideas using an
illustrative example for scoping the product-line of
insurance systems.

1. Introduction

Product-line engineering aims to reduce the costs of
manufacturing of software products by exploiting

their common properties and by managing the

variabilities [1]. Obviously, to define a product line,

the product alternatives that need to be produced
must be identified first. A core activity of software

product line development is therefore product line

scoping, which seeks to define the right set of
product alternatives.

An often-used approach for product line scoping is to
define a domain model that includes reusable assets

to configure the products. The advantage of adopting

a domain model is that it is general enough to
represent a large set of products. Due to this

character, however, it may be difficult to identify and

derive specific products from it. To tackle this

problem, product requirement analysis techniques
can be used in which the specific products and their

characteristics are explicitly specified [6]. This

provides a concrete product-line scope but may fail in

short in identifying those products that are not
explicitly stated in the product requirements.

It appears that the adoption of only domain analysis

or product requirements analysis techniques is not

sufficient to define the right product line scope. In

spite of this, both approaches are not sufficiently
integrated yet. Although there are some approaches

that aim to scope the domain model by considering

the product requirements [6][7], their main focus is
on the scoping process rather than deriving product
alternatives. Approaches that mainly focus on

product requirements on the other hand, however, can

be too restrictive, because they may not cover a
sufficient set of product alternatives. Moreover, both

approaches usually do not address the

implementation aspects of the products. Products

may be implemented in various different ways and
different implementations of the product may behave

differently with respect to the aimed quality factors,

such as adaptability and performance. It may, for
example, appear that several implementation

alternatives are not required or even not possible and

therefore need to be ruled out. Other implementation

alternatives may be favorable by the stakeholders due
to some implementation specific requirements such
as the choice of the platform, the implementation

language, or quality criteria such as adaptability and

performance. We therefore believe that in addition to
the product line (specification) scoping, the product
line implementation scoping (PLIS) is needed as well.

In this paper a systematic product line scoping

approach is presented in which the products are

 2

gradually derived from the abstract domain models

based on the specific product requirements. To
represent the product line scope the concept of

Design Space Models (DSMs) is introduced. Design
spaces represent a set of alternatives for a given

design problem. Design space modeling as such
consists of representing a design space and defining

the semantic information for configuring and

depicting the selection and elimination of alternatives

within that space. For product line scoping we
represent domain models as design space models,

define the constraints and reduce the set of product
alternatives with respect to the corresponding product
requirements using the operations that we have

defined for design space models. For product line

implementation scoping the domain model is mapped

to a design space that includes the set of possible
implementation alternatives, and which can be

reduced again with respect to the product

requirements and the corresponding analysis and
design heuristics. The utilization of design space
models in product line scoping results not only in a

more precise product line scope but also supports the

reasoning on the product alternatives.

We will illustrate our ideas using an example from a

real industrial project in which we have defined both
the product line specification scope and the product

line implementation scope using the design space

modeling. Hereby we will also illustrate the tool
environment Rumi that includes a set of tools for

supporting the techniques of design space modeling.

The outline of the paper is as follows. In the

following section we will describe the problem

statement and describe the example from a real
industrial project on the scoping of a product line for

insurance systems. In section 3, the concept of design

space models and its application to product line

scoping is described in more detail. Section 4
describes the related work and section 5 provides the

conclusions.

Insurance Product

Insured Object Coverage PremiumConditionsPayment

Person

Corporation

Movable
Property

Realty

Service

Amount

Own Risk

Acceptance Exception

Payee

Person Corporation

Direct Periodical

Legend:

optional feature
alternative featuremandatory feature
or-feature

Illness

Life

Loss

Unemployment

Damage

Figure 1. (Top-level) feature model for a product family of insurance systems

2. Problem Statement

2.1 Example: Domain Model of insurance
systems

In the following section, we will describe a real

world design example, which was developed in an
industrial project between our faculty and a software

company
1
. The goal of the project was to develop a

software product-line for insurance systems. Over the
years, the software company has developed an

increasing number of insurance systems, whereby

1 This project has been carried out together with Utopics,

The Netherlands [12].

each system was practically developed from scratch.

This resulted in unnecessary repeating similar design
and coding efforts. To save costs, a software product

line approach for insurance systems was launched.

The fundamental challenge hereby was the decision
on the set of products that were to be delivered, i.e.
the product line scope.

Numerous and various insurance systems exist,

which share some common features that can be

exploited for reuse [12]. Figure 1 shows the feature
model of a product-line, which was defined through

an extensive domain analysis effort. Each insurance

product consists of the following (mandatory) sub-

concepts (features): Insured Object, Coverage,
Payment, Conditions, Premium and Payee. An

insured object can either be a person, a corporation,

 3

realty or some moveable property. The feature

Coverage defines the risk that is to be insured, which
can be either risks of Illness, Life, Unemployment,

Damage or Loss. The feature Payment includes the
mandatory features for the approach of payment and

an optional own-risk feature. The feature Conditions
includes the acceptance and exception conditions for

the insurance. Premium defines the approach of

payment of the premium. Finally, Payee defines the

features that will benefit in case of the occurrence of
the risk that is insured. This feature model defines a

product family of insurance systems from which a
broad set of insurance products can be derived.

2.2 Problem Description

2.2.1 Balanced Product Line Scoping

A domain model is an intentional representation of
the products in the domain in the sense that it

specifies the product alternatives in an implicit way.

A product is derived from a set of domain concepts
and as a composition of domain instances. Not all
products that can be derived from the domain model,

however, are usually interesting. To reason about the

relevance of each product the product alternatives

must be derived from the domain model and
represented in an explicit way. Enumerating the

individual products in the product line and the

individual requirements relevant to the products [8],
however, may become cumbersome because of the

large size of the domain. On the one hand the domain

model must be expressive enough to support a large

set of product alternatives, on the other hand the
combinatorial overhead of the broad set of irrelevant

product alternatives must be avoided. In the given

example we would be interested in the possible set of
insurance systems, and would like to depict these to
reason about them explicitly. Finding the balance

between an intentional and an extensional

representation, however is not trivial.

2.2.2 Scoping Product Implementation
Alternatives

Product models are generally derived from more

abstract domain models, and can be implemented in
many different ways. Similar to the fact that a

domain model may express a broad set of products, a

product model may also express a broad set of
product implementations. After having selected the

set of products from the domain models one may

choose to implement these using, for example,

object-oriented abstractions. The various object-
oriented abstractions enable the software engineer to
derive different implementation alternatives for the

same product and each implementation may, for

example, display different quality characteristics. To
explain this in more detail consider Figure 2 that

depicts, for example, three different implementation

alternatives that can be derived from the domain
model. In the design alternative of Figure 2a, the

concept InsuranceProduct of Figure 1 has been
mapped to a class InsuranceProduct and the sub-

concepts have been mapped to the operations
insuredObject(), coverage(), payment(), conditions(),
premium() and payee(). This means that the various

instances of the sub-products are all hidden in the
implementation of the corresponding operations. In

Figure 2b each sub-concept has been mapped to a

class, which are encapsulated by the class
InsuranceProduct. Finally, Figure 2c shows another
alternative whereby for each type of InsuredObject a

separate class is defined that includes the other

subconcepts as operations.

These three implementations are not the only

alternatives and actually a considerable number of
implementation alternatives may be derived from the

same product. We may use a separate class for each
sub-concept, define these as abstract methods, map
these to single methods etc. Currently, appropriate

techniques for systematically identifying and

describing the possible product implementation

alternatives, is unfortunately missing.

insuredObject()
coverage()
payment()
conditions()
premium()
payee()
....

InsuranceProduct

insuredObject()
coverage()
payment()
conditions()
premium()
payee()
....

InsuranceProduct

InsuredObject

Coverage

Payment

Conditions

Premium

Payee

coverage()
payment()
conditions()
premium()
payee()
....

InsuranceProduct

coverage()
payment()
conditions()
premium()
payee()
....

LifeInsurance

coverage()
payment()
conditions()
premium()
payee()
....

CarInsurance

coverage()
payment()
conditions()
premium()
payee()
....

TravelInsurance

 Figure 2. Three different implementation alternatives of InsuranceProduct

 4

3. Utilizing Design Space Models

To provide solutions for the problems as defined in
the previous section, we propose design space models
for supporting product line scoping processes.

Informally, design spaces represent a set of
alternatives for a given design problem. Design space

modeling consists of representing a design space and

defining the semantic information for configuring

and depicting the selection and elimination of
alternatives. By representing the domain model as an

explicit design space and by providing operations for

combining and reducing design spaces, the product
line scoping can be defined more precisely. In the

following we represent the process for scoping the

product line from the product specification to the

product implementation levels:

1. Representing Design Spaces

The domain analysis process will result in a domain
model that represents both the commonality and the

variability of the set of products that need to be

included in the product-line scope. We will describe

the domain model using design algebra, which
provides a formal representation to define the set of

alternatives of a given domain. This is explained in

section 3.1.

2. Defining constraints of alternatives.

The next step will be to defining the set of rules for

identification of valid and invalid alternatives within
the specified domain model. This is specified similar

to the composition rules as defined in [3]. These

constraints will be utilized to eliminate the

alternatives within the domain model that are not
viable. This is explained in section 3.2.

3. Unfolding design spaces

To reason about individual alternatives an

extensional view of DSMs will be given. This is

supported by the operation unfold() in design algebra

and implemented in the tools of Rumi. The unfold
operation will derive all the possible alternatives

from the design space. This is explained in section

3.3.

4. Reducing design space

Because the set of alternatives may be too large,

design algebra includes selection and elimination
operations to reduce the design space. This is

explained in section 3.4.

5. Mapping design space to implementation domain

Once the product line scope has been defined, the

implementation alternatives of each product in the

product line will be considered. For this, the product

line will be mapped to the implementation domain,
which will consequently result in a new design space.

The product implementation space will be reduced
with heuristics and constraints. This is explained in

section 3.5.

3.1 Representing Design Spaces

Before reasoning about the individual alternatives we
will represent the domain model using the concept of

design spaces as supported by the formalism called

design algebra. A design space in this context is
defined as a multi-dimensional space from which the
set of alternatives for a given design problem can be

derived. The design space is spanned by an

independent set of dimensions. We define a
dimension as a mandatory feature of a concept. As

such the dimensions of InsuranceProduct are the

sub-features InsuredObject , Coverage , Payment ,

Conditions , Premium , and Payee . The set of
dimensions of a concept is defined as its dimension
set. In design algebra, we define the model of

InsuranceProduct of Figure 1 as follows:

InsuranceProduct = (InsObj ∧ Cov ∧ Paym ∧
Cond ∧ Prem ∧ Payee)

Here, InsObj , Cov, Paym, Cond, Prem, Payee , represent

the features InsuredObject, Coverage, Payment,
Conditions, Premium, and Payee respectively. The

symbol ‘∧ ’ defines the composition relation in the
feature diagram. A design space for

InsuranceProduct consists of 6 dimensions that
are represented by these features. To be able to

reason about the alternatives we introduce the

concept of coordinate. We define a coordinate as a
sub-feature of a dimension. The set of coordinates of

a dimension are defined as the coordinate set of each

dimension. The coordinates of a dimension may be a
mandatory feature, alternative feature, optional
feature or an or-feature [3]. These different feature

properties are represented using the following

symbols:

∧ mandatory ; alternative

∨ or ? optional

In the example, the dimension InsuredObject

includes the coordinates Corporation , Realty ,

Moveable Property and Person . We represent this

as follows:

InsuredObject = (Corporation; Realty;
MoveableProperty; Person)

This indicates that only one of them can be selected.

In design algebra we also use symbols to express the

other feature properties. Consider for example the
concept Coverage that is expressed as follows:

 5

Coverage = (Illness ∨ Life ∨ Unemployment ∨
Loss ∨ Damage)

In this case for Coverage either Illness , Life ,

Unemployment , Loss or Damage can be selected. The
concept Payment is represented as follows:

Payment = ((Service; Amount) ∧ OwnRisk?)

The tool environment Rumi includes tools for

defining features but we will not present these due to
space limitations.

3.2 Defining Constraints

Similar to composition relations [3] in feature models
we adopt constraints to express the constraints

between various features in the model. These

constraints define the semantics between features that

are not expressed in the feature diagram. Basically
we apply the mutex-with and requires composition

rules. The mutex-with rule defines a mutual exclusion

relation between two concepts or features, whereas
the requires rule defines which features the selected

feature requires (interdependent relations). In the

insurance product systems, for example, we may

identify the following set of constraints (the symbol
‘.’ is used to denote the bindings):

1. InsuredObject.Person mutex-with
Coverage.Damage

If the ensured object is a person then the
insurance product cannot include coverage of

damage (for physical objects)

2. Coverage.Loss requires
InsuredObject.MoveableProperty

If the insurance product includes coverage for
loss then the insured object can only be a

moveable property

3. Coverage.Illness mutex
InsuredObject.Corporation

If the insurance product includes coverage for
illness then the insured object cannot be a person.

4. InsuredObject.Corporation requires
Payee.Corporation

If the insured object is a corporation then the
claimer should also be a corporation.

Besides of these constraints from the domain also

constraints imposed by stakeholders can be defined in

a similar way. In Rumi these can be defined, updated

and eliminated using various tools during the scoping
process.

3.3 Unfolding Domain Model

Once the domain model, the corresponding feature
models and the constraints have been defined we

need to derive the corresponding alternatives. For

this, in design algebra the operation unfold is applied,

which results in the total set of alternatives that can
be derived from the given feature model. The model

InsuranceProductScope in the following
specification defines all the product alternatives that

can be derived from InsuranceProduct :

InsuranceProductScope:=
InsuranceProduct.unfold()

An alternative is defined by binding the variant

features (optional-feature, or-feature, alternative-

feature) to the dimensions of the model. For example,
based on the feature model in Figure 1 we can bind
four alternative features to the sub-concept

InsuredObject . The sub-concept Coverage can be

bound in 2
5
-1 or 31 ways. The sub-concept Payment

can be bound in 4 ways (two alternatives and one

optional feature). For sub-concept Conditions we

can bind features in one way since its both features
are mandatory. Finally, Premium can be bound in 2

ways, and Payee in 22-1 = 3 ways.

The total set of alternatives that that can be derived

from this (simplified) feature diagram is thus

4x31x4x1x2x3 = 2976 alternatives. In design algebra
we provide the operation numAlternatives() to

automatically compute the number of product

alternatives from a given domain model:

InsuranceProductScope.numAlternative()

For example one of these 2976 product alternatives is

the following health insurance product that covers

illness with own risk and a direct premium:

(InsObj.Person ∧ Cov.Illness ∧ Paym.(Amount
∧ OwnRisk) ∧ Cond.(Acc ∧ Exc) ∧ Prem.Direct
∧ Payee.Person) }

The unfold() and numAlternatives() operations
have been implemented in the tools of Rumi. Figure

3a shows a screenshot of the tool for defining domain

models. Hereby the radio button extensional has been

selected, which results in the execution of the
operation unfold for the selected domain model. In
tandem the total size of the product line is computed

which is also shown in the figure (2976). The unfold
operation also checks whether each possible

alternative is valid with respect to the defined

constraints and as such the total set of alternatives

will be reduced when the constraints are also defined.
In the tool every individual product can be selected

and the description will be provided in the text field.

 6

a) b)

Figure 3. a) Extensional representation of product alternatives and b) Product Line Scoper Tool

3.4 Reducing Design Spaces

In principle, it is possible to list all the alternatives

and analyze and select them separately. However, for
large design spaces, the number of alternatives may

soon lead to a combinatorial explosion and likewise

the identification and reasoning about individual
alternatives may become very difficult. Moreover,
not all the alternatives may be feasible or possible at

all and it would be worthwhile to reduce the design

space so that only the relevant alternatives are
considered. To support this we introduce a query-

based approach whereby the domain engineer

specifies an expression that includes a condition for
either selecting or eliminating part of the design

space:

Select from Model where <condition>

Hereby condition can be made up of several (logical)
functions: The query will result in a reduced design

space that includes the set of alternatives that meets
the specified condition. The following query reduces

the space of insurance products to include only health
insurance products:

HealthInsuranceProduct ::
Select from InsuranceProduct
Where <Insbj.Person and (Cov.Illness or
Cov.Life)>

The reduction of the design space, i.e. the scoping of

the product line is implemented in the Product Line
Scope tool, which is shown in Figure 3b. In this tool,
for the same domain model different scoping projects
can be defined. In the example a product line of

health insurance has been scoped from the domain
model Insurance Product .

3.5 Mapping domain alternatives to
implementation

At this point it is decided on the set of products that

needs to be produced and delivered. The product

alternatives have been derived from the abstract
domain model but the product portfolio consists of a
very precise and concrete set of products. However,

each individual product in the product line can be

implemented in different ways dependent on the
selected quality criteria and the computation models.

This results in a different alternative space and

scoping at this level becomes necessary. This product

implementation scoping will be applied by the
software engineer who will continue the scoping

from the domain engineer, but now at the analysis

and design level.

Implementing products can be considered as a

mapping from one domain to an implementation
domain. We can specify this in the following general

form:

Model.weave(Property)

Here the operation weave maps the properties to the
products of the model. A property can be considered

as a tag to the elements of a corresponding model to

denote a specific design decision. Similar to the
bindings of the domain features to the dimensions of

the model we can bind features of the implementation

model to the dimensions. As such Property is a set

that includes either a model of the computation
model in which the product will be implemented or

the quality model that will be evaluated. Property

can specify issues such as hardware platform,
implementation language or various quality factors

such as adaptability and reusability. Assume, for
example, that the product alternatives will be

implemented using object-oriented abstractions. In

 7

the object-oriented model [2] concepts may be

mapped to a class, operation or an attribute. In the
same way as for modeling the domain we can define

the property set Object as follows:

Object = (Cl ; Op ; At)

Hereby, CL, Op and At refer to class, operation and
attribute respectively. The symbol ‘;’ is used to

denote alternative features. The following
specification defines a new space Object-

HealthInsuranceProduct that includes all the
possible object-oriented implementations of the

alternatives in HealthInsuranceProduct :

Object-HealthInsuranceProduct :=
HealthInsuranceProduct.weave(Object)

This set Object-HealthInsuranceProduct includes
all the alternative object-oriented implementations of
the InsuranceProductScope . This set includes

512000 implementation alternatives. The following

represents an example of a specification of the
product implementation:

(InsObj.Person.CL ∧ Cov.Illness.OP ∧
Paym.(Payment ∧ OwnRisk).OP ∧
 Cond.(Acc ∧ Exc).OP ∧ Prem.Direct.AT ∧
Payee.Person.AT) }

Hereby, CL is bound to InsObject , meaning that the
latter will be mapped to a class. Cov, Paym, and Cond

are bound with OP, meaning that they will be
implemented as an operation. Finally, Prem and
Payee are bound with AT, meaning that they will be

represented as an attribute in the final

implementation. This is only one alternative, and

because the space of implementation alternatives is
too large we might decide to reduce the space to

define the product implementation scope. This may

be supported by the utilization of heuristic rules. For
example, for design spaces including the dimension

Object we may utilize the heuristic rules from the

object-oriented analysis and design methods [5] for

deciding whether an entity has to be selected as a
class, operation or as an attribute. Most methods

define rules in an informal manner. Nevertheless,

method rules can be expressed using conditional

statements in the form IF <condition> THEN
<consequent> [11]. The consequent part may be an

identification or elimination action and as such

heuristic rules may be applied both to support the
selection and the elimination operations of the

reduction of the design spaces. To select alternatives

from Object-InsuranceProduct , for example, we

may utilize the following heuristic rules:

IF an entity is relevant
THEN select the entity as a class (CL)

IF an entity describes a structural action or
behavior of an object
THEN select entity as an operation (OP)

IF an entity describes another entity
THEN select entity as an attribute (AT)

Note that these are only examples of heuristic rules
and many more rules may be extracted from the

corresponding methods [11]. The software engineer

can apply these heuristics, provide a decision and
describe these into queries. Rumi provides tools to
model these heuristic rules and apply these for design

space reduction. The result of these rules is defined

as a constraint and is utilized to reduce the scope of
the implementation alternatives. Assume, for

example, that according to these rules it is decided to

include only alternatives in which InsuredObject ,

Paym are mapped to a class, Prem to operation and the
other features to attributes. This may be again

specified in a query:

Object-HealthInsuranceProduct ::
Select from HealtInsuranceProduct
Where <InsObj.CL and Paym.CL and Prem.OP>

Using the operation numAlternatives() we can
compute the set of alternatives from this set, which is

20. We may further reduce this space by applying

other heuristic rules and stakeholder constraints.

4. Related Work

In [8] software product line scoping is categorized in

product line scoping, domain scoping and asset
scoping. Hereby asset scoping identifies the various
elements that need to be made reusable to produce

the product alternatives in the product line scope. In

this paper we have provided an approach to integrate
domain scoping and product line scoping. We did not

explicitly consider asset scoping but since every asset

can be considered as an alternative element we could

describe the asset alternative space using design
space models in the same way that we did for domain

models. In addition we can use the same mechanism

for defining the constraints and heuristics to reduce
the set of assets. The different issue here is that the

applied constraints and heuristics will be specific to

the assets. In our future work we will aim to

explicitly integrate this asset alternative scoping with
the other two scoping processes. It should be noted

that in addition to the three categories of scoping in

[8] we have also introduced another different type of

scoping, which is the product implementation
scoping. To the best of our knowledge there have not

been any attempts that explicitly deal with this.

Composition and customisation of design spaces with

multiple dimensions has also been addressed in [4]
whereby so-called hyperspaces span a concern space

that includes various concerns. Hyperspaces are

similar to the concept of design space that we have

introduced. Hyperspaces contain different set of so-
called hypermodules that integrates a set of

 8

hyperslices, which are selected concerns from the

hyperspace. The hyperslices are integrated using so-
called composition rules. Because the same

hyperspace can be used to define hypermodules

different systems can be composed. Hypermodules

resemble the reduced set of the design space models,
which result after applying the various design algebra

operations.

5. Conclusion

Product line scoping is one of the key activities for
ensuring the success of a product-line engineering

approach. Currently, product line scoping is generally
realized either by a product requirements analysis or

a domain analysis process. Product requirements
analysis may miss the products that can not explicitly

be derived from the product requirements. Domain

models on the other hand are inherently too abstract
to identify the product alternatives and reason about

these explicitly. We have introduced the concept of

design space models (DSMs) as a complementary
technique to existing product line scoping techniques.
As an example we have explained the scoping

process for insurance products that we have carried

out within an industrial project.

We have distinguished between product line

specification scoping (PLSS) and product line
implementation scoping (PLIS). In the PLSS we have

scoped the insurance products by formally
representing the domain model using design algebra,
specifying the constraints between the various

features and reducing the product alternative space

using unfold operation and selection queries. In the

PLIS we have mapped the existing product line to the
object-model that has been specified in design

algebra. This resulted in a new alternative space that

we have reduced using heuristics from the object-
oriented model. The corresponding ideas have been

illustrated using the tool environment Rumi that

includes a set of tools for supporting the techniques

of DSMs.

The techniques of DSMs are based on well-defined
formalisms. This allowed us building tools within the

development environment called Rumi. We have
verified the approach by applying it for various

industrial applications such as insurance products and
transaction systems [11][12].

Our future work includes the explicit consideration of

scoping from the economic point of view that we

have deliberately not considered in this paper since

we think that it requires careful study by its own.
Once these cost models are developed we think that
we can use design algebra, design space modeling,

and the related tool Rumi to scope the product

alternatives based on these cost models.

ACKNOWLEDGEMENTS

This research has been financed by the Dutch
National Organization for Science (NWO) for the
IMOORA project.

References

[1] P. Clements & L. Northrop. Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[2] G. Booch, J. Rumbaugh & I. Jacobson. The Unified
Modeling Language User Guide, Addision-Wesley,

1999.

[3] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak &

A.S. Spencer Peterson. Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report,

CMU/SEI-90-TR-21 ESD-90-TR-222, Software

Engineering Institute, Carnegie Mellon University,
Pittsburgh, November 1990.

[4] H. Ossher & P. Tarr. Multi-Dimensional Separation of
Concerns using Hyperspaces. IBM Research Report

21452, April, 1999.

[5] A.J. Riel. Object-Oriented Design Heuristics.

Addison-Wesley, 1996.

[6] Software Productivity Consortium. Reuse-Driven
Software Processes Guidebook, Version 02.00.03.
Technical Report SPC-92019-CMC, November 1993.

[7] Software Technology for Adaptable, Reliable Systems

(STARS). Organization Domain Modeling (ODM)
Guidebook, Version 2.0. Technical Report STARS-

VC-A025/001/00, June 1996.

[8] K. Schmid. Scoping Software Product Lines, in: P.

Donohoe (ed.), Software Product Lines: Experience

and Research Directions, Kluwer Academic
Publishers, pp. 513-532, 2001.

[9] M. Shaw & D. Garlan. Software Architectures:
Perspectives on an Emerging Discipline,. Englewood

Cliffs, NJ: Prentice-Hall, 1996.

[10] B.Tekinerdo � an. Synthesis-Based Software
Architecture Design. PhD Thesis, University of

Twente, Dept. of Computer Science, The Netherlands,

March, 2000.

[11] B. Tekinerdo � an & M. Ak ✁ it. Providing automatic
support for heuristic rules of methods. In: Demeyer,

S., & Bosch, J. (eds.), Object-Oriented Technology,

ECOOP '98 Workshop Reader, LNCS 1543, Springer-

Verlag, pp. 496-499, 1999.

[12] R. Willems. Design of an Object-Oriented Framework
for Insurance Products (in Dutch), Msc. Thesis, Dept.

of Computer Science, University of Twente, 1998.

Generic Variability Management and

Its Application to Product Line Modelling

1 INTRODUCTION

Variability Management is a concern that arises in Product
Line development throughout all lifecycle phases [6]. It can
actually be seen as the key feature that distinguishes product
line development from other approaches to software devel-
opment.

While the basic concerns are similar throughout the differ-
ent stages of a software lifecycle, the means for addressing
them are typically different in the various stages: in the
analysis phase mechanisms related to the specific analysis
technique are used, typically text-based [21] or UML-
related techniques are proposed [10, 13, 19, 4, 26] specific
design-based approaches have been proposed [8, 5], and of
course implementation mechanisms have been studied [16,
9, 20].

In this paper, we will focus on an approach for the system-
atic management of variability in the specification phase. In
this product line modelling (or domain analysis) phase, a
model of the requirements of the product line is developed
which expresses the variability required from the product
line. Many different notations are in practical use for
requirements engineering [22]. While especially text-based
and use-case/UML notations are used in the product line
context [23], it is desirable that an approach supporting the
specification of product lines is open regarding the notation
[7]. This lead us to the idea for the approach presented in
this paper. This approach aims to support the modelling of
variability for arbitrary specification techniques.

Our approach can actually be extended into an approach
which is sufficient as a basis for variability management
across the various lifecycle phases. However, we will focus
here on the specification phase and will provide case studies
that substantiate our claim.

The key question of course is: why would one want to be
independent of the specification technique? There are two
fundamental reasons motivating such an approach:

� The scientific reason: such a generic approach could be
evaluated in an arbitrary set of contexts, thus facilitating
the growth of a scientific body of knowledge about it.
As the mechanism is applicable in different contexts and
in different domains it can be used in a variety of situa-
tions and can therefore be validated much easier than an
approach that is applicable only with a single specifica-
tion technique.

� The pragmatic reason: Fraunhofer IESE applies its tech-
nologies in many different companies, leading to the
need for highly adaptable techniques. As we do technol-
ogy transfer to companies with different organizational
structures, in different sizes and in different domains the
approaches we develop must be generic and adaptable to
many different contexts.

Particularly the latter reason originally lead to the definition

of the PuLSE-CDA1 approach [7, 3] as part of the PuLSETM

method2 [2]. This approach is a highly customizable
domain analysis approach which can be augmented with the
variability management mechanisms described here.

2 VARIABILITY MANAGEMENT IN THE
SPECIFICATION PHASE

The specific approach to variability management we pro-
pose consists of the following components:

� A decision model as a basis for characterizing the effects
of variability.

� A range of primitives for describing the relation
between variation points and the specific decisions (or
group of decisions) on which their resolution depends.

� A common (maximal) set of variation types.

� An accompanying mapping of the variability types on
the specific specification techniques to express the vari-
ation points.

Only the last point, the mapping, has to be adapted to the
specific representation technique. The other three parts as
well as the semantic interrelation among the four are inde-
pendent of the specific representation approach. We will
now briefly discuss these four elements.

2.1 The Decision Model

The decision model was initially devised in the context of
the Synthesis approach for variability management [11]. In
the meantime, this technique has been widely applied both
in research and industry [13, 14, 1, 12, 15, 17, 24].

The specific kind of decision model we propose is different
from other approaches in two ways:

� It is more comprehensive in terms of the information it

1. CDA = Customizable Domain Analysis;

2. PuLSE is a registered trademark of Fraunhofer IESE

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
+49 (0) 6301 707 - 158, +49 (0) 6301 707 - 250

{Klaus.Schmid, Isabel.John}@iese.fraunhofer.de

Klaus Schmid and Isabel John

contains

� It does not explicitly relate to the variation points, but
rather it defines a decision variable which is then only
referenced at each specific variation point using the
decision evaluation primitives.

Each of the decision variables that is defined in the deci-
sion model is in turn described by the following informa-
tion:

� Name: The name of the defined decision variable; the
name must be unique in the decision model

� Relevancy: The relevancy of a decision variable for an
instantiation may depend on other decision variables.,
e.g. the decision variable describing the memory size
is only valid if the decision variable describing the
existence of memory is true. This can be made explicit
by the relevancy information.

� Description: A textual description of the decision cap-
tured by the decision variable

� Range: The range of values that the decision variable
can take on. This can be basically any of the typical
data types used in programming languages. However,
instead of a real or integer often only a range is impor-
tant. Moreover, probably the most common type is the
enumeration, as the relevant values are often domain
dependent. Further, Boolean variables are quite com-
mon.

� Cardinality: As opposed to other approaches, we do
not emphasize the difference between variables which
can only assume a single value and variables that can
assume sets of values during application engineering.
Rather, we define a selection criterion, defining how
many of the values of a decision variable can be
assumed by it. This is represented by m–n, where m
and n are integers and give the upper- and lower-
bounds for the cardinality of the set representing the
value of the decision variable in the context of a spe-
cific application. Thus, basically, all decision variables
get a set of values during application engineering.
However, we use 1 as a short-hand notation for 1–1
and in this case we also write the value of the decision
variable as a single value (without curley brackets) and
treat it for the purpose of decision evaluation like a
non-set value.

� Constraints: Constraints are used to describe interre-
lations among different decision variables. This is used
to describe value restrictions imposed by the value of
one variable onto another variable. We use this
approach also to describe the requires relationship, as
this simply results in a special case in our framework.
This constraint can of course also contain domain
knowledge. Consider for example the following con-
straint: the value of the decision variable describing
the memory size has to be > 16384 if the decision vari-
able describing the existence of memory is true. This
constraint at the same time represents the domain
knowledge that in the product line the minimum mem-

ory size is 16KB.1

� Binding times: A list of possible binding times when
the decision can be bound. This can be sourcetime,

compiletime, installation time, etc. [FODA]. Addi-
tional binding times may exist, and can be product line
specific. As opposed to the FODA work and many
related approaches, we allow several binding times,
meaning depending on the specific product the vari-
ability may be bound at any of these times. This tech-
nique was first introduced in ODM [18] as “binding
sites”.

Depending on the specific context of our industrial
projects, we sometimes used slight variations of this
approach to decision modeling. However, regarding the
information content, it was always a subset of this infor-
mation (if only product line modelling had to be sup-
ported) [17].

Using this description of a decision variable, we can
define a decision model simply as a set of decision vari-
able definitions. For practical reasons we usually represent
them as a table.

2.2 Decision Evaluation Primitives

The way we defined the decision model, it is completely
independent of the variation points in a variability model.
In order to relate a decision to a variation point we must
explicitly describe it. This is done using the decision eval-
uation primitives together with the variation point repre-
sentation as discussed below.

The reason why we do not directly relate the impact of a
decision variable to the variation points is that the same
decision may easily have many different forms of impact
on the variation points. This allows us to decouple the
decision itself from its impact on the product line model.

Our approach to decision evaluation is very similar to
expression evaluation in existing program languages, the
main extension being that we may need to deal with set
values.

The following list provides some examples of relations we
use for decision evaluation:

sub real subset ⊂

subeq subset or equal ⊆

cardinality of a set

in is element of a set

=> logical implication

<=> mutual implication (iff)

Using these primitives, logical expressions can be built
that can be used to denote in which way a specific vari-
ability must be resolved. It is also possible to build value
expressions. We will discuss this further in the following
section.

2.3 Supported Variability Types

Many different variability types have been mentioned in
literature: optionalities, alternatives, set-optionalities (a set
of options may be selected), etc.

From our practical experience we deem the following
variabilities to be the most relevant:

� optionality: a property either exists in a product or not

� alternative: two possible resolutions for the variabil-
ity exist and for a specific product only one of them
can be chosen

� multiple selection: several variabilities may be1. Of course, this would usually be represented with ade-

quate constants (e.g., 16384 := Min_Mem_Size).

selected for inclusion in a product

� single selection: only a single variability out of a
group of variabilities may be selected for inclusion in a
product

� value reference: the value of the decision variable can
be directly included in the product line model. (This,
of course, only makes sense with decision variables
that only assume a single variable in application engi-
neering.)

The optionality and variability refer by nature to a logical
expression as constructed using the decision evaluation
primitives. Further the multiple and single selection refer
to a value expression, as this is used to differentiate among
the different possibilities. The value reference, finally,
takes an arbitrary decision variable with a single value.

2.4 Representation-Specific Mapping of
 The Variation Points

As we discussed above, the decision model is basically
representation independent. However, we need to repre-
sent the variation points in the domain model, which
employs a specific specification technique. Therefore we
need to map the different types of variabilities to the target
specification technique.

As we will see in the next section the specific notation for
the variation point may be graphical, textual based, or on
any other basis. In order to simplify the adaptation pro-
cess, we did so far always use the standard description
approach for referring to values of decision variables
described in Section 2.2.

The different variability types should be mapped in a
homogenous manner to the specification language. For
each variability type a unique mapping has to be found.
This mapping has to take a form so that confusion with
other legal expressions in the target specification language
can be minimized.

Only this mapping from elements of the decision model to
the specification formalism has to be adapted when the
approach is applied with a new specification formalism. If
the specification formalism uses graphical models, the
mapping can be done using extra graphical elements with
the decision variables as attributes of these elements. If the
UML or a similar modelling approach is used as specifica-
tion formalism, the model elements can be extended (e.g.
with stereotypes, cf. [10]). If the specification formalism
is text, markers for the different kinds of variabilities can
be introduced into the textual description.

2.5 Discussion of the Approach

The approach outlined above is sufficient to describe all
common forms of variabilities and dependencies among
them. For example alternatives that are mutually exclusive
can be represented using an alternative or a single selec-
tion, which refer to a decision variable (in the case of the
single selection, this is only sufficient if the decision vari-
able can take on only a single value).

The requires dependency can also be modelled, and it is
actually modelled on the level we believe to be the most
adequate: it is made explicit on the level of the decision
model in the form of constraints on the possible values of
the variable.

3 EXPERIENCES USING THE APPROACH

The approach to variability management in product line
modeling described above has already been applied in sev-
eral cases, most notably two industrial applications, where
one used a graphics-based approach, while the other uses
as a text-based approach. We will now briefly discuss the
implementation of our approach in these two vastly differ-
ent contexts, as this nicely illustrates the different forms of
mappings that are made.

3.1 Experiences with a Graphical Representation

We applied our approach to the variability management in
the context of product line modelling in an environment,
where a graphical notation was required. This notation
was the basis for a business process notation (ARIS),
which was in turn the basis for requirements definition for
systems of the customer [17].

The ARIS notation, which provides the basis for this
application of the approach focusses on business pro-
cesses. The basic notational elements are shown in
Figure 1. In this specific case additional elements had to
be defined in order to represent also system internal infor-
mation and control flows [17]. Our approach focussed on
augmenting this notation with additional variability ele-
ments that could be used both in business process as well
as control flow modelling.

In order to describe selections the ARIS modeling notation
uses two notational elements: the connector together with
the event. The connector defines the form of selection, the
event defines the different cases that can occur and under
what circumstances each of these paths is taken. Figure 2
shows such an example business process with a selection.
As defined by our approach the first three parts of our
approach could be taken verbatim. We only made some
minor pragmatic modifications:

� The decision model had the same entries as defined
above, with the exception of the binding times. There
was no need to capture the binding time as this was
always implicitly the modeling phase. Further there
was one additional entry: the actual values for the vari-
ous systems could also be defined as part of the deci-
sion description. This had pragmatic reasons, as in this
case the number of decision variables was limited and
especially the number of systems was small. The deci-
sion model was then simply written as a web page, as
much documentation in this environment was kept in
an intranet-based manner.

� The decision evaluation primitives were used as
described in Section 2.2.

� Regarding the different forms of variability, we
decided to not support the value-reference, as we did
not find a case where we would need this approach.
Also the alternative is always described as a single
selection.

Based on these decisions we defined the mapping of the

Figure 1. Basic notation for business processes (eEPK)

Function ConnectorsProcess-guide

XOR

Event

basic variability types onto the representation mecha-
nisms. In order to enable the users of the approach to
clearly differentiate between the basic notation and any
variability information, we defined completely different
notational elements, which, however, fit into the overall
approach. Figure 3 shows the different notational elements
we introduced. We also adopted the differentiation
between decision symbol (connector) and selectors for a
specific flow (event), which is typical of ARIS.

When mapping the various variant discriminators it is key
to keep in mind that we are using here a notation that
imposes certain restrictions, for example, by removing
some variation the overall flow may not fall apart. Thus,
we can only remove certain (alternative) paths from the
control flow. Based on these restrictions, we mapped the
variability types optionality, multiple selection and single
selection, we selected for representation, in the following
manner:

Optionality: This implies that a certain path may either be
part of a system variant (an instantiation), or not. Thus,
we need to attach two forms of information to it: the
situation in which this path is part of the final model
and if it is part of the final model, the (runtime) situa-
tion in which it is actually taken. The second part obvi-
ously corresponds to the event mechanism in the ARIS
business modeling approach, while the former is the
optionality-specific addition. We thus added the
optional variant decision to the modelling language.
As shown in Figure 3 it consists of a runtime decision
and a domain decision part. The domain decision part
in turn uses the decision evaluation primitives as
described in Section 2.2 in order to describe whether
the branch started with this decision should be part of
the instantiated model. The runtime decision part in
turn is annotated using the ARIS-notation in order to
describe what will happen in case this branch is
selected.

Single Selection: The single selection is mapped to the

unique variant decision (cf. Figure 3), which works
similar to a runtime decision in ARIS, with replacing
connectors by the unique variant decision, and the
events to the variant discriminator (cf. Figure 4). In
this case we restricted the expression for selecting
among the various paths to a decision variable, with
the variant discriminators showing the different values.
Note, that upon resolution of the variability none of the
notational symbols for variability will remain in the
instantiated flow.

Multiple Selection: The multiple selection has been
mapped in very much the same way as the single selec-
tion. The main reason for having both of them was
clarity of the instantiation semantics. In a work flow
(or control flow) representation like ARIS, a runtime
decision must remain upon resolution of the specifica-

tion variability in the case of a multiple selection.1

This is different from the single selection where all
variability symbols are removed upon instantiation.
Here, they are transformed into run-time variability (if
more than one option is chosen).

This approach to modeling was used for modeling several
systems in the domain of merchandising information sys-
tems and about ten e-commerce shops. We found this
approach to be easily applicable to these systems. Espe-
cially in the e-commerce context it was also well accepted
by the development personnel.

3.2 Experiences with a Text Based Representation

Our variability management approach has been applied in
practice also with text-based requirements in an embedded
systems company. A textual representation was chosen
because the stakeholders in the domain were very familiar
with textual representations and not with other forms of

Figure 2. An example business process

Figure 3. Symbols added for variants

1
*

unique variant
decision

general variant
decision

optional variant
decision

runtime choice

domain decision

variant
discriminator

1. Note, that in the context of this case study [17], we differ-

entiated only between specification time and runtime.

Figure 4. Example for the description of variants

requiremetns documents. They had also invested consider-
able effort into the improvement of their approach to tex-
tual requirements documentation.

In order to be able to model and manage variability, the
existing mechanisms for writing textual requirements had
to be extended into a product line modelling approach.
According to our approach, only the mapping of the vari-
ability types onto the target representation formalism had
to be adapted. However, to be complete, we will now
briefly describe the specific realization of all four compo-
nents of our approach.

� The decision model as described in section 2.1 was
introduced. This was realized using an Excel-table. A
sanitized version of such a table excerpt is shown in
Figure 5.

� We used the decision evaluation primitives shown in
Section 2.3.

� We did decide to not support the single selection, as it
is a special case of the multiple selection. Moreover, so
far most instances we found during our work in this
domain were instances of the multiple selection any-
way.

This shows that, as expected, we could transfer our con-
cepts in a straight-forward manner to this domain. This
leads to the most interesting part of the case studies: how
was the mapping of the variation point types performed.

For this mapping the variability types onto the textual
specification we decided to use textual constructs framed
with “<<“ “>>”, as these are text fragments which did so
far never occur in this domain.

Thus, we wrote optional variability in the following way:

<<opt expr1 / text >>.

Similarly, for alternative variability, we used the term:

<<alt expr2 / value-1 / text1

 / value-2 / text2 >>.

Here expr1 and expr2 are logical expression as discussed
above. These expressions could be constructed using the
primitives described in Section 2.2.

For multiple alternative variability we restricted the
expression to a decision variable instead of a value expres-
sion and introduced the keyword mult:

<<mult decision-variable / value-1 / text1
 / value-2 / text2

.....>>
Finally, for values the term <<value decision-variable>>
was used.

Using this approach we described the product line model.
Figure 6 shows a sanitized excerpt of such a product line
model document which includes optional, alternative, and
value variability.

In this company, we identified so far during modeling
about 50 decision variables and about 100 variation points
had to be introduced into the documentation. We expect
that once the product line model is complete, it will con-
tain more than 100 decision variables and several hundred
variation points. The resulting domain models went
through inspection by the company and were well
accepted by the development team. In particular the nota-
tion was considered to be well readable and the resulting
models to be well understandable.

4 CONCLUSION

In this paper we described an approach to variability mod-
elling for product line models. The development of this
approach was driven from the need for an approach that
can be easily applied in a wide range of practical contexts
and in combination with many different specification tech-
niques. Based on our experiences in applying this
approach, we found that

Our approach to variability management is suffi-

ciently expressive to support modeling variability

Figure 5. Example for the description of variants

Figure 6. An example using the textual notation

for arbitrary specification techniques.

Moreover, we could already apply this approach as part of
the PuLSE approach in different industrial contexts, dem-
onstrating that it provides sufficient expressiveness for
these situations.

Based on these encouraging results our next steps will be
to extend this approach to cover the whole life-cycle and
to improve the formal basis upon which it rests.

5 REFERENCES

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties,
O. Laitenberger, R. Laqua, D. Muthig, B. Paech,
J. Wüst, and J. Zettel. Component-based Product Line
Engineering with UML. Component Software Series.
Addison-Wesley, 2001.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A
Methodology to Develop Software Product Lines. In
Proceedings of the Fifth ACM SIGSOFT Symposium
on Software Reusability (SSR’99), Los Angeles, CA,
USA, May 1999. ACM.

[3] J. Bayer, D. Muthig, and T. Widen. Customizable Do-
main Analysis. In Proceedings of the First Interna-
tional Symposium on Generative and Component-
Based Software Engineering (GCSE ’99), Erfurt, Ger-
many, Sept. 1999.

[4] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, and
A. Maccari. Use Case Description of Requirements
for Product Lines. In Proceedings of the International
Workshop on Requirements Engineering for Product
Lines (REPL’02), Sept. 2002.

[5] J. Bosch. Design and Use of Software Architectures.
Addison-Wesley, 2000.

[6] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela,
H. Obbink, and K. Pohl. Variability Issues in Software
Product Lines. In E. S. Institute, editor, Proceedings of
the Fourth International Workshop on Product Family
Engineering (PFE-4), Bilbao, Spain, Oct. 2001.

[7] J.-M. DeBaud and K. Schmid. A Practical Compari-
son of Major Domain Analysis Approaches - Towards
a Customizable Domain Analysis Framework. In Pro-
ceedings of the Tenth Conference on Software Engi-
neering and Knowledge Engineering (SEKE’98), June
1998.

[8] O. Flege. System family architecture description using
the uml. Technical Report IESE Report No. 092.00/E,
Fraunhofer IESE, 2000.

[9] C. Fritsch, A. Lehn, and T. Strohm. Evaluating Vari-
ability Implementation Mechanisms. In Proceedings
of the Second International Workshop on Product Line
Engineering - The Early Steps: Planning, Modeling,
and Managing (PLEES’02), Nov. 2002.

[10] I. John and D. Muthig. Tailoring Use Cases for Prod-
uct Line Modeling. In Proceedings of the Internation-
al Workshop on Requirements Engineering for
Product Lines (REPL’02), Sept. 2002.

[11] M. Kasunic. Synthesis: A Reuse-Based Software De-
velopment Methodology, Process Guide, Version 1.0.
Technical report, Software Productivity Consortium
Services Corporation, Oct. 1992.

[12] C. Krueger. Variation Management for Software
Product Lines. In G. Chastek, editor, Proceedings of

the Second Software Product Line Conference, LNCS
2379, San Diego, CA, Aug. 2002. Springer.

[13] M. Mannion, B. Keepence, H. Kaindl, and
J. Wheadon. Reusing Single System Requirements for
Application Family Requirements. In Proceedings of
the 21st International Conference on Software Engi-
neering (ICSE’99), May 1999.

[14] A. Mili and S. M. Yacoub. A Comparative Analysis of
Domain Engineering Methods: A Controlled Case
Study. In P. Knauber and G. Succi, editors, Proceed-
ings of the International Workshop on Software Prod-
uct Lines: Economics, Architectures, and
Implications, Limerick, Ireland, June 2000.

[15] D. Muthig. A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines. PhD Theses in Experimental Software Engi-
neering; Fraunhofer IRB Verlag, 2002.

[16] D. Muthig and T. Patzke. Generic Implementation of
Product Line Components. In Proceedings of the
Net.ObjectDays (NODE’02), Erfurt, Germany, Oct.
2002.

[17] K. Schmid, U. Becker-Kornstaedt, P. Knauber, and
F. Bernauer. Introducing a software modeling concept
in a medium-sized company. In Proceedings of the
22nd International Conference on Software Engineer-
ing (ICSE 2000), Limerick, Ireland, 2000.

[18] Software Technology for Adaptable, Reliable Systems
(STARS). Organization Domain Modeling (ODM)
Guidebook, Version 2.0, June 1996.

[19] T. van der Maßen and H. Lichter. Modeling Variabili-
ty by UML Use Case Diagrams. In Proceedings of the
International Workshop on Requirements Engineering
for Product Lines (REPL’02), Sept. 2002.

[20] J. van Gurp, J. Bosch, and M. Svahnberg. On the No-
tion of Variability in Software Product Lines. In Pro-
ceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA’01), 2001.

[21] D. M. Weiss and C. T. R. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[22] A. Davis. Software Requirements: Objects, Functions,
and States. Prentice Hall PTR, 1993

[23] Birgit Geppert and Klaus Schmid (Eds.). Proceedings
of the International Workshop on Requirements Engi-
neering for Product Lines, Sep. 2002.

[24] M. Coriat, J. Jourdan, and F. Boisbourdin. The SPLIT
Method. In P. Donohoe, editor, Proceedings of the
First Software Product Line Conference, pp. 147-166,
Kluwer Academic Publishers, 2000.

[25] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, 1990.

[26] M. Morisio, G. Travassos, and M. Stark. Extending
UML to Support Domain Analysis. 2000.

Towards a General Model of Variability in Product Families

Martin Becker

System Software Group, University of Kaiserslautern

Kaiserslautern, Germany

mbecker@informatik.uni-kl.de

Abstract
The increasing amount of variability in software systems

meanwhile leads to a situation where the complexity of

variability management becomes a primary concern dur-

ing software development. Whereas sound methodic sup-

port to analyze and specify variability on an abstract level

is already available, the corresponding support on realiza-

tion level is still lacking. The goal of this paper is to pave

the way towards more systematic and consequently more

efficient approaches to manage variability. To this end, it

discusses the different motivations for variability in prod-

uct families and the interrelationships between the specifi-

cation and realization of variability. The paper further

identifies appropriate concepts and interrelates them in

form of a general model of variability in product families.

In addition to this meta-model, the paper outlines an in-

stantiation of the model: our language to specify variabil-

ity in product family assets.

1. Introduction

During the past few years a noticeable shift towards an

increased amount of variability1 in software systems went

through the software industry. The reasons for the in-

crease of variability are twofold. First, variability has been

recognized as the key to systematic and successful reuse.

Especially in family-based approaches as software product

lines or software product families, variability is a means to

handle the inevitable differences among the systems in the

family while exploiting the commonalities. In this case,

variability enhances the reusability of software. Second,

by providing more variability in software systems the

flexibility and maintainability of those systems can be

improved, as features can be added or adapted – even at

runtime – without releasing new products. This can con-

siderably increase the usability of the products.

Meanwhile the increase of variability leads to a situa-

tion where the complexity of managing the variability

becomes a primary concern during software development

that needs to be addressed explicitly by the software de-

1 the capability to be changed or adapted

velopment methods and tools. Whereas sound methodic

support to analyze and specify variability on the abstract

level – e.g. the feature level – is already available, the

corresponding support on realization level is still lacking

[10]. This holds for the method as well as the tool support.

The realization and management of variability is for

some reasons a non-trivial task. A first fact that hampers

the consistent management of variabilities is that they

often cannot be localized well but have widespread im-

pacts down in the implementation documents. This is

especially true, if the variability represents a varying qual-

ity of the system, as its overall performance, resource

demands or interoperability, for instance. As with invari-

able solutions, a variability has to be addressed on the

different levels of abstraction, e.g. architecture, compo-

nents, subcomponents, classes, etc. to cope with complex-

ity. In addition to this vertical impact, a variability often

shows a horizontal impact, i.e. the variability affects sev-

eral locations spread over the work products on the same

level of abstraction. If the interface of a component is

affected by a variability, for instance, then the calling

components will be affected by the variability in some

way too. However, a widespread impact of a variability

results in interdependencies among the solution frag-

ments2 that have to be considered and managed. Further-

more, variabilities may interfere with each other, i.e. the

variants3 offered by the variabilities may exclude or re-

quire each other, resulting in further interdependencies.

No matter how, the interdependencies caused by variabili-

ties strongly aggravate the consistent and efficient man-

agement of the variabilities, as they raise the complexity

of the overall solution and have to be considered through-

out the whole lifecycle of the variabilities.

Another fact that complicates the management of vari-

ability is that variability appears in manifold forms and

realizations. Generally, a variability extends the problem

and consequently the solution space covered by the com-

prising system. A system that provides variabilities is

planned to be applicable in a broader range of problems

than its invariable counterparts. Those extensions are

2 the so-called variation points
3 potential incarnation of the variability

neither restricted to certain problems nor to special solu-

tions. In principle, every solution in a software system can

be kept variable. A whole string of techniques and mecha-

nisms to realize variability [13][11][17] in the various

solution documents are already available, especially to

handle variability on the code level but also on the upper

levels of abstraction, the architecture for instance. Unfor-

tunately, the impacts of the different realizations are not

completely understood yet and there is consequently only

little methodic support in the realization and management

of variability.

This paper concentrates on the more product-family-

related issues of variability management. The experiences

we have made with variability management in various

domains (building automation, embedded operating sys-

tem, automotive), give us reason to believe, that the man-

agement of variability can be facilitated substantially, if

we find a general model of how variability is realized and

handled in product families that holds for all kind of vari-

ability throughout all abstraction levels. Such a model

should:

� provide well-defined concepts to foster a common

understanding of variability and its impacts

� identify common issues in the handling of variability,

e.g. traceability, variable binding times and evolution

� and thus ease the development of variability aware

software development methods and tools

Unfortunately, such a model is still missing, although the

required terminology has already been defined quite well

[19]. As a consequence, different approaches and slightly

differing notions are used to realize and handle variability

on the diverse abstraction levels, e.g. architecture, source

code, and documentation, which inhibits synergistic ef-

fects to appear and complicates the consistent manage-

ment of variability considerably.

In order to approach such a model, this paper discusses

the interrelationships between the specification and reali-

zation of variability, identifies appropriate concepts and

interrelates them in form of a general model of variability

in product families. In addition to this model, the paper

outlines an application of the model: our language to spec-

ify variability in product family assets.

The remainder of the paper is structured as follows:

Section 2 discusses variability in product families. Besides

the different motivations for variability, the two levels on

which variability is approached are described. Section 3

illustrates the various incarnations of variability in the

product family assets and identifies common properties

among them. These commonalities in the realization of

variability led to our model of variability in product fami-

lies that is presented in section 4. Section 5 outlines an

instantiation of the model: the Variability Specification

Language. The paper closes with a conclusion.

2. Variability in Product Families

Product family4 engineering [14] is a commonly accepted

approach to exploit the reuse potential of similar software

systems in a systematic and pre-planned way. The ration-

ale behind this approach is to identify common solutions

parts in a set of envisioned systems, which only have to be

implemented once as so-called assets5 and can be reused

afterwards during the construction of the manifold family

members in application engineering processes. This leads

to the characteristic development process (six-pack) with

the two development tracks: domain engineering (devel-

opment for reuse) and application engineering (develop-

ment with reuse).

Commonly, a product family comprises a reference ar-

chitecture and a string of components. In addition to de-

sign and implementation documents, other kinds of assets

as requirement specifications, test processes and data,

production plans or domain knowledge can be supplied

through the family as well depending on their reuse poten-

tial. The overall success of a product family approach,

however, is closely coupled with the capability to handle

the required differences among the family members in a

consistent but also economic way. To this end, the family

and its members are designed to be variable, i.e. they

provide variabilities.

Generally speaking, a variability represents a capability

to change or adapt system [19], i.e. the system facilitates

certain kinds of modifications. Such a change or adapta-

tion can affect the behavior of the system as well as its

qualities. From a more technical perspective of a software

engineer, a variability is a means to delay a (design) deci-

sion to a later phase in the lifecycle of the software system

[19]. If a decision among a set of possible variants cannot

be taken at a certain time during the development of the

system, then a generic solution has to be realized in the

work products at hand that allows to take the decision

later on.

An analysis of the driving forces behind variability in

software systems in general and product families in spe-

cial reveals that two main motivations can be distin-

guished:

� Usability. By providing variability in a software

system, the flexibility and maintainability of the sys-

tem can be improved, as features can be added or

adapted – even at runtime – without releasing new

products. This can increase the usability of the prod-

ucts considerably.

4 group of systems built from a common set of assets4 [4]
5 partial solution, such as a component, a design document or

knowledge that engineers use to build or modify software

products [21]

� Reusability. Variability has been recognized as the

key to systematic and successful reuse. Especially in

family-based approaches like software product fami-

lies, variability is a means to handle the inevitable

differences among systems in the family while ex-

ploiting the commonalities and thus increases the re-

usability of software.

The distinction between both motivations is necessary –

although often neglected –, because the respective vari-

abilities are handled differently and influence the software

development processes in different ways. In case of in-

creased usability, which can be generally of interest in any

software development approach, the respective variability

is used to handle an intra-product variation [11] and thus

is a feature of the product, i.e. the product contains a

mechanism to handle the variability dynamically after the

delivery of the product to the customer. Apparently, such

dynamic variabilities in principle require no special treat-

ment during the development of the software systems as

the can be realized and handled like any other feature of

the system. The main issues raised by dynamic variabili-

ties are the mastering of the increased functional complex-

ity and the available implementation mechanisms. The

increased reusability, on the other hand, can be considered

as a peculiarity of family-based approaches. In this case,

variability is used to handle the differences between the

members of a family (inter-application variability). Obvi-

ously, such a variability is not a feature of the family

members but of the comprising family and is handled

statically, i.e. once bound to a distinct variant during the

derivation of a family member, the variability vanishes

and is no longer existing in the family member. Static

variabilities affect the development processes considera-

bly and raise a string of new issues, e.g. configuration and

instantiation support, management of variants, evolution

support etc.

It has to be pointed out, that the above-mentioned mo-

tivations do not exclude each other, but can coincide in

one variability. In this case, the respective variability will

support several binding times6, and the handling of the

variability will therefore depend on the actual binding

time of the variability in the application engineering proc-

esses. If the corresponding decision is taken early enough

in the software development process, then the variability

is handled statically, i.e. the work products will be tailored

according to the decision, otherwise it will be handled

dynamically. A variable binding time allows to handle the

trade-off between tailored, highly efficient solutions on

the one-hand and flexible but more complex ones on the

other. To subsume, from a product family perspective we

have to face two motivations of variability: increased

usability and reusability, whereas the latter considerably

affects the development methods and tools and leads to

6 phase in the development process in which the variability is

bound to a certain variant

peculiar issues. The increased usability is primary of in-

terest if it coincides with attempts to increase the reusabil-

ity of the work products. Consequently, the remainder

focus of this paper focuses on static variabilities.

In family-based engineering approaches, variability is

typically approached on two different levels of abstraction

(cf. fig. 1): on the specification and the realization level. A

distinction between those both levels is sensible, since

they fulfill different functions and use different concepts

to represent variability.

On the specification level, the involved stakeholders

put their focus on the externally visible characteristics of

variability and suppress realization details. The require-

ments and knowledge about the variabilities in the family

are captured and represented by means of feature models

[15] or dedicated variability models [7][20]. These models

comprise information about the variabilities themselves,

e.g. their origins, the range of offered variants, the reuse

potential of the variants and furthermore information

about the interdependencies among the variabilities, and

information concerning the binding of the variability, e.g.

the supported binding times and the roles that can bind a

variability. In most cases, concepts of the problem space

are used to express information about variability. The

main modeling concepts used to represent variabilities are

variable features (in the feature models) or variabilities

themselves. Besides the information about the supported

variabilities, there will also be information about the fam-

ily members that are instantiated in the product family.

This information is captured in application models or

profiles that keep track of the variability-related decisions,

which were taken during the configuration of the family

members and control the resolution of the static variabili-

ties in the application engineering. The information about

variability on the specification level is used for various

purposes. First, it is a means to analyze and specify the

requirements for the implementations. Second, it docu-

ments the capabilities offered by the family on an abstract

level, and thus is the entry point to understand the family

s
p

e
c

if
ic

a
ti

o
n

Concepts FunctionsLevel

re
a

li
z
a

ti
o

n

Variability
Binding time

Dependency

Origin Profile

Variant

Rationale

Asset

VariationPoint

Mechanism

Dependency

Resolution

Rationale

� specification

� documentation

� configuration

� implementation

� application

?

Specific solution

Figure 1. Two levels of variability handling

and its members. Third, it forms the basis for the configu-

ration and instantiation of family members [12].

On the implementation level, i.e. in the set of reusable

assets provided through the product family7, the software

engineers have to realize and handle the required variabil-

ity that has been specified on the specification level. To

this end, they identify the impact of the variabilities in the

various software assets offered through the product family

and support the demanded variation by using appropriate

mechanisms. In the application engineering processes, the

application engineers deploy the static variabilities to

derive specific solutions. During this derivation, the static

variabilities are resolved to specific solutions. The main

concept that represents variability on the implementation

level is the variation point. A variation point is a spot in a

software asset where variation will occur [13][19], i.e.

where a variability is realized, at least partially. Thus, a

variation point can be considered as some kind of generic

element in a software asset. This is especially true, if the

variability is motivated by reuse concerns.

Whereas sound methodic support to analyze and spec-

ify variability on the specification level is already avail-

able, the situation on the implementation level is quite

different. Although a whole string of variability mecha-

nisms exits to realize variability in the variation points (at

least in the source code assets), e.g. appropriate language

constructs, pre-processors, external generators etc., only

few methodological and tool support is available that

meets the rising demands of variability management.

Thus, the mapping between the two levels (illustrated

through the question mark in fig. 1.) and the management

of variability on the realization level often remains a

highly creative, individual and consequently complicated

task. In order to cope with the rising complexity induced

through variability, more systematic approaches are re-

quired. To this end, a general model of variability in prod-

uct families is required, which identifies concepts, issues

and patterns that can be applied throughout the whole

lifecycle of a product family. Before we present our

model, we first take a closer look at the implementation

level of variability to reveal commonalities in a way vari-

ability is realized in the various asset types.

3. Variability on the Implementation Level

Within a product family any kind of work product used to

construct a software system can be provided as a reusable

software asset. Generally, some of them are not affected

by variability – i.e. they are used as is in every member of

the family –, but they usually form the minor part. Most of

7 the implementation level of variability (all assets affected by

variability on the different levels of abstraction) should not be

confused with the implementation level of the product family

(only code assets).

the assets are influenced by variability in one or the other

way (illustrated through the grey triangle in fig. 2). Since

the impact of a variability is neither limited to certain

abstraction levels nor to distinct asset types, any asset

provided through a product family can in principle contain

variation points. Examples for such software assets are

generic requirement templates, reference architectures,

components, source code, test cases and even generic

documentation assets (cf. fig. 2).

Apparently, there are different ways to represent the in-

formation contained in the assets. The information can be

expressed through text, diagrams and binary data and each

of these representations can contain variation points (cf.

fig. 2). In recent years, especially variation points in dia-

grams attracted the attention of industry [18][16] and

academia [9][2], as variability had to be implemented on

the architectural level too, in order to allow for reuse in

the large. Regarding the granularity of a variation point it

can be stated, that a variation point can extend from mul-

tiple files, e.g. in case of software components, over

document fragments like blocks, lines or diagram ele-

ments down to single information items, as characters or

bytes. To summarize, variation points can appear in mani-

fold ways in software assets, which complicates the man-

agement of the variabilities considerably, especially if

they show widespread impacts.

Although the various incarnations of variation points

differ substantially (cf. fig. 2), they also share some com-

mon properties. If we abstract from the different asset

contents and the concrete realizations of variation points

we observe the following common functions of variation

points:

010100010101010101

010101010101010010

101010010001000100

010100101011010100

010101010101010101

010101010010101010

010001000100010100

101011010100010101

010100010101010101

010101010101010010

101010010001000100

010100101011010100

010101010101010101

010101010010101010

010001000100010100

101011010100010101

Requirements

Architecture

Components

Code

Figure 2. Various asset types in a product family

� Localisation. A variation point localizes a variation

in an asset.

� Abstraction. From an external point of view, i.e. by

suppressing internal realization details, a variation

point abstracts from the specific realizations of the

variants.

� Specialization. In addition to the abstraction, a varia-

tion point supports its specialization to a concrete so-

lution in an appropriate way. To achieve this, it pro-

vides a specification that describes how to specialize

the variation point to a distinct variant and a mecha-

nism that realizes the specialization. In order enable

variation, the specification of the specialization must

be parameterized by the variabilities in some way, i.e.

the specification must be a function of the variabili-

ties.

Besides the aforementioned common functions, also de-

sirable features can be identified that any variation point

should have in order to render its functions and retain

manageable (cf. [1]):

� Identification. It should be evident what part of the

asset is immutable and what part is affected by vari-

abilities. That way, the added complexity has only a

limited impact in the asset.

� Clear Structure. Variation points in the assets

should be structured as clearly as possible. First, they

should not obscure the structure of the comprising as-

set. Second, if necessary, variation points should be

structured in a hierarchical way, i.e. they should not

overlap partially.

� Expressiveness. Along with the variation point its

specialization must be specifiable. This is of special

interest in the case of variation points that implement

static variability, where the specialization is often car-

ried out manually.

� Localized. The impact of a variability should be as

localized as possible, i.e. the variation points should

be designed and implemented in a way that concen-

trates the impact of the variability to as few points as

possible.

� Tracability. Bidirectional traces between variabilities

and the variation points that implement them must be

maintainable in order to interrelate the two abstrac-

tion levels. Additionally, traces between the variation

points that implement the same variability must be

maintainable as well, in order to allow the consistent

evolution of a variability.

In spite of the considerable differences between the vari-

ous realizations of variability, e.g. in the way a variation

point localizes variability and the way it supports its spe-

cialization in detail, apparently the commonalities among

the variation points are substantial. The realization of this

led to our model of variability, which is presented in the

next section.

4. A Model of Variability in Product Families

In order to pave the way towards more systematic and

consequently more efficient approaches to manage vari-

ability, we have developed a general (meta-)model of

variability in product families that identifies and interre-

lates the concepts on the two abstraction levels mentioned

in section 2. The motivation behind this model was:

� to provide concepts to foster a common understand-

ing of variability and its impacts,

� to identify common issues and patterns in the han-

dling of variability, and finally

� to ease the development of variability aware methods

and tools

In fig. 3. you find an excerpt8 of our model, which will be

explained in the following.

The upper box at the right side addresses variability on

the specification level. The main concepts are Variability

and Profile. A Variability represents a variability in the

ProductFamily and provides a Rationale and a Range of

Variants. Between the Variants Dependencies, e.g. re-

quires or excludes relationships, can be stated. As the

Variants are associated with Variabilities, the Dependen-

cies consequently concern the respective Variabilities.

Furthermore, a Variability provides information about its

supported BindingTimes.

A Profile keeps track of the variability-related deci-

sions that were taken during the configuration of a family

member. Thus, it specifies or identifies a member of the

family. A Profile comprises a set of Assignments that can

be accessed via the Variability. Each assignment repre-

sents a taken decision, e.g. Variant A has been chosen for

Variability B at the BindingTime C. If no Assignment is

available for a Variability, then the Variability is unbound

in the profile.

The lower box at the right side addresses variability on

the realization level. The main concept is the Variation-

Point. The Assets provided through the ProductFamily

can contain VariationPoints. A VariationPoint implements

a Variability of the specification level, at least partially.

Usually, a Variability causes several VariationPoints that

are spread over multiple Assets. The concrete number of

VariationPoints caused by a Variability depends of course

on the Variability itself and the Assets provided through

the ProductFamily. On the other side, a VariationPoint can

be affected by more than one Variability. In this case, the

impacts of the Variabilities overlap. Consequently, the

multiplicity of the relationship between Variabilities and

VariationPoints is n:m.

Local dependencies, i.e. Dependencies between the

VariationPoints that are not already expressed through the

Dependencies on the specification level, can be stated on

the realization level. However, in order to keep the num-

8 the complete model will be presented in our PhD thesis

ber of dependencies and the effort to manage them as

small as possible, dependencies should be specified glob-

ally on the specification level, if possible. Dependencies

that result from the fact, that VariationPoints realize the

same Variability, do not have to be expressed explicitly,

they can be derived from the association between Vari-

ability and VariationPoint.

A VariationPoint is associated with a Mechanism that

handles the Variability. Various Mechanisms can be used

to this end. The Mechanisms can be coarsely9 categorized

into three classes [5][6]: Selection, Generation and Substi-

tution. By means of a Selection mechanism, an existing

solution can be selected to specialize the variation point.

The corresponding specification of the specialization is

illustrated in fig. 4. Exemplary selection mechanisms are

if/else or switch constructs in preprocessor and program-

ming languages, or inheritance in object oriented lan-

9 more detailed taxonomy of such mechanisms can be found in

[17]

guages. A generative mechanism allows the generation of

a solution, e.g. through an external generator. The spe-

cialization specification forms the input of the generator

and the generated output specializes the variation point.

Substitution mechanisms are rather simple; they support

the specialization of the VariationPoints by unique, exter-

nally provided solutions. Therefore, the corresponding

variation points can be considered as some kind of gap.

As stated in section 2, two different motivations can be

identified for a Variability. Those motivations lead to

different types of VariationPoints. The first one, the Dy-

namicVariationPoint demarcates a solution in an Asset

that allows to handle the Variability late in the lifecycle of

the product, i.e. after the delivery. Consequently, Dy-

namicVariationPoints are not specialized during the de-

sign of the corresponding FamilyMember. In contrast to

them, a StaticVariationPoint has to be specialized during

the design and implementation of the FamilyMember. The

result of such a resolution is a ResolvedVariationPoint,

which no longer supports variation. In order to support

realization level

specification level

ProductFamily

2..*

contains

1

1..*

0..*

Variability

VariationPoint

Specification

2..*

Range Variant

BindingTime

1..*

can be bound at

Rationale

* 1

mamages

1..*

Variability

1 0..*

Asset

Profile Assignment

specifies
controls specialization

GenericAsset

StaticAsset

DerivedAsset

ResolutionRule

FamilyMember

0..*

StaticVariationPoint

ResolvedVariationPoint

2..*

derived from

2..*

resolved to

1..*

Mechanism

1

handles variability

1

1

Selection

Generation

SubstitutionDymamicVariationPoint

0..*

*

actual parameter

formal

parameter

Rationale

Dependency

1..*
concerns

LocalDependency

2..*

1..*

1..*

0..*

implements

Specification

AssetType

1

VPManager

Figure 3. A general model of variability in a product family

their specialization, StaticVariationPoints provide a Speci-

fication, which contains a Rationale and a ResolutionRule.

The specialization can be automated through an appropri-

ate mechanism. To facilitate the evolution of a variability

realization, the association between StaticVariationPoint

and ResolvedVariationPoint should be maintained in the

ProductFamily, in order to propagate changes in both

directions.

StaticAssets contain no StaticVariationPoints. Thus,

they can be used in the application engineering without

any specialization. GenericAssets on the other hand con-

tain at least one StaticVariationPoint. The specialization

of a GenericAsset results in a DerivedAsset that is used to

construct the FamilyMember. DerivedAssets contain no

StaticVariationPoints but only ResolvedVariationPoints.

Variabilities control as formal parameters the speciali-

zation of the VariationPoints. What serves as actual pa-

rameters depends on the type of the VariationPoint. In the

case of a DynamicVariationPoint, the specialization is

controlled by runtime parameters in the software system.

With StaticVariationPoints the assignments in the profiles

form the actual parameters of the specialization. If the

ProductFamily supports several BindingTimes for a Vari-

ability, then the specialization specification of the result-

ing variation points may also depend on the variability’s

binding time, e.g. the conditions in a selection (cf. exem-

plary condition 3 in fig. 4. above). Hence, the variation

point's specialization specification is not only a function

of the corresponding variabilities but also of their actual

binding times.

As illustrated in the model, the only two associations

between concepts on both levels are the implements asso-

ciation between Variability and VariationPoint and the

association between the Assignments and the Resolution-

Rules. The first association is established during the im-

plementation of the assets and has to be maintained during

the whole lifecycle of the ProductFamily. Along this asso-

ciation, information can be propagated between the both

abstraction levels. The second association does not need

to be maintained explicitly. It can be derived from the first

one. If the actual parameters have to be determined for the

specialization of a StaticVariationPoint, then the corre-

sponding assignments can be retrieved from the profile

through the variabilities associated with the Variation-

Point. Obviously, the first association is of utmost impor-

tance for any product family approach. Bidirectional

traces between the variabilities and the variation points

must be expressible and maintainable in an efficient way.

As a prerequisite, the variation points – static as well as

dynamic ones – must be identifiable in the assets.

To support the management of variability on the im-

plementation level, VPManager instances can and should

be provided for the different AssetTypes of a ProductFam-

ily. A VPManager is a tool that supports the domain and

application engineers in the various variability-related

tasks, as implementation, identification, resolution, as-

sessment, and evolution of variation points in assets of the

respective types. The VPManager class in the model cap-

tures the management-related issues and solution patterns

or principles, e.g. the resolution in case of variable bind-

ing times or the automated evolution of a variabilty. A lot

of methodical and tool support is conceivable and required

to this end, but only few is available yet.

5. Instantiation of the Model:

Variability Specification Language

Based on the above-mentioned meta-model and the identi-

fied demands for variation points, we have developed a

language to specify variability in product family assets –

the Variability Specification Language (VSL) – and ap-

propriate tools (processor, viewer). VSL is an XML-based

language that can be applied in a broad range of docu-

ments and thus allows to handle variability in a uniform

manner. Besides the previous drivers, VSL has been in-

spired by the frame technology [3] and the popular C pre-

processor. Both of them can be considered as macro lan-

guages and the same applies to VSL – at least partially –

too.

VSL first of all allows to specify the impacts of vari-

abilities in the assets, i.e. the variation points. Besides the

clear identification of the variation points and the vari-

abilities that affect them, the specialization of the varia-

tion points can be formulated as well. To this end, VSL

provides markup to specify the selection of pre-built vari-

ants and the generation (up to now XSLT and JScript are

supported) or the substitution of specific solutions and

hence supports the basic mechanisms to handle variability.

Based upon the VSL-specifications, specialized solu-

tions (XML or text documents) can be derived from the

VSL-based generic assets during the application engineer-

ing. This resolution is controlled by profiles, which can be

expressed by means of VSL too (cf. fig. 5). Besides the

values of the variabilities, VSL specifications can take the

variabilities’ binding time into consideration. Although

the main driving force behind VSL was to support static

variability, VSL can be applied with dynamic variability

if (condition1) solution1

elif (condition2) solution2
…
elif (conditionN) solutionN

else default-solution

Specification of a selection:

1. VariantA

2. VariabilityA.VariantB and
not VariabilityB.VariantD

3. VariabilityA.BindingTime < BindingTime.IntDes

Exemplary conditions:

Figure 4. Specification of a selection

as well. In this case, the VSL markup is not processed by

the VSL-processor, but merely serves for identification

and specification purposes. A more detailed discussion of

the VSL features can be found in [8].

The main advantages in applying VSL to specify vari-

ability in a product family can be seen in the uniform and

explicit treatment of variability. First, the language can be

used to specify the variability in the different asset types.

This considerably eases the development of special vari-

ability management tools, e.g. to facilitate the evolution of

variability, that can be applied throughout the whole prod-

uct family engineering process. Second, due to the explicit

specification of the variability by means of a dedicated

language it gets quite easy to identify and assess the

impacts of a variability down in the assets. A general

advantage of VSL – as with all XML-based approaches –

is the extensibility of the language and the remarkable tool

support. Although still being in a evolving state, VSL has

already proven the feasibility of XML-based variability

management. It has been deployed successfully to handle

the variability in an embedded operating system on the

requirements and the code level (C-Code). In an industrial

context we have deployed VSL to specify variability on

the architecture level in UML-diagrams.

6. Conclusion

The increased amount of variability in software systems

meanwhile requires more systematic approaches to cope

with the rising complexity introduced through variability.

This is especially true in product families, where variabil-

ity is a means to handle the inevitable differences among

the systems in the family while exploiting the commonal-

ities. Widespread impacts of variability and the various

realizations considerably complicate the management of

variability in product families. In order foster more sys-

tematic and consequently more efficient approaches of

variability management we have discussed the commonal-

ities and differences of variability in product families,

identified appropriate concepts and interrelated them in

form of a general model of variability in product families.

The model has been applied to develop a small language

to specify and realize variability in product family assets.

We believe that the management of especially static

variabilities, which can be considered as a main character-

istic of product family approaches, is an issue that can and

should be addressed in an explicit and overall manner to

keep track with the rising complexity. To achieve this, a

common understanding and management of variability is

required across the various asset types. The presented

approaches intent to pave the way towards this.

References

[1] Bandinelli, S.: Product Family Engineering with XML,

Proc. of Dagstuhl Seminar No. 01161 Product Family De-

velopment, Wadern, Germany, 2001

[2] Bachmann, F.; Bass, L.: Managing Variabilities in Soft-

ware Architectures, Proc. of 2001 Symposium on Software

Reusability, Toronto, Ontario, Canada, May 2001

[3] Bassett, P.G.: Framing Software Reuse - Lessons From the

Real World, Yourdon Press Computing Series, 1997

[4] Bass, L.; Clements, P.; Donohoe, P.; McGregor, J.; North-

rop, L.: Fourth Product Line Practice Workshop Report,

http://www.sei.cmu.edu/publications/documents/00.reports

/00tr002.html, November 1999

[5] Baum, L.; Becker, M.; Geyer, L.; Molter, G.: Mapping

Requirements to Reusable Components using Design

Spaces, Proc. of IEEE Int’l Conference on Requirements

Engineering (ICRE 2000), Chicago, USA, 2000

[6] Becker, M.: Generic Components: a symbiosis of para-

digms, 2nd International Symposium on Generative and

Component-Based Software Engineering (GCSE'00), 2000

[7] Becker, M.; Geyer, L.; Gilbert, A.; Becker, K.: Compre-

hensive Variability Modelling to Facilitate Efficient Vari-

ability Treatment, Fourth International Workshop on Prod-

uct Family Engineering (PFE-4), Bilbao, Spain, October

2001

[8] Becker, M.: XML-Enhanced Product Family Engineering,

Proceedings of the Sixth Biennial World Conference on

Integrated Design and Process Technology (IDPT2002),

Pasadena, USA, June 2002

[9] Bosch, J.: Design and Use of Software Architectures -

Adopting and Evolving a Product Line Approach, Addi-

son-Wesley, 2000

<vsl:profile id="StdCfg" vm="prosekko">

<vsl:set var="Status" bt="ReqSpec">extended</vsl:set>

<vsl:set var="PreemptiveMultitasking">yes</vsl:set>

<vsl:set var="ConformanceClass">ECC2</vsl:set>

…

 <vsl:set var="Tasks" bt="IntDes">

<task>…</task> …

</vsl:set>

 <vsl:set var="Resources" bt="IntDes">3</vsl:set>

</vsl:profile>

Profile:

Asset:

<vsl:import href="../include/debug.h.vsl" once="yes"/>

…

<vsl:select var="Status">

<vsl:option value="basic"/>

<vsl:option value="extended">

 int resource_occupied[<vsl:subst var=""/>]

[<vsl:subst var="Resources"/>];

</vsl:option>

</vsl:select>

Figure 5. A VSL document and profile fragment

[10] Bosch, J.; Florijn, G.; Greefhorst, D.; Kuusela, J.; Obbink,

H.; Pohl, K.: Variability Issues in Software Product Lines,

Proc. 4th Int'l Workshop on Product Family Engineering,

Bilbao, Spain, 2001

[11] Czarnecki, K; Eisenecker, U.W.: Generative Programming

- Methods, Tools, and Applications, Addison-Wesley,

2000

[12] Geyer, L.; Becker, M.: On the Influence of Variabilities on

the Application Engineering Process of a Product Family,

Proceedings of the 2nd the Second Software Product Line

Conference, San Diego, USA, 2002

[13] Jacobson, I.; Griss, M.; Jonsson P.: Software Reuse -

Architecture, Process and Organisation for Business Suc-

cess, ACM Press / Addison-Wesley, 1997

[14] Jazayeri, M.; Ran. A; Van der Linden, F.: Software Archi-

tecture For Product Families: Putting Research into Prac-

tice, Addison-Wesley, May 2000

[15] Kang, K.; Cohen, S.; Hess, J.; Nowak, W.; Peterson, S.:

Feature-Oriented Domain Analysis (FODA) Feasibility

Study, Technical Report, CMU/SEI-90-TR-21, Software

Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, USA, November 1990

[16] Muthig, D.; Atkinson, C.: Model-Driven Product Line

Architectures, Proc. of the Second Software Product Line

Conference, LNCS 2379, Springer, San Diego, USA, Au-

gust 2002

[17] Svahnberg, M.; Van Gurp, J.; Bosch, J.: A Taxonomy of

Variability Realization Techniques, Technical paper,

ISSN: 1103-1581, Blekinge Institute of Technology, Swe-

den, 2002

[18] Thiel, S.; Hein, A.: Systematic Integration of Variability

into Product Line Architecture Design, Proceedings of the

Second Software Product Line Conference, LNCS 2379,

Springer, August 2002

[19] Van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of

Variability in Software Product Lines, Proceedings of

WICSA 2001, August 2001

[20] Voget, S.; Angilletta, I.; Herbst, I.; Lutz, P.: Behandlung

von Variabilitäten in Produktlinien mit Schwerpunkt Ar-

chitektur, Proceedings of 1. Deutscher Software-

Produktlinien Workshop (DSPL-1),, Kaiserslautern, Ger-

many, November 2000

[21] Withey, J.: Investment Analysis of Software Assets for

Product Lines,

http://www.sei.cmu.edu/publications/documents/96.reports

/96.tr.010.html, Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, USA, 1996

Managing Infinite Variability

Alessandro Maccari
1
, Anders Heie

2

1Nokia Mobile Software, P.O. Box 100, FIN – 00045 NOKIA GROUP (Finland)
2Nokia Mobile Phones, 12278 Scripps Summit Dr., San Diego, CA, 92131(USA)

alessandro.maccari@nokia.com, anders.heie@nokia.com

Abstract

Managing variability is an increasingly challenging
task for mobile terminal manufacturers: as new features
are launched more and more quickly and the market
saturates, coping with variability at the software
architecture level is a crucial need for all the companies
that operate in the field.
Variability originates from different requirements and
features. The need to offer a varied range of terminal to
attract different categories of users makes for almost
infinite combinations. We analyze the main challenges
that lie behind the variability problem, both at the
technical and at the organizational level, and illustrate
the solutions we have implemented in our organization.
We also hint to some suggestions for further research.
In general, the variability problem is likely to increase in
complexity, and the ability to successfully tackle it is
likely to be a strong factor for success or failure for all
companies that want to develop and maintain a product
family that addresses different categories of customers
and varied regional markets.

1. Introduction: coping with infinite
variability

As the market matures, and the competition on price

and features becomes harsher, mobile terminal

manufacturers are posed with challenges of increasing

complexity. We estimated that, in order to maintain

market share and avoid profit margin erosion, Nokia must

launch and market between 30 and 40 new products every

year. In other words, this means launching one product

every six to eight working days.

Naturally, diversification among products is necessary

in order to address the needs of different categories of

customers. Products must be segmented according to the

following (rough) criterion.

Low-end products have a simple (often trivial) user

interaction pattern, and their features tend to be oriented

towards gaming, messaging and multimedia, since that is

what the target category (mainly youngsters) are willing to

pay for.

High-end products have an abundance of features, and

the hardware is typically smaller and more lightweight

than in low-end products. The target audience is the

“gadget savvy”.

Fashion products are designed to cater to the latest,

hippest, coolest. An extensive selection of features is

essential, as well as the ability to customize the product to

suit the needs of the owner, who typically wishes to

diversify from the rest of the crowd. Such customization

can be hardware-centered (e.g. with plastic covers of

different colors), but also software-driven (e.g. capability

to support downloadable ring tones, screensavers, etc.).

Business products supply the professionals with tools

to help them in their daily jobs. Features such as long

battery duration, data synchronization and support for

connectivity (email client, infrared, Bluetooth, etc.) are a

must.

Moreover, across products, several features introduce

variability.

1) A varying number of keys are necessary for both

practical and segmentation reasons. For instance, a high-

end phone that can browse the web requires more keys

than a low-end voice only phone, in order to allow an easy

mouse-like navigation.

2) Varying display size and color depth: there are

obvious price benefits to black and white displays with

respect to color, and the market has expressed no

requirement for color until multimedia features (such as

multimedia messages, or MMS) were launched.

3) Different feature sets: we try to launch new features

very frequently to encourage product replacement (a

fundamental drive for profits in a saturated market, such

as Western Europe), and create different sets of features

for each product segment to suit the target customer

needs.

4) Languages: we have to support a very large amount

of languages. While most users utilize only one, a typical

terminal supports between 4 and 12. The active language

must be changeable at run-time.

5) Input methods: these are tightly related to languages.

While most Western languages have a standard input

method, some (especially Asian) languages have so many

glyphs that it is impossible to map each one to a separate

key.

6) Backwards compatibility to accessories: mobile

terminal manufacturers get a huge economical benefit by

being able to mass-produce accessories (such as batteries,

handsfree sets, chargers), so that each battery model can

be fit in several products. This also increases customer

loyalty, as end users are able to use older accessories with

newer products, thus minimizing the cost of terminal

replacements.

7) Different protocols: a basic necessity, as this defines

the network connectivity. Among others, we must support

the following protocols: GSM, CDMA, TDMA, PDC,

AMPS, some of which work in different frequencies. In

some cases we need to support combinations of different

protocols in the same product. Since the way network

services (e.g. call, messaging) work slightly changes with

the protocol, this impacts the user interface (UI) in subtle

ways.

These variability points impact almost everything in

the terminal. Menus will change if the network changes.

The architecture of our software must support different

languages. The UI must be compatible with all the input

methods. The introduction of a new key will impact the

way the UI translate key presses into glyphs.

The challenge is further complicated by the fact that

each feature must be:

a) Configurable (on, off, various settings). For

instance, the number of characters supported in text

messaging using the CDMA protocol is different than for

GSM, while some protocols (like AMPS) don’t even

support text messaging at all.

b) Able to change behavior after product release,

typically because of operator requirements. As the market

is becoming more mature, operators are looking for ways

to differentiate their service from those offered by the

competition, and this feeds back to Nokia as operator-

specific features and behavior. To simplify production,

this variability is most often built into the product at the

time of manufacturing.

c) Plug-and-playable. There are two aspects of this. I)

Internally, Nokia benefits from being able to quickly add

or remove features from products. It cuts our development

cycles, and facilitates reuse. A CDMA product can use the

same features originally designed for a GSM product. II)

Externally, Customers benefit from being able to

download applications and run them regardless of the

terminal model that they are using. This also creates a

large aftermarket that everyone benefits from.

All the business requirements that we illustrated above

must be fulfilled in order to allow companies like ours to

remain competitive. However, they make the variability

challenge very hard to tackle at the software architecture

level. This is especially true for large organizations that

operate in a continuously changing environment and

where product development is distributed among different

sites located in different countries or even continents.

Practically, the potential combinations of different

features are so many that we often talk about “infinite

diversity” or “infinite variability”. This needs to be

managed in an effective way, avoiding the danger of

losing control of the software development organization

and exponential increase of the workload as the product

set augments in size.

In the following sections we report on our experience

with Nokia by illustrating the main variability challenges

that we must face every day. For each, we outline the

solutions we have implemented, with particular emphasis

on software architecture issues. We aim to provide an

industrial, practical point of view on the problem of

software variability. We conclude with some suggestions

on a number of issues where we think academic and

industrial research should focus.

2. The language challenge

At the time of writing, Nokia’s products support

approximately 60 languages. Other than Western

languages (those based on a Latin character set, such as

English, Italian or Danish), these include Arabic, Chinese

(which has several variants), Thai and Hebrew. These

differ mainly for the input method.

Western languages are typed character by character

(one character for every keystroke), and are displayed

sequentially from left to right.

Arabic is also entered character by character, but must

be displayed sequentially from right to left. The fact that

Western words can be inserted amid Arabic text further

complicates the matter, since the former are displayed

from left to right. Additionally, Arabic letters need to be

connected in the display to form a “single sign”.

Chinese characters have a different meaning than

Western characters. Every character represents a concept,

and is made of a sequence of phonetic sounds. Every

Chinese character is entered by selecting the sounds that

make it up through a series of strokes. This has to be done

through some transliteration method, since the keys in the

pad correspond to Western characters.

Thai is entered in a similar way than Chinese, but with

a different logic.

Hebrew is perhaps the most complicated, since vowels

are usually not written, and their transliteration may

depend on the context of the phrase.

The popularity of SMS (Short Messaging System) in

the recent years has yielded the need for a dictionary.

Nokia uses the T9 technology [1], which implements a

predictive text input technology, where multiple strokes of

the same key to obtain certain characters are no longer

necessary. For instance, typing the letter “s” used to

require four strokes of the “7” key, but typing a full word

(e.g. “same”) requires as many characters as there are

letters (in this case, four characters, specifically 7-2-6-3).

This requires a dictionary to be stored in the terminal, and

the input mechanism is further complicated by the fact

that some words yield the same sequence of keystrokes

(e.g. “same” and “sand” both are typed by entering the

above sequence).

The language challenge, however, is not all about

inputting and displaying characters in different languages.

Most mobile terminals can operate in different languages,

i.e. the user can choose which language the menu items,

softkey labels and warnings should be displayed. When

the user changes the default language, the whole terminal

must start operating instantly in the new language (Figure

1).

Figure 1. Language change.

Both language challenges are hard to solve in a

scalable way if the code is aware of the selected language.

Therefore, we had to devise a method to isolate the

language knowledge from the code. It is interesting to

note that the semantics of each key press does not change

when the language changes, nor do the order of the menu

items or the functionality thereof. Hence, the language

challenge can be formulated in an abstract way: separating

behavior (i.e. the semantics of each user action) from

appearance (the way the user is allowed to input and is

presented output) solves the language problem.

In detail, we solved the language problem with the aid

of two artifacts

For text input, we split methods into different

components.

a) The physical key press, generated from the

hardware, is passed into the visual translation.

b) The visual translation interacts with the user to

convert the physical input into a meaningful

representation. Several key presses might be necessary

before the final logical value (called “glyph”) is complete.

c) The final glyph is the result of one or more physical

key presses, translated through the visual representation.

This is the interesting part for a software application, as it

represents the users intention.

These components allow us to add a new input method

(whenever needed), without changing the behavior.

Software applications need not know about the physical

key presses, or about the translation. Adding a new

language is now reduced to the simple exercise of adding

a new visual translation.

For text output, we created a text database where every

entry corresponds to a string (one or more words).

Applications that need to display texts call the database by

means of a logical reference, which is independent of the

language used. A certain application has the responsibility

for managing language selection, and possesses the

knowledge of what language is currently active. By means

of this, strings in the correct language can be extracted

from the database. Note that this allows us to add support

for a new language independently from the existing ones.

One additional complication with the output is that the

length of strings can differ radically between languages,

while the available area does not. Thus care needs to be

taken controlling the length of the strings. There are two

methods to solve this:

1) Strings can be truncated. This should be done in any

case as a precaution.

2) The logical strings must be generated with the

knowledge of the available space. This is preferable, as it

will ensure the most pleasant UI, but it requires a strong

process.

To summarize, the language challenge, as most of the

others that will be presented here, can be solved by

providing a simple abstraction between the way

information is presented and the way it is processed.

3. The hardware challenge

The mobile telephone product concept has evolved

massively from the simple, voice-centered products that

were in the market in the early nineties. At that time, the

display, keypad and hardware features were fairly

standard. Nowadays virtually every product has unique

hardware features. Here we overview the main variability

factors.

a) Keys: products like Nokia’s D111 have no keypad

(commands and data are inputted via a connected personal

computer, and the terminal acts like a smart modem);

“classical” mobile terminals differ in the amount of “soft”

function keys (in Nokia’s product family they range from

one to three); at the high end of the range, communicator-

like products (such as Nokia’s 9210) have a full-fledged,

PC-like keypad, complete with some ten “hard” function

keys and a few “soft” function keys.

b) Special keys: in some cases, operators or countries

request the presence of one or more special keys; an

example is the i-mode™ key, which was requested in one

of our products to enable users to easily access mobile

services in Japan.

c) Scrolling: the small size of displays generates the

need for scrolling. Name lists, menu items, received

messages, profiles and virtually every other long list of

data in the terminal needs to be scrollable. “Classical”

terminals are equipped with bi-directional scrolling

(supporting vertical directions). However, recently 4-way

scrolling was introduced (adding horizontal scrolling), to

ease up navigation in tables, such as calendars, and to

improve the game playing experience.

d) Sound Playback: ringing tones and games (among

other features) require a sound player. Support for MIDI

sounds has recently been added to the traditional beeper-

style sound that was present in earlier products.

e) Display size: this is perhaps the biggest source of

variability. We have made an attempt to standardize

display sizes by promoting the Nokia user interface series,

where the display size (as well as some other user

interface features) is constant for every product belonging

to a certain series. For instance, all Series 60 terminals,

such as the Nokia 7650, have a 176 x 208 pixel color

display [2]. Nevertheless, the variation remains large, and

the implications on the user interface software architecture

are extensive and perhaps not yet fully understood.

f) Color depth: once, displays were purely black and

white, i.e. every pixel could be on (black) or off (white) at

any point in time. Gray Scale displays were introduced

recently, allowing for several shades of gray. Color

displays came next, with different resolutions, just like in

PCs. Obviously, applications can use higher color depth to

enhance the way they visualize information.

g) Local connections, such as Infrared, Bluetooth, and

RS232. Every type of connection that is supported

requires its own hardware and software, and must be

recognized by all applications that need to use local

connectivity.

h) Accessory compatibility: as justified in the

introduction, hardware must be kept as backwards

compatible with existing accessories as possible (with

some obvious exceptions, e.g. when stereo sound output

was introduced a new headset was an obvious choice).

Clearly, maintaining software that incorporates all

hardware knowledge would mean having too many

variation points in the software architecture. While

complete hardware abstraction is not possible (and would

not be desirable), we need to decouple physical input and

output from data management. We will look at the

solution we have implemented to overcome this problem

in the following sections.

4. The feature challenge

A feature is a chunk of functionality that adds value to

the product. Features are normally requested by customers

(such as operators or countries). The complexity of

today’s terminals has boosted the amount of features in

the terminal to a level where it’s very hard to handle them.

The sheer amount of countries and operators we sell to

makes for high variability even in the simplest features.

For instance, some operators request a separate high-level

menu item that facilitates the usage of operator services,

or require a different set of call handling features. The

growing number of Operator specific changes is one of

Nokia’s greatest challenges today.

The phenomenon of feature interaction further

complicates the matter. In previous publications [3] [4],

we have tried to define the problem, categorize the types

of interaction and propose some solutions. For the sake of

this paper, we will only note that interaction between

features can dramatically increase the amount of

dependencies between the software components that

implement such features. Clearly, software architecture

must be designed in a way that such dependencies are

minimized, and do not increase exponentially with the

number of features.

Also, features evolve and change over time. A typical

example is the Phonebook. In the earliest terminals, it was

a mere list of names and numbers, where a name could be

up to 8 characters and could be associated to only one

number. Nowadays, for every phonebook entry (a string

which can be made of dozens of character) the user can

associate several numbers of different types (home, work,

mobile, fax) and even some text (email address, free text

notes). Predictably, not all features change and evolve in

the same way in all products, which brings additional

variability.

5. Solution: client-server architecture

The solution we have devised for this is Client-Server

architecture. This is a well-known solution for these kinds

of problems, and it suits our case well. We consider our

system to be made up of resources (Servers) and user

interactions (Clients). A Server represents a basic service

in a product, while a Client implements a feature. Clients

cannot interact, which means they have no internal

bindings. Thus we are able to remove or add a Client

without affecting the rest of the System. Furthermore,

Clients are designed using another abstraction: UI

Components. Preferably, a Client has no direct knowledge

of the actual physical representation of its data. Thus a

change of the display size would be handled by the UI

components, and the Client would never get involved.

While this is what we strive for, it is very hard to

obtain that level of separation. We estimate that the

majority of our Client code can be left unchanged if the

display size changes. This means that most of our code

base can remain stable, reducing the possibility of errors.

If a service changes, we can typically encapsulate the

change in the Server, again reducing the need for the

Clients to change to the bare minimum.

Another benefit of the Client-Server architecture is the

ability to dynamically add and remove components.

Utilizing sophisticated data-transfer models, we can

connect a product to another device and run parts of the

SW there. This even works across processors, solving

known problems with data alignment and endianess (the

pattern for byte ordering in native types, such as integers).

6. Solution: decoupled UI architecture

Abstractly speaking, most of the problems we analyzed

in the previous sections have one common solution:

separating behavior from appearance, or, in other words,

enable the decoupling of components from their

environment. In our case we have several layers of

decoupling. Let’s look at an example of a small system as

shown in Figure 2.

Client

(Feature)

Keypad Translate

Key

Display

Server

Display

Components

Input

Method

Language

Variation

Set

Display

Behaviour

Appearance

Product

Definition

Display

Size

Figure 2. Example of small UI System.

This illustrates the concepts we have been discussing

so far, and indicates some of the variability points and

where their main impact occurs. As a Client runs, the

current variation set determines its functionality. We say

the client implements the behavior of a feature. A typical

Client will interact with the user, in our case through the

Display Server. The Client utilizes a set of display

components to show its data. We say these components

implement the appearance of the feature.

Thus, we’ve decoupled the Client from the physical

input and output (keypad & display). Although the

appearance might change, the behavior stays the same,

and vice versa. Abstractly speaking, the behavior defines

the data manipulation (logic), while the appearance

represents the visualization of the data. This is also known

as the observer pattern [5].

We’ve taken this approach a step further. We allow the

Client to not only specify a set of display components, but

also basic interactions between them. As it turns out, a

large part of a UI consists of simple operations. For

instance, playing a beep when a key is pressed, or

changing the text on a button when the end of a list is

reached. These simple interactions can be described very

well by mapping display components input and output

together. As the end of a list is reached, a list component

can generate an output that can be mapped to a button to

change a text. The Client needs not be involved. This

creates an even greater separation between appearance

and behavior.

Another fact to be considered is that the layout of the

display can change from product to product, and even at

runtime if the language changes. Layouts are part of the

appearance, so we’ve designed them as dynamic entities

that are resolved when the display is updated. The Client

never needs to know about the layout in a particular

display configuration.

Finally, it is worth noting that the physical input (in our

case, mainly the keypad, but also voice recognition, local

connectivity, etc.) has no direct interaction with the Client.

We allow the input signals (e.g. key presses) to be mapped

in the same way as components. Thus, a key press could

trigger a text to change or a button to be pressed, all

without any behavioral impact. This might sound extreme,

but it emphasizes the essence of this model: the behavior

constitutes the logical operations performed on a set of

data. The appearance constitutes the manifestation of the

logical operations. A key press is of no interest to the

behavior until is manifests itself as input to a logical

operation.

This concept can be hard to grasp without an example.

Let’s assume that a Client wants to allow a user to write

an email. The user can enter the email address, a subject

and a body text. He also has an option to press Send &

Cancel.

In this case, Appearance includes: entering text using

dictionaries or alternate input methods, scrolling in the

body text, inserting special characters, moving between

fields, beeping when a key is pressed. Behavior, instead,

comprises only the following actions: Send, Cancel,

verifying the mail address format after it is entered.

Thus, the only interaction between the Display Server

and the Client would be to support the three behavior

situations. More importantly, the behavior is the same

across physical platforms. For another product that does

not support beeping when keys are pressed, the behavior

of this example client would not change at all. And it

should not!

Defining this separation requires great care, but also

yields great benefits, in that it allows us to tackle all the

scaling-up problems that originate from having to deal

with a large and very diversified product family.

7. The organizational challenge and some
solutions

As most organizations of its kind, Nokia is a global

company. It has regional and global research and

development centers scattered across different countries

and even continents. The difficulty in this kind of

geographical arrangement lies in the fact that, despite all

the variability, a large chunk of the software is common

between several (or even all) products. Common software

must be used in different products, and therefore its

changes must be tightly controlled, to avoid undesired

propagation of the effects.

The organizational entity that lies at the basis of our

software development is called a “software line”. A

software line is an organizational entity that is responsible

for developing a specific set of features (called “subject

area”) for a wide range of products. Examples of well-

defined subject areas are Messaging, Phonebook,

Calendar, etc. Software lines regularly publish new

releases of their code.

This way, the code that every software line publishes

has the potential to affect several products. This is why we

impose that software lines test their code in as many

configurations as possible. Naturally, not all possible

future configurations can be predicted at the moment

when the code is published, and it could well be that some

code release, which has proved to work well with different

products in the past, causes errors when integrated into a

new product with different functionality. However,

requiring fully tested releases certainly minimizes the

amount of product-specific testing to be done during

integration, thus reducing duplicate work.

The feature interaction (dependency) problem that we

outlined before brings another problem at the point of

release. Namely, it is important to know what other

software lines (components, features) are affected by

changes in a certain piece of feature code. We maintain

such knowledge in the form of a global database of

software dependencies. When a certain chunk of software

is changed, the owner software line must look in the

database and send information about the change to all the

interested parties. We are currently considering the

adoption of a tool to perform this task automatically.

In addition, software lines must document all interface

and functionality changes. Such documents must be

accessible to all products that are affected by the change

(i.e. all products that use the code in question). This

guarantees that all the products are always up to date with

what has been done to the code. Also relevant parties can

be invited to reviews, ensuring that no one gets surprised

when the new interface is released.

Error management is another crucial area for every

global software development organization. Software lines

must document known errors in the same way as the code

functionality, and ensure circulation of the corresponding

documentation (as outlined above). This ensures that all

the products that use a certain piece of code are updated

on the errors as soon as they are detected. In the same

way, error fixes (which usually generate maintenance

releases) must follow the same process, and software lines

have the responsibility to document them as well.

8. Conclusions and further research

We have outlined the main problems relating to

variability that need to be tackled when designing the user

interface software architecture for mobile terminals. The

main challenges are posed by support for multiple

languages, compatibility with different hardware and

support for diversified and interacting features. All these

problems can be solved by abstracting behavior from

appearance, and by decoupling software applications with

the services provided by the terminal and the surrounding

environment (e.g. network, other connected devices).

Moreover, we shortly discussed the issues that arise

when developing software in a distributed, multi-site and

global organization, where the dependencies between

software entities translate into dependencies between

different sections of the organization. We believe that the

issues represent valuable input for the research community

by providing a practical point of view on large-scale

industrial software development.

In the next few paragraphs we digress through some

issues for further research in the subject. A more extensive

list of issues was presented by one of the authors during a

keynote speech at the SPLC-2 conference, in August 2002

[6].

8.1. Designing for complexity

We noticed one interesting practical problem that arose

when working with this kind of architecture. Namely, it is

generally difficult for developers to work on a system

where everything is decoupled. People tend to look at this

the practical way, and mainly try to implement a feature in

the fastest possible way. In order for this approach to

work, it is of course essential that each developer

understand the technical aspects. However, this is not

enough: every developer must be able to take a step back

and define interfaces in very abstract terms. While this can

be partly achieved with rules, processes and training,

ultimately people must fully understand the underlying

concepts (that we explained above) in order to produce

efficient code in this framework. If these concepts were

included in Software curricula at universities, we believe

that the software community would see long-term benefits.

We found out that this is often not the case: when seen

isolated from the rest, each chunk of code usually is

designed in a sensible way. However, when put together,

sensible components do not always make a sensible

system. Thus, we believe that more training is needed in

the subject of designing code for complex software

systems that have a lot of variability.

8.2. Assessing the convenience of redesign

A recurring problem in our software development

world is to figure out to what extent it is convenient to

change a software system as opposed to rewriting it as

branches? For instance, suppose we need to implement 5

operator changes that impact ‘a feature’ changing 10% of

the code. In that case it is probably convenient to maintain

5 different versions of the component. But how

maintainable does that become when the changes impact

50% of the code? Obviously, the code quickly becomes

impossible to maintain and errors multiply when too much

variability incurs. We have seen no general methods to

assess at which point it is economically worth changing

and maintaining different versions of a software system, as

opposed to rewriting or redesigning it.

8.3. Highlight variability in requirements

The amount of variability in software is dictated by

requirements. However, our requirements are fed by

numerous business units that operate more or less

independently. So far, we have not been able to implement

a robust requirements process that allows variability to be

transparent straight from the common software

requirements. Often, the case is that common and variable

features are identified only once design, or even

implementation has started. This, of course, increases the

amount of work needed to design proper software

architecture, according to the principles we discussed

above. We believe that research should focus on this issue

in a practical setting, i.e. considering the difficulties that

arise when working in a large and complex organization,

where features and responsibilities change at a high rate.

9. References

[1]: see http://www.t9.com/

[2]: see

http://www.forum.nokia.com/html_reader/main/1,32611,2

471,00.html?page_nbr=2

[3]: A. Maccari, and A-P. Tuovinen, “System Family

Architectures: Current Challenges at Nokia”, Proceedings
of the IW-SAPF-3 workshop, Lecture Notes in Computer
Science 1951,Springer&Verlag, Las Palmas de Gran

Canaria, Spain, March 15-17, 2000, p. 107 ff.

[4] L. Lorentsen, A-P. Tuovinen, J. Xu, “Experiences in

Modelling Feature Interactions with Coloured Petri Nets”,

Acta Cybernetica15(4), Szeged, Hungary, 2002, pp. 621-

632.

[5]: see http://c2.com/cgi/wiki?ObserverPattern

[6]: see

http://www.sei.cmu.edu/SPLC2/keynote_slides/keynote_1

.htm

CAN XML DOCUMENTS BE TREATED AS COMPONENTS?

 Kai Koskimies
 Tampere University of Technology

 Institute of Software Systems

 Tampere, Finland

 email: kk@cs.tut.fi

 (This work was carried out during the author’s visit at

 the University of Groningen, the Netherlands)

ABSTRACT

Many modern systems make use of components which

produce and consume XML documents. Such systems rely

on certain structural definitions of the XML documents.

However, these structural definitions are often subject to

changes and extensions. We argue that the modifications of

the system resulting from changed structural definitions of

the XML documents are poorly managed with current

technology. This is a particularly serious problem in

product-line systems using XML technology, where the

structural specification becomes one of the variation points

of the product platform. We study a possible approach to

solve this problem based on the idea of introducing

provided and required interfaces for XML documents. This

solution makes use of associating attribute grammar like

processing rules with XML schema definitions, describing

how provided and required services are related in the case

of a particular schema.

1 INTRODUCTION

A current trend in information technology is towards

global, heterogeneous systems, comprised of different

kinds of components and applications interacting with each

other directly or over a network. In many cases the

interacting parties have been independently developed, and

have no previous knowledge of each other. Hence the

architectures of those systems must be based on well-

defined standards on data transmission between the

interacting components. XML (eXtensible Markup

Language [W3C02], [Oas02]) provides a natural means for

defining such standards. XML is a metalanguage supported

by W3C (World Wide Web Consortium), designed

originally as a universal format for structured documents

and data on the Web. XML is currently used extensively in

all kinds of software systems, often as architectural glue

integrating components that exchange data expressed in

jointly agreed XML format. The technology around XML,

including particular XML-based languages and tools for

processing XML-documents in various ways, has rapidly

expanded and become widely adopted by the industry.

When used as architectural glue in a software system, XML

often replaces the static interfaces with dynamic interfaces

in the sense that components communicating via XML files

have only a very generic static interface, simply allowing

the receipt of an XML file. All the parameters affecting the

response of the receiving component are given within the

XML file, and thus identified dynamically during the

parsing of the XML file. This makes systems very flexible

and configurable: the functionality of components can be

radically changed without affecting the static interfaces.

However, the problem is that the system becomes

implicitly dependent on the structural specification

(schema) of the XML documents. In many cases this is a

serious drawback in using XML. For example, if the

structural specification of the XML files is changed even a

little, the receiving component may or may not work any

more, and there is no way of knowing which is true without

looking into the code of the component. XML schemata

become crucial software artifacts that cannot be changed

without the danger of invalidating a number of unknown

components that implicitly rely on the structural definition.

A solution to this problem is to use schema extensions,

allowed by the current w3c schema standard [W3C02].

This facility makes it possible to build schema hierarchies,

analogous to class hierarchies. Thus it is possible to give a

“superschema” that is extended by several “subschemas”.

Any client that is able to process an XML-document

according to the “superschema” can also process

documents that follow a “subschema”. In principle, this

allows the extension of a schema without affecting the

clients of the original version, thus solving some of the

problems originating from schema modifications. However,

this kind of schema polymorphism is not a general solution

in the sense that it only narrows down the schema

dependency, but does not remove it. Any change in the

schema concerning the parts a client is interested in

necessarily implies changes in the client as well. Hence we

need to separate the consumer of an XML-document from

the actual schema definition.

The question of managing changes in the schema

definitions becomes particularly important in the case of a

product-line platform making use of XML. Generally, a

product-line platform has a set of variation points, defining

the range of supported variation and describing how a

particular variant is implemented on the basis of the

product-line architecture. If XML is an essential part of the

product platform, there should be techniques to define and

exploit certain variation points in the XML-schema as well.

The schema hierarchies, as explained above, are one way to

support this: in that case the “superschema” belongs to the

platform, and different applications define their own

“subschemata”. This corresponds closely to the use of

inheritance hierarchies as the basis of variation points in

conventional programming. It is a “white-box” speciali-

zation approach in the sense that the internal structure of

the base schema must be known to the specializer. Exactly

as in the case of traditional classes, it becomes difficult to

precisely specify how a “subschema” should be given so

that it would conform to the product-line architecture. The

so-called fragile base class problem [Szy98] of traditional

classes becomes even more difficult to manage in the case

of XML: any change in the “superschema” can lead to a

mismatch in an application.

We argue that a “black-box” approach would be more

appropriate for the realization of XML variation points. In

this approach, the direct relationship between the schema

and the consumer of an XML-document is removed using

interfaces. The interfaces express precisely, on an abstract

level, what a client can expect of an XML-document, and

what the XML-document can expect of its client. In

conventional terms, these interfaces correspond to the

provided and required interfaces of the “XML-component”,

respectively.

In this paper we will outline a solution based on introduc-

ing interfaces for XML-documents. We emphasize that the

proposed techniques have not been tried in a real case

study, nor have they been implemented. The main contri-

bution of this paper is the formulation of the problem of

variability management in XML, and the discussion con-

cerning the problems and design choices of an interface-

based approach. We have aimed at a practically feasible

solution, but the usability of the solution still has to be

verified.

We proceed as follows. In the following section we will

briefly discuss the types of variability problems. In Section

3 we outline a solution to managing variability in XML,

based on the idea of viewing XML-documents as

components with provided and required interfaces. This

solution is further refined in Section 4, showing how

provided and required interfaces are interpreted in the

context of XML. Some related work is discussed in Section

5, and concluding remarks are presented in Section 6. We

assume only superficial knowledge of XML [W3C02] in

this paper.

2 VARIABILITY ISSUES IN XML

In principle, variability can appear in two forms as far as

XML is concerned: either the schema of an XML-

document consumed by a component is allowed to change,

or the consumer of an XML-document is allowed to change

(or both). These two patterns are illustrated in Figure 1.

To make the variability problems more concrete, assume

that an enterprise information system makes use of XML to

transmit purchase orders among different, independent

subsystems. Since the data represented in purchase orders

is sensitive to various changes in the environment, the

XML schema experiences many changes during the

lifetime of the system. For example, the structure of some

data elements may need to be changed. However, assuming

that the same logical tasks can be performed for XML-

documents following both the new and the old schema, we

may still want to use the old XML-documents together with

new ones, following the revised schema. Thus we have the

situation depicted on the left side of figure 1: a client

should consume various XML-documents constructed

according to different schemata, being dependent only on

the logical operations to be performed on the XML-

documents, rather than on their schemata.

Consumer

schema1

schema2

schema3

XML-

file

XML-

file

XML-

file

Consumer1

Consumer2

Consumer3

schema
XML-

file

Fig. 1. Variability issues in XML. On the left, a single

consumer should be able to process XML-files conforming

to different schemas but providing the same logical

information; on the right, several consumers should be able

to process the same XML-file, varying the actions

performed upon the XML data.

On the other hand, assume that several subsystems process

same XML-documents, but they perform different actions

on certain elements in the documents. For example,

suppose that one subsystem sends a purchase order through

email, while another simply prints the order. Thus these

subsystems will repeat the same or similar XML processing

code, but the actions performed on the data elements in the

XML-file vary. This corresponds to the situation depicted

on the right side of figure 1.

3 OUTLINE OF A SOLUTION

A possible approach to solve the variability problems is to

introduce an interface-based type mechanism for XML.

This implies that an XML document becomes a

component-like entity that conforms to a particular

interface. As long as the interface remains the same, the

schema of an XML document can be freely changed

 2

without affecting the processing of the XML documents by

the component. Essentially, the interface defines the

assumptions the users of the document can make about the

tasks that can be carried out with the document.

On the other hand, a different interface is needed to define

the assumptions the XML document can make about the

services that help to carry out those tasks. These two types

of interfaces correspond closely to the conventional

provided and required interfaces of components,

respectively. The provided interfaces define the services the

“XML-component” can give to its users, and the required

interfaces define the callback functions to be called by the

“XML-component” when carrying out its services.

Naturally, an XML-document (or its schema) can provide

and require several interfaces.

Consider again the two types of variability problems

discussed in Section 2 (figure 1). The variation point of the

first type can be realized using provided interfaces of the

XML-document. That is, the XML-documents are viewed

as components providing certain services related to their

information contents. In this case all the different XML-

documents implement the same interface, and only the

latter is known to the client component. For example, the

service could be “process all the purchase orders by

producing statistics on the demand of each product”. The

XML-documents for purchase orders may follow different

schemata, and there may be completely different kinds of

XML-documents (say, billing documents) that can provide

the same service.

The variation point of the second type can be realized using

required interfaces of the XML-documents. The XML-

documents are in this case interpreted as components

calling the services of other components through a well-

defined interface. For example, such a service could be

“process a single purchase order”. Typically (although not

necessarily) the component which provides these services

is the same component that calls the services in the

provided interface of the XML-document. Thus the client

of an XML-document can perform an action on the XML-

data, and specialize it by giving its own implementation for

the callback function called during the processing of the

XML-document.

To summarize, in the case of unmanaged variability, the

variation points are scattered throughout the schema

specification and the client component processing the

XML-document (figure 2a). In the case of extension-based

(or inheritance-based) variability management, both the

schema and the client are extended with product-specific

parts (figure 2b). In the case of interface-based variability

management, the fixed part of the architecture consists of

the interfaces, while the schemata and the XML clients

requiring and providing these interfaces are (or can be)

product-specific (figure 2c). In the sequel we will study the

interface-based approach in more detail.

XML-doc

XML-schema

Client

depends

reads

product-specific

parts

Fig. 2a. Unmanaged variability in XML

XML-doc

XML-schema

Client

depends

reads

product-specific

extension

Fig. 2b. Extension-based variability in XML

XML-doc

XML-schema

Client

required

Proxy

provided

generates

depends (calls)

reads

implements

product-specific

schemata and

components

Fig. 2c. Interface-based variability in XML

To be able to attach traditional interfaces to an XML-

document, a proxy object is needed that actually

implements the provided interface and calls the methods in

 3

the required interface (figure 2c). The proxy component is

an executable representative of the XML-document in the

environment of the consumer; the proxy is actually the

“XML-component”. The proxy is generated automatically

on the basis of the schema of the XML-document. The

consumer calls the "services" of the XML-document by

calling the methods of the provided interface of the proxy.

On the other hand, the proxy registers the client

component, and calls back the client’s services through the

required interface.

This solution implies that the architect should figure out the

roles an XML-document can play in the system, and

present these roles as provided interfaces of the XML-

documents. In a platform architecture, these interfaces

become a variation point, under which different XML-

schemata can be introduced, implementing the same

interfaces. If a new logical task emerges for the XML-

documents, a new interface must be introduced, and the

schema must be augmented with an implementation for that

interface. However, if the structural parts of the schema

remain the same, the old XML-documents can still rely on

the new schema.

We have assumed that it is possible for the XML-document

(or its schema) to define how the services of the provided

interface are to be implemented making use of the services

of the required interface and the information present in the

XML-document instance. In principle this problem is

analogous to the problem of attaching computation to a

hierarchic structure. A solution to this problem has been

presented a long time ago: attribute grammars [Knu68].

Attribute grammars associate semantic attributes to the

nodes of a syntax tree of a context-free grammar, and rules

defining the relationships of the attribute values in the

branches. Various methods have been developed to

compute the values on the basis of the rules, and to

generate efficient evaluators from the attribute grammar.

Attribute grammars have been the most successful

technique for structure-oriented processing, applied mostly

in the realm of compiler generation. Since XML elements

can have attributes as well, the idea of applying attribute

grammars looks very attractive.

However, in their general form attribute grammars are too

clumsy and difficult to use for an average schema writer.

We will apply a simplified version of attribute grammars,

which is more close to so-called L-attributed grammars

[LRS74]. The idea of L-attributed grammars is to restrict

the dependencies of attributes in such a way that the

evaluation of attributes can be carried out during a single

left-to-right, top-down pass over the hierarchical structure.

A benefit is that the schema writer can think of an

attribution rule as a simple assignment statement executed

at a time determined by its position in the structure. This

makes the writing of the statements intuitively easier and

close to normal programming. Any complex type definition

in the schema can be augmented with such statements. The

statements are executed in the left-to-right, top-down order

with respect to the DOM-tree (that is, the internal object

representation of an XML-document produced by an XML

parser).

We have now the constituent parts of the solution on a very

abstract level: provided and required interfaces, and a

mechanism to express how the provided interfaces are

implemented using the required interfaces and the data

values in the XML-file. We will next refine these concepts.

4 REFINING THE SOLUTION

Provided and required interfaces are specified within the

schema. From the viewpoint of the schema writer, a

provided interface is a set of global output variables,

whose values are computed during the processing of an

XML-file. For each output variable, there can be any

number of input variables, whose values are set by the

consumers of the XML-file and used in the computation of

the output variable. An XML schema can have several

provided interfaces.

Similarly, a required interface is a set of global input

variables whose values are functions. These values are set

by the user of the XML-file. For each input variable, there

can be any number of output variables, whose values are

computed during the processing of the XML-file. These

output variables are used as parameters of the required

functions. An XML schema can have several required

interfaces. The provided and required interfaces are

depicted in Figure 3.

Proxy

f(x, y, z)

g(u, v, w)

XML-file tree

representation

Consumer

of the

XML-file

required interface

provided interface

inputoutput

outputinput

Fig. 3. Provided and required interfaces of an XML-

document. Input and output variables are shown with small

boxes inside the interfaces.

The rationale behind this kind of interface concept is that

the variable-based computation model becomes much

 4

simpler than the specification of a function in the context of

XML. Since the rules contributing to the computation of a

function can be scattered throughout the XML schema, it

becomes unnatural to view this kind of computation strictly

as a function. Nevertheless, in an abstract sense the output

variables of a provided interface correspond to a function

providing a value for the users of the XML-file, and the

input variables correspond to the parameters of that

function. In the case of a required interface the need for a

variable-based interpretation is less obvious, but the

additional flexibility it brings in the computation of the

parameter values for required functions can sometimes be

welcome. Symmetry reasons favor this choice, too.

The correspondence between an output variable in a

provided interface and a function becomes very concrete in

the implementation: a provided interface is eventually

mapped to a Java interface which has a function for each

output variable. The input variables are in turn mapped to

the parameters of that function. This is the reason we group

the input variables under a particular output variable. The

same applies to required interfaces, the roles of output and

input variables being exchanged.

Let us illustrate the implementation of the proxy object

with an example. In the case of the purchase order example,

the proxy could look as follows:

public class PurchaseOrderProxy implements

 PurchaseOrderServices {

 PurchaseOrderSupport support;

 XMLrepresentation doc;

 public PurchaseOrderProxy() {...}

 public void register(PurchaseOrderSupport

 client) {

 support = client;

 }

 public void readXMLfile(file f) { ... }

 public void processOrders() {

 ...

 support.handleOrder(doc.getOutput(“price”),

 ...);

 ...

 }

 public Integer totalValueForArea(Positive

 areaCode) {

 doc.setInput(“areaCode”, areaCode);

 ...

 return doc.getOutput(“totalValueForArea”);

 }

}

In this case the schema has defined output variables

processOrders and totalValueForArea. For the latter,

there is an input variable areaCode, which becomes a

parameter for the function. Initially, the client component

(support) is registered for the proxy, and the XML-

document is parsed into an internal representation (doc)

using the appropriate functions of the proxy. In the body of

the function totalValueForArea, input variables are given

initial values for the processing of the XML-document.

Then the internal representation is traversed, and the

computation rules are executed. These rules compute the

value of the output variable totalValueForArea, calling

the operations of support when determined by the rules. In

the example, the provided operation processOrders calls

one of the operations of the required interface, handle-

Order, using the output variables of the required interface

as parameters. Finally, function totalValueForArea

returns as its value the final value of the output variable of

the provided interface.

Let us next study how the computation rules are given in a

schema in more detail. We will not discuss their concrete

XML form here, but instead discuss the main principles

they follow. A possible concrete form of the computation

rules is presented in [Kos03]. This part requires some

knowledge of XML terminology.

A computation rule is always given in a context. A context

is a complex type (that is, a structural type) definition in an

XML-schema; a computation rule is given as a subelement

of the complex type that serves as its context. The left

context of a computation rule consists of the attributes of

the subelements preceding the computation rule in the

complex type definition; the right context consists of the

attributes of the subelements following the computation

rule. In addition, the attributes of the complex type itself

belong both to the left and to the right context.

A computation rule takes the form of an assignment, given

as the value of a particular attribute of a rule element. The

left hand side of a rule is an attribute belonging to the right

context of the rule, or an output variable. The right hand

side is an expression consisting of attributes belonging to

the left context of the rule, or input variables. As customary

in attribute grammars, we allow simple arithmetic

operations on the right hand side. If an input variable

denotes a function, the conventional parameterized notation

can be used as well; in that case the actual parameters are

assigned to the corresponding output variables before

executing the function. A computation rule can also be

conditional, executed only if a given boolean expression is

true. The left hand side of a computation rule can be

omitted.

Note that here we deviate from the classical L-attributed

grammar by treating attributes simply as variables, instead

of dividing them into inherited and synthesized single-

valued data containers. However, we do retain the left-to-

right direction of data flow characteristic to L-attributed

grammars. In principle, we could give up this restriction

and allow arbitrary data flow between the attributes in the

context of a rule: we could simply state that the rules are

executed in the left-to-right, top-down order, and leave it to

the schema writer to ascertain that the sequence of

assignments makes sense. However, the left-to-right data-

flow makes the computation safer in the sense that the

attributes of an element are not used before the subtree

rooted by that element is processed. Thus, the schema

 5

writer can imagine that some of the attributes in the root

represent the “result” of processing the subtree. Note that it

is still possible that some attribute does not always get a

value, or that some attribute is assigned many times. Tool

support should be provided to statically check the rules and

warn about these cases.

5 RELATED SOLUTIONS

An even more refined extension model for XML element

types is introduced in XInterfaces [Nöl02]. This model is

based on the idea that each client has its own view on the

data in an XML-document, defined by itself. A type

extension mechanism guarantees the conformance of the

extended types with existing views. The main difference

between XInterfaces and our proposal is that we define the

view of a client as a normal programming interface, while

in XInterfaces the views are still XML element types. Our

mechanism introduces more complete isolation of the client

from the XML-schema, but also deviates more from the

XML world.

Not surprisingly, the integration of attribute grammars and

XML has been already studied in few papers ([PC-R99],

[Fer01]). However, the aim of these papers is different:

they regard attribute grammars as a general mechanism to

add semantics to XML. This allows, for example, the

presentation of stronger semantical validation conditions in

the schema, which is one of their primary motivations.

6 DISCUSSION

We have presented a solution outline for making XML-

documents first class architectural elements that comply to

normal interfaces. We strongly believe that this is a

problem that has to be solved one way or another. On one

hand, the use of XML is steadily increasing. At the same

time, various kinds of software platforms or product-line

architectures are becoming more and more common in

many domains, emphasizing the issue of variability

management. These two trends make it necessary to

develop techniques for variability management in XML as

well. In this respect the current level of technology is far

from satisfactory.

Our proposal follows the line of thought in which provided

and required interfaces are seen as contracts between

software components. We have adopted an approach in

which it is the duty of the XML-schema to define how

provided services are obtained using the required ones.

This approach leads to the introducing of some level of

processing capability within the XML-schema. We feel that

the most natural existing model for this is the concept of an

attribute grammar. However, we have reduced the needed

processing facilities to the minumum, trying to avoid

excessive complexity.

There are still many open questions, and the applicability of

the approach has to be tested in real case studies. We have

also not yet defined a full schema language based on this

idea; thus we cannot say to what extent some features of,

say, the W3C Schema language [W3C02] contradict with

our model. These are our next steps in this research.

Tool support is one of the open questions. Although the

principles of the proxy generation tool seem fairly

straightforward, it is possible to apply various optimization

techniques to improve the performance of the provided

operations. It would also be desirable to build special

editing support for the schema specification; for example,

an editor could present for each output variable of the

provided interface a slice of the schema that contains only

those parts that are relevant for that variable.

Finally, it should be noted that our solution is actually not

specific to XML. We have shown that in principle any

grammar-based language specification can be augmented

with interfaces in such a way that instances of the language

can be treated as components conforming to those

interfaces, using a proxy. However, the technique is

beneficial if the language is subject to change and the rest

of the system should not be affected by the changes.

ACKNOWLEDGEMENTS

This work has been financially supported by the Academy

of Finland and NWO (the Netherlands).

REFERENCES

[Fer01] Ferenc H.: XML Semantics Extension, in Proc. of

the Seventh Symposium on Programming Languages and

Software Tools (SPLST 2001), Szeged, Hungary, 2001.

[Knu68] Knuth D.E.: Semantics of context-free languages.

Mathematical Systems Theory 2 (1968), 127-145.

[Kos03] Koskimies K.: A Technique for Variability

Management in XML. To be presented in the Second

ASERC Workshop on Software Architecture, Banff,

Canada, February 2003.

[LRS74] Lewis P.M., Rosenkrantz D.J., Stearns R.E.:

Attributed Translations. Journal of Computer and System

Sciences 9 (1974), 279-307.

[Nöl02] Nölle O.: XInterfaces – A new schema language

for XML. Diploma thesis, University of Freiburg,

Germany, June 2002.

[Oas02] http://xml.coverpages.org/, Oasis 2002.

[PC-R99] Psaila G., and Crespi-Reghizzi S.: Adding

semantics to XML. In Proc. Second Workshop on Attribute

Grammars and Their Applications (WAGA99), Amsterdam,

The Netherlands, March 1999, pp. 113-132. http://www-

 6

rocq.inria.fr/oscar/www/fnc2/WAGA99/proceedings/psaila

/psaila.pdf.

[Szy98] Szyperski C.: Component Software - Beyond

Object-Oriented Programming. Addison-Wesley 1998.

[W3C02] http://www.w3.org/XML/, W3C 2002.

 7

--TO APPEAR--

version 1.3 -- February 3, 2003

Journal of Network and Computer Applications 24(??), January (?) 2001

Extensibi l i ty via a Meta-level

Architecture

Serge Demeyer

Lab on Reengineering (LORE)

University of Antwerp, Department of Mathematics and Computer Science

Universiteitsplein 1, B-2610 Wilrijk (Belgium).

Tel:

 ++32 (0) 3 820 24 14.

Fax:

 ++32 (0) 3 820 24 21.

E-mail:

 serge.demeyer@uia.ua.ac.be.

WWW:

 http://win-www.uia.ac.be/u/sdemey/

Abstract.

Meta-level architectures are recognized as a means to achieve run-time ex-

tensibility, and have been applied as such in existing hypermedia systems. Yet, designing

a good meta-level architecture is notoriously hard and remains an art rather than a sci-

ence. This paper shows how to derive a meta-level architecture for hypermedia naviga-

tion, thereby providing a way to control how third-party components interact with the

linking engine. This extra level of control allows for a better and safer integration be-

tween an extensible system and the third-party components extending it.

1. Introduction

Nowadays, a considerable amount of effort is spent on the design of extensible systems. This

phenomenon can be observed in fields such as operating systems, databases, inter-operability

standards, programming languages and —last but not least— hypermedia. The web has most

certainly been an aggravating factor in the search for hypermedia extension mechanisms, espe-

cially enforcing the need for

run-time

 extensibility [1].

Run-time extensibility implies that a deployed system may extend its capabilities by allow-

ing users to plug in extra

third-party components

. During certain operations, the deployed sys-

tem hands over control to a third-party component, trusting that the component will return

control when required. This relation of trust is the Achilles heel for all run-time extensible sys-

tems, because there is always the risk that the system loses control over the operation and con-

sequently arrives in an inconsistent internal state.

As an example of what might happen when a hypermedia system loses control over the nav-

igation operation, consider the typical case of a web-browser extended with a third-party appli-

cation for viewing PDF files. A PDF document might itself contain hyperlinks, some of them

pointing to external and some of them to internal locations within the document. Unfortunately,

only the activations of external links pass through the link engine of the web browser and con-

sequently activations of internal links will leave the log of navigation actions in an inconsistent

state. As a result, pressing the ‘back’ button on the web browser will not always return the read-

er to the expected location which is confusing and adds extra cognitive overhead.

One way to avoid the Achilles heel of run-time extensible systems is to secure this relation-

ship of trust by means of a

meta-level architecture

.Via a meta-level architecture, a system is

Serge Demeyer

2.

able to watch over its inner actions regardless of the components involved, thus making it pos-

sible to adapt the internal representations accordingly. To achieve this self-awareness, a system

with a meta-level architecture (see the architectural pattern “Reflection” in [2]) provides two

separate interfaces: the

base-level interface

 —which provides the usual way of accessing the

systems functionality— and the

meta-level interface

 —which provides an interface for inspect-

ing and changing aspects of that system behaviour. In the example of the extensible web-brows-

er, the base-level interface allows third-party applications to invoke operations on the link

engine, while the meta-level interface allows the web-browser to examine all of them and thus

ensure the navigation log remains consistent.

Today, meta-level architectures have become part of the standard repertoire of programming

techniques. For example, Java, CORBA and ActiveX all provide meta-level interfaces for

checking object types and interfaces and sometimes even for dynamically invoking object op-

erations. Thus, it should not come as a surprise that hypermedia systems as well have been in-

corporating some form of a meta-level architecture. Hyperform for instance, is a hyperbase

where the set of services provided can be extended using a meta-level interface [3]. As a second

example, the DHM system incorporates a so-called “embedded interpreter” to allow end-users

to extend the functionality of the hypermedia engine [4]. And recently in the context of the web,

the XML standard exploits meta-languages as a way to extend the set of document types under-

stood by web browsers.

Yet, even though meta-level architectures have proven their value in practice, designing a

“good” meta-level interface is notoriously difficult. First, it is difficult to predict the function-

ality that must be provided in the meta-level interface. Second, it is difficult to establish a clean

separation between the base-level interface and the meta-level interface.

This paper derives a generic meta-level architecture for hypermedia link engines based on

two design guidelines, namely “turn contracts into objects” and “turn the configuration into a

factory object” (section 2.). Next, we show how the meta-level architecture makes it possible to

dynamically extend the way a hypermedia system logs navigation actions, arguing that the de-

sign guidelines indeed provide a “good” meta-level interface (section 3.). Finally, we discuss

how we validated our claims and explain the pros and cons of meta-level architectures as an ex-

tension technique (section 4.).

2. Deriving the Meta-Level Architecture

This section provides a practical illustration of the derivation process for the meta-level archi-

tecture by first specifying an object protocol for a generic navigation operation and then ex-

tending that protocol with the necessary contracts in the form of pre- and postconditions. Next,

we apply the two design guidelines to derive the actual meta-level architecture.

2.1. Generic Navigation Operation

To validate the practical applicability of the derivation process, we show how to derive a meta-

level architecture for a hypermedia navigation operation. We base ourselves on the well-known

Dexter specification [5], although we certainly do not restrict ourselves to Dexter compliant

systems. In fact we argue that this navigation operation is representative for many of the hyper-

media systems in use today, thus that the navigation operation is indeed generic.

3.

Extensibility via a Meta-level Architecture

As shown in Figure 1, the generic navigation operation starts by invoking the

selectOn

operation on a marker (the object named

sourceMarker

 representing the visible part of the

link), which forwards this operation to its associated anchor (the object

sourceAnchor

rep-

resenting the persistent part of the link). This anchor infers the targets of the navigation by in-

voking

resolve

, and then invokes

highlightOn

 on all resulting pairs of markers and

instantiations (objects

targetMarker

 and

targetInst

).

Applying this to a web browser, the

sourceMarker

 represents the visible part of a link an-

chor (typically a bit of blue underlined text) while the

sourceAnchor

 corresponds to the

URL embedded in that marker. The resolve function then interprets the URL and creates ob-

jects representing the target of the navigation, thus

targetInst

 (representing the target doc-

ument) and

targetMarker

 (representing the target location within that document). Finally,

the

highlightOn

 operation displays the target document in the browser and scrolls to the ap-

propriate location.

The same design might also be used for traversing “generic links” as defined within Micro-

Cosm [6] and its derivatives (see among others [7] for a discussion on the use of generic links

in multi-media information). The

sourceAnchor

 object then corresponds with the “tagged

link description”, holding various fields describing the contents and location of the selected

piece of information in the source document. The

resolve

 function passes this information

through a number of “filters”, where each filter matches the

sourceAnchor

 against its own

linkbase and adds or removes navigation targets to or from the result.

The generic navigation operation may also serve as a basis for the structural computing par-

adigm as advocated by the HBn/SBn series of hypermedia systems [8]. In such a case, both the

sourceAnchor

and the

resolve

 function correspond with structural computations

(“Sprocs” in HBn/SBn terminology) while the

sourceMarker

 holds the input data for these

computations. We have used such structural computations to build source code browsers in pro-

gramming environments [9], [10].

Figure 1 The object protocol for the generic navigation operation

source

Marker

selectOn

selectOn
determineResolver

[for all targets]

highlightOn

create

create

source

Anchor

create

target

Marker

targetInsta

ntiation

resolver
resolve

Serge Demeyer

4.

To summarize, the object protocol is able to model quite a range of navigation styles: from

embedded links (web-browsers), over links that are stored in a separate link base (“generic

links” in MicroCosm) up until structural computations (“Sprocs” in HBn/SBn). Therefore, we

conclude that the object protocol depicted in Figure 1 indeed represents a generic navigation

operation.

2.2. The Navigation Contract

The navigation operation depicted in Figure 1 specifies how the different objects in the system

are supposed to interact. However, in extensible hypermedia systems, some of these objects

may be provided by third parties. Thus, to ensure that the system functions properly, it is wise

to protect against faulty components. Therefore, we extend the specification by including extra

reliability checks.

An appropriate way of incorporating reliability checks is by means of the “Design by Con-

tract” principle [11]. In short, this principle states that every operation on an object should as-

sert its precondition (a statement of how the object expects the world to be before it executes the

operation) and postcondition (a statement of how an object should leave the world after it has

executed an operation). Pre- and postconditions are usually provided by means of predicates

that check whether the corresponding statement is true for a given object, hence we include

them as such in the specification of the navigation operation.

source

Marker

selectOn

selectOn

determineResolver

[for all targets]

highlightOn

create

create

source

Anchor

create

target

Marker targetInsta

ntiation

resolver
resolve

pre

post

pre

post

Figure 2 The extended protocol for the Navigation Operation, including pre- and postconditions

post

pre

5.

Extensibility via a Meta-level Architecture

The extended specification of the navigation operation is depicted in Figure 2, where the pre-

and postconditions appear against a grey background. As implied by the “Design by Contract”

principle, its up to the protocol to specify what exactly constitutes the reliability checks, al-

though participating objects may strengthen the contracts. In the general case, the precondi-

tions for the

selectOn

 operation verifies whether the marker and anchor objects may indeed

launch a link traversal, while the postcondition verifies that we arrive in a valid location in a hy-

perdocument. The precondition for the

highlightOn

 operation verifies whether the target

marker represents a valid location within an existing document, while the postcondition veri-

fies whether the target location is actually visible. A good example of what strengthening the

contract implies can be found in the example of a web browser. There the precondition for the

selectOn

 operation on an anchor verifies whether the source anchor contains a syntactically

valid URL. Also, the postcondition for

highlightOn

 on a marker verifies a typical feature

of web-style navigation, namely that the source document is properly closed.

2.3. The Meta-Level Architecture

Now that we obtained an object protocol for hypermedia navigation including pre- and poscon-

ditions, we can derive the actual meta-level architecture. This is done by applying two generic

design guidelines which appeared in [12], later recapitulated in [13]. The design guidelines

start from a system designed according to the “Design by Contract” principle and derive a meta-

level architecture by refactoring the pre- and postconditions and the object constructors into

special purpose

meta-objects

. The resulting meta-objects plus the implied interaction protocol

with the base-level objects constitute

the meta-level architecture

. As argued in section 3., the in-

teraction protocol between the meta-objects and the base-level objects indeed allows to system

to analyse its inner actions and adapt its internal representation accordingly.

The design guidelines state that a system designer should “turn contracts into objects” and

“turn the configuration into a factory object”. Applying these guidelines on the navigation pro-

tocol results in the meta-level architecture depicted in Figure 3, where the newly created meta-

objects are set off against a grey background. The first guideline recommends to move all pre-

and postconditions into a separate meta-object, named “

aNavigContract

” in the figure.

The second guideline introduces one global meta-object (called “

globalFactory

”) which

is responsible for creating new objects. Thus, during a navigation operation it is the responsi-

bility of (i) the

contract

 object to verify the pre- and postconditions while (ii) the

factory

 object

must supply the appropriate contract, resolver and navigation targets.

To return to the example of a web browser, when the

sourceMarker

 starts the navigation

operation, it first requests the

globalFactory

 to return the contract object that will super-

vise the navigation operation (

aNavigContract

). Next, that contract object verifies the pre-

condition (i.e, whether the marker corresponds to an anchor) and then control is transferred to

the

sourceMarker

 object. Here as well the contract object verifies the precondition (i.e.,

whether the anchor contains a syntactically valid URL) after which the

resolver

 function is

invoked. This resolver function interprets the URL, but the creation of the objects representing

the navigation targets is delegated to the globalFactory. After the

resolve

 function returned,

the navigation targets are highlighted, but the pre- and postconditions are again verified by the

contract object. Finally, the contract object verifies the post condition for the

selectOn

 oper-

Serge Demeyer

6.

ation on both the

sourceAnchor

 and the

sourceMarker

 which terminates the navigation

operation.

3. Extensibility via the Meta-level Architecture

Given the meta-level architecture depicted in Figure 3, we now explain how to exploit its pres-

ence to wrap additional behaviour around crucial operations, this way allowing a system to an-

alyse its own behaviour and adapt it when necessary. This way, we argue that the design

guidelines indeed provide a “good” meta-level interface, i.e. one that is open for future needs

and establishes a clean separation of concerns.

3.1. Maintaining a Navigation Log

One of the recurring features in hypermedia systems is a “back” button, which in essence boils

down to fetching the previously visited location from the log of navigation actions and navigat-

ing to that location. To work properly, this scheme requires that the all navigation operations are

source

Marker

selectOn

selectOn

determineResolver(sourceAnchor)

[for all targetSpec]

createTarget(targetSpec)

create

create

source

Anchor

create

target

Marker targetInsta

ntiation

resolver
resolve

preSelectOnMarker

postHighlightOn

preHighlightOn

Figure 3 The navigation protocol with meta-level architecture (set off against a grey background.)

One meta-object represents the navigation contract (aNavigContract), another meta-object rep-

resents the system configuration (globalFactory).

aNavig

Contract

global

Factory

retrieveContract(“Navigation”)

create

preSelectOnAnchor

[for all targets]

highlightOn

postSelectOnMarker

postSelectOnAnchor

7. Extensibility via a Meta-level Architecture

logged consistently. With a monolithic hypermedia system this is feasible, since all the objects

that participate in the navigation operation are known in advance. However, in extensible hy-

permedia systems —where document viewers may be provided by third parties and loaded at

run-time— we do not have control over all objects, hence cannot guarantee the log’s consisten-

cy.

It is during such “necessity of control” situations that the meta-level architecture comes to

the rescue. Indeed, all markers and anchors —even when provided by third parties and loaded

at run-time— must notify the navigation meta-object (aNavigContract) by means of the pre-

and postconditions. If objects do not notify the meta-object, they deliberately choose to neglect

the contract and such malicious intentions cannot be avoided. Of course, for many if not all of

the third-party applications this involves extra patchwork, but this can be accomplished by

means of scripting languages or wrappers [14], [6]. Consequently, the navigation meta-object

monitors all navigation transition states independently of the base-level objects involved.

As a concrete example of how to ensure consistency via the meta-level architecture, let us re-

turn to the example of a web-browser extended with a PDF viewer introduced in section 1.. In

this example, the link engine of the PDF viewer is separated from the one in the web-browser

which sometimes results in inconsistencies. Avoiding these inconsistencies requires a PDF-

viewer which adheres to the meta-level architecture in Figure 3 and a web-browser which has

an API that allows to make entries in the navigation log. Like depicted in Figure 4, the person

configuring the system must patch the retrieveContract operation for the global-

Factory object inside the PDF-viewer. The patch returns a wrapper object which knows how

to invoke the API of the actual web browser being used (we used startLogEntry and end-

Figure 4 Maintaining the navigation log consistent by wrapping the meta-object.

The globalFactory object is patched in such a way that it creates an extra wrapper object (aWrap-

per) which creates the log entries (startLogEntry and endLogEntry, set of against a grey

background) and then forwards the pre- and postconditions to the original navigation contract.

preSelectOnMarker

retrieveContract

(“Navigation”)

preSelectOnAnchor

preHighlightOn

postHighlightOn

postSelectOnAnchor

postSelectOnMarker

create

startLogEntry

endLogEntry

PDFglobalFactory

aWrapper aNavigContract aWebBrowser

Serge Demeyer 8.

LogEntry but this will of course depend on the web browser). After invoking the API, the

wrapper object will forward control to the original navigation contract. This way, the PDF

viewer acts as the base system which is extended in order to integrate properly with the link en-

gine of the web-browser.

3.2. Quality of the Meta-level Architecture

Ensuring consistency is but one instance of a “necessity of control” situation. Especially in a

distributed hypermedia system with multiple users having concurrent access to hypermedia

documents there are more situations that require extra levels of control. For instance, we have

applied the same guidelines on other object protocols in a hypermedia system to achieve con-

currency and access control (see [15] for further details).

Consequently, we claim that with respect to the criteria in the Introduction, the guidelines ac-

tually derive a “good” meta-level architecture. First of all, we point out that it is the explicit rep-

resentation of the contracts which provides the necessary hooks for extensions. Since a contract

forces the designer of an object protocol to make the important state transitions explicit, it pro-

vides an ideal place to monitor these state transitions. Therefore, the “Design by Contract” ba-

sis implies that the meta-level controls the important operations, thus most likely those places

where extensions are necessary. Secondly, since the contract objects only allows to verify pre-

and postconditions, one can use these hooks only for wrapping additional behaviour and never

for direct intervention into the base-level operations. Thus the design guidelines always result

in a clean separation between the base-level and the meta-level.

4. Discussion

4.1. Experimental Validation

The meta-level architecture described in this paper has been experimentally validated in the

Zypher hypermedia system as part of a PhD effort combining state-of-the art object-oriented

software engineering techniques with open hypermedia technology [15]. The resulting artefact

used the world-wide web to seamlessly navigate between source-code and its design documen-

tation [10].

Part of the PhD work has been summarised as a set of design guidelines that derive a tailora-

ble framework from an open design space [12]. Two of these design guidelines have later been

rephrased and refined in the context of distributed systems [13]. The same two design guide-

lines are put to use in this paper to derive the meta-level architecture for hypermedia navigation.

4.2. Potential Drawbacks

While a meta-level architecture permits to control system extensions, it should be clear that this

comes at a cost.

• Extra complexity. As can be observed in the difference between Figure 1 and Figure 3,

a meta-level architecture implies a few additional objects and a considerably larger ob-

ject protocol. Also, once we actually start to exploit the meta-level architecture, the

9. Extensibility via a Meta-level Architecture

number of wrapper objects quickly explodes. This is without a doubt the most important

drawback of a meta-level architecture.

• Late binding technology. The meta-level architecture in itself does not provide run-time

extensibility, it only provides an extra level of control on how third-parties may extend

the base system. To actually achieve run-time extensibility one must use other forms of

late binding technology, either a language with built-in features (Smalltalk and Java) or

otherwise some form of embedded scripting language (like in [3], [4]).

• Performance penalty. The meta-level involves a lot of extra message-passing between

the base-level and the meta-level. This will most likely impose some performance pen-

alties.

4.3. Potential Benefits

Even though a meta-level architecture is quite costly, it has some unique advantages that makes

it worthwhile for many hypermedia systems.

• Very flexible. The main advantage of a meta-level architecture is that it permits a lot of

powerful extensions to the base system without actually changing it. For hypermedia

systems applied in many different contexts (like most of the hyperbases [16]) this is a

very desirable feature as it permits to deploy a stable core which is extended as needed

in the particular context.

• Complementary to other extension techniques. A meta-level architecture should not be

used on itself, but rather be combined with other extension techniques. Ideally, the meta-

level interface is accessible via an API and third-part applications are adapted via script-

ing and wrapping (see [14], [6]) to properly invoke that API.

• Poor men’s reflection. Languages such as CLOS or Smalltalk provide built-in reflection

mechanisms, which makes it easy to monitor and control any slice of an object protocol

([17], [18]). Our design guidelines result in a kind of “poor men’s reflection”, where the

meta-objects provide the means for a limited form of method-instrumentation applicable

in mainstream object-oriented languages such as C++ and Java.

5. Conclusion

In this paper, we have derived a meta-level architecture for a hypermedia link engine. Next, we

have shown how such a meta-level architecture makes is possible to control the way third-party

applications interact with the link engine, as such making it possible to ensure a consistent in-

ternal state. Finally, we have argued that while a meta-level architecture provides the necessary

hooks for ensuring consistency, it also adds considerable complexity thus should only be ap-

plied when the situation calls for it. However, with the growing demand for hypermedia func-

tionality, it is possible that these meta-level facilities may one day be provided by the

underlying operating system, precisely because these also require an extra level of control.

Acknowledgements. I want to thank my colleagues Sander Tichelaar and Franz Acher-

mann who have proofread earlier versions of this document: their suggestions improved the pa-

per considerably. The same applies for the anonymous reviewers which helped to clarify the

contents of this paper. Last but not least, I want to thank all participants in the series of “Open

Serge Demeyer 10.

Hypermedia Systems” workshops (http://www.ohswg.org/) for the many fruitful discussions

we had over the years.

6. References

[1] Robert Laddaga & James Veitch 1997. Dynamic Object Technology. Communications

of the ACM, 40(5), 36-38.

[2] Frank Buschmann & Regine Meunier & Hans Rohnert & Peter Sommerlad & Michael

Stad 1996. Pattern-Oriented Software Architecture — A System of Patterns. John Wiley

& Sons.

[3] Uffe Kock Wiil & John J. Leggett 1992. Hyperform: Using Extensibility to Develop Dy-

namic, Open and Distributed Hypertext Systems. In Proceedings of the ACM Conference

on Hypertext (ECHT’92), Milano - Italy, November 1992. ACM Press, 251-261.

[4] Kai Grønbæk & Jawahar Malhotra 1994. Building Tailorable Hypermedia Systems: the

embedded-interpreter approach. In Proceedings of Object-Oriented Programming, Sys-

tems, Languages, and Applications, Portland-Oregon, October 1994, 85 - 101.

[5] Frank Halasz & Mayer Schwartz 1994. The Dexter Hypertext Reference Model. Com-

munications of the ACM, 37(2), 30 - 39.

[6] [Davi94a] Hugh C. Davis & Simon Knight & Wendy Hall 1994. Light Hypermedia Link

Services: A Study of Third Party Application Integration. In Proceedings of the Europe-

an Conference on Hypertext (ECHT’94), Edinburgh - UK, September 1994, ACM Press,

41-50.

[7] Paul H. Lewis & Hugh C. Davis & Steve R. Griffiths & Wendy Hall & Rob J. Wilkins

1996. Media-based Navigation with Generic Links. In Proceedings of the ACM Confer-

ence on Hypertext (HT’96), Washington - USA, March 1996, ACM Press, 215-223.

[8] Peter J. Nurnberg & John J. Leggett & Erich R. Schneider 1997. As we should have

tought. In Proceedings of the ACM Conference on Hypertext (HT’97), Southampton -

UK, April 1997, ACM Press, 96-101.

[9] Serge Demeyer 1999. Structural Computing: The Case for Reengineering Tools. In Pro-

ceedings of the 1st Workshop on Structural Computing - Hypertext'99, Darmstadt - Ger-

many, February 1999. At: http://win-www.uia.ac.be/u/sdemey/Pubs/.

[10] Serge Demeyer & Koen De Hondt & Patrick Steyaert 2000. Consistent Framework Doc-

umentation with Computed Links and Framework Contracts. ACM Computing Surveys,

32(1).

[11] Bertrand Meyer 1997. Object-Oriented Software Construction. Prentice Hall, 1997.

[12] Serge Demeyer & Theo Dirk Meijler & Oscar Nierstrasz & Patrick Steyaert 1997. De-

sign Guidelines for Tailorable Frameworks. Communications of the ACM, 40(10), 60-

64.

[13] [Tich00a]Sander Tichelaar & Juan-Carlos Cruz & Serge Demeyer 2000. Design Guide-

lines for Coordination Components. In Proceedings of the ACM Symposium on Applied

Computing 2000 - Track on Coordination, Como - Italy, March 2000. ACM Press, Vol

I, 270 - 277.

11. Extensibility via a Meta-level Architecture

[14] E. James Whitehead, Jr. 1997. An Architectural Model for Application Integration in

Open Hypermedia Environments. In Proceedings of the ACM Conference on Hypertext

(HT’97), Southampton - UK, April 1997. ACM Press, 1-12.

[15] Serge Demeyer 1996. ZYPHER Tailorability as a link from Object-Oriented Software

Engineering to Open Hypermedia. Ph.D. Dissertation, Vrije Universiteit Brussel, Bel-

gium, Departement of Computer Science. At: http://win-www.uia.ac.be/u/sdemey/Pubs/

[16] Uffe Kock Wiil & Peter J. Nürnberg & John J. Leggett 1999. Hypermedia Research Di-

rections: An Infrastructure Perspective. ACM Computing Surveys, 31(4es).

[17] Gregor Kiczales & Jim Des Rivieres & Daniel Bobrow 1991. The Art of the Metaobject

Protocol, MIT Press.

[18] St phane Ducasse 1999. Evaluating Message Passing Control Techniques in Smalltalk.

Journal of Object-Oriented Programming, 12(6), 39-50.

Modelling Architectural Variability for Software Pr oduct Lines

Thomas Weiler

Research Group Software Construction, RWTH Aachen, Germany
thomas.weiler@cs.rwth-aachen.de

Abstract

In this paper requirements for a concept to model

software product line architectures are presented.
Furthermore a process for SPL architecture modelling is
described which incorporates the concept of the model
driven architecture (MDA) into SPL architecture
modelling. Besides a metamodel for SPL architecture
modelling elements is shown, which – combined with the
process for SPL architecture modelling - fulfils the
requirements deployed in the first part.

Modelling variability and traceability of requirements
within a software architecture thereby possesses the main
focus. Therefore a detailed breakdown of different kinds
of variability found in product line based software
architectures is given. The presentation concludes with an
small excerpt from a case-study within the context of an e-
shop, which should clarify the application of the elements
of the metamodel presented before.

1. Introduction

Software Product Lines (SPLs) are an advancement in

software reuse. In the scope of SPLs reuse however refers

to all documents that evolve during the development of

(similar) products. Examples for these documents are

requirements, architecture models or database designs.

SPL development is divided into two main parts,

which execute interactively. Within the domain
engineering the common and variable parts of products,

which belong to an application domain, are analysed and

described. The resulting documents of this process form

the basis of the product line, the so-called Product Line
Platform (PLP). During the application engineering
concrete products are then derived from this PLP.

Thereby the terms application and product will be used

synonymous below.

By maximising the reuse of documents in the product

line-based software development, time-to-market as well

as development costs can be significantly reduced [1].

Furthermore a correct applied product line-based

approach encourages the quality of the end products by

careful development and intensive tests of the common

parts of the SPL.

2. Present approaches

Most approaches in the scope of SPLs are focusing on

the requirements engineering. They primarily consider the

delimitation of the application domain during the process

of scoping as well as the acquisition and modelling of

requirements for SPLs.

Thereby it is identified to be crucial, to explicitly

model the variability of requirements for products of a

SPL. Furthermore a dedicated mechanism is needed,

which allows the product developer to resolve the

modelled variability for a concrete product in a way

desired by the developer of the PLP.

Within all these approaches it is often neglected that

product line-based software development can only lead to

full success if it is recognized as an integrated concept,

which involves all phases of the software engineering

process. In the following this article concentrates on

architecture modelling for SPLs.

3. SPL architecture modelling

Architecture modelling for SPLs partially demands

similar requirements as architecture modelling for

conventional systems. But many of these requirements

need a more intensive attention in the scope of SPLs,

because the PLP architecture often forms the basis for a

huge set of derived product architectures. This

simultaneously is the risk and the chance of SPLs.

In the following requirements for a SPL architecture

modelling concept are presented which are determined

during the case study presented in section 8 and are

additionally the result of a comparison of existing

approaches in the context of SPLs, see also section 9.

Thereafter a SPL architecture modelling process and a

metamodel for SPL architecture modelling elements will

be presented which fulfil the specified requirements.

Entities and relations: First of all – as with every

other architecture modelling language – there must be a

possibility to model the central building blocks of a

system – the entities – and their connections, the relations.

Thereby the entities describe central units of the system to

be modelled and the relations describe structural and

behavioural connections of this units like e.g. hierarchical

or uses relations.

Separation of concern: Architecture modelling for

SPLs must provide the possibility to concentrate on

specific aspects of a system [10]. This concept known as

separation of concern is divided into two dimensions:

Along the horizontal dimension it is possible to designate

the focus on a part of interest (clipping). The vertical
dimension allows to magnify a given fixed cutout step by

step in order to get a more and more exact image of the

cutout in question.

A combination of both dimensions is the so-called

zooming, in which an aspect is magnified step by step

whereby the observed cutout is simultaneously scaled

down and vice versa. This may be seen analogous to a

photographic lens with zoom-function where a longer

focal length (higher magnification) results in a smaller

angle.

Traceability: Traceability of requirements down to the

architecture and finally to the source code (and back) is a

vital task to ensure the comprehensibility and

maintainability of a software system. In the scope of SPLs

the claim for traceability is so much important because

resolving the variability of the requirements has direct

impact on the design and therefore the source code of the

SPL. Only if the traceability of requirements down to the

design and furthermore the source code is guaranteed, one

can fully benefit from the possibilities of reuse and

therefore of cost-saving.

Evolution: Similar to conventional software products

a SPL isn’t resistant against changes during its life cycle.

By and by changing requirements lead to changed

architectures and products. Therefore a mechanism is

needed to track these changes over time. In the context of

SPLs this not only means versioning but also to decide

when and how to migrate already derived products when

changing the PLP.

Technical platform independence: To maximise the

benefit of reusing components, the design of a system and

components respectively should be independent of the

implementation technique used as long as possible along

the levels of abstraction. Thereby the term component is

not meant to denote a component known from e.g.

CORBA or EJB but a higher building block used in

architecture modelling. This will be discussed in more

detail in section 6.

The request for technical platform independence

complies with the Model Driven Architecture (MDA)

approach conceived by the OMG [4]. In the scope of

architecture modelling for SPLs, this technical platform

independence refers to the development of the PLP

architecture as well as the architectures of therefrom-

derived products.

It should be mentioned that the term platform is used

in the scope of SPL engineering as well as in the MDA

approach. So one should not mix up the two meanings of

the term platform. While in the context of SPLs this term

describes all documents on which the product line is

based, in the context of the MDA it refers to the technical
platform used. So if not explicitly mentioned context

should clarify which meaning was meant by. The

relationship between SPLs and the MDA will be

discussed in more detail in sections 4 and 5.

Variability: Modelling different variability within a

SPL is vitally important for the requirements engineering

as well as for designing the architecture. Combined with

the traceability arises the possibility to resolve variability

at the level of requirements during product configuration

and to implement it through the design level down to the

implementation level, see also section 4. Therefore a

concept for SPL architecture modelling needs to provide

the possibility to distinguish between common and

variable parts of the products derived from a PLP.

Decision support: In order to resolve variability

offered in the PLP architecture in a way intended by the

platform developer a mechanism is needed, which helps

the product developer to make the needed decisions.

Therefore each variability modelled in the PLP

architecture must be furnished with an annotation –

normally formulated in natural language – which provides

the product developer with the needed information to

resolve given variability.

Dependencies: By modelling the variability within a

SPL it must be taken into account, that there might be

dependencies between components of the system. This

can mean that for example the existence of one

component requires the existence of another component.

Therefore a concept for SPL architecture modelling needs

to support an appropriate type of relationship.

Having described the requirements for SPL

architecture modelling in the next section a process will

be presented, which illustrates the necessary steps and the

dependencies by modelling SPL architectures.

4. SPL architecture modelling process

This section presents a process for SPL architecture

modelling. As already mentioned in section 1 SPL

architecture modelling is organized in the two areas

domain engineering and application engineering. In

Figure 1 the part of architecture modelling gets more

improved.
Within the domain engineering initially the

requirements for the entire PLP are collected together

with the identified variability and afterwards compiled

into a requirements model for the PLP, which among

other things contains e.g. a feature graph [2]. This

requirements model forms the basis for the top-level layer

of the PLP architecture. Starting from this still abstract

architecture layer the PLP architecture gets more and

more improved in further architecture layers. This

procedure is according to the Model Driven Architecture
(MDA) approach introduced by the OMG [4], see also

section 5.

Product Line-Platform
Requirements-Model

PLPA-Layer 1

PLPA-Layer 2

PLPA-Layer n

D
om

ai
n

E
ng

in
ee

rin
g

Product Line Platform-
Architecture (PLPA)

…

PA-Layer i1

PA-Layer i2

PA-Layer in

A
pp

lic
at

io
n

E
ng

in
ee

rin
g

…

Product
Requirements-Model

Customizing

Product-Architecture (PA)

Figure 1. SPL architecture modelling process

In the last step within the domain engineering the that

way specified generic architecture gets realized as far as

possible. Thereby – according to the differentiation in

common and variable components – both finished and

incomplete components are placed in the PLP, see also

section 6.

At the beginning of the application engineering firstly

the requirements for a concrete product are determined on

base of the requirements for the PLP. Afterwards –

similar to the domain engineering – a first coarse

architecture layer for the product is developed, which is

based on the layer of the same abstraction level as in the

PLP architecture. In the following this top-level

architecture becomes more and more improved analogue

to the layers of the PLP architecture.

Thereby the variability included in the PLP

architecture is resolved conform to the previously

identified product requirements. In the last step the

executable system is implemented based on this product

architecture.

5. MDA and SPL architectures

To fulfil the requirement of technical platform

independence - see section 3 - the Model Driven
Architecture (MDA) approach of the OMG [4] can be

incorporated into a model for SPL architecture modelling.

Figure 2 shows an approach to integrate the MDA in a

concept for modelling SPLs.

Thereby the core model known from the MDA is

specialized to a domain specific core model, which offers

modelling elements adapted on a given domain. These

modelling elements are used to define a platform
independent PLP model conforming to the MDA, based

on the analysed requirements for the PLP. The platform

independent PLP model consists of several abstraction
layers, which give from top to bottom a more and more

complete view of the modelled system. It is then -

according to the MDA - mapped to a platform specific
PLP model, which also consists of several abstraction

layers.

During the application engineering initially the

product requirements are determined based on the

requirements of the PLP and then implemented by a

platform independent product model pursuant to the

Figure 2. MDA and SPLs

Core Model

Domain Specific Core Model

Platform Independent PLP Model
Platform Independent Product Model

Platform Specific PLP Model Platform Specific Product Model

Modelling Element

Abstraction Layer

PLP-Requirement Product Requirement

uses

1..*

1..*

1..*

1..*

1..*

implements
implements

1..*

depends on

maps to maps to

uses

implements

1..*

1..*

maps to

depends on

1..*

implements
1..*

maps to

1..*

1..*

MDA. This consists – analogue to the platform

independent PLP model – of several abstraction layers

and is mapped to a platform specific product model,

which in turn consists of several abstraction layers.

6. Feature components

The central building blocks for modelling the PLP and

application architectures in the approach presented here

are feature components. A feature component can be seen

as a self-contained unit, which represents a specific

characteristic of the system to be modelled. They are an

adaptation of the feature concept introduced by the

Feature Oriented Domain Analysis (FODA) to the level

of architecture modelling for SPLs [1].

Figure 3. Feature Components

It must be mentioned that the feature components at

the level of architecture modelling aren’t necessarily

identical to the features according to FODA, which are

identified at the level of the requirements analysis [2]. For

example it might be possible that a set of features

identified in the requirements analysis together build a

feature component at the level of architecture modelling.

It might also be possible, that a feature is implemented by

a set of feature components likewise aspects in the Aspect
Oriented Development [5]. Furthermore feature

components need – contrary to their name – not to be

realised at the implementation level as components

provided by for example CORBA or EJB. As shown in

Figure 3 feature components can be divided into three

different types.

Common feature components are used in a PLP

architecture and describe feature components, which can

occur in every application based on this architecture.

Common feature components occur in derived application

architectures without modification.

Variable feature components are feature components,

which can occur in every derived application architecture

only by resolving the offered variability of type

incomplete specification. This type will be described in

more detail in section 7.1.

The last type of feature components is represented by

specific feature components. They are special building

blocks needed to construct a specific application

architecture derived from a PLP architecture. At this it

must be taken into account, that in the course of the

evolution of a SPL an initially product-specific feature

component at a later date can be incorporated into the

PLP and thereby become a variable or even a common

feature component of the PLP, see section 3.

7. Metamodel

After this preparatory work in this section a metamodel

for SPL architecture modelling elements will be given

which – in conjunction with the SPL architecture

modelling process presented in sections 4 and 5 – fulfils

the requirements described at the beginning. In section 8

an example will illustrate the elements presented in the

metamodel shown in Figure 4.

The central modelling element is the feature
component mentioned in section 6. Thereby each feature

component memorises the requirements covered by it. In

doing so traceability of requirements down to the

architecture level is supported as asked for in section 3.

 Feature components can participate in relations with

the aid of relation ends as known from the UML [3].

Thereby a relation can be a dependency – see also section

3 – or a hierarchy relation.

Among a dependency-relation two different kinds of

dependencies between feature components can be

distinguished:

• Prohibited

• Required

A dependency of type prohibited is an undirected

relationship between two feature components. In a

prohibited-Relationship the existence of one feature

component forbids the existence of the other feature

component in a derived product architecture.

A dependency of type required is a directed

relationship between two feature components. It is used if

the existence of one feature component of the PLP

architecture depends on the existence of another feature

component of the PLP architecture within a derived

product architecture.

A hierarchy-relation depicts a conceptual structure

between a super- and a – possibly set of – sub-feature

component(s). It should be seen more as a is part of-
relation than a generalisation similar to the connections

used in a feature graph in FODA [2].

The other major part of the metamodel pertains to the

modelling of variability. Thereby two types of variability

can be distinguished: incomplete specification and choice.

7.1. Incomplete specification

Variability in the form of an incomplete specification
is characterised by a missing or incomplete specification

of a component. At this four different types can be

distinguished:

A definition only determines the skeleton of a feature

component likewise an interface. The detailed

specification is done during the application engineering.
A refinement defines the behaviour and data of a

feature component in an abstract way likewise a template-

or hook-feature component. The exact design will be

defined product-specific.

At the redefinition a specification for the feature

component exists already but it can be renewed product-

specific. This can serve for the definition of a preset

specification of a feature component, which can be

product-specific redesigned.

Similar to the redefinition the extension also defines a

(standard) specification of a feature component. However

this specification can be product-specific extended by

functions or data.

Beyond these four types of incomplete specification

redefinition and extension are optional variability because

in these cases a sufficient complete specification of the

feature component in question is given. On the other hand

variability of type definition or refinement must always be

resolved.

7.2. Choice

The second type of variability between members of a

SPL concerns the choice from a set of offered feature

components from the PLP. It can be distinguished in the

following three types:

• Option

• Alternative

• Or

In case of an option the product developer has to

decide, if he takes over an optional feature component

from the PLP to the product architecture. In case of an

alternative exactly one feature component must be chosen

from a set of offered feature components.

An or-choice describes a set of feature components

from which one ore more feature components must be

chosen. Table 1 shows the different types by illustrating

the used cardinalities of the choice and selection sets. It

should be mentioned that these three types could also be

combined to obtain a broader variety of possible sets to

choose from.

Figure 4. Metamodel for SPL architecture modelling elements

Modeling Element

Feature Component

-coveredRequirements : Vector

Variability

Common Feature Component Variable Feature Component

Specific Feature Component

Incomplete Specification

Choice

Option Alternative

Dependency

Prohibited Required

Relation

Refinement RedefinitionDefinition Extension

Or

Decision Support

Relation End

Hierarchy

Platform Feature Component

1..*

1..*

2..*

1..*

Table 1. Choice

 Cardinality of
choice

Cardinality of
selected set

Option 0..1 1

Alternative 1 *

Or 1..* *

When resolving variability during the application
engineering, incomplete specifications must be completed

that means defined, refined, redefined or extended.

Furthermore the product developer has to come to a

decision about the feature components to choose from sets

of offered feature components in variability of type

choice.

Regarding all types of variability a decision support is

provided which supports the product developer resolving

given variability, see section 3.

8. Example

In the following a small excerpt from a first case-study

is presented to illustrate the application of the metamodel

elements. This case study models a SPL in the context of

an Internet e-shop.

In Figure 5 a feature graph modelling the order
subsystem of an e-shop product line is shown. Thereby an

extended notation compared to FODA is used [2].

The order system consists of an optional feature

payment denoted by the circle above the feature element.

The feature graph defines different types of payment

methods among which the product developer can chose

one or more. Within this or-choice – see section 7.2 – the

feature other payment method is a placeholder for further

payment methods which can be defined product specific.

On the right hand of the feature graph a feature order
confirmation, which denotes the kind of order

confirmation for the seller, is described, where the

product developer must decide, which one of the

alternatives offered he chooses, see also section 7.2.

Amongst the three offered alternatives the feature fax
needs to be redefined in a derived application, see section

7.1.

The two remaining optional features are the possibility

to distinguish a delivery address from a billing address

and to make use of a gift service. Thereby the gift service
depends on the feature delivery address because one

rarely wants to send one’s gift together with an invoice.

This is shown by the use of a requires relationship

between this two features.

In the feature graph shown every variability is

numbered, whereby the numbering scheme should be read

from top to bottom. For example the variability of type

definition at the feature other payment method has number

1.1b.1 because it is under the or-choice number 1.1,

which in turn is under the optional feature payment, which

has number 1.

Figure 5. Feature graph e-shop

Order

Payment

InvoiceCredit Card

Other Payment Method C.O.D.

E-Mail

Order Confirmation

Fax

Merchandise Information System

Delivery addressGift service

Ref

Def

1.1

1.1b.1

a

b c

d

2 3

4

a

b

c

4a.1

1

Feature

Def

Feature

Ref

Feature

Or Alternative

Definit ion RefinementOptional Feature

a
b

c

No No

No No

No

a
b

c

Requires

By using this numbering scheme the product developer

can move along a decision tree build up from this

hierarchical variability numbers. Together with a decision
support for every variability modelled, that way the

product developer can easily resolve the variability

offered by the PLP.

After this description of an feature graph for the order
part of the e-shop the associated PLP architecture will be

presented in part. It is constructed as a three-layer

architecture.

The PLP architecture is made up of a presentation
layer, which visualises the outcomes of the subjacent

business logic layer and serves in addition as the

communication interface from the end user to the e-shop

system, normally by means of a web browser.

The business logic layer contains the functional

components of the e-shop, e.g. order handling or customer

management. In the following this layer will be described

in more detail.

The lower most layer is the database layer, which

provides the business logic layer with the functionality

needed to manage the dates with the help of a database

system.

It should be mentioned that the layers described here

aren’t identical to the PLP architecture layers mentioned

in sections 4 and 5. Here the three layers describe a

logical segmentation of the system to be modelled (a tier-

architecture) whereas in the second case the layers

describe the hierarchy of abstraction of the modelled PLP

architecture.

The variability described in the feature graph in Figure

5 is brought down to the PLP architecture of the e-shop.

Figure 6 presents a part of the business logic layer, which

amongst other things consists of the feature components

order_system, data_access_support,
customer_management, application_control, and
catalog_management.

It is visible that the feature component order_system is

influenced by two types of variability presented in the

feature graph in Figure 5. Furthermore the feature

component catalog_management has a variability

annotated, which was modelled in another here not shown

part of the feature graph.

The feature component data_access_support in the

above figure shall depict a feature component, which has

no direct conjunction with features from the feature graph

but is a feature component needed for technical

realisation. It should be mentioned that it is possible, that

certain variability arises not until architecture level. Thus

it is imaginable, that a feature component can be realised

in many different ways – for example a DBMS can be

realised relational or object oriented.

The two other feature components in Figure 6 will not

deepened and are only shown for reasons of

completeness. In the following the feature component

order_system will be observed in more detail.

Figure 7 shows a detailed view of the feature

component order_system mentioned before. Here the

abstraction level allows using a well-known modelling

language – here the UML – in order to describe the

specific characteristics of this feature component. As can

be seen in Figure 7 the different types of variability

modelled in conjunction with the features payment and

order confirmation in the feature graph of Figure 5 can be

regained in the feature component order_system.
The optional feature payment is mapped to the now

optional class PaymentMethod depicted by the circle with

annotation Opt and number 1. Similar the alternative

number 4 and the or-choice number 1.1 are represented in

this feature component. Three additional classes are

shown, which describe an order based on a (virtual)

shopping cart. These two classes come from another

feature not modelled in the feature graph shown in Figure

5.

business_logic_layer

order_system

application_control

catalog_management

data_access_support

customer_management

presentation_layer

database_layer

Def

Ref

1.1b.1

4a.1 Ref

6.2

Figure 6. Business logic layer

It should be pointed out that the types of variability

shown in the feature graph not only have impact on the

business logic layer and therefore the feature component

order system but also on the other layers presentation
layer and database layer and their corresponding feature

components. For example the or-choice number 1.1

between the different types of payment methods must also

be modelled (and implemented) at the presentation layer,
so that e.g. the end user can choose his preferred payment

method. As can be seen in this example, the mapping of

features from the feature graph doesn’t need to match

one-to-one with the feature components modelled at the

architecture level, as already mentioned in section 6.

The next step is to bring the modelled variability down

to the source code. This can be achieved by annotating the

source code with appropriate tags to depict the different

types of variability. Because this actual is work in

progress it will not deepened here.

9. Related work

As stated in section 2 most of the existing approaches

concerning SPLs are focusing on the requirements

engineering. Nevertheless some approaches exist which

try to concentrate more on the downstream phases of the

development process like the design, whereby some of

them had certain influence on the approach presented in

this article. As also stated by Muthig et.al. in [8] existing

approaches often seem to be more pragmatic solutions

resulting from practical modelling experiences in a

particular domain or environment whose results are not

universally transferable.

In [6] Flege describes an approach for using the UML

[3] for system family architecture description. Thereby he

focuses solely on construction-time variability, because

only this type of variability results in different products

and is therefore essential for developing SPLs. Presence

of variability at later stages like e.g. at binding or runtime

doesn’t require special attention in the context of SPLs

because they only affect one single product, see also [8]

and [9].

The drawback of Flege’s approach is the lack of

elements in the UML for explicit modelling of

architectural variability. Flege uses UML’s stereotypes to

depict variable architectural elements. Thereby he only

models optional elements by neglecting e.g. alternatives

among modelling elements. In Flege’s approach

alternatives should be modelled at the level of the

decision model. At the design level this leads to optional

elements (the single alternatives) which are no more

distinguishable from other, real optional elements.

Therefore the approach presented in this article explicitly

Figure 7. Order system

order_system

OrderConfirmation

FaxOrderConfirmation EMailOrderConfirmation

MISOrderConfirmation

PaymentMethod

CreditCard TBD CashOnDelivery Invoice

Order ShoppingCart Item
0..*

Opt

1

Alt

4

Ref

4a.1

Def

1.1b.1

Or

a

b

c a b c d

<<uses>>

catalog_management

1.1

distinguishes the different types of variability presented in

section 7 at the design level to allow traceability from the

requirements down to the design and the source code.

Furthermore Flege focuses exclusively on variability

with a complete set of specified variants by discarding

variability of type incomplete specification that might be

used by product developers in an unanticipated way. As

per Flege the reason for this is that unspecified variability

has no impact during the instantiation of a reference

architecture. In the approach presented in this paper

variability of type incomplete specification is explicitly

included. At first different specifications of elements

among products of a SPL – resulting in incomplete

specification in the PLP architecture – are a

distinguishable characteristic of these products and

therefore represent one type of variability within a SPL.

Furthermore only by explicitly modelling variability of

type incomplete specification – including the

corresponding decision support – one can help the product

developers to use the offered variability only the way

intended by the PLP developers.

In [7] Batory et.al. refer to the need for higher-level

modelling elements when modelling SPL architectures.

Therefore they use features at the design level instead of

e.g. modules. These features are then step-wise refined

during the design resulting in a more and more precise

architecture description. In their approach Batory et.al.

concentrate more on the transition from the design to the

implementation by introducing templates for JAVA. The

feature components presented in section 6 also try to offer

higher-level architecture modelling elements but are –

contrary to Batory et. al. – clearly differentiated from the

features of FODA [2] used during the requirements

analysis.

10. Conclusion and future work

In this paper requirements for a concept to model SPL

architectures were presented. Furthermore a SPL

architecture modelling process was described which

incorporates the concept of the model driven architecture
into SPL architecture modelling. Besides a metamodel for

SPL architecture modelling elements was shown, which –

together with the described SPL architecture modelling

process - fulfils the requirements deployed in the first

part.

A first practical application in the context of a case-

study from which parts were shown in the example

illustrated in section 8 has shown the load capacity of the

presented concepts for a medium sized application.

Within this case-study a domain for e-shops was analysed

and based on a requirements model including a feature

graph for this domain a PLP architecture using the

modelling elements offered by the presented metamodel

was developed.

For the time being two products were derived from this

PLP to show the load capacity of the given concept.

Thereby it turned out that – although the concept was

useful – a meaningful and broader application can only be

achieved if the concepts are supported by tools. Otherwise

the PLP and product developers can hardly manage the

given complexity.

This leads to another aspect, which requires more work

to be done: The transitions from requirements engineering

to architecture design and from architecture design to the

level of implementation must be supported in a concept

for modelling SPL architectures. Otherwise the lack of

systematics makes the stability and durability of a SPL

solely depending on the intelligence and creativity of the

developers involved.

11. References

[1] Donohoe P. (editor), Software Product Lines:
Experience and Research Directions, Kluwer

International Series, 2000.

[2] Kang, et. al., Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report SEI-CMU,

Pittsburgh, 2000.

[3] OMG, Unified Modeling Language Specification,
Version. 1.4, Technical Report, OMG, 2001.

[4] Soley R., OMG, Model Driven Architecture, White

Paper, OMG, 2000.

[5] AOSD Steering Committee, Aspect-Oriented Software
Development, http://aosd.net

[6] Flege O., System Family Architecture Description
Using the UML, IESE-Report No. 092.00/E, 2000

[7] Batory, Johnson, MacDonald, and von Heeder,

Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study, ACM

Transactions on Software Engineering and Methodology

(TOSEM), Vol. 11, Nr. 2, pp. 191-214, 2002

[8] Muthig and Atkinson, Model-Driven Product Line
Architectures, SPLC 2002, LNCS 2379, pp. 110-129,

2002

[9] Thiel S. and Hein A., Systematic Integration of
Variability into Product Line Architecture Design, SPLC

2002, LNCS 2379, pp. 130-153, 2002

[10] van Zyl, Product Line Architecture and the
Separation of Concerns, SPLC 2002, LNCS 2379, pp. 90-

109, 2002

Modeling Evolution and Variability of Software Product Lines
Using Interface Suites∗

S.A. Roubtsov E.E. Roubtsova

VTT Electronics, Kaitovayla 1, P.O.Box 1100, Eindhoven University of Technology, Den Dolech 2,
FIN-90571 Oulu, Finland, P.O.Box 513, 5600 MB The Netherlands,

ext-Serguei.Roubtsov@vtt.fi E.Roubtsova@tue.nl

Abstract

Evolution of a software product line means extending the
product line by new products. A new product keeps rele-
vant features of old products and introduces new features
defined by domain requirements. In this paper, we propose
an interface-role UML based approach to construct soft-
ware product line variations. A product line and its vari-
ations are specified in a UML design profile, which has
a process semantics and a defined inheritance relation on
specifications. Using the definition of inheritance we con-
struct a product line model, specify new product variations
and check that the new variants do not affect behaviour of
the old products.

1. Introduction

The concept of a Software Product Line (SPL) is one

of the complex concepts of software reuse that covers busi-

ness, organization, process and technology [1]. A software

product line is a set of products sharing a common archi-

tecture and a set of reusable components. Software product

lines employ a top-down approach to software system de-

velopment restricting a set of products in the SPL and iden-

tifying common and different requirements to all products.

Requirements are usually collected by different diagrams of

the UML (Unified Modeling Language [2, 3, 4]) and by a

feature graphs [5, 6, 7, 8]. These groups of requirements

define an SPL model in form of UML diagrams, a shared

SPL architecture and an implementation of reusable com-

ponents. Finally, actual products are derived from this com-

mon basis [6].

However, domain requirements tend to change and the
model of a concrete SPL can not be static, developed in ad-
vance.Adding new classes and behavioural diagrams to an

SPL model can destroy the behaviour of the old products.

∗The work of S.A. Roubtsov is supported by The European Economic

Interest Grouping ERCIM (European Research Consortium for Informatics

and Mathematics). His work is a part of the VTT Electronics Agile project:

http://agile.vtt.fi.

So, we need a methodology that guarantees that modifica-

tions of an SPL do not change the old features. The mod-

eling approaches which support software product lines have

a lack of mechanisms for modeling the SPL behaviour evo-

lution. Moreover, the relations between behavioural speci-

fications are not defined in the UML.

In this paper we offer an evolutionary way to construct

an SPL model. We adapt the role approach [9, 10, 11] ex-

tending it by the inheritance relations on behavioural views

and complete specifications.

We use a special kind of the role approach, interface-role

modeling [12, 13, 14]. The interface-modeling approach

introduces an interface suite, which is represented by a finite

set of roles communicating via interfaces provided by these

roles.

First, we consider interface suites as SPL requirements

models. An interface suite is specified in a UML profile

which contains an interface-role diagram and sequence di-

agrams. This form of specification in terms of roles and

interfaces allows us to collect requirements from customers
and represents desired features of products.

Second, roles and interfaces in the interface-role ap-

proach can be seen as abstractions of different compo-
nents[13] as well as the interface suite itself represents a
software component system. So, an SPL model in form of

an interface suite is related to the standard component ar-

chitecture model [15].

Third, the UML profile of the interface-role approach has

a process semantics and the inheritance-specialization rela-

tions defined on specifications. We use the inheritance of
interface suites[14] as an instrument of the evolution of an
SPL model.So, the SPL model represented by an interface

suite is not static. The inheritance mechanism guarantees

that a new product variant inherits some products of SPL

and does not destruct the previous products of the SPL. New

features and behaviour, caused by changing domain require-

ments, are modelled by the inheritance-specialization mech-

anism in such a manner that does not destruct the previous

SPL features and behaviour.

The remainder of the paper is the following. In Section

2 we give an SPL example. In Section 3 we show how to

specify the changes of an SPL in our UML profile using

inheritance-specialization relations. In Section 4, we relate

the definition of interface-suite inheritance with different

ways of SPL evolution. We also demonstrate how to use

our SPL model for constructing an SPL feature graph and a

product component model. Section 5 gives a conclusion.

2. Software product lineGraph Designer

Graph Designer

Prepare Graph Draw Graph

Accept User

Request

Recieve data

from User

a)

Graph Designer

Prepare Graph Draw Graph

Accept User

Request

Receive data

from User

Receive data

from Database

Receive data

b)

Graph Designer

Prepare Graph Draw Graph

Accept user

Request

Receive data

from User

Receive data

from Database

Receive data Draw real-time

Graph

Draw

Snapshot

c)

Figure 1. Feature graphs of SPL Graph Designer

To show variations of an SPL, we use a simple example.

Let us consider software product line SPL Graph Designer.

The first product of this software product line accepts

data series for constructing a graph from a user. The user

chooses the graph properties such as type, title, legend,

colour set and so on. The feature graph [5, 7] of this product

is shown in Figure 1 a. All features of this feature graph are

mandatory.

The second product of SPL Graph Designercan take

data series both from a user and form a database. The fea-

ture graph of SPL Graph Designeris extended by feature

RECEIVE DATA FROM DATABASE (Figure 1 b).

The third product draws real-time graph periodically up-

dating data series from a database. A user starts and stops

the drawing. The feature graph of SPL Graph Designeris
enriched by feature DRAW REAL-TIME GRAPH (Figure 1

c).

We can continue constructing products, however, we

have developed a case sufficient for illustrating our ideas.

3. A UML profile with inheritance relations for
modeling of Software Product Lines

We specify SPL products and complete SPLs as inter-
face suites(IS). An interface suite is a set of roles com-

municating via interfaces [13]. Roles and interfaces are ab-

stractions both from desired product features and from the

implementation. On the one hand, roles and interfaces al-

low representing features of a product. For example, fea-

ture ”role Graph Maker receivesdata from role User” has

verb receivesthat represents an interface provided by role

Userand required by role Graph Maker(Figure 2). On the

other hand, roles and interfaces can be mapped on the im-

plementation components: several roles with interfaces can

be implemented as one component or one role with provided

interfaces can be implemented by several components.

3.1. A UML profile with process semantics

We use a UML profile which consists of an interface-role

diagram and a set of sequence diagrams [14]. To present

the product variability in this profile we use the inheritance

relations. We have defined those relations both on interface-

role diagrams and on sequence diagrams [14].

3.1.1. Interface-role diagram. An interface-role diagram

is a UML class diagram where roles are represented by

classes with stereotype ≪Role≫. Interfaces of those dia-

grams specify sets of operations, provided by roles.

An interface-role diagram (Figure 2) is a graph

IR = (R, I, PI, RI,RR)

with two kinds of nodes and three kinds of relations:

• R is a finite set of roles . Each role r ∈ R depicted by a

box has a set of players PLr (instances of roles). If the

number of players |Plr| is more than one, the number

is drawn near the role.

• I is a finite set of interfaces depicted by circles. Each

interface i ∈ I has a set of results Resi of the interface.

Results are shown as sets of values near the interface.

• PI = {(r, i)| r ∈ R, i ∈ I} defines interfaces pro-

vided by roles. Each role provides a finite set of in-

terfaces, |PI ∩ R × I ′| ≥ 0, I ′ ⊆ I. The relation is

depicted by a solid line between a role and an inter-

face.

• RI = {(r′, (r, i))| r′, r ∈ R, i ∈ I, (r, i) ∈ PI}
defines interfaces required by roles. Each role requires

a finite set of provided interfaces

|RI(r, PI ′)| ≥ 0, P I ′ ⊆ PI. A required interface is

drawn by a dashed arrow connecting a role and a pro-

vided interface. The arrow is directed to the interface.

• RR = {(r, r′)| r, r′ ∈ R} is the relation of inheritance

on the set of roles. The relation is shown by a solid line

with the triangle end r′ −⊲r directed from role-child

r′ to role-parent r (Figure 3).

3.1.2. A sequence diagram.A sequence diagram is a tuple

s = (R × PL, Ts, As), where

• R × PL is a set of players of roles. A player of a role

is represented by a box with a line drawn down from

the box (Figure 2) [2];

• Ts = {(v, w, l) | v, w ∈ R× Pl, l ∈ L = I ×Res} is

a labelled relation.

Notice, that correct set

Ts ⊆ R × Pl × R × Pl × I × Res = RI

corresponds to the set of required interfaces from the

interface-role diagram. The relation Ts is represented

by a labelled arrow between lines drawn down from

boxes v and w (Figure 2,3).

• As = {(r, n : (v, w, l))

| (v, w, l) ∈ Ts, n = 1, 2, ..., N, r = {ω, si, fi}}

is a function which gives natural numbers to required

interfaces at a sequence diagram. As specifies the set

of actions at the sequence diagram. A natural number

at the arrow allows to distinguish several occurrences

of an action a = (v, w, l) (1 : a), (2 : a) etc.

Repetition symbol r is used to indicate the begin r =
sti and the end r = fi of a repeated subsequence i. In

principal, the sequence can have several repeated sub-

sequences i = 1..m, however, it is a very rare situation

in the practice of specification. By convention, we omit

the empty value r = ω for all labelled arrows that do

not start or end any repeated subsequence.

3.1.3. Process semantics for the UML profile.The set

of diagrams in our UML profile has a process semantics of

type

P = (p,A, T, p∗, pF) [16] :

• p is the initial state of the process. In this paper, the

states are abstract. States are named by letters with

numbers: p, p1, p2, ..., p
F .

• A is a finite set of actions.

• T is a set of transitions. A transition t ∈ T defines a

pair of states (p′, p′′), such that p′′ is reachable from

p′ as a result of the action a, denoted p′
a

=⇒ p′′. If

we define an abstract set of all possible states P , then

T ⊆ P × A × P.

• p∗ is the finite set of states reachable from the initial

state p, p∗ ⊆ P . The reachability relation on the set

of states
∗

=⇒⊆ P ×P is the smallest relation reflexive

and transitive for any p, p′, p′′ ∈ P , a ∈ A, p
∗

=⇒

p, (p
∗

=⇒ p′ ∧ p′
a

=⇒ p′′) → p
∗

=⇒ p′′.

• pF is the final state of a process, pF ∈ p∗. If p′′ 6=
pF then exists a nonempty subset of states p′′∗ ⊆ P
reachable from p′′.

Set of actions A is specified by the set RI of required in-

terfaces at the interface-role diagram. An action a = r1.r2.i

is specified by interface-role diagram

IR = (R, I, PI,RI, RR),

if i ∈ I, r1, r2 ∈ R, (r2, i) ∈ PI and (r1, (r2, i)) ∈ RI.

If we take into account that the use of each interface can

return different results res from the set Res and that a role

has a finite set of instances named players Pl, pl ∈ Pl,

then the set of possible actions is defined completely.

Set of actions A of the process is exactly defined by the

set As of actions at the sequence diagrams. The construc-

tion of the process from the diagrams of the profile has been

shown in [14]. In this paper, we assume that for each UML

specification in our profile we have the corresponding pro-

cess.

3.2. Inheritance Relation in the UML profile

Inheritance relation defined on the set of UML specifica-

tions is a key element for modeling Software Product Lines.

Specifications in our UML profile are behaviour oriented.

The inheritance of behavioral diagrams is not defined in the

UML, therefore we use our own definitions of inheritance

both on the interface-role diagram and the sequence dia-

gram levels.

3.2.1. Inheritance at the interface-role diagram level.To

define inheritance between interface-role diagrams, we use

inheritance on roles, which is defined in the UML and rep-

resented by arrow with the triangle end. If role r1 inherits

role r2, then we note this as follows r1 −⊲r2.

Let interface-role diagrams be given:

IRp1
, ..., IRpn

and IRq

IRpi
= (Rpi

, Ipi
, P Ipi

, RIpi
, RRpi

),

i = 1...n, IRq = (Rq, Iq, P Iq, RIq, RRq).

Interface-role diagram IRq inherits interface-role diagrams

IRpi
, if and only if there is an interface-role diagram

IRnew = (Rnew, Inew, P Inew, RInew, RRnew), (Figure. 3)

such that

1. Roles. Rq = Rp1
∪ ... ∪ Rpn

∪ Rnew,

Rp1
, ..., Rpn

, Rnew are disjoint ,

2. Interfaces. Iq = Ip1
∪ ... ∪ Ipn

∪ Inew,

Ip1
, ..., Ipn

, Inew are disjoint,

3. Inheritance relation on roles.

RRq = RRp1
∪ ... ∪RRpn

∪RRnew ∪RRd1
∪ ... ∪RRdn

,

where ∀i = 1..n :

RRdi
= {(rpi

, rnew)| rpi
∈ Rpi

, rnew ∈ Rnew, &

rnew −⊲rpi
}, RRdi

6= ∅.

So, the relationRRdi
defines subset of roles

Rdi
⊆ Rnew, which have parents in setRpi

. For ex-

ample, role New Graph Designer(Figure 3) has three

parent roles. However, there is a new role Graph Data
Sourcewhich has no parents.

4. Provided interfaces.

PIq = PIp1
∪ ...∪PIpn

∪PInew ∪ PId1
∪...∪PIdn

,

P Idi
= {(rdi

, i) | rdi
∈ Rdi

, i ∈ Ipi
,

∃r ∈ Rpi
, such that rdi

−⊲r, and (r, i) ∈ PIp1
) }.

Provided interfaces from roles-parents are duplicated
in roles-inheritors.For example, role New Graph De-
signer (Figure 3) provides the same interfaces as its

parents: IDraw, IGetGraph, IDataSeries .

5. Required interfaces.

RIq = RIp1
∪ ...∪RIpn

∪RInew ∪RId1
∪ ...∪RIdn

,

RIp = RIp1
∪ ... ∪ RIpn

;

RId = RId1
∪ ... ∪ RIdn

,

RIdi
= {(xdi

, (rdi
, i)) | rdi

, xdi
∈ Rdi

, i ∈ Ipi
,

∃r, x ∈ Rpi
, such that rdi

−⊲r, xdi
−⊲x

and (r, i) ∈ PIpi
and (x, (r, i)) ∈ RIpi

}.

A required interfacei is inherited by rolexd from role
x if there is a new rolerd, which inherits role-provider
r of this interface.For example, role New Graph De-
signer requires interface IDraw because this role in-

herits both the parent-provider GraphDrawerand the

parent-requirer Graph Designer.

The main feature of our definition is that the roles of the

interface-role diagram IRq cannot require interfaces of par-

ent roles from the interface-role diagrams IRpi
and roles

from IRpi
cannot require interfaces of roles from IRq . To

be used the parent interfaces should be duplicated in roles-

inheritors.

The set of required interfaces RIq specifies the set of

possible actions in the product behavior. An interface-role

diagram defines n duplicating functions RIpi
−→ RIdi

,

i = 1..n, one duplicating function for a parent. We

use those functions to derive parent processes from pro-

cesses [14] of new specified products and check inheritance

on the sequence diagram level.

3.2.2. Inheritance at the sequence diagram level.Inheri-

tance at the sequence diagram level is defined as inheritance

of processes constructed from the set of UML sequence dia-

grams. Process q constructed from an inheritor specification

inherits process pi built from the parent specification if and

only if process pi is derived from the process q in the pro-

cess algebra PAq . In work [14] we have shown that the ac-

tions of process algebra PAq are defined from the interface-

role diagram of the inheritor. We also have investigated the

process derivation in detail. In this paper, we assume that

each new product variant, which is specified in an SPL, in-

herits processes of its parent products. This inheritance is

checked as inheritance of processes constructed from UML

specifications of products.

3.3. Example of a product line specification in
the UML profile with inheritance rela-
tions

First product of SPL Graph Designer. The interface-

role diagram of the first product is presented in Figure 2.

Role Graph Makerprovides interface IGetGraph, which is

required by role User. (We have called this role ’User’ to

avoid a mix up of notions. More likely it is a graphic user

interface). These two roles and the interface specify feature

ACCEPT USER REQUEST from the feature graph (Figure

1). In the same way we may say that roles Userand Graph
Makerpresent feature RECEIVE DATA FROM USER via in-

terface IDataSeries. At last, feature DRAW GRAPH is real-

ized by the pair of roles Graph Makerand Graph Drawer
interacting via interface IDraw.

User
<<Rol e>> IDataSeries:

stru cture Graph Maker
<<Rol e>>

IGetGraph
{true, false}

Graph Drawer
<<Role>>

IDraw: structure

Interface-role diagram

user : User graphmaker : Graph
Maker

graphdrawer :
Graph Drawer

IGetGraph

IDataSeries

IDataSeries:structure

IDraw

IDraw:structure

IGetGraph:true

user : User graphdesigner :
Graph Maker

IGetGraph

IDataSeries

IDataSeries:structure

IGetGraph:false

1:

2:

3:

4:

5:

6:

1:

2:

3:

4:

Sequence diagrams

Figure 2. Interface suite for the first product of SPL
Graph Designer

The behavioural pattern of Graph Designeris presented

by the set of sequence diagrams (Figure 2). To simplify the

picture we assume that each role has only one player, so, it

is possible to talk about an interaction between roles.

The behaviour patten for the first product of SPL Graph
Designeris the following: role Userasks role Graph Maker
via interface IGetGraph to draw a graph of a predefined

type; role Graph Makerdemands data series from role User
via interface IDataSeries; User sends data series to Graph
Maker by means of action IDataSeries:structure. Next

steps correspond to the pair of actions, which Graph Maker
and Graph Drawerperform before the visualization of the

graph. Graph Makercommands Graph Drawerto draw the

graph using interface IDraw. Graph Drawerprepares struc-

tures to be drawn and returns them as a result via the same

interface. The last action is a response IGetGraph:truefrom

Graph Makerto User on the user’s request from the first

step. This successful visualization of a graph is presented

by the first sequence diagram (Figure 2). The second se-

quence diagram in Figure 2 corresponds to the case, when

the user’s data are not complete or correct to be drawn. In

this case, Graph Maker returns result IGetGraph:falseto

User.

Second product of theSPL Graph Designer. Graph De-
signer which receives data from a databaseis developed

using inheritance at the interface-role diagram and the se-

quence diagram levels (Figure 3). At the interface-role di-

agram we can see that IS Graph2inherits IS Graph1. Role

New Graph Designerinherits all three roles of the parent

first product. So, according to the definition of inheritance,

it also inherits all parent interfaces. To extend parent func-

tionality we have added role Graph Database, which sup-

plies data series to role New Graph Designervia new inter-

face IDatabase Series.

User
(from Graph1)

<<Role>>
IData Series:

structure
(from Graph1)

Graph Maker
(from Graph1)

<<Role>>

IGet Graph
{true, false}

(from Graph1)

Graph Drawer
(from Graph1)

<<Role>>

IDraw: structure

(from Graph1)

Graph Database
<<Role>>

IDatabase Series
{structure, void}

New Graph Designer
<<Role>>

IR of

IS Graph1

IR of IS Graph2

IR new

new graphdesigner : New

Graph Designer

graphdatabase :

Graph Database

IDatabase Series

IGetGraph

IDatabase Series:void

IGetGraph:false

newgraphdesigner : New
Graph Designer

graphdatabase:
Graph Database

IGetGraph

IDatabase Series

IDatabase Series: structure

IDraw; IDraw:structure

IGetGraph: true

1:

2:

3:

4,5:

6:

1:

2:

3:

4:

Figure 3. Interface suite for the second product of
SPL named Graph Designer which receives data from
a database

If a child IS inherits a set of parent roles with the speci-

fied behaviour, this behaviour is inheritedby the child IS

as a subprocess. For example, if role New Graph De-
signer inherits all roles of the first product IS, it inherits

the behaviour pattern of the first product. So, the second

product is able to draw graphs using data received from a
user.Role New Graph Designerinherits provided interfaces

IGetGraphand IDraw and can require these interfaces (Fig-

ure 3) .

The set of sequence diagrams of the second product (Fig-

ure 3) differs from the set of sequence diagrams of the first

one (Figure 2). However, if we construct process p from

the first product and process q from the second one and re-

name actions of p using inheritance of roles, for example,

a = GraphMaker.User.IDataSeries is renamed to

a′
= NewGraphDesigner.GraphDatabase.IDataSeries, then

the renamed process p is derived from q. This indicates that

the behaviour has been inherited.

Third product of the SPL named Real-Time Graph De-
signeris presented by Figure 4. We have created two new

roles Timerand New Real-Time Graph Designer. Role New
Real-Time Graph Designerinherits all roles of the previous

IS. These two new roles realize real-time drawing via five

new interfaces. Role New Real-Time Graph Designeruses

its own interface IGetRTGraphto initialize real-time graph

Graph Database
(from Graph2)

<<Role>>

IDatabase Series
{structure, void}

(from Graph2)

New Graph Designer
(from Graph2)

<<Role>>

User
(from Graph1)

<<Role>> IDataSeries:
structure

(from Graph1)
Graph Maker
(from Graph1)

<<Role>>
IGetGraph

{true, false}
(from Graph1)

Graph Drawer
(from Graph1)

<<Role>>

IDraw: structure

(from Graph1)

New Real-Time Graph Designer
<<Role>>

Timer
<<Role>>ISetTimer: void

IOnTime: void

IStopTimer:
void

IStopRTGraph:
void

IR of IS Graph1

IR of IS Graph2

IR of IS Graph3

IStartRTGraph:
void

realtimedesigner : New Real-Time
Graph Designer

timer : Timer

IGetRTGraph;IGetRTGraph :true

ISetTimer

ISetTimer: void

IOnTime

IOnTime: void

IDatabase Series;
IDatabase Series: structure

IDraw; IDraw: structure

IGetGraph:true

...

realtimedesigner : New
Real-Time Graph Designer

timer : Timer

IStopTimer

IStopTimer:void

IStopRTGraph, IStopRTGraph: void

1,2:

4:

3:

st 5:

6:

IGetGraph7:

8,9:

10,11:

f 12:

1,2:

3:

4:

Figure 4. Interface suite for Real-Time Graph De-
signer

drawing.

First, New Real-Time Graph Designerstarts Timer via

interface ISetTimer(Figure 4). Timer repeatedly generates

calls of interface IOnTime. New Real-Time Graph Designer
performs all inherited actions required to get a snapshot

graph. To stop the drawing of snapshot graphs role New
Real-Time Graph Designercalls interface IStopTimerpro-

vided by role Timer. (For the sake of simplicity assume that

all graph snapshots are successful in this case.)

Using the sequence diagram of the third product we have

constructed the process term z corresponding to the se-

quence and we have proved that process z inherits process

q of the second product.

Specifying a product of a product line in the defined UML
profile we check inheritance of the specified behaviour. Our
definition of inheritance allows to check that features of the
old products are kept in the new products.

An SPL-model. Combining the interface-role diagram

of the third product with the sequence diagrams of all prod-

ucts we construct the model of the complete SPL Graph De-
signer in terms of roles, interfaces and sequence diagram

sets.

4. Interface-role SPL design and variability
modeling

In the previous section we have shown how to specify a

software product line by an interface suite (IS) in the UML

profile. This approach allows us to derive new product vari-

ants, i.e. it supports the SPL variability modeling.

The definitions of IS inheritance at the interface-role

diagram level (section 3.2.1) and at the sequence diagram

level (section 3.2.2) show the ways to derive a new product

variant from the old SPL products.

• We can completely inherit the behavioural pattern of
an old product.A new product inherits full function-

ality of the previous one by means of inheritance of all

roles of the old product interface suite. A new product

can extendthe functionality adding new roles interact-

ing via new interfaces. The process of the old product

is derived from the process of the new product. We

have used this mechanism to construct the second and

the third variants of SPL Graph Designer(Figure 3, 4).

• We can partially inherit the behavioural pattern of an
old product .There are several ways of correct partial

inheritance.

1. We inherit all roles and interfaces of the old prod-
uct, but we use only a subset of sequence dia-
grams of the old product.

2. We inherit all roles of the old product, but we do
not use all the interfaces provided by those roles.

For example, we want to realize product Data
Registerof the SPL Graph Designer. Data Regis-
ter can not receive data series from a user, it takes

data series only from a database. In such a case,

New Real-Time Graph Designerinherits through

its parent New Graph Designerfrom role User
only its facility to require interface IGetGraph.
Interface IDataSeriesis not inherited (Figure 5).

3. We inherit only a subset of roles of an old prod-

uct. If, for example, we have constructed product

Embedded Data Registeras an embedded soft-

ware in a hardware product for automatic control

of a parameter, then we do not inherit role User.
New role Bip should be designed, which starts

graph drawings and, maybe, produces a ’bip’-

signal when the graph moves out of the given

boundaries.

• We can completely and partially inherit behavioural
patterns of several old products from one SPL and sev-
eral products from different SPLs. In such a case, some

roles of a new IS inherit roles from one old product,

some roles - from another, some roles - from both prod-

ucts. Our Embedded Data Register, for example, def-

initely needs a piece of software to provide a database

with real-time data from a sensor. This software piece

belongs to another SPL. Multiple inheritance of inter-

face suites allows to combine different software prod-

uct lines to a new software product line.

Graph Database
(from Graph2)

<<Role>>

IDatabase Series
{structure, void}

(from Graph2)

New Graph Designer
(from Graph2)

<<Role>>

User
(from Graph1)

<<Role>>
Graph Maker
(from Graph1)

<<Role>>

IGetGraph
{true, false}

(from Graph1)

Graph Drawer
(from Graph1)

<<Role>>

IDraw: structure

(from Graph1)

New Real-Time Graph Designer
<<Role>>

Timer
<<Role>>

ISetTimer: void

IOnTime: void

IStopTimer:
void

IStopRTGraph:
void

IStartRTGraph:

Figure 5. Interface-role diagram for variant Data
Register

Using our approach, it is possible to collect useful func-

tionality specified during the SPL evolution in the form of

a single interface suite. Let us name it SPL interface suite,
SPL-IS for short. Thus, for each software product line we

have

• one SPL-IS;

• a variant-IS collectionwhich contains all implemented

variant-ISs. The variants of a variant-IS collectioncan

be used in the SPL-IS design and in the implementa-

tion of reusable components.

4.1. Interface suites and feature graphs

An SPL-ISrepresents features of an SPL. So, the feature

graph presented in Figure 1 can be set out in detail in Fig-

ure 6.

• If a feature specified as an interface suite is inherited

by all variant-ISsof an SPL, then the feature is manda-
tory. Mandatory features are drawn by boxes.

• If there are implemented variant-ISswhich do not in-

herit a feature, then the feature is optional. Optional

features are drawn by boxes with little white circles.

For example, RECEIVE DATA FROM DATABASE is an

optional feature.

• A depend relation on features is drawn by a dashed

line with an arrow. An example of dependency be-

tween features is shown in Figure 4. We can see that

role New Real-Time Graph Designerinherits not only

role New Graph Designer, but also role Graph Data
Source. So, feature DRAW REAL-TIME GRAPH de-

pends on feature RECEIVE DATA FROM DATABASE. In

all variants, where we need to draw real-time graphs,

both features have to be presented. This constraint is

directly derived from the SPL-ISmodel - we cannot

obtain any variant with real-time drawing without in-

heritance of role GraphData Source, because its inter-

face IDatabase Seriesacts in the sequence diagrams of

the inheritor (Figure 4).

• An exclude relation on features is drawn by a dot-

ted line with arrows in both directions. To illustrate

a possible exclude relation between features, consider

two features DRAW REAL-TIME GRAPH and RECEIVE

DATA FROM USER. Those features exclude each other.

Receiving data from User is not feasible for real-time

graphs. So, we ought to exclude interface IDataSeries
of role User for all variants of real-time drawing (IS
Graph3in Figure 4).

• An OR-relation on features is depicted by a black ar-

row directed from a set of features to the parent fea-

ture. An OR-specialization of features means, that

there are some products, which have all possible vari-

ant features. We can derive a variant-IS representing

these features. For example, we can construct a variant

which allows drawing shapshots as well as real-time

graphs, or a variant in which data are provided by a

user or may be received from a database. So, both pairs

of features may be declared as OR-specializations of

their variation points.

• An XOR-relation on features is presented by a white

arrow directed from a set of features to the parent fea-

ture. An XOR-specialization means, that two or more

variant features must not exist in one product vari-

ant, i.e. in a single variant-IS. For example, our de-

cision to reduce interface IDataSeriesfor all variants

of real-time drawing converts OR-specialization RE-

CEIVE DATA FROM USER and RECEIVE DATA FROM

DATABASE into XOR-specialization.

Graph Designer

Prepare Graph Draw Graph

Accept User

Request

Receive data

from User

Receive data

from Database

Receive data Draw real-time

Graph

Draw

Snapshot

Figure 6. Feature tree of the product line Graph
Designer

The final feature tree for our example shown in Fig-

ure 6 has four optional features, one dependency be-

tween features, one exclude relation, one variation point

with OR-specialization and one variation point with XOR-

specialization.

4.2. Interface suites and the software develop-
ment process

Let us consider how an SPL interface-role modelcorre-

sponds to the the software product line development pro-

cess.

Figure 7 shows a standard development process of an

SPL [8]. Our approach corresponds to this standard process,

but we turn the process to be top down. This way we empha-

size the significance of the SPL evolution. We have drawn

also a zone in the standard development process where we

use our interface-role models. In Figure 7 we can see places

of IS-model instances (variant-IS, SPL-IS, variant -IS col-
lections) in the development process.

A variant-IS is used as a starting point for detailed de-

sign of a product variant. A software designer is free to

combine several roles in one component and put the same

role in several components. An implementator can use dif-

Application

Requirements

Application

Design

Application

Implementation

Domain

Analysis

Domain

Design

Component

Development

SPL

ArchitectureRequirements Component
Repository

Application Engineering

Domain Engineering

Market,
domain
expertise,
legacy app.

Product
requirements

Product

CORE
ASSETS

IS Model
 Zone

variant-IS
collection

SPL-IS

variant-IS

Figure 7. SPL development model and IS model

GraphData Source
<<Role>>

IDatabase Series
{structure, void}

New Graph
Designer

<<Role>>

User
<<Role>> IDataSeries:

structure Graph Maker
<<Role>>

IGetGraph
{true, false}

Graph Drawer
<<Role>>

IDraw:
structure

(from Graph1)

New Real-Time Graph
Designer

<<Role>>
Timer

<<Role>>ISetTimer: void

IOnTime: void

IStopTimer:
void

IStopRTGraph:
void

IStartRTGraph:
void

©VtChart ActiveX©Delphi GUI Controls

©BDE Access &Controls

‘Glue’ code

©Delphi Timer

Figure 8. Mapping of the Graph Designer IS-SPL on
component architecture

ferent implementation techniques if only they are wrapped

into interface specifications.

The domain engineering process feedback provides us

with variant-IS collectionsthat we use during the domain

analysis phase to catch commonality and variability be-

tween variant-ISsin the form of a SPL-ISmodel. In the

analysis phase some roles and interfaces of new variant-ISs
may be accepted as feasible for the entire SPL and saved in

the SPL-ISmodel being a part of core assets.

The SPL-ISmodel evolves in the domain analysis phase

and is used in the design phase. We suppose the IS mod-

eling to be a bridge between these two phases. We believe

that the robust design can provide such a mapping of an

SPL-ISmodel to an SPL component system that component
boundaries should come across required relations between
roles and interfaces. So, we can avoid ”crosscutting roles”.

The similar situation with crosscutting features is not rare

in feature modeling [7]. Our confidence is based on the fact

that interacting roles are abstractions of software compo-

nents and, therefore, can be mapped directly onto compo-

nent architecture.

To illustrate such a successful mapping of an SPL-ISto

components, we have mapped our ”toy” product line SPL
Graph Designerto components from the repository of Bor-

land Delphi 4 [17].

In Figure 8

• Delphi GUI Controls, Delphi BDE Controls and Ac-
cess, Delphi Timerare Borland Delphi repository

sets of implementation components (BDE - Borland

Database Engine of Imprise Corp.);

• VtChart is a third party ActiveX component of Visual

Components Corp.

Figure 8 shows how boundaries between Delphi compo-

nents come though SPL-ISrequired relations. In coding

phase we needed only some tiny pieces of ”glue” code to

materialize this relations. We used the condition on constant

variability realization technique [18] to implement several

product line members.

5. Conclusions

Software product line engineering is a complex problem

uniting customers and domain analysts, software designers

and programmers.

In this paper, we have defined inheritance of interface-

role models to present evolution and variability of an SPL.

This approach may be useful for all professionals working

on product lines. Customers and domain analysts can spec-

ify requirements in terms of roles and interfaces. Software

designers and programmers can model new products via in-

heritance of the old SPL products. On the basis of an SPL

model, software designers and programmers can plan new

product variants, choose components that should be reused,

realize component relations. Inheritance of interface-role

models guarantees that SPL transformations do not affect

the old SPL products.

References

[1] Bosch, J., Design&Reuse of Software Architectures - Adopt-
ing and Evolving a Product Line Approach, Addison-Wesley,

2000.

[2] OMG, Unified Modeling Language Specifica-
tion v.1.3, ad/99-06-10 http://www.rational.com/
uml/resources/documentation/index.jsp, June 1999.

[3] OMG, Unified Modeling Language Specification v.1.4,

http://www.omg. org/mda/specs.htm, 2001.

[4] Fowler M., K. Scott, UML Distilled. Applying the standard
object Modeling Language, Addison-Wesley, 1997.

[5] M. L. Griss, J. Favaro, M. d’Alessandro, “Integrating feature

modeling with the RSEB,” in Fifth International Confer-
ence on Software Reuse (Cat. No.98TB100203), Los Alami-

tos, CA, USA, 1998, pp. 76–85, IEEE Comput. Soc.

[6] Czarnecki K. and U.W. Eisenecker, Generative Program-
ming. Methods, Tools and Applications, Addison-Wesley,

2000.

[7] J. Bosch, M. Svahnberg and J. van Gurp, “On the notion of

variability in software product lines,” in Software Architec-
ture. Working IEEE/IFIP Conference, 2001, pp. 45–54.

[8] J. MacGregor, “Requirements Engineering in Industrial

Product Lines,” in International Workshop on Requirements
Engineering for Product Lines, REPL’02, Essen, Germany,

2002, pp. 5–11.

[9] D’Souza D.F., A.C.Wills, Objects, Components and Frame-
works with UML. The CATALYSIS Approach, Addison-

Wesley , 1999.

[10] T. Reenskaug, Working with objects, Manning Publications,

1995.

[11] Riehle D., Framework Design: A Role Modeling Approach.
Ph.D. Thesis, No. 13509, Zrich, Switzerland, ETH Zrich,

2000.

[12] H.B.M. Jonkers , “Interface-Centric Architecture Descrip-

tions,” In proceedings of WICSA, The Working IEEE/IFIP
Conference on Software Architecture, pp. 113–124, 2001.

[13] E.E Roubtsova , L.C.M. van Gool, R. Kuiper, H.B.M.

Jonkers, “A Specification Model For Interface Suites,”

UML’01, LNCS 2185, pp. 457–471, 2001.

[14] E.E. Roubtsova, R. Kuiper, “Process semantics for

UML component specifications to assess inheritance,”

Elsevier Journal, Editors Paolo Bottoni, Mark Mi-
nas, Electronic Notes in Theoretical Computer Science,
http://www.elsevier.nl/locate/entcs/volume72.html, vol. 72,

no. 4, 2002.

[15] Szyperski C., Component Software Beyond Object-Oriented
Programming, Addison-Wesley, New-York, 1998.

[16] T. Basten, W.M.P. van der Aalst, “Inheritance of behaviour,”

The Journal of Logic and Algebraic Programming, vol. 46,

pp. 47–145, 2001.

[17] Imprise Corp. Delphi Studio, http://www.borland.com/ del-
phi.

[18] M. Svahnberg, J. van Gurp, J. Bosch, “A Taxonomy of

Variability Realization Techniques,” Technical paper ISSN:
1103-1581, Blekinge Institute of Technology, Sweden, 2002.

Variability management with feature models

Danilo Beuche

University Magdeburg

Universitätsplatz 2

D-39106 Magdeburg

danilo@ivs.cs.uni-magdeburg.de

Holger Papajewski

pure-systems GmbH

Agnetenstr. 14

D-39106 Magdeburg

holger.papajewski@pure-systems.com

Wolfgang Schröder-Preikschat

University Erlangen

Martenstr. 1

D-91058 Erlangen

wolfgang.schroeder-preikschat@informatik.uni-erlangen.de

Abstract

Variability management in software systems requires ad-
equate tool support to cope with the ever increasing com-
plexity of software systems. The paper presents a tool chain
which can be used for variability management within almost
all software development processes. The presented tools use
extended feature models as the main model to describe vari-
ability and commonality, and provide user changeable cus-
tomization of the software artifacts to be managed.

1 Introduction

While the development of single-system software is not

a completely understood process yet, the need to develop

sets of related software systems in parallel already exists

and increases. The growing interest in concepts like soft-

ware product lines and software families by industry and

research groups substantiate this need. The first ideas and

solution proposals of software families go back a long time

in terms of computer science history. Widely known are

the works of Parnas [17], Habermann [10] and Neighbors

[16] from the 70s and early 80s. However, most of the work

was done in the 90s, especially in the second half. Much

of this work was related to organizational aspects, i.e. how

to make developers in an organization efficiently develop

software so that it can be used in several different products

instead of just in a single one. Methods like ODM [19],

FAST [22] or PuLSE mainly focus on this topic. The more

technical aspects of the implementation of such systems are

mostly left open in these approaches. Yet there are several

techniques which cover these aspects. Examples are (static)

meta-programming [6], GenVoca [3] and many others.

Common to all methods is that they use models to rep-

resent the differences and commonalities between the var-

ious resulting products or implementation fragments. The

first model is a result of the domain analysis process and

the latter the result of the domain design and implementa-

tion process. However, in most cases tool support for the

transition from the high-level models of the domain analy-

sis process to the product line implementation is missing.

Some of the methods (e.g. FAST) propose the use of gener-

ators which accept a problem domain specific language as

input and generate the implementations according to the in-

put specification. However, even with generator-generators

like in GenVoca this process is not easy and often too heavy-

weight for many software development projects.

In this paper we present a set of models and related tools

that can be used in conjunction with almost any product

line process that uses feature models1 as representation for

commonalities and variabilities. The goal was to develop

a complete tool supported chain of variability management

techniques which cover all phases from domain analysis to

the deployment of the developed software in applications

(products).

This paper is structured as follows: Section 2 discusses

some problems of variability management and tool support.

Section 3 introduces the basic concept of the approach. A

more detailed explanation of some aspects of this approach

is given in the fourth section. Section 5 demonstrates the

extensibility of the approach using a case study. A brief in-

troduction of CONSUL based tools is presented in the sixth

1Or any model which can be transformed into a feature model

section. Section 7 discusses some related work. The last

section contains some concluding remarks and gives an out-

look on future work.

2 Rationale for an open variability manage-
ment tool chain

The definition of software variability as given in the

workshop’s CfP is:

”Software variability is the ability of a soft-

ware system or artifact to be changed, customized

or configured for use in a particular context.”

This definition is very open and broad. The openness

is a key point. Variability management is a cross-cutting

problem, which affects almost all more complex software

projects to various degrees.

Variability in software systems can be found in the func-

tional and non-functional attributes of the systems. Func-

tional variability means that the system can provide dif-

ferent functionalities in different contexts. E.g. a variable

HTML viewer component supports the configuration of the

sets of HTML dialects it is able to render. Non-functional

variability includes system properties such as memory con-

sumption, execution speed or QoS of system functionalities.

These different aspects of variability can be realized in

many different ways. The following list is an attempt to

categorize where and how variability is expressed:

Programming language level: the variability is expressed

using the programming language which is used to im-

plement the system, for instance Java, C++ or C. This

involves language features like conditional execution,

function parameters and constants. Some of the vari-

ability is resolved at compile time2, the remaining vari-

ability is resolved at runtime.

Meta language level: a meta language is used to describe

variable aspects of the software artifacts. Examples are

aspect oriented languages like AspectJ or AspectC++,

meta programming systems like COMPOST [1], or

BETA [15]. Even the C/C++ preprocessor language

is an albeit simple example but nevertheless probably

most widely known meta language for variability rep-

resentation. The binding time of variability depends

on the language concepts. In most cases the actual re-

sult of the binding is expressed in a basic (non-meta)

programming language, which is then compiled or ex-

ecuted.

2If the compiler is able to optimize the resulting code based on partial

evaluation, i.e. replacement of constant expressions with theirs results etc.

Transformation process level: almost every software is

transformed from higher level language(s) into an exe-

cuting system through several steps of transformations.

For instance a C program is compiled by a compiler

into an intermediate representation (.o files) which in

turn is linked against a set of libraries by the linker,

and is finally loaded into the memory of a particular

computer system by the operating system’s program

loader. Most of the involved transformation tools can

be parameterized so that the resulting system changes.

I.e. the compiler has several levels of optimization,

which may influences the memory footprint and/or ex-

ecution speed of the compiled system. The transforma-

tion process is usually controlled by a tool like make

[20] or ant [2] that interprets a transformation process

description.

In most software systems, several levels of variability ex-

pressions are used together or independently. The small ex-

ample shown in Figure 1 demonstrates such a mix of levels.

It shows a small C source file and a makefile which is used

to produce two different executables from the same source

code. The point of variability is the second argument of

the printf function. The preprocessor macro defines this

value if the value of HW_TEXTis not already set by other

means. The makefile includes two different transformation

rules for the same source, the second uses a compile option

to set the value of HW_TEXT.

#include <stdio.h>

#ifndef HW_TEXT
#define HW_TEXT "Hello, world!"
#endif

int main(int argc, char* argv[])
{

printf("%s\n",HW_TEXT);
}

all: hw_en hw_de
hw_en: hw.c

$(CC) -o $@ $<
hw_de: hw.c

$(CC) -o $@ \
"-DHW_TEXT=\"Hallo, Welt!\"" $<

Figure 1. A very simple example of variability
management with C and make

In most cases, such a mixing of levels is needed to ac-

complish the goals of the software development in terms

of efficiency, organization, reuse etc. However, tool sup-

port for controlling these highly complex mixes is very lim-

ited. Especially an automated coupling of high level models

of variability and commonalities (VC) with the “low-level”

implementations of the variability is rarely to be found.

Several important issues have to be considered when de-

veloping a tool chain to support the complete process of

variability management:

� Easy, yet universal model(s) for expressing variability

and commonalities should be supported.

� Variability at all levels must be manageable.

� Introduction of new variability expression techniques

should be possible and easy.

The CONSUL (CONfiguration SUpport Library) tool

chain presented in the next section tries to meet all these

requirements.

3 CONSUL overview

The CONSUL tool chain has been designed for devel-

opment and deployment of software program families. The

core of CONSUL are the different models which are used to

represent the problem domain of the family, the solution do-

main(s) and finally to specify the requirements for a specific

representative (member) of the family.

The central role is played by feature modelswhich are

used to represent the problem domain in terms of common-

alities and variabilities. CONSUL uses an enhanced version

of feature models compared to the original feature models

as proposed in the FODA method [12]. A detailed descrip-

tion of those enhancements is given in Section 3.1.

The solution domain(s) (i.e. the implementations) are

described using the CONSUL Component Family Model
(CCFM). It allows to describe the mapping of user require-

ments onto variable component implementations, i.e. the

customization of a set of components for a particular con-

text. As the name suggests, this model has been newly de-

veloped for CONSUL. The CCFM is presented in detail in

Section 3.2.

The feature setsare used at deployment time and de-

scribe a particular context in terms of features and associ-

ated feature values.

Figure 2 illustrates the basic process of customization

with CONSUL. Most steps can be performed automatically

once the various models have been created. The developers

of variable components have to provide the feature mod-

els, the component family models, and the implementations

itself. A user3 provides the required features, the tools ana-

lyze the various models and generate the customized com-

ponent(s).

3Here a user can be either human or also a tool which is able to derive

the set of required features automatically from some input

Binary Components

Component Part Selection

Component Part Set

Component Restructuring

Compilation

Component Selection

Feature Set

Feature Selection

User Input

Component Set

− Constraints

− Build Instructions

− Aspect Code

− C++ Classes

Compontent Parts

− Feature Graph

− Constraints

FeatureModel

− Constraints

− Component to Parts Map

− Feature to Component Map

Final Component Source

Component Family Model

Figure 2. Overview of CONSUL process

The key difference between CONSUL and other simi-

lar approaches is, that CONSUL models in most cases only

describe what has to be done, but not how it should be

done. CONSUL provides only basic mechanisms which

can be extend according to the needs of the CONSUL user.

This flexibility is achieved by combining two powerful lan-

guages inside CONSUL and allowing the user to extend this

system.

The first language is Prolog, a widely known language

for logic programming. Prolog is used for constraint check-

ing, i.e. for expressing relations between different features.

The same logic engine is used for component selection and

customization.

The second language is a XML-based language called

XMLTrans which allows to describe the way customization

(transformation) actions are to be executed. The most sim-

ple transformation is the verbatim inclusion of a file into the

final customized source set. Even for this simple transfor-

mation different solutions are possible. On systems where

file system links are possible, the inclusion action can be de-

scribed differently in a different way than on systems with-

out such file system capabilities. XMLTrans allows the tool

users to describe similar and more complex transformations

in a special XML language. Due to its modular structure, it

can be extended with user supplied transformation modules.

This can be used to provide seamless access to special gen-

erators or other tools seamlessly from within the tool chain.

3.1 CONSUL feature models

Feature modeling is a relatively simple approach for

modeling the capabilities of a software system introduced

by Kang et al. [12]. A feature model represents the com-

monalities and variabilities of the domain. A feature in

FODA4 is defined as an end-user visible characteristic of
a system.

CONSUL uses feature models because on one hand they

are easy to understand, but on the other hand are able to ex-

press relatively complex relations in a very compact man-

ner. To enable modeling of more complex scenarios, CON-

SUL uses a slightly enhanced version of feature models

compared to the original concept. The enhanced versions

allows to attach typed values to features to represent non-

boolean feature informations and additional relation rules

called restrictions.

Features are organized in form of feature models. A fea-

ture model of a domain consists of the following items:

Feature description: each feature description in turn con-

sists of a feature definition and a rationale.

The definition explains which characteristic of the do-

main is described by the feature, so that an end-user

is able to understand what this feature is about. This

definition may be given as informal text only or in a

defined structure with predefined fields and values for

some information like the binding of the feature, i.e.

the time a feature is introduced in the system (configu-

ration time, compile time, etc.).

The rationale gives an explanation when to choose a

feature, or when not to choose it.

Feature value: each feature can have an attached

type/value pair. This allows to describe non-boolean

features more easily.5

Feature relations: the feature relations define valid selec-

tions of features in a domain. The main representation

of these relations is the feature diagram. Such a dia-

gram is a directed acyclic graph where the nodes are

features and the connections between features indicate

whether they are optional, alternative or mandatory.

Table 1 gives an explanation of these terms and shows

its representation in feature diagrams.6 Additional re-

lations can be attached to a feature. CONSUL provides

a flexible mechanism called restrictionsto enable the

description of arbitrary feature relations.

4Feature-oriented Domain Analysis
5Typed features with values are not part of the original feature model

proposal. However, this extension is required to describe many domains

and has been proven to be very useful.
6The graphical notation differs from the original FODA style to allow

easier drawing/generation of feature diagrams.

Feature Type Graphical Rep-
resentation

mandatory
Mandatory feature B has to be in-

cluded if its parent feature A is se-

lected

A

B

optional
Optional feature B may be included

if its parent feature A is selected.

A

B

alternative
Alternative features are organized

in alternative groups. Exactly one

feature of such the group B,C,D has

to be selected if the group’s parent

feature A is selected.

A

B C D

or
Or features are organized in or
groups. At least one feature of such

the group B,C,D has to be selected

if the group’s parent feature A is se-

lected.

A

B C D

Table 1. Explanation of feature diagram ele-
ments

From the characteristics of the problem, a domain ana-

lyst derives the features relevant for the problem domain.

For example for a domain which requires a variable

realization of cosine calculation functions for embedded

real-time applications, the model could contain a feature

that allows to specify the precision required for the re-

sults (Precision)7, a feature that represents whether dis-

crete angle values are used (ValueDistribution), a

feature to express that fixed calculation time is required

(FixedTime) and so on. The complete feature model is

shown in Figure 3. A more detailed discussion of this ex-

ample can be found in [5].

The feature model of a problem domain (in our case the

cosine world) can be used by an application engineer, and

she or he should be able to select the feature the application

requires and if necessary to specify feature values.

7The names in parentheses are the feature names used in the resulting

feature model, see figure 3.

Cosine

FixedTime Range Precision ValueDistribution

DiscreteContinuous

Equidistant NonEquidistant

Figure 3. Feature model of cosine domain

3.2 CONSUL component family model

The component family model of CONSUL is not yet an-

other component model in the spirit of CORBA or COM

component models. CONSUL uses a very open definition

of components. A component encapsulates a configurable

set of functionalities. As a consequence, CONSUL cannot

check interfaces of connected components itself, but allows

to introduce user-definable checks appropriate for the in-

tended framework/architecture. Figure 4 illustrates the hi-

erarchical structure of the component based family model

supported by CONSUL.

Family

ComponentComponent Component

PartPart Part PartPartPart

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

S
ou

rc
e

Figure 4. Structure of the CONSUL family
models

This approach is reflected in the CONSUL family de-

scription language (CFDL) which mainly describes the in-

ternal component structure of a family and its configuration

dependencies. The language is complementary to languages

like OMG’s CORBA IDL or Microsoft’s COM IDL which

focus on the external view of a component. The external

interface of a component is merely another (possibly) con-

figurable part of a component for CONSUL.

An small example of the language is given in Figure 5.

It shows a simple component realizing the cosine example

domain with just three different implementation files. De-

pending on the selected features one of the cosine ?.cc
is used to implement the cosine function.

The CONSUL family model represents a family as a set

of related components. The inter-component relation of

these components is not fixed. I.e. both hierarchical com-

ponent structures like the OpenComponent model [8] or

ordinary independent components can be part of a family

model. The CONSUL family description language (CFDL)

is the textual representation of the model.

The following paragraphs briefly introduce the three el-

ements of the CONSUL family model.

Components: a component is a named entity. Each com-

ponent is hierarchically structured in parts which in turn

consist of sources.

Parts: parts are named and typed entities. Each part be-

longs to exactly one component and contains any number of

sources.
A part can be an element of a programming language like

a class or an object, but also any other key element of the in-

ner and external structure of an component, i.e. an interface

description. CONSUL provides a number of predefined

part types, like class , object , flag , classalias or

variable . The introduction of new part types according

to the needs of the tool users is also possible.

Section 4 gives a small demonstration of this. Table 2

gives a short description of the currently available part types

in the current CFDL version.

Sources: a part as a logical element needs some physi-

cal representation(s) which are described by the sources.
A source element is an unnamed but typed entity. The

type is used by the transformation backends to determine

the way to generate the source code for the specified el-

ement. Different predefined types of source elements are

supported, like the file which simply copies a file from

one place into the specified destination of the component’s

source code. Some source elements are more sophisticated,

like classalias or flagfile , and require generation

of new source code by the backends. Table 3 lists the cur-

rently available source element representations.

The actual interpretation of these source elements is

handed over to the CONSUL component generator back-

ends. To enable the introduction of custom source elements

and generator rules, CONSUL allows to plug in different

generators. At the moment, two different generators ex-

ist. One is implemented in Prolog and operates directly on

the Prolog CONSUL knowledge database representation.

The second which uses a modular transformation based ap-

proach.

The advantage of the Prolog based approach is its speed

and the ability to use the power of Prolog everywhere. How-

ever, it requires a decent knowledge of Prolog to change or

add source element generators. The other approach [18]

uses XML to describe the transformations and allows users

Component("Cosine")
{

Description("Efficient cosine implementations")
Parts {

function("Cosine") {
Sources {

file("include", "cosine.h",def)

file("src", "cosine_1.cc",impl) {
Restrictions { Prolog("not(has_feature(’FixedTime’,_N T))")}}

file("src", "cosine_2.cc",impl) {
Restrictions { Prolog("has_feature(’FixedTime’,_NT),

has_feature(’NonEquidistant’,_NT")}}

file("src", "cosine_3.cc",impl) {
Restrictions { Prolog("has_feature(’FixedTime’,_NT),

has_feature(’Equidistant’,_NT")}}
}

}
}
Restrictions { Prolog("has_feature(’Cosine’,_NT)") }

}

Figure 5. (Simplified) component description for cosine com ponent

to integrate own special-purpose modules into the systems

via an easy-to-use module concept. This enables users to

introduce their own family specific generators without any

need to change the core CONSUL tools.

Using restrictions in CFDL a key difference of the

CFDL from other component description languages is the

support for flexible rules for inclusion of components, parts

and sources. Inclusion constraints, called restrictions, can

be attached to each CFDL element.

Each element may have any number of restrictions. At

least one of them has to be true to include the element into

the system. If there is no restriction specified an element

is always included. The CFDL itself does not specify a

language for restriction description, it passes the restriction

description to an external module. Currently, there is just

one language model which uses Prolog as description lan-

guage and allows direct access to the CONSUL knowledge

database8.

The code of restrictions can access the complete CON-

SUL model set (feature model, component model, feature

set) to make a decision. This allows the customization of

components according to the specified needs of the applica-

tions on a structural base. In combination with the ability of

the backend transformation to produce specialized source

elements based on arbitrary parameters and structural infor-

8Although this direct access is very powerful, it has its drawbacks, since

it is very easy to make mistakes in Prolog statements, without breaking the

syntax. For most statements, an easier, more problem-oriented language

would be sufficient. It will be included in a new release of the CFDL.

mations, this permits almost any customization concept to

be used in conjunction with CONSUL.

4 Closing the gap: family variation vs. family
member flexibility

One of the main problems of family based software de-

signs is that there are two levels of flexibility or variation in

the design. On the one hand there is the “usual” flexibility

a family member or a single application has to provide and

on the other hand there is the variation inside the family to

provide different family members. Both levels cannot be

completely separated in a design, often the same design can

represent both, family variation and member flexibility.

The following example will illustrate this problem and

give an idea how CONSUL can be used to deal with it.

A very important service of any operating system is to

provide access to the hardware connected to the processor.

Depending on the hardware configuration and/or the needs

of the software the operating system has to provide software

components and interfaces to different sets of devices. Even

if there is a hard disk controller device available in a system,

if the software does not require disk access, a disk driver

does not have to be included in the system.

The example is based on a fictitious hardware which

has three different types of analog/digital converters (ADC)

available. The goal is to provide a software design and im-

plementation which adapts easily to different hardware con-

figurations without having to implement different versions

of the device drivers. The scalability shall be achieved by

Part Type Description
interface (X) represents an external compo-

nent interface X.

class (X) represents a class X with

its interface(s), attributes and

source code.

object (X) represents an object X.

classalias (X) represents a type-based varia-

tion point in a component. A

classalias is an abstract type

name which is bound to a

concrete class during config-

uration.

flag (X) represents a configuration de-

cision. X is bound to a con-

crete value during configura-

tion. Depending on the phys-

ical representation chosen for

the flag, it can be represented

as a makefile variable, a vari-

able inside a class or even a

preprocessor flag.

variable (X) similar to a flag, but a variable

should not be used for config-

uration purposes.

project (X) represents anything which

cannot be described by the

part types given above.

Table 2. Overview of CFDL part types

using the services of CONSUL.

Figure 6 shows the relevant part of the feature model.

When ADCSupport is selected, any combination of support

for the three different ADC types can be requested. Thus

there are seven (three single, three double, one triple) com-

binations of functional support for ADCs possible. In some

application it is known in advance which ADC(s) are go-

ing to be used, so compile-time binding should be possible.

But there could be applications which will bind an ADC at

load-time, and some will defer the decision until run-time

and may request access to different ADC over the time.

The drivers shall be realized within a single component.

All ADC must provide the same interface to enable switch-

ing between different ADCs.

This setting seems to be a classical example for the use

of an abstract base class, defining the common interface and

three different subclasses which are the concrete realiza-

tions of the interface. However, in many configurations, as

shown in Figure 7, the base class is not necessary since there

is only one class derived from it in use. While the use of

abstract base classes is appropriate for modeling and com-

Source element Description
file represents a file which is used

unmodified.

flagfile represents a C++ preproces-

sor flag.

makefile represents a makefile vari-

able.

classalias represents a C++ typedef

variable.

Table 3. Overview of CFDL source element
representations

ADCControl

ADC_1 ADC_2 ADC_3

DeviceSupport

Figure 6. Partial feature model for the ADC
example

municating interfaces to users and developers, it requires

additional resources during runtime. To implement the run-

time variability, C++ as well as other object-oriented lan-

guages rely on tables associated with each object derived

from abstract base classes. Each table stores the location

of the method implementations for the common interface of

the abstract base. In C++ these tables are usually called vir-
tual method tables. Use of such tables consumes memory

for storing the table, and run-time since for each call to an

abstract method the corresponding table is consulted.

The measurements for an abstract/concrete class pair

ADC

ADC_1 ADC_2 ADC_3

ADC

ADC_1 ADC_2

ADC

ADC_2

Figure 7. Class hierarchies for 3 different
members

with just one virtual method (see Table 49) clearly show

that there is an increased memory use for the abstract class

version. Especially critical is the use of data memory. With-

out virtual methods, no data memory is used. Many embed-

ded microcontrollers have separate code and data memories,

and often the data memory is quite small (few bytes to some

kBytes) so wasting a few dozen bytes of data memory can

be a real problem. A skilled embedded programmer would

avoid using virtual method whenever possible10. To achieve

the same resource usage as a hand-coded solution, the vari-

able implementation of drive component should avoid using

virtual methods whenever possible.

Hierarchy Processor Code Data
non-virtual x86 32 0

virtual x86 206 140

non-virtual AVR90Sxxxx 80 0

virtual AVR90Sxxxx 284 42

Table 4. Memory consumption of abstract and
non-abstract classes

To solve this problem the classalias of CONSUL

can be used. The classalias part type allows descrip-

tion of flexible, statically changeable class relations. Fig-

ure 8 shows a new class hierarchy where the external com-

ponent interface ADCcan be mapped to any of the ADC?
classes.

ADC
<<alias>>

ADC_Base

ADC_1 ADC_2 ADC_3

Figure 8. Variable class hierarchy for ADC
component

The corresponding component description is shown in

Figure 9. The concrete class to which the alias should be

set is determined by the four Value statements given in-

side the classalias definition. The evaluation of the second

argument of each statement is done top-down. The first

argument of the first statement which evaluates to true is

used to calculate the class name. In the example, one of

the predefined clauses of CONSUL is used. The clause

9Compiler: gcc 2.96 for x86, gcc 2.95.2 for avr, size values in bytes
10Today, most programmers avoid this problem by not even using

object-oriented languages for embedded systems programming

is single(X, NT) is true when only feature X is se-

lected from its corresponding or-feature group. The last

statement ensures that if there is more than one feature se-

lected from the group, the abstract base class is used.

To solve the problem of having an abstract base class

or not for the ADC
�
1,2,3 ✁ class, the class ADCBase

has two different declarations, one as abstract class, and the

other as just an empty class definition.

The description of class ADC1 is straightforward, it is

included in the component whenever support for ADC1 is

requested. For the other two classes, the descriptions look

alike.

It is obvious that the mechanisms for variability used in

this example could be used without CONSUL. Changing a

class hierarchy could be accomplished using a conditional

#include resolved by the C++ preprocessor according to

a compiler argument which is defined in a makefile. How-

ever, with the CONSUL and the CFDL there is one sin-

gle place to manage the customization process. The infor-

mation what and how to configure is not spread out over

different files in different languages. CONSUL and CFDL

separate the structure of systems and components from the

source files they are implemented in.

Using AOP to do the trick: the extensibility of the CFDL

through its customizable backend makes the introduction of

new high-level description elements very easy. Going back

to the example given above, there has been some tricking

around with the base class of ADC
�
1,2,3 ✁. It was neces-

sary to provide a fake (empty) base class when the abstract

base class should not be used.

The aspect language AspectC++ [7] allows to write as-

pects for the C++ language which are able to introduce new

base classes to arbitrary classes. The use of that feature

makes the solution for the ADC example much easier, if

the CONSUL would allow a statement to set the base class

similar to a class alias.

To make this available in the CFDL, it is necessary

to define a new part source type named baseclass
which takes two arguments, the name of the intended

base class and the privilege level (private, public,
protected for C++).

The addition of a new source element requires only the

addition of a new transformation rule to the CONSUL gen-

erator backend library. When the XML based backend is

used, this requires writing an XML transformation descrip-

tion. With the Prolog backend, the same can be accom-

plished with appropriate Prolog rules.

Figure 10 shows the modified component description

and Figure 11 the generated aspect code.

Using this extension mechanisms, CONSUL can be used

to control and combine arbitrarly complex tools to produce

the intended customized system. It can be even used to im-

Component("ADCControl")
{

Description("ADC Controller Access")
Parts {

classalias("ADC") {
Sources {

classaliasfile("include", "ADC.h","ADC") }
Value("ADC_1",Prolog("is_single(’ADC_1’,_NT)"))
Value("ADC_2",Prolog("is_single(’ADC_2’,_NT)"))
Value("ADC_3",Prolog("is_single(’ADC_3’,_NT)"))
Value("ADC_Base",Prolog("true"))

}
class("ADC_Base") {

Sources {
file("include", "ADC_Base.h",def,"include/ADC_Base_v irtual.h") {

Restrictions {
Prolog("not(selection_count([’ADC_1’,’ADC_2’,’ADC_3 ’],1,_NT))")

}
file("include", "ADC_Base.h",def,"include/ADC_Base_e mpty.h") {

Restrictions {
Prolog("selection_count([’ADC_1’,’ADC_2’,’ADC_3’],1 ,_NT)")

} } } }
class("ADC_1") {

Sources {
file("include", "ADC_1.h",def)
file("src", "ADC_1.cc",impl)

{ Restrictions { Prolog("has_feature(’ADC_1’,_NT)") } }
} }

...
} }

Restrictions { Prolog("has_feature(’ADCControl’,_NT)") }
}

Figure 9. CFDL for ADC component

aspect consul_ADC_1_ADC_Base {
advice classes("ADC_1"):

baseclass("public ADC_Base");
};

Figure 11. Aspect code generated for the
CFDL baseclass source element

plement simple source code generators directly, as shown

above.

5 CONSUL case study: Pure

To evaluate the CONSUL ideas, it was necessary to use

it in a larger project. The Pure operating system family for

deeply embedded systems [4] developed at the University

Magdeburg, was an ideal target.

The Pure operating system family consists of about 321

classes implemented in some 990 files. Pure runs on nine

different processor types from 8 bit to 64 bit processors and

is almost entirely written in C++. Prior to the use of CON-

SUL, the configuration was done by modifying/setting sev-

eral C++ preprocessor #define statements (about 64) and

also some makefile variables. Due to its application area

Pure is trimmed to use hardware resource as efficiently as

possible. For every application it tries to provide exactly the

features an application needs, not more.

The result of the domain modeling using feature mod-

els was a model of the PURE problem domain with some

250 features. The model allows approx. �✁
✂✄

different valid

feature combinations. The component family model repre-

senting the implementation consists of 57 components.

A feature set for a typical configuration has some 20 fea-

tures. The smallest possible set contains just three features

(describing the used compiler, the target cpu model and the

target hardware platform), selecting 20 classes. A typical

configuration supporting preemptive multitasking with time

slices has 94 classes11

Using CONSUL reduced the risk of misconfiguration,

because the feature model and the CFDL allows to express

dependencies and these can be checked automatically. Prior

11Both configurations are for a x86 PC based target platform and the

GNU Compiler, values for other target platforms may differ slightly.

Component("ADCControl")
{

Description("ADC Controller Access")
Parts {

....
class("ADC_Base") {

Sources {
file("include", "ADC_Base.h",def,"include/ADC_Base_v irtual.h") {

Restrictions {
Prolog("not(selection_count([’ADC_1’,’ADC_2’,’ADC_3 ’],1,_NT))")

} } } }
class("ADC_1") {

Sources {
file("include", "ADC_1.h",def)
file("src", "ADC_1.cc",impl)

// introduce new base class when not single
baseclass("ADC_Base","public")

{ Restrictions { Prolog("not(is_single(’ADC_1’,_NT))") } }
} }

...
} }

Restrictions { Prolog("has_feature(’ADCControl’,_NT)") }
}

Figure 10. CFDL for ADC component using the baseclass() sour ce element

to the availability of CONSUL tools for Pure configuration

most Pure developers used only two or three well known

configurations, because finding a new working configura-

tion was very complicated. Today, the test directory con-

tains some 120 different base configurations. A new work-

ing configuration is typically created in a few minutes.

6 CONSUL based tools

Variability management tools have to be used by two dif-

ferent classes of users. The first class is formed by the de-

velopers who develop variable software artifacts, the second

class by the deployers of these variable artifacts. As a com-

plete tool chain, CONSUL supports both classes.

The modular implementation of CONSUL allows flexi-

ble combination of the required services and user interfaces

to build different tools. The current application family con-

sists of following three different tools:

Consul@GUI The main application for developers is

Consul@GUI . Consul@GUI is an interactive modeling

tool for CONSUL models. It allows to create and edit the

models but can also be used in the deployment of the devel-

oped software for generating the customized software.

Figure 12 shows a screenshot of a configuration ses-

sion. It shows the feature model for the cosine domain

with several features selected. The configuration is not

valid, since there is still an open alternative. This is indi-

cated by the different background colors of the two features

Equidistant and NonEquidistant .

Figure 12. Consul@GUI

Once a valid configuration has been found, the genera-

tion process can be started.

Consul@CLI Based on CONSUL a customization tool

with a command line interface has been built as well. This

tool can be used e.g. together with make to provide auto-

mated customization when (re)building a software system.

Consul@Web It is also possible to make software cus-

tomization available via web browsers. A demonstration

based on a Java applet can be found at http://www.

pure-systems.com/consulat/ . It allows the con-

figuration, building and downloading of Pure via an Java-

enabled web browser.

7 Related works

There are not many tools for language-independent,

cross-level management of software variability available.

The company BigLever with their product GEARS [14] is

one of the few. GEARS operates on the file system level to

manage variability. It allows to specify conditions for the

inclusion of a specific file into a resulting system. However,

there is no complete domain model, but several independent

sets of parameters are used to describe the conditions. Al-

though this might enhance the reusability, this restricts the

description of cross-component dependencies.

Several other approaches use feature models for domain

modeling [9, 13]. However, most of them do not use an ex-

plicit feature modeling tool which effectively limits the size

of the models. In [21] a tool is described which operates on

a feature model and is able to generate java class skeletons

from feature models.

The transformation process in CONSUL, which pro-

duces the customized implementation from component de-

scriptions has some similarities to frame-based source gen-

erators like COMPOST [1] or XVCL [11]. The idea of

frames blends perfectly with the ideas of CONSUL. The

open model of the CONSUL tools allows the integration

of such a generator into the transformation process, and the

parameterization of the generator is controlled vi the feature

model and the component family model constraints.

8 Conclusions

This paper presented an extensible tool chain for vari-

ability management. The main model types are an enhanced

feature model and a flexible component based family model

which enable language independent representation of vari-

ability in software systems.

Compared to other tools for variability management

CONSUL is more flexible through its extension mecha-

nisms. The use of feature models as the model for com-

munication between the developers of variable software and

the deployers has been proven to be an effective solution.

One of the problems of CONSUL is that Prolog is not

very well suited as a description language for users. Its syn-

tax rules are to weak to detect typical typos in user defined

rules, and the Prolog language system tends too produce

very unpredictable results in these cases. A new language

for expressing the basic restrictions is in development and

will replace the use of “native” Prolog in many places.

Among the future projects based on CONSUL are an

integration of CONSUL technology into integrated devel-

opment environments like Eclipse or VisualStudio. To en-

hance interoperability with other tools the component fam-

ily model will be mapped to an XMI representation, al-

lowing direct use inside UML tools like Rational Rose or

ARGO/UML.

References

[1] U. Aßmann. Beyond Generic Component Parameters. In

J. Bishop, editor, Proc. of the Component Deployment
IFIP/ACM Working Conference, volume 2370 of Lecture
Notes in Computer Science, pages 141–154, Berlin, Ger-

many, June 2002. Springer.
[2] Ant Project Homepage. see http://jakarta.apache.org/ant/.
[3] D. Batory, J. Thomas, and M. Sirkin. Reengineering a Com-

plex Application Using a Scalable Data Structure Compiler.

In Proceedings of ACM SIGSOFT, 1994.
[4] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-

Preikschat, O. Spinczyk, and U. Spinczyk. The Pure Family

of Object-Oriented Operating Systems for Deeply Embed-

ded Systems. In IEEE Proceedings ISORC’99, 1999.
[5] D. Beuche, O. Spinczyk, and W. Schröder-Preikschat. Fine-

grain Application Specific Customization for Embedded

Software. In Proceedings of the International IFIP TC10
Workshop on Distributed and Parallel Embedded Systems
(DIPES 2002), Montreal, Canada, Aug. 2002. Kluwer Aca-

demic Publishers.
[6] K. Czarnecki and U. W. Eisenecker. Generative Program-

ming – Methods, Tools, and Applications. Addison-Wesley,

2000. ISBN 0-201-30977-7.
[7] A. Gal, W. Schröder-Preikschat, and O. Spinczyk. As-

pectC++: Language Proposal and Prototype Implementa-

tion. In OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, Tampa, Florida, Oct.

2001.
[8] A. Gal, W. Schröder-Preikschat, and O. Spinczyk. Open

Components. In Proc. of the First OOPSLA Workshop on
Language Mechanisms for Programming Software Compo-
nents, Tampa, Florida, Oct. 2001.

[9] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating Fea-

ture Modeling with the RSEB. In Proc. of the 5th Interna-
tional Conference on Software Reuse, pages 76–85, Victoria,

Canada, June 1998.
[10] A. N. Habermann, L. Flon, and L. Cooprider. Modularization

and Hierarchy in a Family of Operating Systems. Communi-
cations of the ACM, 19(5):266–272, 1976.

[11] S. Jarzabek and H. Zhang. XML-based Method and Tool

for Handling Variant Requirements in Domain Models. In

Proc. of 5th IEEE International Symposium on Requirements
Engineering RE01, pages 116–173, Toronto, Canada, Aug.

2001. IEEE Press.
[12] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Fea-

ture Oriented Domain Analysis (FODA) Feasibility Study.

Technical Report CMU/SEI-90-TR-21, Software Engineer-

ing Institute, Carnegie Mellon University, Pittsburgh, PA,

USA, Nov. 1990.
[13] K. C. Kang, K. Lee, J. Lee, and S. Kim. Feature Oriented

Product Lines Software Engineering Principles. In Domain

Oriented Systems Development — Practices and Perspec-
tives, UK, 2002. Gordon Breach Science Publishers. to ap-

pear.
[14] C. Krueger. Variation Management for Software Production

Lines. In Proc. of the 2nd International Software Product
Line Conference, volume 2379 of LNCS, pages 37–48, San

Diego, USA, Aug. 2002. ACM Press. ISBN 3-540-43985-4.
[15] M. Löfgren, J. L. Knudsen, B. Magnusson, and O. L. Mad-

sen. Object-Oriented Environments - The Mjolner Approach.

Prentice-Hall, 1994.
[16] J. M. Neighbors. The Draco Approach to Constructing Soft-

ware from Reusable Components. IEEE Transactions on
Software Engineering, 10(5):564–573, Sept. 1984.

[17] D. L. Parnas. On the Design and Development of Program

Families. IEEE Transactions on Software Engineering, SE-

5(2):1–9, 1976.
[18] S. Roemke. XML-Based Modular Transformation Sys-

tem. Master’s thesis, Computer Science Faculty, University

Magdeburg, Magdeburg, Germany, 2002. In German.
[19] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang.

STARS Organizational Domain Modeling (ODM) Version

2.0. Technical report, Lockheed Martin Tactical Defense

Systems, Manassas, VA, USA, 1996.
[20] R. Stallman and R. McGrath. GNU Make Documentation

Version 0.51 for make Version 3.75 Beta, May 1996.
[21] A. van Deursen and P. Klint. Domain-Specific Language De-

sign Requires Feature Descriptions. Journal of Computing
and Information Technology, pages 1–17, 2002.

[22] D. M. Weiss and C. T. R. Lai. Software Product-Line Engi-
neering: A Family-Based Software Development Approach.

Addison-Wesley, 1999. ISBN 0-201-69438-7.

�

��������	�
���
��
��������������
���������������������������������������	������

�
������������
����������
�
�

�

���������	�
�
�������
��
�
�
���������

�����

���������	��
�����
�������������
��

 !�"#$$��%�&'$($)*��	��

+��,�-�������������,�-������������,�-,�������./���-���

�

�

������������������������������ �����������������������������
������� ���	
�����
����	
����������������
����	��	���������
�����
� ������
�����	���
������������� ���������������	
���
����
 ���
������� �	!� "
��!!���
 ��
#���"�$%%$&'�

���������
�
��������0�0�����������
�����0���������
�����00�
�������'

���������� ��������
���0��� ����������������,��������������
������������ 0�������� ��� ��0���������� ���� ,�������� ����

���������0��������������������0���������,��
-�1����,0����
��� ���� �����0����� ��
��� ��������� ������������� ������0�����
���������� ���� �������������� ,��������-� ������ ��� ����
����
������������������������������
������0����������,����
��� ���� �������������� ���������� ������ ���� ��������������
,��������� �����0��-� ������ ��� ���,�� ��������� ��� 0��
����
��������� �������������� ��00���� ������ �������������� ��� ����
��������������0�������������������������������������0�����-�
����
���� ��������������� ��,�������������� ����� ��2������3'
�������� ���� �������� �����0������������� ��� ��������������
���������� ���� ������ ��� ��0����� ��������� 0�������� ���'
2�����
-�

��� �
���������
�

����	�������� ���	��!����#���!�
��&��	���(��
����������

	��	���	
�������
 ��	��
���������� ��
)���������	�������!*

����
�� 	
�� �
���!!�
�� ���!����)� 	
�� �	��	(�!��)� ���

�����	�������� ��'����)��	���(� �����
 ��	��
�!)������*

�	
�� �
� ���� �����	��� �
�����)� +��$,'� �� ��������� 0�������

��,��
� 	
� (�� �����!)� ����
��� ��� �
����� ��� 	� ����
�

	� ���� ������	������������	(!��	������������
��)����	�� 	!!)�

����� �
��� �'�'� ���!�)�
��� ����� ��� (�!�
��
�� ��� ���� �	�*

�!)��	
������������������ ������������� ��'�

"
�������	���������������
��	����	 ���������!!�
��	
��

�	
	��
�� ���� �	��	(�!��)� ��� �����	��� ����� �� �	��!�����

(���� �
� �����
�� ����� 	�� �
�����	(!�� �����	��� ����� ��

�	��!���'��� �
�����	(!������� ������� ����	���	 ������� ��

�
������	!� ��� 	�	����� ��� ���� ��-������
��� ��� 	� �	��� �!	��

 ���������������
�����(�������	��������
��� �
�����	���
�

����!� +.,'�
� �� 	�����!� ���!� ��!)� 	
�� �� !	�	����!)� ��*

� ��(��� ���� ���� ��� !��	!� ����� �� �	��	
��� ()� ����
�
�� ����

 ����
�
��� ���� ��� ��� �� ��� 	
� (�� �
���� ���� 	
�� ������

����
��
 ���� �
� �	 �� �����'��� ��� ��� 	���
� ��� 	� ����� ��

�
������	!�� �'�'�� 	� �
�����	���
�� �������� ���(�����
� ����

 �
�����	���
�����!�	
���	��� �!	�� ����������-������
���

�
�	� �
�����	���
��	��'����� ��
���
��!�����(�����)������

���� �
�����	���
� �	����� ����� �� �
�����	������ �	��� ��*

 �
�!)�(� ����	
�������	
��	��!� 	���
����	����� �	!��
��!!�*

��
 �� �� �
�-���� ���� ���	
���� ��!!�
�� ����� ��� 	�	�����

��� ��������
����� +/��,'�
�	���� �����!)�� 	� �
�����	����

��������� ���� ���!�)��
�� ��� ���� ()� �����
��
�� ��(�
	*

���
������
 ���	��(!�� ����
�
����()��	��
���������	��	!!�

����
� ���	�)� ����
�
��� 	��� �
 !������ 	
�� ()� ���� �
��

���� �
��-��
 ��� ��� 	!��	�)� �	��� ��!� ���
�� ��� ����*

�
���(�����
���������
��
 �����
�	� �
�����	���
�����!'�

���)�	���	!��� 	�	(!�����	����	�� 	!!)���
��	��
��	
��
�����

 ���� �� �
�����	���
� (���� �
� ��-������
��� ������ ()� 	�

����'� ���� ���!�� 	��� (���� �
� �� !	�	������ �
	�(�������

����!!�
�� �������� 	
�� ���
�� �
����
 �� 	!��������� ����

�����'��������
!)����� �
�����	���
�����!�
��������(�� ��*

	���� �����������	�
�������� �� �	��!)'�������	���	!������*

��	!� �������� �
� �� �����!� ������� ����� �� �
�����	����� �
�

��	 �� ��+0�1�2,'�

��������� �)����	�� � �����	�������� �� �	��!���� !���!)�

�����(!�� �
�����	(!������� ����
���	�����)�	��� ��������

��� ��	
�	��� ��*��	(!�� 	������ 	
�� �	��� 	� �������
��� 	� ��*

�� �����+�,'�3���	����	 �����(�����
�����	��������
���	���

	!������� �������*��� ��� ������	���
���)�(����-�������

	� ���
��� 	
�� ������
� ��� ���� 	������ 	
� (�� ����!����� 	
��

�)����	�� 	!!)�����!!����
�	��	
 ��������������!�)��
�'�

���	4��� ������� �	��(��
� ���
�� �
�����!���
�� 	� ���� *

����� ��� ������
� !	
��	���� #�56�&� ��	�� 	
� (�� ����� ����

�������
��
�� ������ ��*��	(!�� 	������ 	
�� �����	��� 	� ���� *

�����'������������ ���	��!����	
���56�������
	���	!� ��
*

����	���� �
� ���� �����	������	�
� ���� �
�����	(!������� ���

	
�� �
�����	���
� ����!!�
�� !	
��	���'� ������ 	��� �	
)�

�56��	
��!	�����������
 ���(�����
������+7��%,'�

8������)����������(�!��)����	��!)�
����������	
�����!��

����!����� ��������!!�
�� 	
�� �
������
���� �	
� 	!� 	
��

�!� ���
� �� ����� ��� ��� �
������
�� �����	��'��� �����-��*

��������� ���
����������	���
��	!���!����
������������(!���

����������
��	��	���
����������� �
 ����	!��	���
��������*

�	��� �)������ ��� 	� �
 ����	!��	���
� ��� �
�����	���
�

�
��!����'����	����������
������	
	!)��������������
�
��

�56��	�� ���� �
 ����	!� !���!�	
�� ���	��� ���������� ����

�	4��� �
 ����� ����� ���� ����!!�
�� �
�����	���
� �
��!*

����'�9	�����
�����	
	!)����	
�� ���	����
��������������

��� �������
���	�
� �
 ����� ����56�����
�� ���� �
�����	*

���
� ����!!�
�� �
 ����'� "
� 	������
�� ��� ���
���)� �����	!�

����
��	!�
����� ��������
��
�� ���� �
�����	���
�����!!�
��

 �
 �����������56��������� �
 ����'�

:�������������������������	������� �
 �
��	����
�������

������	
�� �56�;� � ��� +����$��.,�� 8������ +�/���,� 	
��

<�	!	�+�0��1��2,'�3�������������� ����	��(��
������
������

�
 !���� ��	������ ��� �������56�� ��	�� ���� �����
���� �
���*

����� �
��	!'� ���� ��!��	
 �� ���� ��� ��� �������� ���������

()������	 ����	���
�����������	!������ ���������������	��	
�

�
��� �	
��� !	
��	��� ���� �������56�'�8������ ��� 	�����!)�

 ����� �56� ��	�� �	�� 	� ��������� ���	
�� �� 	
�� ��� ��(���

(��	�����	!� 	��� ��� ��� �����	��'� 9���� ���� ���� ��� ����	!�

��������	
����� ������
����(��	�������	���8�����������*

�	
��	��
���56�'�<�	!	����
������ ���!)�	
��56��(���������

�
� ����� �	!� ���� 	�� =��!���� ��
������ �!� ���
� �� ����

�� ���
��
������� ��� �
�	������ ������!	���
'������������

(��
���
����� ���� �����56�� �
� �
������	!� �����<�	!	� ��� 	
�

������	
����	��!�����������	 �� 	!�	��� �������56�'�

�������������
 �����
���
����� ���	����
��������!�)�	�

 �
�����	���
� �
��!��)� �����
���� ()�
��
�
�
� ��� 	!'� +�7,'�

������
��!��)��)
��������������� �
 ����	!��	���
����� �
*

�����	���
��
��!�����+0�1�2�$%,'��������������������)�����*

!	�����	
�������� ��
����� �
�����	���
��
��!��)������
����

()� :�!���
��� ��� 	!'� +$�,'������� 	�� ��� ������ ��� ����������

	����	 ���� ��� �
�����	���
�����!!�
��� ��� ���	�
	���	!� ���*

���
 �����
������ �
 ����	!�!���!�	
	!)���'�

�������	�
�������������	����������	
�����	����!!���;��
�

������������ ���� �
��	!� �
 ����� �
������ �� �
�����	���
�

	
�� ��������!!�
�� �
 ����� �
� ���� �
�����	���
��
��!��)�

�������
��
�
� ���
�$'��
������������������	���	� ���� �����

	
���56�� ��� ��������� �
�
� ���
� .'�
� ���
� /� �
����� ���

���� ��	������� ���� 	
	!)��
�� 	
�� ���	��
���56�� 	!�
��

����� ��������� ������	
�� �	�	 ������� ����� �������56�'� "
�

� ���
� ��� 	� ���	����
� (�����
� �����56�� 	
�� ���� �
*

 ����� ��� ���� �
�����	���
� �
��!��)� ��� �����
���'����	�*

��
�� ����� ���� ����� ������	
�� �
 ����� ��� �56�� ��� ����

 �
 ������������ �
�����	���
��
��!��)��������
��
�
� ���
�

0� 	
�� ����
��	!!)�
������ ����
���
�� ��� ���� �
��!��)� 	���

��� �������
�
� ���
�1'�8����� ����������
��
���	
�������*

����������
�
� ���
�2�	
����
	!!)���������� �
 !����
��	
��

���� ������������������	� ���
�
� ���
�7'�

 �� ����������
���������
�

"
�������� ���
���������������
��������
�	��
�	!� �
 �����

��� ����� �� �
�����	���
'������	��������� �
����� �� 	� �
*

�����	���
��
��!��)�� �'�'�� 	� �
 ����	!��	���
� ��������!�
��

 �
�����	���
��
��!��������� �� �
 ����	!����������� �
*

 ����'�

 ������
����
������
��!���

8������
�� 	�0������� 	�� 	
� 	(���	 �� ��� ��� 	���
���� 	
�

�
���)���	��	� ���	
)���!!�'���0�������������������	������ ��

��	��������(����!����������	� �����������	������
����	�����*

� ������ �� ��� �
 ����� �
����� ��� ������ 	�� 	� ��� ��� 	���
�

��������� �
����'�+$$,��

"
��������	�
���� �
�����	(!���� �	
� 	!�	
���!� ���
*

� ������� ����	��������������0�������#���	�0���������,��
&�

��� ����
��� 	�� 	� ����� �� ��	�� ��������� 	� !	����
��(��� ���

�	��	
��� 	
�� ������� ���� ��� ��� �
����� ��� ���� �
������	!�

 ��������()� 	!!���
�� �������*��� ��� � 	�	��	���
���� ����

����� �'��

��
�����	(!������� ���	������ �����������������������'

�����,���������� ������
������(�� ������ �������������	
��

���� �����(�!������ ���� �	�!���
�� ����'� =���� �� �
��	
 ���� �
�

���
�� 	��� ��� ������ �������� ���������������� ��� �� ����!��

����� ���!���
�� ���� �������������� ����-� "
����	���
� �)�*

����� 	��� ����� ��� �������� ���� �
�����	���
� �	��>� �� �� �
*

����	���
��)������	��� 	!!����������������'������
���
���

�
������
����� ���
�� �
�����	����� 	
���������	�������	
���

��� ��
 ���
	!��)�� �
 !���
��� �'�'���	��
������ ���
��(����

�
� ��� ��� 	� ����� �	�� 	!��	�)� �	���� 	
�� �����
��
�� �
*

 ���	��(!�� ��(�
	���
����� ����
�
��'�

5���
�� ���� �
�����	���
� �	���� ����� ��2����,����� 	���

����� ��� �
���	�
� ����������������(!�� �
�����	���
�������*

��
����()� ���� �
�����	���
�����!��
��!� ������ ����
!)��
��

 ���� ��#���������� ��������� �
�����	���
�����!&� �
����*

�	���
���	���	�������������������-������
���!���'��

=����
����� ��� ���������� �
�����	(!������� ��� �����	
�

	����	 �� ��� �	����)�
�� �	��	(!�� ��������
����'� ���� 	�*

���	 �� �
��!���� ���� ���	�	��� ��� �����;� ������� 	� ����� ��

#�	��!)&��������
�����������	� �
�����	���
�����!>��� �
���

 �
�����	���
�������������� ���	� ��
����� ��� �
��������	�

 �������� 	��� ������'� =���� �� �
�����	����� 	
� ��������

(���� ��� ���� ��� �����'�8�	�� ��� ����
��	!� ��� ��	�� ���� �������

��-��������� ��	���	� �
�����	���
������������� ����������*

	��� ���	������������
�
��	������ �������� �	� �'��

 � ����
���������
�"
�������

?����������!!������	�������������������	�����	 �����	
*

�	��� �
�����	���
��
��!��)������ ��������!!�
�� �
�����*

	(!�� ����� ��'� :��� ��!!� ���	�!��� ���� ��	���� ����!�� ������ ���

+�7,'�

���� �
�����	���
� ����!� �
������ ��� 	� ���� ��� �
0��'�

�������� ��� 	!!)��	� �
�����	���
�����!� �
��������;�	�����

��� ����
�
�� �)����� 	� ������������ �)����� 	� ������� ������ ��

�)����� 	� ���� ��� ��
 ���
� �)���� *� 	!!� ���� 	(���*��
���
���

���������)����	������	
������
���'���������������	
��	!!��)����

 	
� (�� ����
� ����������� ��	�� �����
�� ��!��	
�� �
����	���
�

	(���� ���� �)���'� �������
	!!)�� ����
�
�� 	
�� ��
 ���
�

�)���� 	��� ���	
����� �
� ���������
� ����	� �)'� :�
	!!)�� 	�

 �
�����	���
�����!� �
 !����� 	� ���� ��� �
���	�
��'��� �
*

�����	���
� ��� ����
��� 	�� 	� ���� ��� �
��	
 ��� ��� ���� �)���'�

�������
��	
 ���	��� 	!!�������
������'�

�����
�
�� �)���� �������
�� �����
�����	(!�� ���!��� �
�

����� ��'��

#$��!���� :������ �� #	&� ���� ��� 	� ����!�� �
�����	���
�

����!����	� ���������	
����!!�(�������	��	���

�
����	�*

�!������!!����	������� �
 �������������
��!��)'�:��������#(&�

 �
�	�
������!���
���������
��	���
�����'�����
��	���
����
��

��	
�	���
��	���
��(���@�6�����
��������������	������
	!�

�)�(�!�'��)���
	����	����)���������
���������	
���
��	
 ��

	�������
���������'� "
� ������������ ������	���	�
��(���

��� ����
�
���)���;����	
����
����	
��������� '�:��������

������	���	�
��(��������*	���!	���
������(�����
����� ��*

��
�
���)���;����	
�����*	�����������*	��������	��� '�A�

 � ����������������������� ���	!� ���������
���� ����
�
��

�)���� �������!!���()���	
�����0���������������'��	 ���	���

����
����
� �
 !����� 	� 0���� ��,��� 	� ���� ��� 0�������� 0����

�
0���� 	
�� 	� ����������
'� ���� ���� ��� �����(!�� �	��� �)����

 �
������ ��� ���� ����
�
�� �)���� ���� �
������	!�� ������ ��

 	
�� ���	��	��	������ ���� �)��� �
�	�
�
�� �����	�������
�*

���
�#���!���)��&'�:�������� 	���
	!��)���� ����������	���
��

����
������	!����	�������� ���	���	�������������!���)��'��

#$��!���������
�
�� �)�������	
��
����	
��� �
 !����

�	���;� ���� ��������	�� �����	����������� �)����������	��	
��

	
�����)������
����>�����!	������	���	���	�������� 	���
	!*

��)����%''������ �����!������	�������	�����������
	!'�"
� ��*

��
� ������� �������	
�� ��	�� 	
�
����	
����)�� (��� ���
���

��-������� ��� �
 !���� 	� ��	����� �� �����
��� �����	�� 	�

���	
���
������
 !������
�'�A�

�!���
	������	���� 	
�(����� ������()�����
�
����!���!��

�����(!���	����)���'�

 � � ����!������� ��

� ���
�� (�����
� ����
�
�� �
��*

����	!����'�'����������!��)����	� �
�����	���
�� 	
�(�����*

�!!���()�����!)�
�� ����
�
���)���������0���������������'�

"
� ����
������������������
������ �

� ���
����
�����'�'��

�
����	 ���� ����
�
��� �	��'��� ����� ����
����
� �
 !����� 	�

0������,���	��������0��������0�����
0����	
��	�����������
'�

�������	
�� �����	� �

� ���
�	�����	�����������	���)��*

 	!����!��� 	!� �

� ���
�(�����
���������������
������	!��

	
���������� ����
�
���
������	!�� �
�	�
�
������'�

#$��!����"
�:��������#	&��������	��������������;� ����*

�
�� �)����������
����������
���	
���
�
��	
�� ����*

�
���)������
���������
���������
�
'�A�

 � �%��&����������B����� ��� 	��� ����� �
� ���� �
��!��)� ���

����!� ���� ����� ���
� 	
�� ���� ��� �
�������� ��� ���� �!��� ���

�� ���
�������������
�� ����
�
���
������	!����	
�����'�

4���������
0������
���������������������	������� �'�����*

���� ���)�������
��������������������� ������� ���
��������

�����(�����������������������'�"����������� ���
��������������

(��(!	
 ������������� ���
��������	 �!)��	� ���������>��
�

���� 	������)������(���	���������������
�������	������� ���
�

������	������	
�����-�	!�������'��

���� ����� ���
� 	
�� ���� ��� ������ ��� ��� ��� ������ ()�

0���������� ������������ 	
�� ���� ������������ �
� ����
�
��

�)���'� ������ ����
����
�� ��� ��)� ���� ������ �� �)���� 	
��

-�	
������������ ����������'��

#$��!�������������	���
�!�������� ���)����
	��!)�����

����	� �
� ���� �	��!�� ����!'� ����� ������ �� �)��� ��� �
*

������()��
������	!����� ����
�
���)��������	
�������

	
������� ���()��
������	!���������	
�����'��A�

 � �'����
����
��� �!!� ���� 	(���*�����
���� ����������� ���

 �
�����	���
� ����!�� 	��� ��!	���� ��� �� �
� 	!� 	��� ��� ���

����� ��'�C�������� �
��	
)� 	������� ���
� ���	�)���� ��*

��
� 	��������	(���	 �� �	�	 �����	���
�����������	���������

��
 ���
	!��)���� �
�����	(!������� �������	!�������
��	
��

 ��������'�

���� �
�����	���
� �
��!��)� �
 !����� ���������� 	�� 	�

��	
�� ���� ����
� 	��
��
�
*�� �
� 	!� �
����	���
'� ��

����������
0�����	
�	(���	 �� �	�	 �����	���
������������� �'�

���	
���	��!������� �
�����	���
�����!����:�������� ��!��

(������!���
���������������
 ���
��)��������������������

���	
�� �����(��
��	(!������!)����� �������5�'�

���(�����	
)������ ���� ��
 ���
� �
 ���������(�� ����*

���� ��!	���� ��� ���� �� �
� 	!� �
 ����'� ����� ��� 	 �������

�������� ��� �	!� �
���	�
��� #���� �� ���
� $'$'�� (�!��&�� �,'

0��,��������������������'����)���� ��)���	��	� ���	�
���
 *

���
� (�� ���!���
���� ()� �
�� �������� �� �
� 	!� �
 ������

�'�'�� ����
�
�� ��� ����� �
������	!�'� B����
�
�� ��� ���� ��*

	��!������������)��� ��!��(�����!���
����()��
������	!��

�

��

���������	
����
��������������
�����������	��������������������
������
���

�

�	�����	
����������

�����������

��
�� ������	��
�!�	

����	

����
��

��
�

����

����	 �	�����	
�!�	

������

����	

"#$

���������

������� ��

%��

��
�
��

����������

&''�

��

&''�&

%�

�''�

�����
�� !"���
�����
����	

�#� �#$ �
�����
% �!

�!$�!�

(&&
�)

�
*)

�
*)

�&
*)

��	� ��	�

��	�

"�$

��� ����
�
�� �)������� 	
�� ��	�+	�� #
��� �
� ���� ����!&�

��������'�

���!	�!)�	������ ����
�
���)�������
 ���
��)���� 	
�(��

����
���	� ���������
	!����� ��������������	�������
����
���

���������
	���	!��� �����
���	�����������(!���	����)���������

(����
 ���
��)���'�

 � �(����
�����
���� 5����������� 	
� (�� ����� ��� 	������

	��� ��� ��� ����� ��� ��	�� 	

��� (�� ��	��
	(!)� ����!!���

���
�� ���� �
 ����������
����	(���'��� �
���	�
�� ���	� ���*

�	!�� �	����	�� 	!� ��� !��� 	!�� ��!�� ��� ��)�
�� 	� �
�����
�

��	���������!���
�	� ���� �� �
�����	���
'����)� 	
�(�������

��� ��� ��)� 	�(���	��!)� ���!��� �
���	 ���
�� ��� �)����� �
��*

����	!��� 	
�� ������ ����������'� �)�� 	!� �
�����
�� ����� �
�

 �
���	�
��� �
 !���� ��2����� 	
�� ����,0������;� ���� ���	
*

�� �� ��� ���� 	����*��
���
��� 	��� ��	�� 	� ���	�
� ����
�
��

�
������	!� �
�	� �
�����	���
� ���!���� ��	��	
������ ����*

�
�� �
������	!������ #��-����&���������
��� #�
 ���	��(!�&�

(���
����� �
�����	���
'�

%�� ������������������������
���������������
������!���
���
�������

����	��� 	� ���� ����� ��� 	� �)�������������� ��� ��� ��(��

��������*!���!����� ��������	������	����)����'��������
���*

 	
 ����� �
������
��	� ���� ��������
������
�
�������	���

�)������ �����!!��
��������'������� �������������
�� ��
�!���

��
��	!!)� 	 ������������� ���� ��� ��(�
�� �����	��� 	� ��*

�� ����;�@�6� ���	������ 	
���	��� ���� �� ��	���������(���

	��
������'�'��
�+$.,��������()�
����	
��	
������	!����!�����

�� ���
��
�� 	!!� 	��� ��� ��� 	� ���� ����'�
���!�����������

�� ��	���������
�����	
�������
��	� ���� ���	!���)!��������
��

(��*	
�*!�
�� ��	��	��� �����
�� ��� �	���� ���	
�� ��� �	���

(��
��� ��
��������(���
	��-�	������������	���+$/,'�C�
 ���

���������	�
��������(�������������'�

�� ���� �������� ������
�!	
��	����#�56�&�	���	�����*

���
�� 	
���	��� ��!����
� ���� ���� 	� ���� ����� ��� ������
�

���(!��'�6����!)�����
�����56��	�������	!�
��	���
�������

��!!*����
������	
�� �������������	�)��������� ��� ��� ���*

����
������	� ���� �������������	����)�����'���!	����
��(���

����56���	���(��
���������'��56���	����
� ����
�����

 �
 ������� ����
�
���	!��������������
���56���	������*

����
��
	�������������	��� �
 ����+�%,'�9����
�������������

 �	�	 ������� ��� �56�� ������� ����� �	 �� ������ �	�� 	!!)'�

���� ��� ����� 	������� 	� ��� �	!� 	��!� 	���
� ���	�
� 	
��

������� 	��� ���� 	���� ��� 	� ��� ��� � 	� ���� ���	!� ��)!�� +�%,'�

�56�� 	!��� ���!�)� �������
�� ����	!����� ���� ��� ��)�
��

���	
�� ���	
������������	����)��
�������������!)������)
*

�	��	
�����	
�� ��	�������
��'�

���� ����� ��
�	��
�	!� �!���
��� ��� 	� ���� ���	!� ��*

� ������
�� �
 !���� ��,0�������� ����������� 	
�� ������ ���'

������������+�%����$/,'�

�����
�
����������
�������	�
� �����	���
	!��!���
���

	
���	�	����������������)����'�"
�������!)�� ���)� �������
��

�������(������
�����(��*	
�*!�
����	��	��'��!��
������������

	
����!�����	�����	��!������ ����
�
��'�"
�	������
���)�*

����� 	� ����
�
���������	
������ ����!�� 	�� 	
� ��� ��	(!��

��!�����	��)
	�� �!�
��!�(�	�)'�+��,�

@
!���� ����
�
���� �

� �����	���
���!� �����	��!� 	*

���
� ��� ��� � �����	���
� �
� �����	��� �)�����'� "
���	���

���)��������
���
���	 ���
��(�����
� ����
�
��'�"
�	�(��*

	
�*!�
����	��	��� �

� �����	������� ����	��!�
���(�����
�

����(����'���	��!������ �

� ������
 !������������
�� 	*

���
��������	
�����
��(��	� 	��'�+��,�

�����
�
��� 	
� (�� �

� ���� ��� �	 �� ������ ��� �����

 �
�����	���
�'����)�	�������������������������	���)������

+��,� ��� 	� ���� ���	!� �
�����	���
�� +�%,'� "
��	
)��56���

 ����
�
��� 	
� �
!)� (�� �

� ���� �������� �

� ����>�

���!� ���������� �

� ������	�����
�(��
����������	�����
*

�
�� �	�	 ������� � ��� 	
��56� +�%,'��)�� 	!!)�� ����
�
���

	��� �

� ���� ��� �	 �� ������ �������� ����������� 0�����'�

5������
���56�� 	!!������� �

� ���
����
���������������
��

	������'�'���������!������
����	 �'��

"
� ����� �56��� ����
�
��� 	
� 	!��� �	��� 	
� �

���

���� ����'�
� �� ����
�
��� 	��� 	!!��� ��,0����� ��,0�'

������	
�����)��������
��	���(�)�������	���	��	
�	� ���� *

��������������
'�8���� ��������� ����
�
���������������	
��

���(��	(!�������� ��)����������

����	����������� ����
�
��

	��� !�
���� ��� ���� ����
�
�� ����!�'�@��	!!)�� ���� !�
�	��� ���

����
��� ()� (�
��
�� �

� ���
� ���
��� ��� ���� �����
��

 ����
�
������� �

� ���
����
�����������	���'�"
�������!)��

(�
��
����	
����	�� ���� �

� ���
����
��������� �����
��

 ����
�
�� ��� �
� �	 �� 	� �

� ���
� ���
�� ��� ����� ������

 ����
�
���
��������� �����
�� ����
�
�'��

�� ��	 �� 	!� �
 ��
� ����� �56�� ��� ���� ���!� ��������

	�	�!	(!����������'����!������������������������ ������������

�	�������
 ��������	!�������	
	!)�����������!!�
��!	
��	���'�

C�������� ��� ����!�� (��
����� ��	�� �������� ���� ��
��	��
��

��� ��	(!���)�������������	� ���� ���	!���� ������
������
��

��� ���� ��	!�� ��� ����	� �� �
� �56�� +�%,'� ����� ��� 	� ��	!�

��	����()�����	� ���
� �
�����	���
�����!!�
�'�

'�� �
�����������������������������������!���
�
��
�������

"
�������� ���
���������������
��	���	�����������	
	!)�*

�
�� 	
�� ���	��
�� ���� �
 ����� ����56�� ����� ������ ���

 �
�����	���
'������	������������� ���� ��	������� ��� ����)�

�������56�;�� ��� +����$��.,��8������ +�/���,� 	
��<�	!	�

+�0��1��2,'������������	�!���	
	!)���� 	
�(�����
���
�+$�,'�

'������������)������
��������
�����!�����
�

������
�	��
�	!����
���
	���� ��(���()����� �
����*

�	���
��
��!��)�	
����	�������
�����
�+$�,�	��;��	��
�������

���� ����������!��)�������� ������
 ���
���	
�� �
���	�
��'��

"
�������!!���
����������(�� ���
��������!!�	
	!)��� ����

	(���*��
���
��� �56�� ���
�� 	� ���	����
� ��	�������

 �������� ��� ������ �	���'� ���� ������ �	��� �
 !����� ���� ��)�

 �
 ���������56��	
������ �
�����	���
��
��!��)��	
������

��!	���
��(�����
�����'����� �
 ������
 !������,0��������

������������ ���������������� ����������� 0������� ������������

����������������������	
�������������'�������!	���
���
 !����

��0����
�� ��3���,
�� 	
�� ���������'� ���� �� �
�� �	��� �
*

������� ���� ������
 �� ��� �������
�� �
 ����� ���� �)���� 	
��

�
��	
 ��'����� !	��� �	��� ��� ���� ��	������� ��� �����	��	���
�

�� �	
����� ��������� ()� �56�� 	
�� ���� �
�����	���
�

�
��!��)'�

'� ��������

���� (�� � �
 ����� ���� ��� 	��� ��,0�������� ������'

������	
���
���,�'�
)������������� ������������ �
�����	*

���
'� 3
� ���� ������ �	
��� ������ 	���
�� �
���� ��� ����

������ ��� ��� ��
 ���
�� �
� � ��'� 9���� ����
�
��� 	
��

 �

� ������	��� �

� ���
����
�����	��	��� 	!!���0���������

 ����
�
��� 	
�� ������ ���� �

� ����'� 6������ ���,�����

�
 !���� ����
�
��� �

� �����������	
����!�'������
�
���

	��� �

� ���� ��� �

� ����� ()� ����
�
�� 	
� ������,����

(�����
�������������	� ����
�
��	
��������!�����	� �

� *

���'� 3
�� �

� ���� �)� �

� �� ��!���!�� ����
�
��'�

�����
�
��� 	

��� (�� �

� ���� ���� �!)� ��� �	 �� ������

	
��
������� 	
�	� �

� �������	
������ �

� ���'�+��,�

�����
�
���	
�� �

� ����� 	
��	���	����(�������	��	���

 	!!��� ����������� �
� � ��'� =���������� 	��� �
�
����������

�	!������'�'����)����
����	���	
)����	
�� ������
��'�

"
�� ���� �����
� �
���	�
��� 	
�(������
��� ���
�� ������

����������� 	���!��� '����)� 	
�(�����������
�������������'

������;� �
�	��	
�� �
���	�
��� ����� ��!��� �����	�� �������� �

 �
���	�
���	�������!)���
��������	������!��(�����������	
�

� ����)����'���
���	�
��� 	
�(������� ������������	������

	��� ������� ����)�����;��'�'�����������
 ��	
���	!�������

�����������	
������ �

� ���
�������
���
�	��)����'�+�$,�

"
�	������
��� ����
 !�����	����� ����� 	!!�����0�����'

����������	�� 	
�(�������������� ��(�
��	
�	!���
	����������

��� 	� ����
�
�� ��� 	� �

� ���'� 4�0',�0��� ��� �
� ������

������� ��0������������ ,�0��� 	
� (�� ����� ��� ��� ��)� ����

 �������
��
 ��� (�����
� �������
�� �������
�	���
�� ��� 	�

�����
� �!���
�'� ������ ���� ���������
�� ���	
�� �� ����
���

������������������
�	���
��������*�	��'�3
�������(!���������

������ �
���� �������������
��
������ ���������
	!����� �����

���	� ����
�
��	
������ �������
��
 ���(�����
�����������

	
�� ��!��� ��� ���� �����
�� ����
�
�� 	
�� ������ ��� ����

 �
�	�
��� ����
�
��'�+��,'�

�!������� �)���� 	���
��� ������ !	��� �
������� �
�� ���� ���

�	�� ���� �)��� �)�����;� �
�� ���� �����
� �!���
�� �)���� 	
���

	
��	
�����������)�����'��)�����
����������
��!���
���)���

�)����� 	��� ����� ��� ��-������ ���� ������ �'�'� �����
� �!���
��

�� !	�	���
��� 	
�� �	!���'�?��� �)���� 	
� (�� ������� �����

������
�� �)���� ����������(�)��
�'�
)����� �)����	��� 	!!���

��,�����'��� �	��!)� �
��������������
��!���
�� �)�������
�*

���
�'�
�(�)���� ��� �	��!���� 	
� (�� ������� �������� ��
�!��

�����!���!���
�����	
 �'��!����	��)����� 	
�(���� !	�������

(��	����(�������	
)��	��!)��)���'�+�.,�

8�	���	�����)����	��� �
�	�)� �
 �����
�� ��������	��

�����
��!���
���	
���)������
����
����	���	��)������(��	�

���(������	��	��!)������� ����!)'��������
��!���
��(��
��

���	�����
��)�������!)����!������	�����������
��!���
���	��

���� ���� ����� 	
�� �	!���� ��� ������ ()� ��	�� �)��'�
���!	�!)�

������	��!�����	��)�����(��
��	����(������	��	��!)����
	!��

��	�� �����)�������
����
����������	��!)�	��� �)�������
����
��

��������)���������'�������������)����)���������� ��� 	
�(��

 �
��������	����������	 ������	
���
��� �	
���'�

���� �)
�	�� 	
�� ���	
�� �� ��� � ��� 	��� ����	!!)� ��*

��
��������!	������
����������	��	���
����������������������*

 	���!��� '�

��������������(��
�� �
���� ����
�� �����������!!�
��

�	����)'�8�	����������� ���� !�������������!!�
���	��	(�!*

��)���������	��!)� �
���� �'�"�� 	
�(������������� ��)�	��������

�)�������
����
�� ��	����()� 	� ���� ��� �)�����'�:������������

 �
���	�
��� 	
�(�����������
��� �������
��	
��	���
���� ��*

�	�
� �����
� �!���
��'�C�
 ��� ���� �	��!)� ����
����
�� ��*

�!���
��������� �
���	�
��� ����� �����������	��� �	
����

������� ��)�
������� ���	��!��������� ���	�
�����������'�

'�%��*������

����
�� ����������	�����,0���������������������
���,���

0������������	
��������,������
�8������	
�����������	
�� ��

	��� ���� �	��� �
� (���� !	
��	���'� ������ 	���
�� 	����(������

������ ��� ��� ��
 ���
�'� 8�	�� �����
�������� 8������ �����

� ��� 	
�� �	���� ��� ��� �	!� 	��
�� �56�� ��� ���� �)� ���

��� ��)�
�� ���� (��	������ ��� ������� ��!���� �

� ����� 	
��

 ����
�
���� 	
�� ���� �����(�!������ ���� 	
	!)���� (���� �
�

������ ��� ��� 	���
�'� 8������ ����� �
=� #�����
� 	���
�

�-��
��	!� =�� �����&� +$0,�� 	� ����	!� 	����	 �� ���� ����

��������;� #�&� ��� ��)�
�� ��� ������ ��	�� ������� �
� 8������

�!���
��� 	
�� #$&� ����
�
�� ���	
�� �� ���
�
*�
=� �	���� ���

���� !	
��	��'��
=� ��� 	� ����	!�������� ���� ��� ��)�
�� 	
��

	
	!)��
�� ���� (��	������ ��� �(4� ��� �
� ������ ��� ��-��
 ���

������
����
���� �����)��
�	��'������	����
�������
�����	��

��������(!������	
��(4� ������������	�0������'�+�/���,�

�	 �������	
����!�����	��� �	���������	��
=���� ���'�"
�

	������
�� �	 �� �

� ���� 	
�� ����
�
�� �
 !����� 	� ���	*

�	����!���	
�� �����	���
���� ����� ����� ����!)'������!���

���	� �

� ��������
�����������	���
�������� �

� ����	��	
�

�
���)'���	�� ���� ���� �!��� �����
	���� ���� ����	���
�� ��� ����

��������� �������
����� �

� ���'�=�����	���	��	 ���������!���

��� ����� �)�����'�8�� �� ������ 	
� (�� 	��	 ���� ��� ��� ��

��!���� ��� �������
��� ()� ������ ��� ���� ��� ������
�;� 	� �����

 	
�(��	��	 �������	���!����������������!!�(��	�����!!��
�	!!�

����	���
���
	(!���()�������!����'�'���
=�����
���	� ���	��*

(�!��)���!	���
�(�����
�������	
����!��'�

������ �
����	�������
=��
�8�����������
�
�����	
�� ��

���
�
*�
=��	�����������!	
��	����	!!�������
�����!������*

	��
�� �
� �
=� ��� ��	��
� 	(���� ������������ �����
��	(!)�

	(������	�*!� ��������������	�8������ �

� ���'���������	
�

������	
�� !	��� ��� ���!� �������� �
	(!���()� ���� ��������!)�

����
������	
�� �����8�����'�

8������	!!������� ��(�
������	� �� 	!����� ��������(����

 ����
�
��� 	
�� �

� ����'� ����� ��� ��
�� ()� �
 !���
�� 	�

�)������
��������!	 �����	���� ���'�"
�	������
��������
��*

�	!� �)����� ��� ��� 	���
�� (�
��
��� (�����
� ���� ����� 	
��

��!��
	�����
������
 !���
���!���
��	
����������� �������
�

�����
 !������)�����
�������(����� �����'�

8�����������
��������(�����
� ����
�
��	
�� �

� ����

�)����	
�� �
��	
 ��'��	 �� �

� ����	
�� ����
�
�� ������

��	 �!)��
���)��'��������������������
���	��
��)�����)���'��

"
� 	������
� ��� ����
�
�� 	
�� �

� ���� �)�����8������

�
 !����� 	� �
���� �� 	!!��� ��
��'�
�)!��� 	��� �!!� ���
�����

�)��� ����
����
�� 	
�� �����������'� ���)� 	��� ���������� �
�

����������������� 	���!��� �	
�����)� 	
�(��������
�	��	
*

�������!	�������	���
�� ������ ��(���	(���'�"
�	������
����

 ����
�
�� 	
�� �

� ���� �)��� ����
����
��� 	� ��)!�� 	
�

�
 !���� ���������� �
0�� ����
����
�'� ���)� 	��� ��� ���� ��*

� ������
����	�� 	
�(��������
������	
����!������
����
�'��

�)�������
����
���
���)!��� 	
�(���	�	���������'���	������

�	������������)�������
����
� 	
�(��!�������
�	
��	��	!��� 	
�

(�� ��!!��� �
����
� ���� �)��� ��� �
��	
��	���'�?��� ��)!��� 	
�

(������
����
����������������
���
�������������(�)��
�;�����

�����)!���	�������	����)�������
����
��	
�� �
���	�
���	��

���� �!�� �
�� �!��� ����� 	������
	!� �)��� ����
����
� ��� �
*

���	�
��'��

D	��	���
��� �	
��������8������	�������!	�!)�!�������	��

���� � ���� 	!������� � ��� ����� ���� ����� �	��!)� ������

8�������������)!�'�"
����������)!�������!���
��������� �
*

���	�
�����������(��	(!��������������	��	(�!��)'�

'�'��+�����

�������!	
��	������� ��(���	(���������<�	!	�����!��	��

��,0������� 	�� 	� �	�
� �����
� �!���
�'� 9��� �
� ������ ��*

��� ����<�	!	������������	�!)���������������'�"
�<�	!	��������

���
��
����
� ��� �

� ������ ������ ���� ��
 ���
�� ��� �
*

���	�
��'������
�
���	��� �

� ���������������	���������	���

�
�<�	!	������	 �����������������������������	��	������� �
*

� ���
����
��� �
�<�	!	'����� �

� ���
�(�����
� ����*

�
��� ���
��� �)������ ;� 	� �����
 ���
� ��� �	��� (�����
�

0��
�����	
����2����������������'�6����!)�����
����	� ��*

��
�
���	��
��	�����������
����	 ����	
����	������ ����*

�
�� ������� ����� ����� �� ���� ������ ����
�
��� ��� ���'�

���!	�!)�� 	� ��-������ �
����	 �� ���
	!�� 	� ����� �� (��
�� ��*

-������ ()� ���� ����
�
�� ����� ����� ������ ����
�
�'�

<�	!	��
����	 ���	�������!	������������
��3�����E	�	'�

5�,0�������,0������� 	
�(������������������ ����*

�����
	!� ���� ����� �
� <�	!	�� �'�'� ������ ����
�
��� 	
� (��

 �
�	�
��� �����
� 	� ����
�
�'� �
� �
����	 �� ��� 	� ��*

���
�� ����
�
�� 	
�(��(��
�����	
��
����	 ������
���()�

	� �
�	�
��� ����
�
�'� �� �������������� ��� ����
��� 	�� 	�

 ����
�
����	�����
��� �
�	�
����
�	
������ ����
�
��	
��

����
���
���
����	 ��'�

"
�	������
����(�
��
���
����	 �������	 ������������������*

��(!�����(�
�� �
������
���	��������
����	 ������� �!)'�������

�	���� 	��� 	!!��� ���������'� C�
 ��� �
����	 ��� �
�<�	!	� 	���

���	���� ����
����
� �
��������	�� �

� ���
����
��'�

������ 	��� ����� !����	���
�� �
� ���� �
����	 ��� 	
� (��

 �

� ���� ��� �	 �� �����;������� !����	���
�� 	��� (���� �!!��*

��	��������� ����	������:������$'� "
� ������������ ����
�
���

	������� ����	��(�����	
���
����	 ���	���-�	���� �
�	�
�
��

���	
�!����
���������'�����-�������
����	 ��������� ����	��	�

���	
�!�� ���
��
�� ����	���� ����� ���� ����
�
��� 	
�� 	�

��������� �
����	 �� ����� 	� ���	
�!�� ���
��
�� �
�	���'� ����

(�
��
�� ��!���	��� ��	�������(��(��
��()� ���� ���� �����	 �!)�

�
��(������	
��
����	 ���	
��	
)�
��(�������
����	 ��� 	
�

(��(��
���������(������	
��
����	 �'�?��� ����	����������!���

 �����(����(�
��
���(�����
��
����	 ����
� �
�	�
��� ��*

��
�
��� 	
�� �
����	 ��� �
� �
����
��
�� ����
�
��� �'�'��

 ����
�
����� ����	��
���������� �
�	�
��������
�	
�����'�

�
��������!�� �
 ��
�
������(�
��
��������	�������)������

���������
����	 �������(��	���0���
0����������)����������(���

�
����	 �;��
����	 ���)��������	�������)������)���	 �!)����
�

)� �
�	�
��	!!�������
 ���
������'�

<�	!	��	��	��)����)����;�	������
 ���
�����	���(�����
�

(���� �
����	 �� 	
�� ����
�
�� �)���� 	
�� �
��	
 ��'�������

�������������
���	��
��)���� ����
�
������
����	 ���)����

(�)�
������������)�����!	���
���
���
���	(���'��

<�	!	��
 !�����	� �
���� ���,���������� �����	� ����*

�
�� �������� 	
� �
����	 �� ��� ���� ��
'� ����!��� 	��� �����

�
����� �����
�� ����
�
��� ���� �!��
�� �
����	 ��'�
��*

������ ���� ��	��!��� ��	�� �	 �� ����
�
�� �
�	�
��� �
� 	�

 �����
�� ����
�
�� �	��	
� �
���	!��	���
� �
����	 �� ���(��

 	!!���(���������
������ ����
�
�'�5������(�
��
����!�������

���!��
��� (�� �����(!�� ��� (�
�� 	!!� ������ �
����	 ��� ��� 	
)�

��
�!���
����	 ��������� �����
�� ����
�
�'������������	�

��� �
�����	���
� ��� ��� � ����!�� ��� 	����;� ���
� ����

�
���	!��	���
� ��
 ���
� ���� ���� �����
�� ����
�
�� ���

 	!!�������� 	!!����������������������!������ ���
����
� 	!!��

���� �
���	!��	���
���
 ���
�����	!!�
� ���	�)� ����
�
��� �
�

�����������������'�

"
� 	������
� ��� ���� �
���� ��� 	!��	�)���
���
����<�	!	�

����������� �	
����������	
�!�
��(�������������������
��'

���
� ��� ����
�
��� 	
�� ���� ����������� ��
�����
� �
� 	� �
*

�����	���
'� "
���
	!� �	����)� ��� �	
�������� 	�� �	��	���
� ���

 ����
�
�� �	�	������'� ������ �)� (�� ����
��
 ���� (�*

����
� �	�	������;� 	� �	�	������ �	!����)� ���!)� ��	�� 	
*

������ �	�	������ �	�� 	� ���	�
� �	!��'�
��� ���	!� ��������)�

����	�
�� ��� 	!���
	����� ��������� �
����	 ��� ���� 	� ��-������

�
����	 �;��'�'��������)�(����!���!�� ����
�
�����	�����*

����� ���� �	��� �
����	 �� ��-������()� 	� ���	�
� ����
�
�'�

���� ��� ��(�����
� ���� �
����	 ��� ����	���()�	� �
���� ��

 	!!�������������������	�� 	!!)����	�����	�� ����!���������������

�
����	���
���-����������������!� ���
����	�	�!	(!����������*

���������)
	�� 	!!)�	����
����'�

(�� ���!�����
������
��!��������������������
������
���������
��
�������

"
� ����� �� ���
�� ��� ���� ���� ��	������� ����
��� �
� ����

��������� �� ���
� ���� ���	��
�� ���� �
 ����� 	
�� �
*

���� ������
���
������56�������������������� �
�����	���
�

�
��!��)'�

(����+�����
��!����
���������
��������
������

�����
�
��������� �
��	!� �
 �������� ����8������	
��

<�	!	'�"�����	!��������
���
����� �
�����	���
��
��!��)������

��	�� �	���
	��'����� ���	
�� �� 	��� 	����!!� ����!	�;� ��*

��
�
��� �������
�� ���� ����
�
�� �	���� ��� 	� �)����� �
� �
*

�����	���
�����!!�
��� ���'� "
� 	������
�� �)������	������
���

�
�� ���	
��8������	
�� �
�����	���
��	������
����
�<�*

	!	� �	��� 	� ��
����	��� �
� ���� �
�����	���
� �
��!��)��

	��!)� �
�����	���
'�

����
����
���� �

� ���
����
��� ���	!��� ����
� ���	!!�

����������������!!�
���������'� "
�� ���	
��8������ ���)�

	��� 	!!��� ������ 	
�� ��!��� �
� ����
�
��� 	
�� �

� ������

����� ����!)'� "
�<�	!	� �

� ���
����
���	��� ������� �
���*

�	 ���	
���
������
��!��)������'��������	
�� ����� �

� *

���
� ���
��� 	��� 	!��� ����!	�� �
� 	!!� ���� ��� ��!�
��;� ���)�

��
���������� �	
�������� �

� ��
���������
������'�

��

� �����	��������* !	��� ���F�
���
�� ���	
��8�����'��

(���������	���
�� �

� ����� �
����� �
�����	���
��
��!��)'�

"
�<�	!	������!��� 	
�(�� �
��������	��	��������� �

� *

����'� ������ ������ ��� 	� �	4��� �������
 �� �
� ���� ���� ��� �*

�

#

� �

������� �<�	!	� ����
�
���	
���
����	 ���

�!�
����	
�!��	� ���� ���	!� �

� ���
�G�	
�������	
��������

�
�(�����56��	
���
����� �
�����	���
��
��!��)'�

8�	�����
���� ������	��
�������������	������
���
�	� ��*

�� ���	!� �

� ���
H�8��(�!�������	��	�� !�	���	��	���	!���	*

��
���������������	
 ����� �

� ������
�� ���	
��8������

 	
� (�� ���
�� �
� ���� �
���!)�
�� 	��������
�� ��� ����� 	
��

�����	!� ��� ���� �56��
��� �������� �
� ����� �	���;� 	� �	4���

������ �
� �����	��� 	� ���� ����� �	�� (��
� �����
�� ������
��

 ����
�
��'� :������������ ������ �	�� (��
� �
�����	(!��

������� �
� ���� �����	��� �
��
����
�� ����
��)� ��� ������

��������
����� ����
�
���� ��� �� 	

��� (�� �

� ����

���� �!)� ��� �	 �� ������ ���� ��� �������
�� ����
� 	���
�

�� �	
�����	
���	��������������	��
�'������������ �

� *

����� �	��� (��
� �
����� ��� �
��56�� 	�� 	� ���� !�� ���� �
*

� ��
����������
����� ����
�
��'�

"
�<�	!	�� ���� ����	���
� ��� �	����� �������
�;� ����
�
���

	�����
��	!!)��	�����������
�����	
�������������	�����������

��
���������-�������	�� �

� �����(����������
����� �
*

� ��
�� ����
�
��;�����!���	��������	��
�����'�C�
 ���

�
� ����� ����� ���<�	!	� ��� !����� ��� ���� �
�����	���
��
��!*

��)���	
�8������	
��<�	!	'�

B����� ����	���	����������
���
����� �
�����	���
��
��!*

��)�(���
����
�	
)���������56����������!	���������
����
����

��������� 	
�� ��-������ �
����	 ��� �����
�� �
� <�	!	� �
� ����

��
��� ��	�� ���)� 	��� (���� 	
��*�)������ '� 8�	�� ��� ������

������ ���	�������� ���	
�� �
������()� ����
�
����4����

	�� �
����	 ��� 	��� ��������� 	
�� ��-�����'� C�������� ��*

���� ��� 	�������� ��� 	
�� �
������ �
� ���	�
�-�	
��������

��� �� ������ ���������� ����������������� ���	���������

����
����
�������������	
����-�������
����	 ��'�

"
� 	������
� ��� ����!	��
�� ��������� 	
�� ��-������ �
���*

�	 ���������� ��� 	
�(��������������!���������!��	
��-�	
*

������'�
� �� -�	
������� �
 !���� �����)�� ������� �������

 	�	 ��)� 	
�� ����������'� ���� �����	��� �
��
����
�� ��*

��
��)� �	�� �
�������� ����!	�� ������� ������	
�� +$1,'�

C�
 ��� ������ ��� ��!�����)���!!�(��	
� ������	
�� ��	�����

��� ���� �
�����	���
� �
��!��)� ���
� ����� ��� ����!� ����*

�	���	� ���� ����'�

����!!�
����
 ���
�����	
��������	������������ �
�����	*

���
��
��!��)� ��	�� 	!!� �������56�������
���� �
� ����� �	����

!	 �'�:�
 ���
�� 	��� 	
� ������	
��	��� ����� �����	����
��*

����
�� ���	!!)� ������� ��	������ �
� ���� ���	�
� +$2,'�8��

(�!����� ��	�� 	!��� ��
 ���
�� ��!�� (�� ���)� �����!� ���
�

����!!�
�������	�������������
��!��)'�

�!!� ���� �56�� �	��� ����� �� �	
����� ���� ����!!�
��

���� ����'� C�������� ���� �
�����	���
� �
��!��)� ���������

�� �� ����
���� �� �	
����;� ���� �
�����	���
� �
��!��)�

��������� 	� ����� �	
��� ��� �	��	���
��� �	
����'� :������*

�������
����� �
�����	���
��
��!��)�	� ����
�
�� 	
�(��	�

�	��� ��� �	
)� ����
�
��� ����!�	
����!)�� ��� �� ���
���

�����(!���
�	
)���������56�'�

�!!� ���� ��� ��!�
��� �� ���� <�	!	� �	��� ���!� ��� �� �	*

�����������������
�� �
���	�
��'�:���������
�	!!���� ��!�
���

������ �
���	�
�������������)�	���!��� 	!����������
��	(����

����
�
*(��	�����	!� ����������� ��� 	� �)����� ����!!��� �
�

��	�� ��� ��!�
�'� �� �������
 �� ��� ��	�� �
� ���� �
�����	���
�

�
��!��)�����������
������ ���������������������� � �
���	�
���

	������
����
�� ��'�
���������������!!�
���������
 ���	
��

�������	���
� ������	��	���(��
����
�������	��������	
��	
��

����!������
�����������	� ���
� �
�����	���
'�

(� ��,����
����
�������
���!����
���
���
����

�!!� ���� ������ �56�� �	��� ����� �����
 ���
� (�����
�

�)���� 	
�� �
��	
 ��'� "
� � ���� ���� �����
 ���
� ��� �	�����

��	���	�� ���� �)����)������ 	
�(�����
�	��	�����!���	 ���

���	
���
� �� �	
���'� ?�������!����� ������ ��� �	��
��)�

(�����
������ ����)���'���������	���
�����	���������!	���
�

8�����;��)����(�	��	�!���!����	
�
��	���� �'������
!)���
 *

���
�����)�������������(���	 �!��	��
���
�����
�
��	
��	!���*

�
�� �� ����
�� �	����
�'� "
� <�	!	�� ���� ������)��� ��!	���
�

 �
���	�
��� (�
��
��� (�����
� �
����	 ��'� ����� ��!	���
� ���

���� ��������� �� !	���� ���!� ��!)�� (��� ���!� ��!)� (���� �
�

�
����	 �� �)���'� ���� ����
�
�� �)���� ����� ��� �	���
��

��
 ���
�(�)�
������
�
���������� ��������	�������� ����*

�
��'�C�
 ��� ����
�
�� �)���� ����� ���(��	��	� �
���� ��

	����	��	���)�����
�� ���	
��8�����'��

"
� ���� �
�����	���
� �
��!��)�� ����
�� �����
 ���
� (�*

����
��)����	
���
��	
 �������
���������(�� �	��������
��

	
������	�������	!!���
�������
������'��)����	������	
������
�

�	��
�����'�

(�%��
�������
������
�����

��-������
� !���!)���!	������������������
 ���
�����)����

	
���
��	
 �����;�8�	�����(��
������!!�����
������� �����	�

����� ���	��!)'����� �
�����	���
��
��!��)�	����	������!*

!�
�� ����� �� �	��!���'� ��
�����	���
� ����!� �
��!�����

����
��� ���� ����
��������������� ���� �	��!)����(���'���

!�������	��	���
��� �	
�����	�����������'�

��� ��	���� �
� ����	
	!)�������� ���	
��8�������(�������

������ !	
��	���� 	
�(�� ���
� ����������� ����� �������� ����

����!!�
�� �	��	(�!��);� ������ 	���
�� ���!� ��� �	��	���
�

�� �	
������ (��� ���� ��(�
	���
� ��� �)����� �)���� 	
��

 �
���	�
��� ����� ��� (�� 	(!�� ��� �������� ����
� ���� �����

��	����()�	������������� ��'�

"
�<�	!	�� ������ ��� ������
��!�����	(���� ���� ����
�

����������� ��� 	!!� ���� ����� ��;� ����
�
�� 	
�� �
����	 ���

����
����
��	��� ������� �
�	� ����
�
�� ���������)�	
�� ���)�

	��� ����
�����������
���)���������(�� �
���� ����+�1,'�"
�

�	 ����)�������
����
����	����()�	������������� ��������	 �!)�

�����	������
���
�
�(���	���	!��	�)����
��
��	��!)� �
*

���� ��� ���	
���
�������)!�� �
���� ���
�8�����'����������

	���
�� �
���	�
��� ��� ���!���
�� ���� ��	���� �)��� ����
�*

���
��
�<�	!	�����������������������()�<�	!	������	��	(�!��)�

�����	������	
���	��� ���	
��8�����'�

"
� ������������� �� ���
�� ����	�� ��	���� ��	��<�	!	� ��!��

����!� (���� �
���
	!� 	
�� ���� ���	!� �	����)'�C�������� �����

��	����
�� ��!	��� ��� ���� 	(�����(����	���
� ��	��<�	!	����*

������ 	� ��	���� �������� ���� �	��	(�!��)� ��	
� � ��� 	
��

8�����H�8�� !	��� ��	�� ��� 	��� ��	!�
�� ����� ���� �����
 ��

������ ��� �	��	(�!��)'� ���� �	��	(�!��)� �
�� ��� 	
��8������

 	
�(������������	
�	������������� ���������	
)�����!	��*

���������	������ �� �	��!)'�3
� �����������	
��� �����	��	���
�

�� �	
����� �
�<�	!	� ����� �������!� (��	�����	!� �	����)�

��������	�����(�������
�	���)�� 	!������ ���
��	
 �;��'�'�

	���!������
����� 	
�(��	����������
�!)�����
��
���
������

�	�	������'�3�� ������� ��� ��!�� (�� 	������ ��	�� ���� ��!���*

���
������
�������	��!�������
��	 ���	������ ���	��!)'�C��*

������ ��� �
������ ���� �	��	���
� �� �	
����� ��� ������

	(������	��!�������������
�����
���
	'�

-�� 	������
���������������������������������
��
���������
��
�������

"
�������� ���
����������������)
������������ �
�����	���
�

�
��!��)�������������	�
���������	���	� ���� ����'�8�����

�����()��	���
������ �
 ������
������56���������� �
 ����

��� �
 ����� �
� ���� �
�����	���
� �
��!��)'� �����
�
����

������� ������������ 	
�� �
���	�
��� 	��� �������
���� �
� ����

�(������ �	

��� ���
�� ������ ���� �� ��
����	����� �����	��

���� �������
�	���
� ��� �

� ����� 	
�� ��!��� ��� ����� ���(*

!��	�� '�C�
 ��������!!� �����
�� 	��	���
����� �

� �����

��� ����
�
���� 	
�� ��������� 	
�� ��-������ �
����	 ��� ���

���������������	�������)������ ��� 	���
�'�

5��� ��� !������� ��	 ��� ��� ��!!� �
!)� �����
�� ���� �	�
�

���	����������	���
�'�:�����!!����	�!����!�	������������+$�,'�

-����	������
����

��������������!��������!�
�
��

"
���	
�!	��
���������	
�� ����� �

� ������
�� ���	
��

8�������
��� �
 ������
����� �
�����	���
��
��!��)�������!���

����(��������	�� ����
�
���	
�� �

� ������	������� ������

���)�����!	������	 �������'������������ ��� ���
	���	!� ��������

 �

� ����	��	���(�)������ ����
�
���������� �	!����	
*

�� � �
���	�
��'�"
����������
�
�� �

� �������(��	���(�)���

��� ����
�
����!!��
	(!�����������������	�������������	
*

�� �� 	��� �	��������� �

� ����'� :������������ ��� 	
� ��*

��
�� ��!��� �
� �

� ����� ���(�������� �
� ���� �

� ���*�)���

 ����
�
��'� ��� �
��� �� ���� ������ ���� ��� �

� ������ ���

����
�� ����	(!�� �
���	�
��� ��	�� �
��� �� ���� ������ ���� ���

 �

� ����;��'�'� �
�8������� �����
!)� !	������	!!����� �
*

� ���
�������	��(�����
�	� ����
�
��	
��	� �

� ���'�

�(�)��
�� 	
�	!���(����������������
������
�����������

	
����-������ �
����	 ��� ������
�������'�9)�����
�
�� ��*

��
� ������)���� ���� ��������� 	
�� ��-������ �
����	 ��� ��� ���

�����(!������������!���!���
�����	
 ������	�������������
��

��� �	 �� ����� �)���� 	� ��������� 	
�� 	� ��-�����'� 9)� ���
��

 �
���	�
��� ��� ��������(!�� ���	������ ��	�� �
�	��	
��� �
 ��
*

�
�� ��������� 	
�� ��-������ �
����	 �� �)���� ��!�'� :��� �
*

��	
 ��� �����	 �� ��	�� �
�<�	!	�	���-�������
����	 �������(��

 �

� ���� ��� ��	 �!)� �
�� ��������� �
����	 �� ��� ���� �	���

�
����	 ���)��� 	
�(���	��!)� 	����������
�� �
���	�
��'�

-� ����!����
����.�������

"
���
	!���������)����<�	!	� 	
�(�� 	������������	����(*

���������
���()� ����
�
���	
�� �
���	�
��'�5���
��
 ����

(�����
� �������
�� �	�	������� 	
� (�� 	������� ���
�� �
*

���	�
���(�����
�	����(�����	!������� ����
�
���)���'�

"
� ���� �
�����	���
��
��!��)�� 	���
	!��)����	��������*

��
�������	���
�������������	�� 	
�(�� �

� ���������'��	�*

��
	!��)� 	
�(������� ��� 	�����������	��� ���������� ���	!�

��������)��
�<�	!	'�9)�����
�
�� 	���
	!��)����	������	
��
��

���� 	� ����� �������
��
�� 	� ��-������ �
����	 �����!���!�� ���*

�������
����	 ����������
����	�������� ��!��(�� �

� �������

��	������'����������
!)�	��	���	!���!����
�	����� �)��
����
��

	(������ ���
����� �������� ����!��	 ��	!!)�(�� �

� ���>�

 �
���	�
��� 	
�(��������������!�����'��

/�� #$��
���
��
�����������������
�����������
�������������

�!(���� �����
��!��)� 	�������	��	4����	������	��� ������

	!!� �������������56����	 ����� ������	������� ��	������ ����

����!!�
�������� �����!����-���������
��
�������
��!��)'�

�	�����
�� 	!!� ��� ���� ���	�(���
������������ ��
�����
���

���� ����)���-�����	���
������������������������
��
��

�������	���
� ������	�	
���������
 ����
������
��!��)'�

������ ���
�� �� �	
���� �
� ���� �
�����	���
� �
��!��)�

�����������
������.����� ����!	�� ��� �����)� �����
=� ���

������
�8�����'�"
��	 ������� �
�����	���
��
��!��)���
�����

(��	�����	!�	��� ����
����!)'�"
� 	��� �
������
��(��	������

����!��(����-�������
����� �
�����	���
��
��!��)��������!��

(��
	���	!� ��� ����
�� ���� �
���	�
�� !	
��	��� ��� ����� (�*

�	�����	!� 	��� ���� 	�� ���� �
���	�
�� !	
��	��� 	
� (�� ���
�

	����������
���
��� �	
������������
��!��)'�

<�	!	� �
 !����� ���� ������� ��� ��
����
� ��
��
��� �
�

��� ������ �
������
����
 ���
������
����	 ���	��� �

� ����

���� �!)�����	 ���������
���	����� �

� ��
���
����	 ���+�1,'�

����� �
���� �� ������ 	
� �
���
	!� ���� ����� ��� <�	!	� �
���*

�	 ��'� I���
� ��	�� �
����	 ��� ��� <�	!	� 	��� ����!!��� �����

������ �
� ���� �
�����	���
� �
��!��)�� ����� �
��	�� ��� �����

�����
���!)�
��	��������
����������(��
���
�����	(!�� �
*

� ���
� ���
��'���� 	� ����!��� ������ ��� 	� ����	� �� (�����
�

�
����	 ����
�<�	!	�	
���������
����� �
�����	���
��
��!��)'�

������ ��� 	�
��(��� ��� �����(!�� �)�� ��� 	������ ������

����� �
���
	!� ���� ����'� ���� ������ �
�� ��� ��� �	��� <�	!	�

��
 ���
������(�� �!���!���� �

� ���
'�@
�����
	��!)�������

	����	 �� �
����� ��� �	4��� ���(!���'� :����!)�� �
����	 ���

���!��!���������� ��
����	����
����� �
�����	���
��
��!��)'�

� �
�!)�� ��!!���
�� ���� 	����	 �� ���!�� !���!)� !�	�� ���

�
 ��	���� ���!����)��
�����!����������	�������� ��;���	��

	
��
����	 �� 	
� �
�	�
������	!���
 ���
�����!��������'�

���� �� �
�� 	����	 �����!�� (�� ��� �
����� �� ������*

���
	!� ���� ����� ���� ������ ��� ���� �
�����	���
� �
��!��)'�

���!��������������(!���	���	
����
����	 ���)���� �������
��

���������)������	���	��������� �������
��
�������
 ���
��	��

�������	���'������	����	 �����	���	!�
�;��������!��������!	*

���
�(�����
��
����	 ���	
����
 ���
���
�	��)� �������
�*

�
�� ��� ���� �
�������� �
�����	
��
�� ��� ���� �����'� �����

	����	 �����!����-������	4��� �	
������������
��!��)'�

0�
��
�� ��� �
��������� ��� �� ���!��
�� ���!�
�
��

����� ���� �
������������ ���� �

���!����� ��� 	
������ ��	�����

��� <�	!	� !	 ��
�� 	� ��
����	��� �
� ���� �
��!��)'� "�� ������

��	�������
��!��)����!��
�������(������
�����
��������������

�������!���������
���
�
'�

1�� ,��������
2����!�����
����!��.��������)�

���������	
�	��	��
���������
 ���
�����
	������������������

�������� �� �	��	���
������!!��� �
��������
����� ��!�
��'� "
�

���� �
�����	���
� ���	�
�� ����� ���� ��� �)�� 	!!)� ������� 	��

 �
�����	(!������� �����	������ ���	��!)'�3
�������������
*

�
�� �	�	 ������� ���������� �
 �������	����*�����
�����
��	!�

���� ����������	�!�������	��	���
��
����� �
�����	���
��+$7,'�

3
� ���� ������ �	
��� ��� �	�� ���
�� ��	�� <�	!	� ���������
��

 ����
� ���� ����� ���� 	� ���� ��� ����� ��'� "
� �	 ���<�	!	� ���

����	�������	������!!�
��	������ ���	��!)����	��������������

(�������� ������!	���
�������
���	��	�������������� ��������

�	
)� ����
	!������(���	!���������	
)��������
 ���+�0,'�

C�
 ��� ���� �
���!)�
�� 	���� ��� ���� �56� ����!!�
�� 	
��

 �
�����	���
�����!!�
��	���
������	!!)�����!	�'�

"
���������������� ���
������	����	������	��
���	����	 ���)�

�	���
�� ��!�� (�� ���
�� ���� ��
 ���
� (�
��
�� ��� <�	!	'�

3
�������(�!��)���������
����� �����	
������!	�����(!�������

�����
�����������(!��	�� � ��	����'����
��������������
���

!����*��	����!)���
����	��� �������56���	��	��������	 �� 	!�

����������� 	!�������	
 ���������!!�(�!�������	�����
������
�

����� 	������!!� �
 ��	��� ���� �����!
������� ���� �
�����	*

���
� �
��!��)� �
� ����!!�
�� �����	��� ����� ��'� �����������

���� -������
� ��;� ��� �� ��	������ ����56�� ����!�� (�����*

�!!��'������-������
� 	
��
!)�(����!!)�	
�������()�������*

 	!!)�����)�
�������	�������� ���	��!���'�

B���	� �� !���!)� ��!	���� ��� ����� �	���� �	�� (��
� �
*

�� �����	�!���'�8�����
����
�������	�!����	����������� ��*

�	��
������ �
 �������������	���	� ���� �������� ������
����

��������� �
�����	���
�����!!�
�'��������� �����	�
� �
���*

(����
���������	���;�����)�
�� ���� ��	��(�!��)���� �
�����	*

���
��� �
�-������������	����	��	(�!��)��	
	����
�'�

"
���������������

��������	!'��	������
����������������*

��
 �� ��� ���� ����	� �� 	��	� ��� �
�����	(!�� �����	��� 	
��

���
������� �������)� �
 ��
�� �
� ����	��	� +.%,'����)��	���

���� ��������� �������� ���� �
 ����� ����56�� �
� ���	�!� ���

��������� 	
)� �	���
�� ����� ������ �
 ����� ��� ������ ���

 �
�����	���
�����!!�
�����	�
'�

3
������������	
���+.�,������
���	� ����	!����������	���

 �
�����	���
��	
	����
��#
��&��
��!��)'����� �
 �����

�������
����
��!��)�	��������������������
����������������

���� �
�����	���
��
��!��)'����)�	���	�����	���������
��
��

��������!������!��������	 �	����� ������������
��	
��������*

��
��
 ����(�����
������'������
��!��)������
����	����
���

	 ��
�� ���� �

� ���
�� 	
�� �
����	 ��� (�����
� ����*

�
������	��)����'�

:�!���
������	!'��	������������	�� ��������� �
���� ��
��

 �
�����	�����(�����
�@�6���� ������
����� �
�����	���
�

�
��!�����+$�,'�������	����	 �� ��!��(����������� ��	��
��

 �
�����	����� ���� �����	��� ����� ��� 	�� ��!!'� ������ 	�*

���	 �� ��������������������
�� ���������	����	 �;� ������� ���

(���� �
� �����
��
�� �
�����	���
� �
��!����� �
� @�6��

���!�� ���� 	����	 �� ��� (���� �
� ����!!�
�� �����	��� �����

���� �
 ������������� �� �
�����	���
'�

"
� +.$,�� <J�
� �	�� �����
���� 	
� 	����	 �� ��� �����	���

 �
�����	���
� (���� �
� ���� ����� 	
�� (��	�����'� C�� �����

��	�� �	����� 	�������� ����!	�� ��� ��
���� ��	����	 ��
���� ����

��� ��)�
�� ���� (��	������ ��� 	� ����!�'� ����� 	����	 �� ���

����!	�� ���8������ �
� ��	�� ��� ��� ��(��� (���� ���� ����� 	
��

(��	�����'�8���������� ����
����
��(��	�����	!� �
���	�
���

�����	��
���� ����
������
������ �
�����	���
���� ����������

	����	 ������������
�����������'�

��:�	����� ����!�� �	��� (��
� ���������� 	�� 	� ����!!�
��

����������������	�������� ��!�
���#������'�'��+..,&'����	�*

�
�!)�� ��	����� ����!�� ��	��� �� �� ����� ���� �
�����	���
�

����!!�
�� �
 ����� �����
���� �
� ����� �	���;� ��	������� 	
��

(���� ����
�
���	
����
 ���
���
����� �
�����	���
��
��!*

��)�	������	
������
� ���������
�����	� ����'�8�	��������

���(���������
���
���������	����	 ���������	������ �
�����	*

���
� �
��!��)� �����
�������� (�����
� �� �
� 	!� 	
��
�
*

�� �
� 	!�	��� ������	������ ��������	���
���	����������!���

(����	��� ���	��� �
�	�
����
������	�������	� �)'�

6	���I�)������	!'��	������
�����������
����	
���
����*

	���� 	�
��(��� ��� ��-������
��� ���� 	� �
�����	���
� �� �*

�-��� ���� �����	��� ����� �� �	��!���� +./,'� 3�� ����

��-������
���� ���� �
�����	���
� �
��!��)� ��������� ����	�*

 �� 	!����� ����������(������ �
� 	!�	
��
�
*�� �
� 	!��
��*

������ �'�'�� ����
�
���	
�� ��
 ���
��� ����� ����!)'�:��������

�����
��!��)��
 �����	����	� �
���	�
���� �	
���'�:�
	!!)��

	�������)��� ���!� ���� �
������
���� �	
� 	!������ ��� ��	��

��������� 	� ��(���� ��� ���� �
�����	���
� �
 ����� �����
����

�
� ����� �	���� �������
��
�� ��� ���� ��-������
��� ������()�

I�)��� ��� 	!'�� ����	!����� ���� 	�����	���
� ����	� �)� 	
�� ���

	(!�� ��� 	������ �
� �
������
�� ���� ����� ��� 	�� ��-������ ()�

����� +.�,'������������ 	!�������I�)��� ��� 	!'� �	����������

�
��!����*(���� �
�����	���
� �� �
�-���� �	����� ���!����

�
� ���� �
����� ��� �����	��� ����� �� �	��!����� ��� ���!� ��	��

�
��!����*(���� �
�����	���
� �� �
�-���� �������� �
*

�����	(!������
��	!��
����	�
���������	�������� ���	��!���'�

3�� ��
������
���
�������������)�

8���	��������
����	
�	
	!)����	
�� ���	����
����������

�56�� 	
�� 	� �
 ����	!��	���
� ��� �
�����	���
� �
��!*

����'�8������
���	��	���
����������� �
 ���������56�����

������������� �
 ����	!��	���
���� �
�����	���
��
��!����'�

3��� ��	!� ��� ��� ���� ���� �
�����	���
� �
 ����� 	
�� ������

��������
�����!������ �
������
�������	�������� ���	��!���'�

8�� ���
�� ��
����	���� 	
�� !���� �������
��
 ��� �
�

���� �
�����	���
� �
��!��)� ���� ���� �	�
� �!���
��� ��� ����

�56����� �	��� �������� 	
������� 	(!�� ��� �������� 	��	�*

��
�� (�����
� ����� ��	�� ������ ��	�� �
�����	���
� !	
*

��	���� 	
� (�� ����� ���� �������
��
�� 	� ���� ���	!�

�
��!����'�:����
��	
 ���(������	�������
����
���� ����*

�
��'� :������������ ���������
	!� ���� ������ �)������

���������� �

� ���� ����
�
���	
�� �
���	�
���	������*

���
	� �����
�� �
� (���� ��� ��!�
��'� C�
 ��� ��� ������ ��	��

���� �
 ������������ �
�����	���
��
��!��)� 	
�(�����������

����!!�
�������	�������� ��'��

�	�����
�� �����	��� ��� ����56�� ������ ��� ��-����� ��*

��
��
�� ���� �
�����	���
��
��!��)'�������	��� ��� �
 !����

��
 ���
� (�
��
�� 	
�� (�
��
�� ���� �

� ���
� ���
��� ���

 �����
�� ����
�
�������� �

� ���
����
����
������

���

�	���'��
������������	
��	��� ���������!!�
��(��	�����'�3��

���� �56��� 8������ ����!�� (��	�����'� �������
	!!)�� ����

	����	 �� �����
���� ()� <J�
� 	!��� ����	������ (��	������

+.$,'�����-������
���������(��	�����	!�	��� ��� ��	!!)�	���

������	
��	
������!��(������!!������
� �
������
������*

�	�������� ���	��!���������!��(������!������������������ �

���������������	!������ ��'�����������
 �����<�	!	��	� ��*

��� �	!��56������
�� (��	����������!!�
��� ��������� ��	��

����!!�
��(��	���������
���	(��!���!)�
� ���	�)'��

������ 	��� ���!!� ���
� -������
�� 	
�� 	�
���� ���� ��������

����'��
��
��!��)�	
��	� �
�����	���
� !	
��	��� ��������*

�	�������� ��� ����!��(������
����	
��	� �
�����	���� ���*

�����
�� ����� !	
��	��� �
���� ���'������ ����� ��� ����
�!)�

�
���������'��������!!����((!)���-������
������	��
�������

��������!)����� ����
���56��	
������ �
 ����	!��	���
�����

��� ��!�
��� �� �� 	��
���� ��
��	����� 	
�� ��	����� (����

�����	���
��+$2�.0,��	
������ ���������������!����
����
�

����@�6� ����
��)��	����!!�	�� 	�������������� ��	!�����*

�	�������� �� �	��!���'������� ���!���
�� ������ 	��� ��������

	���
������ ��������)� ����	��!� 	(�!��)���� ���� �
�����	���
�

!	
��	��� �������!!�
�������	��'��
������ ������ ���(�� �
*

 ��
��� ��� ���� �����	���
	!� ���!����)� ��� �
������
��

�����	��� ����� ��'� �������� 	!� ���!����)� 	
	!)���� 	
�

�������� �
������ �
��� ����� �������(����
!)���������
��������

��	!������ �����!!��������!��	
���
����	���
��
�������	 ��*

 	!� ��	��(�!��)� ����� ����� ���
�� ��� ����'�8��
�����
�� ��*

�	���� ������ 	!� ��������� ��� ��� 	!���
� ���	�)� ��� �
������

��� �� ��� ���� ������
�� �
�����	����� 	
�� ������ ����!!�
��

!	
��	���� (���� �������� �����	��� �
�����	���
� 	�� 	� �����

���	�!���!���!���	
��
����������)'�

:�
	!!)������� �
��� ���������	����	 ������!��(������*

���'� =	��� �!	�!)� ���� ����!��� ����� ���� ���� ������	�� �����

����!���
�� 	� �
�����	���
� ����!� ��� 	� �����	��� ����� ��

�	��!)����
��	� �
�����	���� ���������� ��	
� ����	��	
�	����

��	�� 	
� (�� �	�
��'� C�������� ��� (�!����� ��	�� ������ 	���

 	������������������� ���	��!)���� ���!����
�������
 !��*

�
�����
������	
�������	��	���
����
������	������������������

���!�)��
����� �������!��������������� ����'��

��)
���������
���

8�� ��	����!!)� 	 �
��!����� ���� ��
	
 �	!� �������� �����

� 	���)� ��� :�
!	
�� #���4� �� ��.7/&� 	
��?	���
	!� �� �*

�!��)����
)����:�
!	
��#�����&'�

&�����
����

+�,� E'�9�� ���6������ ����	��� ��� ���������7������������8�7��0����� ����

�
��
������ ������'!����700�������������
*8��!�)��$%%%'�

+$,�='��'��!���
���	
��6'�?������������������ �������!�����'� ���������

���� ���������������
*8��!�)��$%%�'�

+.,��'�
��
�
�
��7���00���������������������0��������������������������

����0��������������������������'�=�5���������C�!��
���@
�������)����

�� �
�!��)��$%%%'�

+/,�9'�:	!��
���	
���'��'�:�����������'��
�� �	!� "������
���
�����	���
'�

������������������
���,����.#/&���772'�

+�,� �'� 5	���� �'� <!��
�� 	
�� 5'� 6'� � I��

����� ���'��
�� �	!� "����� �
�

��
�����	���
�5����
'�7���679���$#/&���772'�

+0,�5'��	�!�	������K���!	����� 	���
�	
����
���	�
�*9	����:�	�����������

��
�����	���
L�� 7���������� ������������� ���� ������������ 6�������

7���
��������9���������������$#/&��.2.*.71���772'�

+1,�I'� :!��� �	
���!��I'� :������ ����'�C	��!(� ���C'�
 ����
���� 	
���'�

�����
���� � K��
������
�� 6	����
)������ @��
�� I�
��	����� ��
*

���	�
��
	����	 ���
L��������������������
���,����.#/&���7*02���772'�

+2,�9'�M��	
��E'�
����		�����K����
�����	���
����!����"
 ��	���=���� ��

�����������
���L��������������������
���,����.#/&��./*/����772'�

+7,�
'�D���	!�����������)�3��������	
������	����
����:������ ���� �����

5�� ������
� 6	
��	���'� �� �
� 	!� �������� C�
�)��!!�
)������ N�

B���	� ����
������77.��

+�%,�?'���������� �	
��B'��'��)!�����K���!	����� 	���
�	
������	����
�

:�	������� ����
����	��� �� ���� ����� 5�� ������
� 6	
��	���L��

���$0#�&��1%*7.��$%%%'�

+��,� 5'� I	�!	
�� B'� �'���
����� 	
��5'�8�!��� � K� ��;� �
� �� ���� �����

5�� ������
� "
��� �	
��� 6	
��	��L�� �
;� ����������� ��� 57�'

5:&;"<���771'�

+�$,�5'�I	�!	
��B'��'���
�����	
��5'�8�!��� � K� ��;��� ���� ���	!�5�*

� ������
���������
�
�*9	����
)�����L�� �
;�%��������������5�,'

0�����'������ �
���,��� I'� �'� 6�	��
�� 	
�� �'�
��	�	�	
�� ���'��

�	�(������@
�������)�=������/1*02��$%%%'�

+�.,�B'� �'���
�����5'�I	�!	
�� 	
��5'�8�!�'� � ���B�����
 ���	
�	!'�

��	�!	(!�� 	�� ����;OO���*$' �' ��'���O	��O �O���4� �O	(!�O���O�

� ��8�(O����P$%
��	��	
�	!'���!�� � $%%$'� ������ E	
�	�)�

�%����$%%.'�

+�/,�B'��!!�
�	
��5'�I	�!	
���K��:���	!�9	���������� ���� ���	!���

� *

���
L��759�������������� ��� ��������� ������������ ����9�������'

��
��0#.&��$�.*$/7���771&'�

+��,�B'��!!�
��7�%��,���700������������������7�����������'�=�5���������

�	�
�������!!�
�@
�������)���771'�

+�0,� B'� �	
� 3�����
��� � K��
�����	���
� �	
	����
�� �
� �����
�
��

9	����=���� ��=���!	���
�L���
;� �������������������������1������0�

������������5�������������9�����,������59')$���$%%�'�

+�1,� B'� �	
� 3�����
��� :'� �	
� ���� 6�
��
�� E'� <�	����� 	
�� E'� �	������

K����<�	!	������
�
������!�������
�������!� ���
� ��
����	��L��

�����5�,0������..#.&��12*2���$%%%'�

+�2,� B'� �	
� 3�����
��� � K9��!��
�� =���� �� =���!	���
�� �����
����	���

�����
�
��L���
;� ������������������(=�����������������5����������

��������������������������5���($$(����$��*$0���$%%$'�

+�7,��'�
��
�
�
��E'������
�
���'���

������	
��B'�
�!�
�
���K���	����	�

I�
��	!� 3
��!��)� ��� ��
�����	���
L�� 7�� �679�� �$#/&�� .�1*.1$��

�772'�

+$%,�6'��������
����'�:�!���
����I'�:������ ������	!����K��������*��	������

	
�� ������(����� �
!�
�� ����� �� �
�����	���
� �
� ���� ��8"�3�
�

���4� �L�� �
;� �������������� �>57�'$)�1������0����5��������������

$%%�'�

+$�,��'�:�!���
����I'�:������ ���	
��5'�E	

	 ����K@�6�	��5��	�
�
��*

 ��� �6	
��	�������������
���� ���
����<
��!����*9	������
����*

�	���
�
)�����L����������������>�����������������������������������

?�����������������������%#/&��//7*/07��$%%%'�

+$$,� E'� �����
�
� 	
���'�
��
�
�
�� � ������� �������������� '� �����,������

�
���,� ��00���� ���� ������������� 0�������'� �� �
� 	!� ������� �<3*

9�.1��C�!��
���@
�������)������ �
�!��)���771��

�$.,� ='�!���
���� :'9	 ��	

�� 6'9	���� ��� 	!�� � � � 5� ���
��
��
����	���

�� ���� ������������
�8��!�)��$%%$'�

+$/,�5'�I	�!	
�� � K
����	����� ���� ����L�� �
;� ����
���0�����������������

�������������E'�E'��	� �
�	�����'��E��
�8�!�)�N�
�
���$%%�'��

+$�,� �'� ����	�
�
�� 4�0���������� ��������� ������� !���� 7�������������

	�������5�������������:������
'��	����L�� ��������C�!��
���@
����*

���)������ �
�!��)��$%%$'�

+$0,� �'� �'� B'� C�	���� 5�,,���������� ��2�������� ���������� =��
�� �*

C	!!���72�'�

+$1,�5'�I	�!	
� 	
��5'� �'� =���)�� � K"
����� ���
� ��� ����
�� �	!� "����� �
�

����	����� ���� ����L�� ������������������ ��������������������'

�����$�#/&���77�'�

+$2,� <'� �F	�
� ��� 	
�� @'� 8'� ����
� ����� @�������
�� �����,,�����

������
*8��!�)��$%%%'�

+$7,�E'������
�
���'�6����
�
���'�
��
�
�
�����	!�� � �K����!�
����
�����*

	(!�� =���� �� :	��!���L�� �
;� ����������� ��� ����)(��� ��������������

5���������� ���������������6������ ��5�6;""���@'� 6�
���	

��C'�

9����������C'�����*�	���	
��
'�D	4
	�����'����.7*��/$���772'�

+.%,��'���

�������'�
��
�
�
��	
��B'�
�!�
�
�� � K=���� ����
�����	���
�

D���� ���
����	���=���� ��:	��!���L�� �
;� �������������� ����������

�������������� 1������0� ��� ��������� 5������������� 9�����,����

��59')$���$%%�'�

+.�,� �'�
)�4�
�
�� � K"
 !���
�� 5�	�
���� � "
����	���
� �
� ��
�����	���
�

����!�L�� �
;� �������������� ����%����� ��������������5�������������

5�,0����������!������$%%%'�

+.$,�<'�<J�
���K����!�
��
��� �����	
��9��	���������<
��!����*9	����

����	�����
�����	���
L�� �
;� �������������� �����57��($$$�1���'

���0����&���4���������� �������������������������6�������E'
	����

	
��E'�<��!�������'���$%%%'�

+..,�<'�<	
��� E'�6���� 	
��='�5�
������ � K:�	����*����
����=���� ��6�
��

�
��
����
�L������������������7#/&���2*0���$%%.'�

+./,�6'�I�)���	
���'�9� ����� � K3
����� "
�!��
 �����D	��	(�!�������
�����

���!� 	���
*�
��
����
��=�� �������	�=���� ��:	��!)L���
;� ������'

����� ��� ���� ������� ��������������5���������� ��� ��������� �������

!������� !5('��$%%$'��

+.�,� E'�����
�
�� �'
��
�
�
�� "'?����!��� 	
�� B'
�!�
�
�� � Q������ 	!�

�����
�����	�8��������
���	�
��B�!��9	������
�����	���R���
;�5��'

������������������0��������)*�������0����5�������������7����������

���������������57��($$(����$%%$'�

+.0,� �'� =��������� � K:�	����*3���
���� =����	���
�;� �� :����� 6���� 	��

3(4� ��L���
;�=�� ����
��������33=L71���771'�

Product Line Derivation with UML
 1

Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement

IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

{Tewfik.Ziadi, Jean-Marc.Jezequel, frederic.fondement}@irisa.fr

1 This work has been partially supported by the CAFE European project. Eureka Σ! 2023 Programme, ITEA project ip 0004

Abstract

Handling the various derivations of a product can be a

daunting (and costly) task. To tackle this problem, we

propose a method based on the use of a creational design

pattern to uncouple the variations from the selection

process. This makes it possible to automatically derive a

given product from the set of all possible ones, and to

specialize its model accordingly. The contribution of this

paper is to provide a set of patterns for modeling

variability issues of a Product Line Architecture to define

architectural constraints for Product Line expressed in

UML as meta-level OCL constraints and to propose an

approach to automate the derivation process.

1. Introduction

Software Product Line (SPL) captures "commonality" and

“variability” between a set of software products in the

same domain. Commonality designates elements that are

common to all products while variability designates

elements that may vary from a product to another one.

Software Product Line engineering aims at improving

productivity and decrease realization times by gathering

the analysis, design and implementation activities of a

family of systems. It is based on the reuse of assets

instead of working from scratch. A Software Product Line

Architecture also called a reference architecture is a

generic architecture from which the model of each

product can be derived. The role of software product line

architecture is to describe commonalities and variabilities

of the products contained in the Product Line (PL) and, as

such, to provide a common overall structure.

To model SPL with the UML (Unified Modeling

Language) [19], we need mechanisms to specify

variabilities and commonalities, and techniques to derive

products. We also need to manage a set of constraints that

specify variation point dependencies in the PL.

This work focuses on the PL derivation activity and

proposes an approach based on a creational design pattern

to derive product models from a PL architecture modeled

by the UML. The derivation process should preserve PL

coherence, so we have defined and specified a set of PL

constraints as OCL (Object Constraint Language) meta-

model constraints. To illustrate our approach, we use a

Mercure PL.

The paper is organized as follows: Section 2 briefly

presents the Software Product Line Engineering approach

and the Mercure PL. In section 3, we propose some

mechanisms to specify variability in the UML class

diagrams. Section 4 presents PL constraints and their

specification with the OCL, and the section 5 illustrates

the derivation process. Finally section 6 concludes this

work.

2. Background in Product Line Engineering

2.1. The Software Product Line approach
The general process of Product Line Engineering, as

found in the literature [4,5,18], is illustrated in the figure

1. We distinguish two main activities:

Domain Engineering. The domain engineering activity is

twofold:

- Collecting, organizing, and storing past experiences

in building systems in the form of reusable assets (i.e.

reusable work products) in a particular domain,

- providing an adequate means for reusing these assets

when building new systems [4].

The term Developing for reuse is often used to

characterize the Domain Engineering. It can be divided in

three main processes: Domain Analysis, Domain Design,

and Domain Implementation. The domain analysis

consists in capturing information and organizing it as a

model. Some methods, such as FODA (Feature-Oriented

Domain Analysis) [13] propose a set of notations for the

domain modeling using the notion of "features" to refer to

products properties. The domain design consists in

establishing the product line architecture. The domain

implementation consists in implementing the architecture

defined during the domain design as software

components.

Application Engineering. The application engineering

activity consists in building systems based on the results

of Domain Engineering. During application requirements

of a new system, we select the requirements from the

existing domain model, which matches the customer’s

needs. We assemble applications from the existing

reusable components. The term Developing by reuse is

used to characterize the application engineering activity.

Figure 1. The general process for Product Lines
Engineering

2.2. The Software Variability Management

The main challenge in the context of software product

lines is to model and implement the variability. Even if

the product line approach is a new paradigm, managing

variability in software systems is not a new problem, and

it can be solved by some existing approaches. [14,16]

study how existing techniques can be used for the

variability management. We briefly list some of these

techniques:

Compilation techniques: it is used to derive products at

the compilation time by the inclusion or the exclusion of

code segments during program compilation. For example,

the conditional compilation can be used to manage

variability at the compilation time.

Programming languages properties: Object Oriented

Languages offer some techniques such as inheritance,

overloading, and dynamic binding that can be used to

implement variability. Variation points are defined as

abstract properties in the Product Line and each product

defines these points in a specific way. Variability can also

be implemented using class templates if the variants differ

by a set of parameters.

Design patterns: Design Patterns [8] can be used to model

variability in software product line architectures. Patterns

provide reusable solutions to certain types of problems

and support the reuse of underlying implementations. In

[12], the Abstract Factory pattern is proposed for reifying

variants (we will present in more detail this solution in

section 5). [2] proposes a set of patterns to model

variability in product line architectures based on the

notion of “Discriminants”.

Programming approaches: some recent approaches of

Software Engineering can be used for the variability

management. Aspect-Oriented paradigm [6] is an

engineering principle that aims at reducing systems

complexity: it decomposes problems into a set of

functional components and a set of aspects that crosscut

functional components. Then it composes these

components and aspects to obtain a system

implementation. Some work [9,14,17] say that this

approach can be used to implement variability. Aspects

can be viewed as variation points, and product line

members are specified by the aspects they contain.

Generative Programming [4] is a software engineering

paradigm based on the notion of “generator” for system

families. Viability in Product Line can be managed by

implementing components and generators as generic

artifacts. A specific instantiation can be used to generate

the implementation of a product.

The techniques presented above are generally related to

programming languages. We also find some work

[3,5,15] about the modeling of variability in the UML.

These work mainly are based on the UML extensions

mechanisms such as stereotypes and tagged values. We

will present in the next section mechanisms that we have

used to specify variability in UML class diagrams.

2.3. The Variability in the Mercure PL

As a case study for evaluating our approach, we consider

the Mercure PL, which is a family of SMDS (Switched

Multi-Megabits Data Service) servers whose design and

implementation have been described in [10,11]. It can

abstractly be described as a communication software

delivering, forwarding, and relaying “messages” from and

to a set of network interfaces connected into an

heterogeneous distributed system.

Mercure PL must handle variants for five variation

points: any number of specialized processors (Engines),

network interface boards (NetDriver), levels of

functionality (Manager), user interface (GUI) and support

for languages (Language). To identify variabilities in the

Mercure PL, we specify its domain model using FODA

notations, slightly modified and extended by [4]. We use

a set of feature kinds to specify variability and

commonality:

Mandatory features: to specify features that are common

to all products, we use mandatory features whose

ancestors are also mandatory. Mandatory features are

shown in the FODA diagram by nodes with black circles.

Optional features: it represents features that can be

omitted in some products; it is shown by nodes with an

empty circle.

Or-features: a feature may have one or more sets of direct

or-features. If the parent of a set of or-features is included

in the description of a specific product, then any

nonempty subset from the set of or-features is included.

The nodes of a set of or-features are pointed to by edges

connected by a filled arc.

 Figure 2. The FODA diagram for the Mercure PL

Figure 2. shows a feature diagram of the Mercure PL. The

Mercure consists of Engine, Net Driver, Manager, GUI,

and Language; all these features are mandatory. The

Mercure product may support one or more of Engine

1,..Engine N, we use FODA or-features to represent it. In

the same way, we define all NetDrivers and Managers

dimensions. However all Mercure products should

support one GUI, which is GUI 1, so it is defined

mandatory. Other GUIs are defined as FODA or-features.

We distinguish two categories of languages: Language

Cat1 and Language Cat2, all products should support the

first one and the second one is optional.

The FODA notations allow us to specify dependencies

relationships, called “composition rules”, between

domain features. FODA supports two types of

composition rules: the requires rule that expresses the

presence implication of two features, and the mutually-

exclusive rule that captures the mutual exclusion

constraint on feature combinations. Two rules are

identified in the context of the Mercure PL: a requires

rule is added between the Engine 1 and the Net Driver 1

while a mutual-exclusion rule is added to specify that

GUI 1 do not supports Language Cat 2 (see figure 2.)

3. Variability in UML class diagrams

The Unified Modeling Language (UML) [19] is a

standard language for the object-oriented analysis and

design. It defines a set of notations to describe different

aspects of systems. In this section, we present three

mechanisms that can be used to specify the variability in

the UML class diagram: Abstraction, Parameterization,

and Optionality.

Abstraction: Using an object-oriented analysis and design

approach, it is natural to model the commonalities

between the variants of a variation point in an abstract

class (or interface), and expressing the differences in

concrete subclasses (each variant implements the

interface in its own way).

Parameterization: the UML classes can be defined as

generic assets with a set of parameters; each product

binds these parameters in a specific way. UML class

templates can be used as parameterization classes.

Optionality: the Product Line model includes all elements

associated to all products, so in specific products some of

these elements called “optional” can be omitted. To show

optionality, we use an ad-hoc stereotype «optional» that

can be applied to classes, packages, and interfaces.

The UML class diagram in the figure 3 represents the

Mercure PL model. It basically says that a Mercure

system is an instance of the MERCURE class,

aggregating an ENGINE (that encapsulate the work that

Mercure has to do on a particular processor of the target

distributed system), a collection of NETDRIVERS, a

collection of MANAGERS (that represent the range of

functionalities available), and the GUI that encapsulates

the user preference variability factor. A GUI has itself a

collection of supported languages, which are classified

into two categories.

A UML class model of a specific derived product of

Mercure can include an optional number of Engines,

Network Drivers, Managers, GUIs, and Languages; so

these features are defined as abstract classes (Abstraction

variability mechanism) and we specify variants as

concrete subclasses with the optional stereotype. All

Mercure products should at least support one mandatory

language (LANGUAGE1-1), and one GUI (GUI1), so

these subclasses are defined without the optional

stereotype.

Figure 3. The Mercure Product Line UML class
diagram

Defining variation points as abstract classes and each

possible variant as subclass with the optional stereotype is

what we call the “abstraction variability pattern”.

4. Managing the PL constraints

[1] considers that constraints are parts of PL architectures.

Constraints define coherence rules and relationships

between elements in the architecture. As shown

previously, FODA composition rules allow us to specify

relationships between domain features. Using UML, some

work such as [15] use UML stereotypes to show

dependencies between classes.

The Object Constraints Language (OCL) [23] allows us

to attach constraints to UML models. These constraints

can be defined at meta-model level as well as model level.

In the context of Product Lines, we have identified two

types of constraints: generic constraints applying to any

PL, and specific constraints associated to a specific

Product Line and we propose to define them as OCL

meta-model constraints.

4.1 The Generic Constraints

The introduction of variation points, especially the

optionality (specified by the «optional» stereotype), in the

PL model allows us to improve genericity but it can

generate some incoherence. For example, if a non-

optional element depends on an optional one, we risk

deriving an incomplete product model. So the first type of

product line constraints defines structural properties of

any product line model to preserve its coherence. UML

can be extended by defining a set of stereotypes and a set

of meta-level constraints that are often related to these

stereotypes. So the idea for defining generic constraints is

to associate a set of constraints to the relevant stereotypes,

this solution was already used in [7] to define design

pattern occurrences in the UML. These constraints are

represented as OCL meta-model level constraints and

they will be evaluated on any product line model, see

figure 4.

The generic constraints may be seen as well-formedness

rules for the UML modeled product lines.

Figure 4. Generic constraints as OCL meta-level
constraints

Examples of the generic constraints

Generic constraints aim to preserve the PL model

coherence. In the case of the static model represented by

the UML class diagram, we have defined the dependency

and the inheritance constraints:

The dependency constraint. A dependency in the UML

specify a require relationship between two or more

elements. It is represented in the UML meta-model [19 p

2.15] by the meta-class Dependency (see appendix), it

represents the relationship between a set of suppliers and

clients. An example of the UML Dependency is the

"Usage", which appears when a package uses another

one. If a non-optional element is depending on an

optional one, there’s incoherence in the model. To specify

this rule, we add the following constraint as an invariant

to the Dependency meta-class in the UML meta-model

[19 p 2.15], where isStereotyped(S) is an auxiliary

Instance of

PL1 Model

Evaluated on Defined on

Extended

M2for PL

Generic constraints

PL2 Model

PLn Model

UML meta-model level (M2) UML model level (M1)

………….
{ Exclusion

constraint}

{ Presence

constraint}

………….

<<optional>>

<<optional>>

<<optional>>

<<optional>>

<<optional>>

………….

………….

Mercure

Engine

Net Driver

Manager

GUI

<<optional>>

 Engine 1

<<optional>>

Net Driver 2

Message

language

LanguageCat 1

Language Cat 2

Language 1-2

Language 1-1

Language 2-1

Language 2-2

1

Observe

1..*

1

1

1
1

1 1..*

1..2

1..*

Use

1..*

1..*

1..*

1..*
bufffers

1 1..*
Use

available

<<optional>>

 Engine N

<<optional>>

Net Driver N

<<optional>>

Manager 1

<<optional>>

Manager N

 GUI N

<<optional>>

 GUI 1

primitive indicating if an element is stereotyped by a

string S (see appendix):

context Foundation::Core::Dependency
-- For each Dependency: if the supplier is
optional the client should be optional too
inv:
 self.supplier → exists(S:ModelElement |
 S.isStereotyped (‘optional’)) implies
 self.client → forAll(C:ModelElement |
 C.isStereotyped(‘optional’))

The inheritance constraint. Optional classes in Product

Line model can be omitted in some products then, if a

non-optional class inherits from an optional one, perhaps

there is incoherence in the product model. However, in

some cases, in particular when the product line model

includes the multiple inheritance, it can be correct. But it

is more advisable to generate a warning if the static model

includes a non-optional class which inherits from an

optional one. The inheritance is represented in the UML

by the meta-class Generalization [19 p 2.14] (see

appendix). The inheritance constraint is added as an

invariant to the Generalization meta-class:

context Foundation::Core ::Generalization
-- For each generalization: if the parent is
optional the child should be optional too
inv:
 self.parent.isStereotyped (‘optional’) implies
 self.child.isStereotyped(‘optional’)

Applying this to the Mercure PL model, LANGUAGE2-1

and LANGUAGE2-2 classes appear to be defined as

optional because their parent (LANGUAGE_CAT2) is

optional and there is not a multiple inheritance.

4.2 The Specific Constraints

A fundamental characteristic of product lines is that not

all elements are compatible. That is, the selection of one

element may disable (or enable) the selection of others.

The set of constraints that define variation points

dependencies in the specific product line are called

“Specific Constraints“. As generic constraints, we

propose to specify specific constraints as OCL meta-level

constraints. The aim of these constraints is to add

dependency relationships between model elements, they

are associated to a specific product line and will be

evaluated on all products, derived from this PL, see figure

5.

The specific constraints are parts of the PL model

definition.

Examples of specific constraints

A PL class diagram is defined to be as generic as possible

and it should include elements related to all products. We

have defined the presence and the mutual exclusion

constraint as examples of specific constraints and we

propose to define them as Model meta-class invariants [19

p 2.189]. A Model is a namespace that contains a set of

ModelElement whose names designate a unique element

within the namespace.

Figure 5. Specific constraints for PL model as
OCL meta-level constraints

The presence constraint. This constraint is close to the

requires rule in FODA, it expresses in a specific PL

model that the presence of an optional class requires the

presence of another optional class. To specify a require

relationship between ENGINE1 and NETDRIVER2

classes in the class diagram of the Mercure PL, we add

the following OCL meta-model constraint as a Model

meta-class invariant, where the presenceClass(C) is an

auxiliary operation indicating if a specific class called C

is present in the namespace (see appendix):

context Model_Management::Model
-- The presence in the model of the class called
‘ENGINE1’ requires the presence in the same

model of the class called ‘NETDRIVER2’
inv:
 self.presenceClass(‘ENGINE1’) implies
 self.presenceClass(‘NETDRIVER2’)

The mutual exclusion constraint. This constraint

expresses in a specific PL model that two optional classes

cannot be present in the same product. As shown

previously, GUI1 does not support LANGUGE_CAT2,

so the mutual exclusion constraint between their

associated UML classes is added as an invariant to the

Model meta-class:

context Model_Management::Model
-- A class called GUI1 and a class called
LANGUGE_CAT2 cannot be present in the same model
inv:
(self.presenceClass(‘GUI1’) implies not
self.presenceClass(‘LANGUGE_CAT2’))and
(self.presenceClass(‘LANGUGE_CAT2’) implies not
self.presenceClass(‘GUI1’))

Associated to

Derived from

Instance of

Product 1 model

Evaluated on

Defined on

Extended

M2 for PL

UML meta model level (M2) UML model level (M1)

Specific constraints

Product 2 model

Product N model

PL model

In the UML class diagram (see figure 3.), we use

graphical shorthands to show the above constraints.

5. From the Product Line to Products

Once we have analyzed the Product Line and produced

the corresponding UML Model, enriched with

constraints, we still need to handle the various derivations

of products. The PL derivation consists in generating

from the PL model the UML class diagram of each

product. As shown previously, the PL model is defined by

a set of variation points and to derive a specific product

model, some decisions (or choices) associated to these

variation points are needed. For example, each Mercure

product model should choice among the presence or non-

presence of all optional classes. So another challenge in

the context of PL engineering is to specify a “decision

model”.

A decision model represents the set of relevant decisions

and their impacts that are needed to identify one single

product of the product line [5]. In this section, we propose

to use the design pattern abstract factory as a model

decision and we propose an algorithm for the product

model derivation.

To illustrate the derivation process, we have defined three

products of the Mercure PL:

FullMercure: it is the product that includes all optional

elements. Thus, all combinations can be dynamically

bound.

CustomMercure: it is a restricted product that supports

only two different network drivers (NETDRIVER1 and

NETDRIVER2), two languages (LANGUAGE 1-1,

which is mandatory and LANGUAGE 2-1) and two GUIs

(GUI1, GUI2).

MiniMercure: is a lightest product that supports only

ENGINE1, GUI1, LANGUAGE 1-1, MANAGER1, and

NETDRIVER1.

5.1. The decision model in a Product Line

In [12], the creational design pattern abstract factory [8]

is used to refine the several variation points. This process

is easily customizable by defining an interface for

creating variants of Mercure’s five variation points

(Engines, Net Drivers, Managers, GUIs and Languages).

Obtaining an actual variant of the Mercure PL then

consists in implementing the relevant concrete factory.

The idea is originally used to simplify the Software

Configuration Management by reifying the variant of an

object-oriented software system into language-level

objects. Our aim in this section is to use this idea as a

design of the PL decision model.

The decision model of the Mercure PL is illustrated in the

figure 6. Each concrete factory is related to one product in

the Mercure PL, and each creational operation in the

different concrete factories corresponds to a variation

point. We use stereotypes to restrict the returned type of

creational operations to the possible one. For example,

the product model corresponding to the concrete factory

CustomMercure includes only GUI1, and GUI2 classes as

GUI variants. So we add two stereotypes <<GUI1>> and

<<GUI2>> to the operation new_gui().

Mercure_Factory

FulleMercure

CustomMercure

MinMercure

+make()

+new_gui():GUI

+new_language():Language

+new_network_manager():Manager

+new_netdriver():Net Driver

+new_engine():Engine

make()

+new_gui():GUI

+new_language():Language

+new_manager():Manager

+new_netdriver():Net Driver

+new_engine():Engine

make()

+<<GUI1>><<GUI2>>new_gui():GUI

+<<Language 2-1>>new_language():Language

+<<Manager1>>new_network_manager():Manager

+<<NetDriver1>><<NetDriver2>>new_netdriver():Net Driver

+<<Engine1>>new_engine():Engine

make()

+<<GUI1>>new_gui():GUI

+<<Language 1-1>>new_laguage():Language

+<<Manager1>>new_network_manager():Manager

+<<NetDriver1>>new_netdriver():Net Driver

+<<Engine1>>new_engine():Engine

Figure 6. The Abstract Factory as a model
decision for the Mercure PL

5.2. Product model derivation

At this stage, we have precisely defined the Product Line,

now we have to tackle with the automation of the

derivation process exploiting the abstraction variability

pattern and the decision model. The description of the

transformation algorithm used to derive product models is

illustrated in the figure 7. The transformation algorithm is

decomposed in three steps: variants selection, model

specialization, and the model optimization.

1. The variants selection: Variation points are defined

by return types of concrete factory operations. The

selected variants are defined by their significant

stereotypes (as names of variants). When the

operation does not define stereotypes (such as in the

FullMercure concrete factory operations), all sub

classes of its return type is selected,

2. the model specialization: it removes all optional

classes from the model, which have not been selected

in 1. However, optional ancestors of selected

variants are not removed,

3. the model optimization: it deletes unused factories

and optimize the model (i.e when there is only one

concrete class inheriting from an abstract one).

The product line model should satisfy generic constraints

before the derivation and the product model derived

should satisfy specific constraints. The generic constraints

represent the pre-conditions of the transformation

operation and the specific constraints represent the post -

conditions:

DeriveProductLine(aConcreteFactory: Class,
PL_model: Model)
 pre : -- check Generic Constraints on PL_model
 post :-- check Specific Constraints on the
product model obtained

The figure 8 illustrates the CustomMercure product

model that we have obtained after derivation of the

Mercure PL.

Figure 7. Deriving a product line UML model

Mercure

Engine 1

Net Driver

Manager 1

GUI

Net Driver 1

Message

GUI 1

language

Language 1-1

Language 2-1

1

Observe

1..*

1

1

1
1

1 1..*

1..2

1..*

Use

1..*

1..*

1..*

1..*
bufffers

1 1..*
Use

available

Net Driver 2

 GUI 2
Optimize

inheritance

Figure 8. The CustomMercure Product UML
model

6. Conclusion

We have proposed an approach based on the UML to

model and to derive Product Line models. This approach

especially focuses on static models represented by the

UML class diagrams. To achieve this, we propose the use

of the UMLAUT framework [22] combined to the Model

transformation Language (MTL).

UMLAUT is a framework for building tools dedicated to

the manipulation of models described using the UML. A

specific use is to apply a model transformation to an

UML model, automating the derivation process then

consists in writing the relevant model transformation.

This transformation retrieves the useful model elements

thanks to the selected concrete factory and then builds a

specialized UML model corresponding to the selected

Product. The challenge of such model manipulation is to

be able to transform the model accessing its meta-level

and ensuring the integrity of the derived model

accordingly to the introduced specific constraints. A new

version of the UMLAUT framework is currently under

construction in the Triskell2 team based on the MTL

language, which is an extension of OCL with the

MOF(Meta-Object Facility) architecture and side effect

features, so it permits us to describe the process at the

meta-level and to check OCL constraints (the generic

2 http://www.irisa.fr/triskell/

DeriveProductLine

Input: PL_model: Model
 aConcreteFactory: Class
Output : Product_model: Model

--Variants selection

 Initiate selectedVariantsList to empty;
for each factory operation in
 aConcreteFactory do
 initiate definedVariantsList to
 significant stereotypes of the operation;
 if definiedVariantsList is empty
 then selectedVariantsList. add(all sub
classes of the returned t yp e of the o peration);
 else
selectedVariantsList. add(definedVariantsList) ;
 endif
done

-- Model specialization

for each optional class C in PL_model do
 if (the class name of C not in
 selectedVariantsList) and (names of all sub
 classes of C not in selectedVariantsList)
 then
 delete the class C from the PL_model;
 endif
done

-- Model optimization

delete all other factories;
optimize inheritance;
Product_model := PL_model;

constrains at first sight and specific constraints once the

product model is derived). We present in appendix a

detailed description of the derivation process as example

of the MTL procedure.

As future work, we want to implement a UML profile for

Product Line (including behavior aspects as proposed in

[21]). This UML profile defines a set of stereotypes and a

set of generic constraints to ensure any PL correctness.

The user PL specification includes a set of models

enriched by specific constraints, which may guide the

derivation process. The derivation consists in applying a

transformation algorithm written in MTL.

The abstract factory derivation approach was described

here for a specific PL, which is the Mercure project. We

think that it’s possible to generalize this solution for

others product lines that use the same abstraction

variability pattern.

7. References

1. Bass, L., Clements, P., and Kazman, R. Software

Architecture in practices, Addison-Wesley, 1998.

2. B. Keepence, M. Mannion, “Using Patterns to Model

Variability in Product Families”, IEEE Software,

16(4): pages 102-108, 1999.

3. C. Atkinson, J. Bayer, and D. Muthig, “Component-

based product line lopment. the KobrA approach”, In

Proc. of the 1st Software Product Lines Conference

(SPLC1), pages 289–309,2000.

4. Czarnecki K., Eisenecker U.W., Generative

Programming: Methods, Tools, and Applications,

Addison-wesley, 2000.

5. ESAPS project deliverables. http://www.esi.es/esaps/

6. G. Kiczales, et al, “Aspect-Oriented Programming”,

In ECOOP’97 –Object Oriented Programming 11th

European Conference, 1997.

7. G. Sunyé, A. Le~Guennec, and J.M. Jézéquel,

“Precise modeling of design patterns”, In LNCS,

editor, Proceedings of UML 2000, volume 1939 of

LNCS, pages 482--496, 2000.

8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J..

Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley, 1995

9. J. Bayer, “Toward engineering product line using

concerns”, GCSE 2000, Young Workshop, 2000.

10. Jézéquel, J.-M.. Object Oriented Software

Engineering with Eiffe,. Addison-Wesley. ISBN 1-

201-63381-7, 1996

11. J-M. Jézéquel, “Object-orented design of real-time

telecom systems”, In IEEE International Symposium

on Object-oriented Real-time distributed Computing,

ISORC’98, Kyoto, Japan (April 1998).

12. J-M. Jézéquel, “Reifying Variants in Configuration

Management”, ACM Transaction on Software

Engineering and Methodology, pages 526-538, 1998.

13. Kang.k. et al Feature-Oriented Domain Analysis

Feasibility Study, SEI Technical Report CMU/SEI-

90-TR-21, November 1990.

14. M. Anastapoulos, C. Gacek,, “Implementing Product

Line Variability”, Technical report IESE report N°:

089.00/E, Franhofer IESE publication, 2000.

15. M. Clauß, “Modeling variability with UML”, In

GCSE 2001 Young researchers Workshop. 2001

16. M. Svahnberg, J. Bosch, “Issues Concerning

Variability in Software Product lines”, in F. van der

Linden, editor, Software Architecture for Product

Families International Workshop IW-SAPF-3, LNCS

1951, pp. 146-157, Springer 2000.

17. M.L. Griss, “Implementing Product-line Features by

Composing Component Aspects”, in Proceedings of

the First Software Product Line Conference, P.

Donohoe, pp. 271-288, 2000.

18. Northrop.L., A Framework for Software Product Line

Practice–Version 3.0.,

http://www.sei.cmu.edu/pLdP/framework.html#frame

work_toc, Software Engineering Institute (SEI), 2002.

19. OMG. UML specification. Version 1.4, 2001.

20. Pierre America and Steffen Thiel and Stefan and

Martin Mergel, Introduction to Domain Analysis,

ESAPS project, 2001 web = http://www.esi.es/esaps/.

21. T. Ziadi, L. Hélouët, J-M. Jézéquel, “Modeling

Behaviors in Product Lines”, International Workshop

in Engineering Requirement for Product Line

(REPL'02), Essen, 2002.

22. W.-M. Ho, J-M. Jézéquel, A. Le Guennec, and F.

Pennaneac’h, “UMLAUT: an extensible UML

transformation framework”, In Proc. Automated

Software Engineering, ASE’99, Florida, October

1999.

23. Warmer, J., and Kleppe, A.. The Object Constraint

Language – Precise Modeling with UML, Object

Technology Series. Addison-Wesley, 1998

Appendix

A.1: OCL Auxiliary operations

context
 ModelElement::isStreotyped(S : String):Boolean
 post : result =
 self.stereotype →exists(s |
 s.name = S)

context
 Namespace::presenceClass(C :String): Boolean
 post : result =
 (self.oclIsKindOf(Class) and self.name = C))
 or
 (self.presenceClass(C))

context Class::AllSubClasses() : Set(Class)
 post: result =
 self.specialization.child → iterate(c:Class;
acc: Set(Class) = Set{} | acc →
including(c) →union(c.AllSubClasses()))

context Namespace::AllClasses() : Set(Class)
 post : result =
 self.ownedElement → select(me: ModelElement|
 me.oclIsKindOf(Class)) → union
(self.ownedElement. AllClasses())

A.2: A detailed description of the derivation algorithm

--Based on OCL extended with side effect
features

ProductLineDerivation(aConcreteFactory: Class,
pl: Model)
BEGIN

--Variant selection

Set(String) definedVariants
Set(String) selectedVariants
for op in
aConcreteFactory.feature →select(f: Feature
 | f.oclIsKindOf(Operation)
and f.name.startsWith(‘new_’))
do
 Class opsReturnType :=
 (op.parameter →select(p:Parameter | p.kind =
 #return)).type
 definedVariants:= op.stereotype.name →
 intersection(
 opsReturnType.AllSubClasses().name)
 if definedVariants →isEmpty()
 then selectedVariants :=selectedVariant →
 union(opsReturnType.AllSubClasses().name)
 else selectedVariants :=selectedVariant →
 union(op.stereotype.name)
 endif
done

--Model specialization

for C:Class in pl.AllClasses()
do
 if (C.isStereotyped(‘optional’)) and
 (selectedVariant →exludes(C.name)) and
 selectedVariant →
 exludesAll(C.AllSubClasses().name)
 then
 deleteElement(C, pl)
 endif
done

-- Model optimization

aConcreteFactory.generalization.parent.specializ
ation.child →
excluding(aConcreteFactory) →collect(cf : Class|
 deleteElement(cf, pl))

optimizeInheritance(pl)

END

A.3: The Dependency and the generalization meta-classes in

the UML meta-model

Generalization GeneralizableElement

Classifier

child generalization

* 1

parent specialization

1 *

ModelElement Dependency

UsagePermission

Abstraction

supplier supplierDependency
1..* *

client clientDependency
* 1..*

Short Papers

Software Variability Management Using a Platform Based Autonomous Agents

Amar RAMDANE-CHERIF, Samir BENARIF and Nicole LEVY

PRISM, Université de Versailles St.-Quentin, 45, Avenue des Etats-Unis,

78035 Versailles Cedex, France

{rca}@prism.uvsq.fr

Abstract

System architectures embody the same kinds of

structuring and decomposition decisions that drive

software architectures. Moreover, they include

hardware/software tradeoffs as well as the selection of

computing and communication equipments, all of

which are completely beyond the realm of software

architecture. The foundation of any software system is

its architecture, that is, the way the software is

constructed from separately components and the ways

in which those components interact and relate to each

other. If the requirements include goal for variability

management, then the architecture is the design

artifact that first expresses how the system will be

built to achieves this goal. Some architectures go on to

become generic and adopted by the development

community at large: three-tier client server, layered,

and pipe-and-filter architectures are well known

beyond the scope of any single system. In this paper,

we use a platform based on multi-agents system in

order to test, evaluate component, detect fault and

error recovery by dynamical reconfigurations of the

architecture. This platform is implemented on pipe-

and-filter architecture which is applied for controlling

a mobile robot to follow a trajectory towards the

desired objective in the presence of obstacles. The

hardware/software of this architecture system is

completely monitored by the platform in order to

evolve quality attribute variability. Some scenarios

addressing the variability at architectural level is

outlined by both with and without using our platform-

based-agents. In this paper, we discuss how our

approach supports the variability management of

complex software / hardware systems.

1. Introduction
A critical aspect of any complex software system is its

architecture. The architecture deals with the structure of

the components of a system, their interrelationships and

guidelines governing their design and evolution over

time [1][2]. The architectural model of a system provides

a high level description that enables compositional

design and analysis of components-based systems. The

architecture then becomes the basis of systematic

development and evolution of software systems. It is

clear that a new architecture that permits the dynamism

reconfiguration, adaptation and evolution while ensuring

the variability management of an application is needed.

The variability is defined as the ability of a software

system or artifact to be changed, customized or

configured for use in a particular context [3][4][5]. The

architectural level reasoning about the variability quality

attribute is only just emerging as an important theme in

software engineering. This is due to the fact that the

variability concerns are usually left until too late in the

process of development. In addition, the complexity of

emerging applications and trend of building trustworthy

systems from existing, untrustworthy components are

urging variability concerns be considered at the

architectural level. In [6] the researches focus on the

realization of an idealized fault-tolerance architecture

component. In this approach the internal structure of an

idealized component has two distinct parts: one that

implements it’s normal behavior, when no exceptions

occur, and another that implements it’s abnormal

behavior, which deals with the exceptional conditions.

Software architectural choices have profound influence

on the quality attributes supported by system. Therefore,

architecture analysis can be used to evaluate the

influence of the design decisions on important quality

attributes such as variability management [7]. Another

axe of research is the study of fault descriptions [8] and

the role of event description in architecting dependable

system [9]. Software monitoring is a well-know

technique for observing and understanding the dynamic

behavior of programs when executed, and can provide

for many different purposes [10][11]. Besides variability,

other purposes for applying monitoring are: testing,

debugging, correctness checking, performance evaluation

and enhancement, security, control, program

understanding and visualization, ubiquitous user

interaction and dynamic documentation. Another strategy

is used, like a redundant array of independent component

(RAIC) which is a technology that uses groups of similar

or identical distributed components to provide

dependable services [12]. The RAIC allows components

in redundant array to be added or removed dynamically

during run-time, effectively making software

components “hot-swappable” and thus achieves greater

overall variability. The RAIC controllers use the just-in-

time component testing technique to detect component

failures and the component state recovery technique to

bring replacement components up-to-date. The approach

in [13] advocates the enforcement of variability

requirements at the architectural design level of a

software system. It provides a guideline of how to design

an architectural prescription from a goal oriented

requirements specification of a system. To achieve high

variability management of software/hardware, the

architectures must have the capacity to react to the events

(fault) and to carry out architectural changes in an

autonomous way. That makes it possible to improve the

properties of quality of the software application [14]. The

idea is to use the architectural concept of agent to carry

out the functionality of reconfiguration, to evaluate and

to maintain the quality attributes like variability

management of the architecture [15]. Intelligent agents

are new paradigm for developing software/hardware

applications. More than this, agent-based computing has

been hailed as “the next significant break-through in

software development” [16], and “the new revolution

software” [17]. Currently, agents are the focus intense

interest on the part of many sub-fields of computers

science and artificial intelligence. An agent is a computer

system situated in some environment, and that is capable

of autonomous action in this environment in order to

meet its design objectives. Autonomy is a difficult

concept to pin down precisely, but we mean it simply in

the sense that the system should be able to act without

the direct intervention of humans (or other agents), and

should have control over its own actions and internal

state. It may be helpful to draw an analogy between the

notion of autonomy with respect to agents and

encapsulation with respect to object-oriented systems. In

this paper, we propose a new approach which provide a

platform based agents. This platform will monitor the

global architecture of a system and improve variability

quality attribute. It will achieve its functional and non

functional requirements and evaluate and manage

changes in such architecture dynamically at the execution

time.

This paper is organized as follows. In the next section,

we will introduce the platform based multi-agents.

Then a strategy to achieve fault tolerance by our

platform will be presented. In section four, we

describe an example showing the application of our

platform on Pipe-and-Filter architecture and its

benefits are outlined through some scenarios about the

variability management. Finally, the paper concludes

with a discussion of future directions for this work.

2. The platform multi-agents
In recent years, agents and Multi-Agent Systems

(MAS) have become a highly active area of Artificial

Intelligence (AI) research. Agents have been

developed and applied successfully in many domains.

MAS can offer several advantages in solving complex

problems compared to conventional computation

techniques. The purpose of traditional Artificial

Intelligence is to perform complex tasks, thanks to

human expertise. This often assumes assimilation of

many competencies to be subject of centralized

programming. Moreover, in such monolithic system,

the consensus between various expertises is difficult to

model; indeed, the structure of communication

between the experts is fixed whereas it should depend

on the considered problem. Thus, a formalization close

to reality where several people work together on a

same problem is needed. Such formalism should

describe the participants and interactions between

them. This approach is the paradigm of the Distributed

Artificial Intelligence (DAI). The DAI leads to the

realization of systems known as "multi-agent" systems

allowing modeling the behavior of all the entities

according to some laws of social type. These entities

or agents have certain autonomy and are immersed in

an environment in which and with which they interact.

Their structure is based on three main functions:

perceiving, deciding and acting.

The term "agent" is subject to many interpretations.

The most used one is: "an agent is an autonomous

entity which pursues an individual goal, which is

ready to act on the environment of the system to which

it belongs and/or to interact with the other agents,

which has only one evolutionary representation of this

environment and which can perceive the other agents

thanks to the communication or the observation".

The modeling of a multi-agents system can be based

on four dimensions (figure-4-) which are: Agent (A),

Environment (E), Interaction (I), and Organization

(O). Facet A indicates the whole of the functionalities

of internal reasoning of the agent. The facet E gathers

the functionalities related to the capacities of

perception and actions of the agent on the

environment. Facet I gathers the functionalities of

interaction of the agent with the other agents

(interpretation of the primitives of the communication

language, management of the interaction and the

conversation protocols). The facet O east can be most

difficult to obtain, it relates to the functions and the

representations related to the capacities of structuring

and management of the relations of the agents between

them.

Figure 1: AEIO Facets within an agent

While following a logical reasoning, we thus manage

to perceive two layers in our platform, but it is noticed

well that we need a link between the two various

layers, since the reactive layer answers only to

stimulus, and the higher layer is dedicated to

management and reasoning. Thus, we need a layer

which interacts with the two layers, it must act on the

reactive layer by stimulating and coordinating the

actions of these agents, but also interact with the

higher layer by informing it of the state of the

architecture and the agents. This layer acts as links

between the decisional and the reactive parts of the

platform. This offers to us a division of the tasks and a

specialization of the layers. Thus we obtain the speed,

flexibility and a weaker cost of communication as well

as a greater stability of the all platform, resulting from

the cooperation and the coordination of the layers.

The other aspect of our problem is the dynamic nature

of our architecture, indeed architecture does not cease

to evolve, to reconfigure and to extend. It is

inconceivable to create a rigid and static platform

which can follow the evolution of this architecture!.

We must thus already think of such a dynamic and

evolutionary platform so that it can constantly reach

and follow the evolution of this architecture. We will

consider that our software architecture is a such board

cut out in small pieces. We consider that we can

extend this board as parts are added. We have also the

freedom to modify the parts and to make them move

on the board. While considering this example, we will

establish specific rules to the platform based multi-

agents which we will build. We will consider that the

available software architecture is divided into

localities, grouped, it forms one or several zones. This

strategy will enable us to better control the

characteristics of modifiability and extensibility of the

available architecture. The architecture of our platform

consists of three distinct layers. A layer known as

Facet A Facet E

Facet O Facet I

Environment

Agent

Agent

higher equipped with evolved agents able to

communicate with the external environment or other

agents in order to establish the plans and the adequate

strategies to achieve the desired goals. A second layer

comes in continuation, which is the intermediary layer,

located between two layers, communicates with the

higher layer and the lower layer known as a reactive

layer. The agents in the intermediary layer are less

evolved than the agents of the higher layer (equipped

with a less advanced social nature). The last layer is

the reactive layer having purely reactive agents to a

stimulus, their roles are limited exclusively to the

perception/action (figure-2-,-3- and -4-).

Figure 2: Hierarchy of the platform and representation of a zone

Figure 3: Hierarchy of the platform and diagram of a locality

2.1. The higher layer
The higher layer is the highest layer of the platform, it

is thus, more evolved than the others. This layer has

the capacity to analyze information coming from

architecture, thanks to the facet E of its agents. Thus, it

can evaluate qualities of architecture constantly and

intervene in a targeted way, since the agents have a

facet A, implying the reasoning. The facet O and I, of

the agents enter in action when the agents of the

intermediary layer do not manage to find only a

solution to a problem. The agents of the higher layer

have the capacity to organize a group of agents in the

intermediary layer (implies a cooperation) or to utilize

another agent of the higher layer (implies a

negotiation) in order to achieve the goal to seek. For

example, an agent of the intermediary layer controlling

a desired locality can add a component being in

another locality. The solution which is offered to him,

is to refer to the agent which supervises it, namely the

agent of the higher layer, which will put him in direct

contact with the agent which controls the locality

concerned if this one belonged to its own zone. In the

contrary case, the agent starts a negotiation with the

agent which supervises the locality concerned. The

agents of this layer can constantly exchange

information relating to the zone which it controls so

that they always have a global and complete

architecture vision. Each agent of this layer controls a

zone of architecture, it is responsible for a group of

agents of the intermediary layer. The planning by

analysis of environment is specific to the higher layer.

The capacities of perception of the environment and of

organization of the agents offer a greater coordination

in the platform. Thus, we facilitate the division of the

work by directing the agents toward common goals.

The agents of the higher layer act according to the

received messages from their environments and other

agents. By coordinating this information, they

establish a work plan, which targets the objective to be

reached and which defines the coordinating agents for

achieving the goal. In other words, by dividing work

according to the agents aptitudes. The agent of the

higher layer can perceive signals coming from

architecture (system) or from the agents (agent of the

higher layer or intermediary layer). The perceived

information (by using facets I,E) is sorted, classified

and decoded according to the protocol used for each

type of message. Thereafter, the agent define the

objective to be reached by identifying the place and

the type of the desired reconfiguration. Thus, it adopts

one of the strategies implemented in its knowledge

base, it is the facet reasoning of the agent. Then, the

agent establishes a plan according to the information

collected by its sensors and the available information

on the architecture in its knowledge base. By adopting

a specific plan, the agent can act in three manners: A)

Negotiation: It can start a negotiation with an agent of

the higher layer so that it can complete work, if the

desired reconfiguration is apart from its own zone. B)

Cooperation: the agent established a plan of

cooperation between the agents of the intermediary

layer, if the reconfiguration is in its own zone. C)

Action: the agent can act of itself, for example the

creation of a new agent in the intermediary layer,

carrying out a simple test or making a reconfiguration

on architecture (this action is very limited). The strong

points of this layer are: 1 - Knowledge bases

distributed and exchanged constantly between the

agents of the higher layer, which avoids the losses of

information in the event of breakdown. 2 - A very high

social character, thanks to facet O,I of the agent: thus

being able to organize agents or to negotiate with

agents an application of a task. 3 - A low number of

agents: imply a better coordination of the actions and a

weak cost of communication.

Agent of the higher layer

Agent of

Intermediary layer

Zone

Agent of the higher

layer

Agents of

Intermediary

layer

Agents of

the reactive

layer

Locality

Figure 4: Configuration of the platform

 Figure 5: Error on component Figure 6: Propagation of the fault

2.2. Intermediary layer
As its name indicates it is a layer which is placed

between the higher layer and the reactive layer. Each

agent of this layer takes care of several agents of the

reactive layer, it is responsible for a quite precise

locality. The agent itself is connected to only one

agent of the higher layer. A set of agents of the

intermediary layer forms what is called a zone. The

principal role of this layer is to take care of the good

progress of the reconfigurations imposed by the higher

layer. It is a question of controlling and coordinating

the agents of the reactive layer in order to carry out

and to achieve a goal. Another role of this layer is the

collection of information coming from the reactive

layer in order to forward them to the agent of the

higher layer. The agents of the intermediary layer can

be confronted with two kinds of problems: queries of

reconfiguration in their locality, but also outside. From

where the name of planning according to task. The

agent establishes two kinds of plans so that it can

answer to the requests which they are: a planning

centralized with the agents of the reactive layer or a

planning distributed in certain case, toward the

supervisory agent of the higher layer: A) Distributed

planning: In the intermediary layer, the agents use a

distributed planning. In the case where they are in the

incapacity to solve only the posed problem. They refer

to the agents of the higher layer. The agents of this

layer break up the problem into sub-problems and

elaborate the sub-plans so that they can be carried out

by the agents of the intermediary layer. B) Centralized

planning: In certain case, the agents are unable to

solve only the posed problem. For example, if we ask

an agent to reconfigure a locality which it does not

control, in this precise case, the plans are generated by

the higher layer. This layer has a total sight of

architecture and platform. Thus the higher layer put in

cooperation mode agents of intermediary layer in

order to carry out work requested, by dividing and

managing the work of each one. Contrary to the agents

of the higher layer, the agents of the intermediary layer

do not have advanced social character. The

communications between the agents of this layer are

simple and indirect, i.e. that they are conveyed by the

agents of the higher layer. The agents are thus limited

to an interaction with the agents of the higher layer

described above, and a communication by passage of

asynchronous message with the reactive agents by

directing acts primarily.

C A C B

Superior Layer

Locality A

Zone 1

C A CB

Locality B Locality C

C C

Intermediate Layer

Reactive Layer

Planning by analysis of environment

Planning according to tasks

Centralized

Communication by protocol

Communication by

passage of message

Action / Perception

Multi-Agents Platform

C A

C B

C C

Message

Orders and information

Informations

User message

Connector

Component C

Component A

Component B

Normal User Super User

Superior Agent

Intermediate Agent

Reactive Agent

Create component or connector CB New component New connection

Normal Responses

Failure Exceptions

Service request

Internal

exceptions

Invalid

service request

External

exception

Interface Exceptions
Invalid

service request

External

exceptions
External

exceptions

2.3. Reactive layer
This layer is the body of perception and of action of

the platform. It is equipped with purely reactive agents

which act with simple stimulus coming from the

intermediary layer. The reactive agents belong to a

locality depending on only one agent of the

intermediary layer whose they receive the plans. These

agents answer to a centralized planning and work in

cooperation. The exchange between the reactive

agents and the agent of intermediary layer is simple.

The perception induces sending simple information

toward the central agent, the action is the consequence

of a stimulus or a simple command.

3. The platform and fault tolerance

3.1. Fault at architectural level
The basic strategy to achieve fault tolerance in a

system can be divided into two steps. The first step

called error processing is concerned with the system

internal state, aiming to detect errors that are caused

by activation of faults, the diagnostic of the erroneous

states, and recovery to error free states. The second

step, called fault treatment, is concerned with the

sources of faults that may affect the system and

includes: fault Planning and fault removal.

The communication between components is only

through request/response messages. Upon receiving a

request for a service, the components will react with a

normal response if request is successfully processed or

an external exception, otherwise. This external

exception may be due to the invalid service request, in

which case it is called an interface exception, or due to

a failure in processing a valid request, in which it is

called a failure exception (Figure 5). The error can

propagate through connector of software architecture

by using the different interactions between the

components (Figure 6). Internal exceptions are

associated with errors detected within a component

that may be corrected, allowing the operation to be

completed successfully; otherwise, they are

propagated as external exceptions.

3.2. Monitoring system
Software monitoring is a well-know technique for

observing and understanding the dynamic behavior of

programs when executed and can provide for many

different purposes. Besides variability, other purposes

for applying monitoring are testing debugging,

correctness checking, performance evaluation and

enhancement, security, control, program

understanding and visualization, ubiquitous user

interaction and dynamic documentation. System

monitoring consists in collecting information from the

system execution, detecting particular events or states

using the collected data, analyzing and presenting

relevant information to the user, and possibly taking

some (preventive or corrective) actions. As the

information is collected from the execution of the

program implementation, there is inherent gap

between the levels of abstraction of the collected

events, states of the software architecture. For event

monitoring, there are basically two types of

monitoring systems based on the information

collection: sampling (time-driven) and tracing (event-

driven). By sampling, information about the execution

state is synchronously (in a specific time rate), or

asynchronously (through direct request of the

monitoring system). By tracing, on the other hand,

information is collected when an event of interest

occurs in the system. Tracing allows a better

understanding and reasoning of the system behavior

than sampling. However, tracing monitoring generates

a much larger volume of data than sampling. In order

to reduce this data volume problem, some researchers

have been working on encoding techniques. A more,

common and straightforward way to reduce data

volume is to collect interesting events only, and not all

events that happen during a program execution. The

second approach may limit the analysis of events and

conditions unforeseen previously to the program

execution. Both state and event information are

important to understand and reason about the program

execution. Since tracing monitoring collects

information when events occur, state information can

be maintained by collecting events associated to state

change. With a hybrid approach, the sampling

monitoring can represent the action of collecting state

information into an event for the tracing monitoring.

Not all events with state information should be

collected, but only the events of interest. Integrating

sampling and tracing monitoring and collecting the

state information through events reduce the

complexity of the monitoring task. The monitoring

system needs to know what are the events of interest,

what events should be collected.

3.3. Detection of faults with the platform based

agents
We will use a monitoring system based on the agents,

by implementing our platform, described above, on the

top of the architecture. Each component will be

supervised by a reactive agent, by sampling or tracing.

The reactive agents will use sampling on architecture

and collect information on the state of the components

with each interval of time predefined or limited by the

user. Another type of detection in reactive agent is the

tracing, in this case, the component generates an

external exception in the form of an event, this event

will be collected and will be transmitted towards the

intermediate agent, this event will be thereafter

analyzed, identified and then sent by this agent

towards the agent of the superior layer in order to

establish plans to correct the errors. In other words, the

signals are collected by the agents of the reactive

layer, which transmit them immediately to the

intermediate agent of its locality. This agent analyzes

this information using its knowledge base containing

the description of the errors. Thus, it will sort

information coming from the reactive agents and send

only the error messages towards the agent of the

superior layer of its zone. According to the detected

errors the superior agent establishes the plans in order

to solve the errors coming from architectural level

(Figure-7-).

Figure 7: Multi-agents platform for monitoring

3.3. The treatment process
After the phase of detection, the platform identifies the

type of error and establishes the plans in order to

achieve at architectural level the necessary

reconfigurations to correct the faults. This treatment

process uses tow types of plans, the first plans consist

to reconfigure architecture connections for finding

temporary solution of fault (disabled component or

connector), the second plans recover errors by addition

or changing disabled component or connector.

3.3.1) Reconfiguration of connections :In the

detection phase, the information travel up through the

layers of the platform in order to arrive to the superior

agent, in this decisional layer the treatment process

begins by establishing plans. The superior agent

chooses the best solution to support evolution and

changing requirements of the architecture. The

platform can reconfigure connections of architecture to

isolate the disabled components (if the platform can’t

create new components), the superior agent distributes

the plans to the intermediate agent on the locality of

fault. When the intermediate agent receives the plans,

it distributes directives to the reactive agents. The

reactive agents delete the connection of disabled

component and create new connection to isolate it.

3.3.2) Creation of new component :If the platform has

the possibility to create new component in order to

recover errors at architectural level, the superior agent

distributes plans to the intermediate agent. This agent

distributes directives to reactive agents, and the

reactive agents work together in order to delete the

disabled component and it’s connection and create

new component and it’s new connection (Figure 8).

4. Implementation of the multi-agents

platform on Pipe-and-Filter architecture

4.1. The navigation of the mobile robot in an

environment without obstacle
We dispose of a mobile robot in a flat environment, it

must go from a point initially to parameterize towards

a finale point in a plan (environment represented here

by a plan), the robot can move in a horizontal way or

vertical way, when it is immobile, it can do rotation on

itself. The mobile robot moves on a plan (Figure 9)

which we divide into six parts by taking the finale

position of robot the origin point of Cartesian

coordinates (0,0). Thus, we distinguish six possibility

approaches, if the robot is on parts 1, 2, 3 or 4, then it

manages to reach the finale desired point by deploying

a very simple navigation plan which is: an approach

on the X axis, then a final approach on the Y axis. In

both remaining cases (part 5 and 6), if the robot is on

part 6, then it uses an approach on the X axis, or if it is

on the part 5, then it starts an approach on the Y axis.

4.2. Pipe-and-Filter Architecture for the

navigation of the mobile robot in an

environment without obstacle
In an environment without obstacles, we will choose a

Pipe-and-Filter architecture which corresponds as well

as possible to our navigation strategy.

Disabled

Component
C B

Superior Layer

Locality A

Zone 1

C A
Disabled

Component

Locality B Locality C

C C

Intermediate Layer

Reactive Layer

Planning for errors recovery

Analyze information

Perception

Transmission of information

Event / State

Multi-Agents Platform

C A

C B

C C

Message

Orders and information

Sampling

User message

Connector

Component C

Component A

Component B

Event

Flow information

Superior Agent

Intermediate Agent

Reactive Agent

State

Disabled component

 Transmission of information

and stimulus

Figure 8: Multi-agents platform treatment process

Figure 9: Strategy of navigation of the mobile robot

The first component (Figure 10), “Parameter ” is used

to enter the Cartesian coordinates (X,Y) of the initial

and finale position of the mobile robot. The

component “Planning” defines the position of the

robot in the plan in order to establish the ideal

planning to reach the finale point. The component “X

approach” increments X position of the mobile robot

and the component “Y approach” increments position

Y. The component “Simulation” is charged for

displaying the robot displacement on the screen.

Example : In our example, the mobile robot is

positioned on part 1 of the plan. When the user enter

the parameters of the mobile robot (finale and initiale

positions), the component “Planning” definites the

first plan that the robot follows to reach the finale

point. Therefore, a first approach on the X axis is

activeted by the component “X Aproach”. The

component “Simulation” is also actuated at each

increment on the X axis in order to display step by

step the movement of the robot. When the component

“X Approach” finishes its approach, the positions of

New

component C B

Superior Layer

Locality A

Zone 1

C A
Failing

Component

Locality B Locality C

C C

Intermediate Layer

Reactive Layer

Distribution of plans

Distribution of tasks

Action

transmission of plans

Transmission of tasks by

stimulus

Delete/create

Multi-Agents Platform

C A

C B

C C

Message

Informations

User message

Connector

Component C

Component A

Component B

Create component or connector Flow information

Superior Agent

Intermediate Agent

Reactive Agent

Sampling State Delete component or connector

Part 3

Part 4

Part 2

Part 1

Initiale

position Initiale

position

Initiale

position

Initiale

position

Finale

position

X Approach

X Approach

X Approach

Part 5

Part 6

Y

X

Figure 10: Pipe-and-Filter architecture for the navigation of obil robot

the robot are sent towards the component “Planning”

which will define the new plan to be followed by the

robot according to its positions. The approach on the

Y axis is activated by the component “Y approach” as

well as the display of each step of the robot by the

component “Simulation”. At the end of the

incremantation on the Y axis the robot reaches its

objective.

4.3. The navigation of the mobile robot in an

environment with obstacle
The mobile robot moves in a flat environment (the

plan) with obstacles which are positioned randomly

(Figure 11). We will install a sensor on the robot

which will help the mobile robot to detect the

obstacles, when it tries to reach the final position. In

order to avoid the obstacle we will use the same basic

displacement of the robot, i.e. rotation on itself of 90°

and the vertical or horizontal way. If the obstacle is

out of the mobile robot trajectory then its origin

navigation planning will not be affected. In other case

the obstacle is on the trajectory of the mobile robot

during its X or Y approach. When the obstacle is

detected (the distance from detection of the mobile

robot depends on the range of the used sensor). The

mobile robot decreases its speed, then stops in order to

make a rotation of 90° on itself and starts to avoid the

obstacle. When this one is out of the trajectory, the

robot carries out a new planning with new X or Y

approaches to reach its finale position.

4.4. Pipe-and-Filter architecture for the

navigation of the mobile robot in an

environment with obstacle
The mobile robot moves in an environment with

obstacle, the software architecture proposed previously

is retained, but a new hardware component installed

on the robot is taking into account, it represents, in our

architecture, by a software component called the

"Scan" (Figure 12). The mobile robot will use the new

architecture which takes into account the possibility of

founding obstacles on its trajectory with each

incrementing on the Y or X axis.

4.5. The role of the platform to manage the

variability in the mobile robot navigation
The multi-agents platform will be placed on the top of

our Pipe-and-Filter architecture, and exerts on it a

permanent monitoring in order to avoid all processing

possible errors. Generally, the multi-agents platform

reacts to the events emitted by the architecture using

two distinct strategies: the reconfiguration of the

component’s connections or the creation of the new

components able to solve the arise problem.

The sensor is installed on the robot and it sweeps

sequentially its environment, in the case the sensor

detects an obstacle on its trajectory, it sends a signal

towards the component “Scan” of the software

architecture, which emits an event towards the

platform. On the level of the architecture, the error is

collected by the reactive agent which supervises the

component “Scan”. The error is then transmitted

towards its intermediate agent, this error is then

identified and sent towards the superior agent. The

superior agent establishes the plans in order to correct

the errors, in this case, the multi-agents platform will

create new components so that the robot avoids the

detected obstacle.

When the obstacle is finally out of the trajectory of the

mobile robot, the component “Planning” establishes

new plans. If these plans require a reconfiguration of

the connections, the component “Planning” emits an

event towards the platform, which is collected by the

reactive agent of the platform related to the component

“Planning”. The event is transmitted towards the

intermediate agent which identifies the event thanks to

its knowledge base describing the event which is

emitted by the software architecture. The agent of the

intermediate layer sends information towards the

superior agent, which establishes the plans so that the

error is corrected on the level of the architecture, and

distributes them to the agent of the intermediate layer.

The agent of the intermediate layer orders the reactive

agents to create the new connectors necessary to the

new navigation plan of the mobile robot.

5. Scenario of navigation of the mobile

robot on an environment with obstacle
In this scenario the mobile robot is in part 1 of the plan

(Figure 11), the final position is entered by the user.

The obstacle will be placed on the first trajectory of

the X axis. The mobile robot starts with an approach

according to the X axis. After the detection of the

obstacle by the sensor, the robot slows down for

stopping, it makes a rotation of 90° on itself. Then the

obstacle is avoided by choosing a vertical trajectory as

soon as the obstacle is not located on the X axis

trajectory, the mobile robot begins a new approach on

the X axis, then finishes by an approach on the Y axis

to achieve its finale goal.

This scenario is produced on the level of the

architecture by applying the following steps:

5.1 The mobile robot will use the starting

configuration of the architecture, and starts its

approach X.

5.2 The detection of obstacle and creation of

components: when the sensor detects the obstacle on

its trajectory it emits one signal towards the “Scan”

component, which will send an event towards multi-

agents platform (Figure 13-a). The event will be

detected by its reactive agent which transmits it

towards its intermediate agent. The agent of the

intermediate layer identifies the event and transmits

the information to its superior agent. The superior

agent establishes a plan which will be sent towards the

intermediate agent. The intermediate agent orders to

its reactive agents to create and activate new

components and their connections (Figure 13-b). The

information on the reconfiguration goes up towards

Parameter Planning X Approach Y Approach

Simulation Simulation

Planning
Objectif

Figure 11: The navigation of the mobile robot in an environment with obstacle

Figure 12 : Architecture of the navigation of the mobile robot in an environment with obstacle

the agent of the superior layer so that it will have a

precise sight of the architecture state.

5.3. The destruction of the useless components for new

planning of the navigation: the component “Analysis”

collects information relating to the position of the

robot as well as information coming from the “Scan”

component. Then, this “Analysis” component activates

both the “Escape” component which starts its plan to

avoid the obstacle and the “Simulation” component for

displaying the movement. If the obstacle is out of the

trajectory of the mobile robot, the component

“Escape” sends an event towards the platform to

restore the original configuration of the architecture

(Figure 13-c). This event is detected by the agent of

the reactive layer and transmitted to its agent of the

intermediate layer so that it can be identified. After the

identification, the intermediate agent sends

information towards its superior agent. The superior

agent will establish again so that the component

“Escape” and “Simulation” and all their connections

are destroyed. This plan will be sent to the

intermediate agent which orders to its reactive agents

related to these components and connections to begin

the destruction. These agents will be themselves

destroyed thereafter (Figure 13-d). The components

“Scan” and “planning” will be connected by the

reactive agent (Figure 13-e). All of these modifications

are transmitted to the superior agent.

5.4. The creation of new connectors for new planning

of navigation: the “Planning” component defines new

plan to reach the finale point. The component

“Planning” emits an event towards the platform

(Figure 13-f) so that new connector will be created to

connect component “X Approach” to component

“Planning” (Figure 13-g) with the aim to reactivate the

approach on X axis. The event is collected by the

reactive agent and is sent towards its intermediate

agent which will identify the new event, and send it

towards the superior agent. This agent will establish a

new plan. In this way the mobile robot will start its

movement according to the X approach, then it will

reach the finale point by an Y approach.

6. A real application
After we have established a Pipe-and-Filter

architecture for the navigation of a mobile robot in an

environment with obstacle, we have programmed an

application (Figure 14) which shows well how the

mobile robot move on the our simulator. The user has

a user-friendly and intuitive interface for various

simulations. Thus, it can parameter the initial and final

position of the robot as well as the position of the

obstacle on the screen of our simulator and also the

range of the sensor.

During simulation, the user can choose different

architectures (with or without multi-agents platform).

The importance of our platform in the maintenance of

the dependability and performance in any

circumstance, is well illustrated in the Figure 15.

Without the intervention of our platform the robot

crash on the obstacle. In Figure 16, we can see that the

initial Pipe-and-Filter architecture is modified by our

platform. During the simulation the robot detects the

obstacle, and the architecture is dynamically

reconfigured, so that the mobile robot avoids the

obstacle and reaches the finale point. The user can

parameter in the “Scan” component the range of the

sensor via the platform. If the user raises the range of

the sensor then during the simulation the robot detects

earlier the obstacle on its trajectory.

Part 4 Part 1

Finale
position

X Approach

Part 5

Part 6

Escape

X Approach

Y Approach

Parameter Planification X Approach

Y Approach

Simulation

Simulation

Planification
Objective

Scan

Scan

Parameter Planning X Approach

Simulation

Scan Planning Y Approach Scan

Multi-agents platform

Figure 13-a

Simulation

E
v

e
n

t

Parameter Planning X Approach

Simulation

Scan Analysis

Y Approach Scan

Multi-agents platform

Figure 13-b Simulation

Simulation

Escape Planning

Planning

Creation of component
Creation of

component

Parameter Planning X Approach

Simulation

Scan Analysis

Y Approach Scan

Multi-agents platform

Figure 13-c Simulation

Simulation

Escape Planning

Planning

Event

Parameter Planning X Approach

Simulation

Scan Analysis

Scan

Multi-agents platform

Figure 13-d

Simulation

Simulation

Escape Planning

Planning

Delete components Delete connections

Parameter Planning X Approach

Simulation

Scan

Y Approach Scan

Multi-agents platform

Figure 13-e
Simulation

Planning

Planning

Y Approach

Figure 13 : Scenario of navigation of the mobile robot on an environment with obstacle

Figure 14 : The presentation of the simulator

Figure 15: The crash of the robot on the obstacle without using

our platform
Figure 16 : The mobile robot avoids dynamically the obstacle by

using our platform

Parameter

Planning X Approach

Simulation

Scan

Y Approach Scan

Multi-agents platform

Figure 13-f

Simulation

Planning

Planning

Event

Parameter

Planning X Approach

Simulation

Scan

Y Approach Scan

Multi-agents platform

Figure13-g

Simulation

Planning

State of architecture at real time

Final position of robot

Position of robot at real time

Plan

Initialisation of application

Configuration of the rang of the captor

Removal of view

7. Conclusion
The right architecture is the first step to success. The

wrong architecture will lead to calamity. We can

identify causal connections between design decisions

made in the architecture and the qualities and

properties that result downstream in the system or

systems that follow from it. This means that it is

possible to evaluate an architecture, to analyze

architectural decisions, in the context of the goals and

requirements like variability management that is levied

on systems that will be built from it. The architecture

then becomes the basis of systematic development and

evolution of software/hardware systems. It is clear that

a new architecture that permits the dynamism

reconfiguration while ensuring the use of software in

multiple contexts and the ability of software to support

evolution and changing requirements in various

contexts are needed. This paper presents a new

platform based multi-agents which monitors the global

architecture of a system and manages the provided

variability. It will achieve its functional and non

functional requirements and evaluate and manage

changes in such architecture dynamically at the

execution time. In this paper we have developed our

generic platform and we have applied and

implemented it on the Pipe-and-Filter architecture.

This software/hardware architecture is used for

controlling a mobile robot to follow a trajectory

towards the desired position in the presence of

obstacles. We have showed by some scenarios the

dynamic reconfigurations related to the improvement

of the variability management through the structuring

investigation of fault-tolerant component-based

systems at architectural level of Pipe-and-Filter style.

Our approach can be extended to deal with other

architectural “non-functional” quality attributes in the

context of developing complex and reliable systems.

References

1. M. Shaw, D. Garlan, Software Architecture,

Perspectives on Emerging Discipline,

2. Prentice-Hall, Inc. , Upper Saddle River, New Jersey,

1996.

3. D. E. Perry, A. L. Wolf, Foundations for the Study of

Software Architecture, Software Engineering Notes,

17(4):40, Oct. 1992.

4. B. Randell and J. Xu, The evolution of the recovery

block concept, In software fault tolerance, chapter 1.

John Wiley sons ltd. 1995

5. M. Sloman and J.Kramer, Distributed systems and

computer networks. Prentice hall. 1987

6. D. Sotirovski. Towards fault tolerance software

architectures. In R. Kazman, P. Kruchten, C. Verhoef,

and H. Van Vliet, editors. Working IEEE/IFIP

Conference on software architecture workshop, pages

7-13, Los Alamitos, CA, 2001.

7. P. Asterio de C. Guerra et al. An Idealized Fault-

Tolerant Architectural Component, In proceeding of

WADS: Workshop on Architecting Dependable

Systems. Orlando, USA 25 May 2002.

8. S. S. Gokhale and al. Integration of Architecture

Specification, Testing and Dependability Analysis, In

proceeding of WADS: Workshop on Architecting

Dependable Systems. Orlando, USA 25 May 2002.

9. R. De Lemos and al. Tolerating Architecture

Mismatches, In proceeding of WADS: Workshop on

Architecting Dependable Systems. Orlando, USA 25

May 2002.

10. M. S. Dias and D. J. Richardson, The role of Event

Description in Description in Architecting Dependable

Systems. In proceeding of WADS: Workshop on

Architecting Dependable Systems. Orlando, USA 25

May 2002.

11. B. Shroeder, On-line monitoring, IEEE Computer, vol.

28, n. 6, June 1995. pp. 72-77.

12. R. Snodgrass, “A Relation approach to monitoring

complex systems”, ACM Trans. Computer Systems,

vol. 6, n. 2, May 1988, pp. 156-196.

13. C. Liu and D. J. Richardson, Architecting dependable

systems through redundancy and just-in-time testing. In

proceeding of WADS: Workshop on Architecting

Dependable Systems. Orlando, USA 25 May 2002.

14. M. Brandozzi and D. E. Perry, Architecture prescription

for dependable systems, In proceeding of WADS:

Workshop on Architecting Dependable Systems.

Orlando, USA 25 May 2002.

15. L. Bass, P. Clements and R. Kazman, “Software

architecture in practice” SEI Series, Addison-Wesley.

January 1998.

16. A. Ramdane-Cherif, N. Levy and Francisca Losavio.

Dynamic Reconfigurable Software Architecture:

Analysis and Evaluation.. In WICSA’02: The Third

Working IEEE/IFIP Conference on Software

Architecture. Montreal, Canada, August 25-31, 2002.

17. P. Sargent. Back to school for a brand new ABC. In: the

guardian, 12 March 1992, p28.

18. Ovum Report. Intelligent agents : the new revolution

software, 1994.

Software Testing Requires Variability

Henrik Bærbak Christensen

Department of Computer Science

University of Aarhus

DK–8200 Aarhus N

Denmark

hbc@daimi.au.dk

1 Motivation

Software variability is the ability of a software system or
artefact to be changed, customized or configured for use in
a particular context.Variability in software systems is im-

portant from a number of perspectives. Some perspectives

rightly receive much attention due to their direct economic

impact in software production. As is also apparent from the

call for papers these perspectives focus on qualities such as

reuse, adaptability, and maintainability.
However, the wish for introducing variability points into

software systems can also come from sources that are less

directly coupled with economic and end-user aspects but

more coupled to the development process itself. One source

it the wish for high quality software through test-driven

software development as advocated by eXtreme Program-

ming [1]. We will explore this perspective in this position

paper.

In test-driven software development, the development of

functionality and tests are intertwined in an iterative, short-

cycled, development process. The developed test cases are

maintained throughout the lifetime of the product and are

run very often to ensure that functionality introduced does

not invalidate the functionality of the existing code base.

Systems developed this way “grow functionality”, as func-

tionality is added in an incremental fashion where each ad-

dition ideally leads to a “micro release” that is limited but

operational and is able to be evaluated by the customer.

The requirement to keep the test cases running at all

times puts high demands on the existing code base. Adding

functionality often introduce small changes to the code base

that invalidates the test cases—often in trivial but still costly

ways. As a trivial example, it may be necessary to add a

parameter to a method signature of some class in the exist-

ing code base. While the cost of this may in itself be low,

a higher cost is usually associated with rewriting the test

cases—a major reason why tests have a tendency to become

invalid and hence useless.

Another problem with testing is instrumentation of the

product code base i.e. developers add code that is demanded

to make the tests possible rather than demanded by prod-

uct requirements. As an example, testing algorithms that

depend on random number generation are tedious unless it

is possible for the test cases to dictate the exact sequence

of “random” numbers. The problem with this instrumenta-

tion is that product code easily becomes polluted with in-

strumentation code and even testing code. This enlarges

the code base, may introduce faults on its own, and low-

ers maintainability. We therefore find it important to ensure

that product code and testing code is completely decoupled

so that no testing code or instrumentation code can be found

in the product code.

Both examples demonstrate small but recurring prob-

lems. They therefore introduce expenses associated with

test-driven approaches that accumulate if not taken care of.

In our view, these problems are best faced by perceiving

them not as testing problems but as a question of introduc-

ing variability into the code base. This viewpoint has several

benefits both for the testing aspect as well as for the result-

ing product code base. And, it adds yet another perspective

to the concept of variability.

2 Variability Points for Testing

You can perceive the problems of maintaining test cases

and instrumentation product code as variability problems.

In the first case, the aim is to reduce the number of

changes in the product code base that require changes in

the testing code. As we implicitly assumes a testing ap-

proach biased towards black box testing this means that the

contracts of the product code should remain as stable as pos-

sible as the code base evolves. Good object-oriented mod-

eling and design techniques are of course essential here, but

introducing variability points using well known design pat-

terns into the product code base is a key to further main-

tain stability. The characteristics of these variability points

are that they allow the testing code to configure the prod-

uct code appropriately for a certain test situation using the

1

same variability points as is introduced to augment (“grow”)

the product code base with new functionality. Thereby the

product code base contracts/APIs are stable. A small exam-

ple is given below.

In the instrumentation case, the aim is to avoid introduc-

ing test specific code into the product code thereby pollut-

ing it. Here variability points can be non-intrusively intro-

duced into the product code base that serves as hooks for

the testing code. Thus the testing code can create hook in-

stances that when inserted into the product code’s variability

points can monitor internal state (to aid e.g. white-box test-

ing) and/or force certain conditions by manipulating state

information to test special cases that is otherwise difficult to

set up. In the product these variability points will contain

no-operation hooks, unless they can be used to

3 Central Design Patterns

We have some experience with the sketched approach,

primarily from teaching at the university level. While the

scale of implementation effort tackled in a teaching context

is necessarily much smaller than those faced in an industrial

context, we still do not find that this invalidate the premises

on which we draw our conclusion. The problems we look

into appear at the unit testing level and at the individual vari-

ability point level. The problem of scale primarily shows

when the number of variability points grows large.

Below is a list of design patterns that are very helpful (all

from the Gang of Four book [2] except when cited):

• Abstract factoryallows us to define a number of hook

instances for a set of variability points using one ob-

ject, the factory. This is important because it al-

lows the product code contract/API to stay intact even

though new variability points are introduced. You of

course need to add a new creator method in the fac-

tory as well as introduce calls to the hook instance

from the product code but these are simple operations

that only minimally influence the product code base.

• Mediator combined with strategyor stateallows us

to partition and delegate logical tasks in the prod-

uct to “handlers” or “managers” that only collaborate

through the mediator. Typically the concrete handlers

are instantiated by an abstract factory, allowing the

testing code to configure handlers.

• Null object [3] is important because it allows us to

“turn off” unwanted functionality/strategies in the

product code from the testing code. For instance

adding advanced functionality may influence testing

of basic functionality in unwanted ways. If this influ-

ence is constrained to be done through invoking meth-

ods on appropriate handlers/strategies then the testing

code can instantiate a null object strategy for the ad-

vanced functionality and thus eliminate the unwanted

side effects for the basic testing.

3.1 Example

To quantify some of the above abstract points of view, a

small example may help to illustrate. The case is an imple-

mentation of the board game Backgammon that has served

as compulsory exercise in a university-level programming

course.

A domain model of Backgammon is complex but can

be grown naturally through a test-driven process. First ba-

sic abstractions are made operational: players, dice, points,

checkers, bars, and basic movement. Second comes the

complex subject of validating moves. Third, one needs logic

to control the logical flow of the game. And finally, if a

graphical user interface is required an appropriate coupling

must be defined and implemented.

At the basic level, you want to test basic movement of

checkers on the points—essentially viewing the board as a

structured collection of checkers. As we have not yet intro-

duced validation according to the backgammon rules, this

may include tests that accept that both red and black player

have checkers on the same point. Moving to the phase

where the game is augmented with move validation this test

must either be removed, rewritten, or (as we propose) view

validation as a variability point by designing it as a vali-

dation strategy that the move code delegates to. Thus the

basic level test code can instantiate a null validation strat-

egy, a small change, and thereby keep all basic level tests

intact.

Validation of moves depends on the dice thrown. Die

throws are by nature random and systematic testing in a ran-

dom world is, well, counter-productive. The test code needs

to control the outcome of the dice to systematically test the

validation code. Again, treating the die as a variability point

is beneficial. We introduce a strategy, a die manager that the

game utilizes. The test code can instantiate a subclassed die

manager where it has the ability to dictate the sequence of

die values thrown. Thus no changes are introduced in the

product code at all while we still retain all the power of

control in the testing setup.

The small examples also show how tests influence the

product code design towards modular and compositional de-

sign. The “trick” that allows disabling the validation code

by making it a variability point has laid the way for intro-

ducing alternative sets of rules simply by substituting the

validation strategy. While there seems less use for alter-

native dice it is still an example that the testing perspec-

tive promotes good programming practice, namely to isolate

specific and well-defined responsibility into separate com-

ponents.

2

4 Discussion

One may argue that introducing variability points in the

product base as a tool to aid testing quickly leads to a un-

maintainable situation as the product code essentially be-

comes polluted with them. This is partly right, and one

of the reasons that variability management is very interest-

ing also from the perspective advocated within this paper.

Participation in the workshop will hopefully provide insight

that makes the perspective more scalable.

One plausible technique that addresses the scalability

problem to some extent is the use of appropriate design

patterns, for instance abstract factoryessentially allows the

definition of a large number of hook instances to be grouped

and the product codes contract to stay intact, as outlined in

the discussion above.

We have found that the testing perspective provides a first

benchmark for evaluating adaptability and flexibility of a

product code base as it essentially is a first instance of reuse

and adaptation.

We have also found that testing via variability promote

code designs that are highly modular, compositional, and

adaptable.

About the Author

Henrik Bærbak Christensen is assistant professor at De-

partment of Computer Science, University of Aarhus, where

he also received his Ph.D. His research interests are soft-

ware architecture, design patterns and frameworks, software

configuration management, object-oriented techniques, and

teaching.

References

[1] K. Beck. Extreme Programming Explained. Addison-

Wesley, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reuseable Object-Oriented
Software. Addison-Wesley, 1994.

[3] B. Woolf. Null Object. In R. Martin, D. Riehle, and

F. Buschmann, editors, Pattern Languages of Program
Design 3, pages 5–18, 1997.

3

Timeline Variability: The Variability of Binding Time of Variation Points

Eelco Dolstra

Utrecht University, P.O. Box 80089,

3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Gert Florijn

SERC, P.O. Box 424,

3500 AK Utrecht, The Netherlands

florijn@serc.nl

Eelco Visser

Utrecht University, P.O. Box 80089,

3508 TB Utrecht, The Netherlands

visser@cs.uu.nl

1. Introduction

Timeline variability is the ability of a software system

to have variation points bound at different moments of the

system’s life-cycle.

Virtually every non-trivial software system exhibits vari-
ability: the property that the set of features— characteristics

of the system that are relevant to some stakeholder— can

be changed at certain points in the system’s life-cycle. The

parts of the system that implement the ability to make such

changes are called variation points. Selecting some variant

supported by a variation point is called binding the vari-

ant. Every variation point has at least one associated bind-
ing time: the moment in the system’s life-cycle at which the

variation point can be bound. A more detailed exposition of

this terminology can be found in, e.g., [7, 2].

For example, the decision to build an operating system

kernel with multiprocessor support, or to build a “light” or

“professional” version of a word processor, might be im-

plemented at build time. On the other hand, the decision

to include support for some brand of hard drive in an op-

erating system, or to use some particular language for spell

checking in a word processor, might be made at runtime.

Generally, one would like variation points to be as flex-

ible as possible with regard to binding time. That is, ide-

ally one wants to have the ability to bind a variation point

at build time, installation time, runtime, and so on. This

leads to the notion of timeline variability: that certain fea-

tures can be bound at severalstages of the life-cycle. We

do not formalise the term timelinehere. Intuitively, we use

if to refer to the set of distinguished moments during the

build and deployment process where a user can potentially

select variants. For example, the Linux operating system

kernel allows functionality, e.g., device drivers, to be in-

cluded either at build time or at runtime. However, chang-

ing features at runtime proceeds through entirely different

interfaces than changing them at build time. Similarly, the

Apache httpd webserver allows server extensions to be

included at build time or at load time, but through different

configuration mechanisms. Microsoft Office 2000 allows

components to be installed either at install time proper or

on demand, at runtime.

The concept of timeline variability—that is, variability
of binding time—should not be confused with the binding

time of variation points. In this paper we illustrate timeline

variability through two case studies, Apache and the Linux

kernel, and show that the two main technical issues in time-

line variability are inconsistent configuration interfacesand

ad hoc implementation mechanisms. We also provide some

directions for future research.

2. Examples

In this section we show some examples of timeline vari-

ability in real systems. As we shall see, implementation of

such variability is problematic. Consider, for example, a bi-

nary variation point that is bound at runtime, implemented

in C. This is not hard to implement:

if (feature) f() else g();

Moving this variation point to build time is not hard either

using conditional compilation:

#if FEATURE
f()

#else
g()

#endif

But suppose we wish to allow for this feature to be bound

both at build time and runtime. A possible implementation

would be:

#if FEATURE_BOUND_AT_BUILD_TIME
#if FEATURE

f()
#else

g()
#endif
#else

if (feature) f() else g()
#endif

which is not very elegant. For more complex variation

points, the situation becomes even worse.

2.1. The Linux kernel

The Linux kernel provides the basis for several variants

of the GNU/Linux operating system. The kernel’s job is to

virtualise the hardware (e.g., provide multitasking and vir-

tual memory) and abstract from it (e.g., provide a unifying

interface to different types of storage devices or file sys-

tems).

The Linux kernel was originally implemented as a tradi-

tional monolithic kernel. In this situation all device drivers

are statically linked into the kernel image file. Conditional

defines and makefile manipulation are used to selectively

include or exclude drivers and other features.

The disadvantage of this approach is that it closes a large

number of variation points at build time. Hence, the ker-

nel was retro-fitted with a modulesystem. A set of source

files constituting a module can be compiled into an object

file and linked statically into the kernel image, or compiled

into an object file that is stored separately and may be dy-

namically linked into a running kernel. Modules may refer

to symbols exported by other modules. A tool exists to au-

tomatically determine the resulting dependencies to ensure

that modules are loaded in the right order.

The implementation of the variation points realised

through the module system is for the most part straight-

forward. For example, operations on block or character de-

vice files are implemented through dispatch through a func-

tion pointer; this is a feature of standard C. However, these

function pointers must at some point be registered(i.e., be

made known to the system), and this cannot be done in stan-

dard C. In particular, every module exports an initialisation

function which must be called during kernel initialisation,

in the case of statically linked modules, or at module load

time, in the case of dynamically loaded modules. The C

language, however, does not provide a mechanism to iterate

over a set of function namesthat are not statically known.

For example, we have no way of calling every function

called init_module() that is linked into the executable

image.

The Linux kernel solves this problem through the tech-

nique of emitting certain data in specially designated sec-
tionsof the executable image. An invocation of the macro

__initcall(f) arranges for the address of f to be

placed in the special section .initcall.init ;

typedef int (*initcall_t)(void);

#define __initcall(f) \
static initcall_t __initcall_##f \

__attribute__((unused,__section__\
(".initcall.init"))) \

= f

A module can declare some initializer f by invoking

the macro module_init(f) . For statically linked

modules, module_init expands to an invocation of

__initcall , and so the address of f is emitted in the

.initcall.init section. We can then iterate through

all initialisers as follows:

initcall_t *call = &__initcall_start;
do {

(*call)();
call++;

} while (call < &__initcall_end);

The symbols __initcall_start and

__initcall_end are emitted at the start and end

of the .initcall.init section by the linker script that

guides the linker.

For dynamically loaded modules, on the other hand,

module_init(f) emits a symbol init_module as an

alias for f . The module loader will simply look this symbol

up and call it.

Hence, we achieve timeline variability of module activa-

tion extending to build time and runtime, through a combi-

nation of preprocessor, compiler, and linker magic.

Cross-cutting features One problem facing the scheme

implementing the module system is that it is closely tied

to the structure of source modules; it is therefore difficult

to modularise features that are not localisable into one or a

few distinct source modules, i.e., cross-cutting features. An

example is whether the kernel is built for uniprocessing or

for symmetric multiprocessing (SMP). In an SMP configu-

ration, many kernel data structures have to be guarded care-

fully against concurrent access; this affects a large amount

of code. Quantitatively, we can get an indication of the

degree to which a feature cross-cuts a system by count-

ing the ifdef s conditionalised on the feature variable. In

this case, we see that #ifdef CONFIG_SMP occurs more

that 540 times in 250 source files of version 2.4.10 of the

kernel. Because they impact so many source components,

cross-cutting features are not very well suited for dynamic

loading. Additionally, variation points such as SMP support

affect the definition of data structures, which makes it prac-

tically impossible to bind them at any time later than build

time.

Analysis A problem of the Linux kernel is its monolithic

distribution. If a feature is required that is not part of the dis-

tribution, either the kernel must be patched (e.g., the JFS file

system) or the code must be compiled separately, outside of

the kernel source tree (e.g., the ALSA sound system). Note

that the latter solution makes static linking into the kernel

impossible, the build mechanism is totally different, and it

creates more work for users. Dynamic source tree compo-

sition [3] can alleviate this problem.

Note that the timeline variability of the module system

does not directly extend to startup time, i.e., the loading of

the kernel, since the kernel may not have the ability to load

kernel modules at boot time. For example, the modules sup-

porting the storage medium and file system on which the

modules are stored must be statically linked into the kernel

to prevent a chicken-and-egg problem. In essence, the time-

line variation point has been closed with respect to startup

time by the problem domain. However, an initial ramdisk
(which is part of the kernel’s image) may be used to store

the required modules, thus extending the timeline variabil-

ity to startup time.

2.2. Apache

The Apache httpd server is a freely available web

server. In order to support various kinds of dynamic con-

tent generation, authentication, etc., the server provides a

module system. Modules can be linked statically, or dynam-

ically, at startup time. Dynamically loaded modules can be

compiled inside or outside the Apache source tree.

Apache faces the same problem as the Linux kernel: how

to register a variable set of modules (i.e., how to make stat-

ically included modules known to the core system)? The

solution used by the Apache developers is to have the con-

figuration script generate a C source file containing a list of

pointers to the module definition structures:

module *ap_preloaded_modules[] = {
&core_module,
&access_module,
&auth_module,
...

};

Note that this solution is again, in a sense, outside of the C

language; we need to generateC code (i.e., externally) in

order to deal with these open variation points.

Analysis Note that neither Apache nor the Linux kernel

take advantage of static linking beyond the fact that it may

be a necessity, e.g., dynamic linking may not be available

on some platforms on which Apache is configured, pro-

vides simplified runtime characteristics, or, in the case of

the Linux kernel, may be perceived as a security feature

(the absence of dynamic loading of kernel modules makes

it a little bit more difficult to subvert the kernel). Compile

time knowledge of the module configuration does not lead

to more efficient code, since this requires cross-module op-

timisation; many C compilers are not capable of this.

2.3. Issues

So what are the issues in timeline variability? First,

though some features can be bound at several moments

during the life-cycle, the configuration interfaces tend to

be different for each moment. For example, in the case

of the Linux kernel, a module may be included at build

time through the use of an interactive configuration tool that

shows variants, dependencies between features, and so on.

On the other hand, including a module at runtime happens

by running the modprobe command; an entirely different

interface. Likewise, Apache modules can be added at build

time through a Autoconf configure script, or at startup

time by editing a configuration file.

Second, the techniques used to implement timeline vari-

ability are ad hocnecessarily because the underlying lan-

guages do not offer the required support. Providing a varia-

tion point eitherat build time or at runtime is not hard, but

providing it at both requires quite a bit of “magic”.

3. Future Work

We have seen that timeline variability causes difficulties

at two different levels, namely, in the implementationand in

the configurationof the system.

Implementation The main implementation issue is that

variation points are not first-class citizens in conventional

programming languages and development environments,

that is, they are not represented explicitly and cannot be ma-

nipulated directly. Rather, the implementation of a variation

point happens through some mechanism that is specific to

the binding time, e.g., conditional compilation or dynamic

loading of shared libraries. This means that moving a varia-

tion point to a different binding time, or supporting binding

at multiple binding times, requires explicit and often non-

trivial modification to the system.

A partial solution to this problem is the use of staged
compilation. For example, partial evaluation may be used

to move an apparent runtime variation point to build time.

The converse—moving from build time to runtime—is gen-

erally harder. For example, it is not obvious how to deal

with conditional data structure definitions.

Configuration The main problem here is that every stage

in the life-cycle tends to present a different configuration

interface to the user. This is particularly annoying for vari-

ation points that have several binding times. In the Trans-
parent Configuration Environments(TraCE) project we aim

at generalising system configuration interfaces. TraCE con-

sists of a generic configuration interface parameterised with

a formalised feature model.

In approaches such as FODA [4] feature models are de-

scribed as graph-like structures, where the edges between

features denote certain relationships such as alternatives and

exclusion. The model therefore describes a set of valid con-

figurations that satisfy all constraints on the feature space.

Apart from being used during analysis and design, such

models can also be used to drive the configuration process

directly. For example, the CML2 [5] language was designed

to drive the configuration process of the Linux kernel on the

basis of a formal feature model of the system.

However, these models provides a staticview of the con-

figuration space: a configuration is either valid or it is not;

no timeline aspects are taken into account. In order to model

timeline aspects, it is necessary to take into account that

some feature selections, i.e., bindings of variation points,

are valid only on certain points on the configuration time-

line. Therefore, the feature model presented in this section

does not place constraints on configurations, but rather on

transitions between configurations.

Formally, a feature model for a system with a statically

fixed set of variation points has the following elements:

• A set of named variation points P and, for each varia-

tion point p ∈ P , the set of named states Sp.

• A configurationC is a mapping from variation points

to states, that is, a function P → ∪p∈P Sp.

• An initial configuration c0 ∈ C.

• A relation T ⊆ C × C expressing valid configuration

transitions; i.e., it constrains configurations. As noted

above, it is not sufficient merely to describe valid con-

figurations, since not every valid configuration can be

transformed into any other valid configuration. How-

ever, the set of valid configurations follows by com-

puting the transitive closure of the set {c0} under the

T relation.

Note that static feature models such as FODA [4], FDL

[6], and CML [5] can be transcoded into this model; they are

just different ways of expressing the valid-transition relation

T . Indeed, the main problem in making this approach useful

is to find a suitable way to specify T . Note that this is just a

usability issue; the model is as described above.

It may be argued that implementation restrictions should

not appear in the feature model (e.g. in [1], p. 117). How-

ever, they are required to generate configuration systems. In

addition, we can identify several types of constraints. First,

there are constraints that are inherent to the problem do-

main; these arise from the domain analysis. Second, some

constraints result from implementation restrictions. This

may well be the largest set in typical systems. Finally, some

constraints are not forced by the domain or implementation,

but rather are added by some stakeholder. (for example, a

system administrator restricting some end-user configura-

bility). The specification language for the feature model

should allow these constraints to be specified separately.

4. Conclusion

Timeline variability makes the configuration of software

systems more flexible by leaving open the decision about

the binding time of a feature. However, the implementa-

tion of timeline variability is often ad hoc and presented

through inconsistent configuration interfaces. Better sup-

port for timeline variability requires features models to de-

scribe the variability of a system includingits timeline vari-

ability, and transparent configuration environmentwhich

provide an abstract interface to the details of configuration

mechanisms required

References

[1] K. Czarnecki and U. W. Eisenecker. Generative Programming
— Methods, Tools, and Applications. Addison-Wesley, June

2000.
[2] L. Geyer and M. Becker. On the influence of variabilities

on the application-engineering process of a product family.

In G. J. Chastek, editor, Proceedings of the Second Software
Product Line Conference (SPLC2), volume 2379 of Lecture
Notes in Computer Science, August 2002.

[3] M. de Jonge. Source tree composition. In Proceedings:
Seventh International Conference on Software Reuse, volume

2319 of Lecture Notes in Computer Science. Springer-Verlag,

2002.
[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-oriented domain analysis (FODA) feasi-

bility study. Technical Report CMU/SEI-90-TR-21, Soft-

ware Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, 1990.
[5] E. S. Raymond. The CML2 language: Python implemen-

tation of a constraint-based interactive configurator. In 9th
International Python Conference, March 2001.

[6] A. van Deursen and P. Klint. Domain-specific language de-

sign requires feature descriptions. Submitted.
[7] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion

of variability in software product lines. In Proceeedings of
WICSA 2001, August 2001.

Enabling Reconfiguration of Component-Based Systems at Runtime

Jasminka Matevska-Meyer and Wilhelm Hasselbring

Department of Computing Science, Software Engineering Group

University of Oldenburg, Germany

{matevska-meyer, hasselbring}@informatik.uni-oldenburg.de

1 Introduction

The development of software systems iterates over analysis,

design, implementation, and deployment. Subsequent iter-

ations require refactoring [2] of design and reconfiguration

of deployed systems. At least three software engineering

disciplines are involved when dealing with runtime recon-

figuration of component-based software systems:

• software architecture,

• software configuration management, and

• software component deployment

These disciplines contribute in various ways. Software

architectures play a central role at design, describing a sys-

tem model and specifying it in a formal way using some

architecture description language [7]. Configuration man-

agement focuses on implementation, defining a configura-

tion from various component versions and building a system

from this configuration [6]. Component deployment ad-

dresses the deployment phase, managing all dependencies

among the involved components and eventually producing

a running system [1, 12].

Although these three activities may evolve indepen-

dently and provide their own models of the system, they are

all involved when reconfiguration is required (roundtrip en-

gineering). Applying planed changes to a deployed system

usually triggers changes in all those system models to obtain

a consistent system after reconfiguration. A major prob-

lem to be solved here is managing (run-time) dependen-

cies among the components. Therefore, we need a formal

system model, which covers components, their interconnec-

tion, communication, and run-time behavior, integrating all

the system models of software architecture, configuration

management and component deployment [13].

2 An Approach to Enabling Reconfiguration
of Component-Based Systems at Runtime

We aim at Reconfiguration of Component-Based Systems

at Runtime. Our proposed approach employs:

• Parameterised Contracts [8] as a method for formal

component specification, adding a formal run-time

component description technique,

• using graphs [5] to describe dependencies among com-

ponents and considering run-time concerns,

• extending C2-ADL [11] with a concept of containers

to establish modelling of a deployment and runtime

properties of a system,

This combination shall be the way to provide a foun-

dation for achieving our goals. Figure 1 displays our sug-

gested system configuration. A system configuration is de-

signed as a hierarchy using three GoF design patterns [3]:

composite, decorator and adapter.

• Composite is required to build a system configuration,

• The Decorator pattern allows functional changes to

components,

• The Adapter pattern (wrapper) allows changes of their

interfaces

Furthermore the concept of containers allows us to

manage the process of run-time reconfiguration as run-time
re-deploymentof components.

Our Reconfiguration Manager (a special type of connec-

tor) is activated on every reconfiguration request. It consists

of:

• Reconfiguration Analyzer

• Dependency Manager

• Consistency Manager

• Reconfigurator

The Reconfiguration Analyzer takes a reconfiguration
request, analyzes and classifies the requested change. Our

Dependency Manager monitors the run-time dependencies

among components, determines a minimal set of change-

affected components and sends a change requestfor each

Concrete components

Concrete decorators

Composite

0..*

0..*

Composite

Decorator

interface

PrimitiveComponent

ConcreteDecorator

ConcreteComponent

Adapter

CompositeComponent

Subsystem

Connector

Connector

Figure 1. System Configuration

involved component to the reconfigurator. The Consistency

Manager controls the system. We divide its activities into:

• Pre-Reconfiguration: checking the static consistency

of the intended system configuration and moving a

consistent system into a ready-to-configure-state, or

refusing the reconfiguration request on failure.

• Post-Reconfiguration: checking the (run-time) consis-

tency of a changed system and, on success, confirming

a reconfiguration, or sending a rollback requestto the

reconfigurator.

The Reconfigurator realizes the reconfiguration as a de-

pendent change transaction [4]. It starts a transaction, trans-

fers all affected components into a blockedstate, isolates

an affected subsystem, applies the changes, and sends a

consistency-check-requestto the consistency manager. On

success it commits the transaction, on failure it initiates

a rollback and transfers the changed or unchanged system

into a running state.

Figure 2 displays all states a component can take at sys-

tem runtime. Just after it has been deployed we assume that

it is free. We distinguish between the states busy, which

means is in useand active, which means is executed. There-

fore, a component can’t directly move into a state active
& busy. Only free components can be transferred into a

blockedstate and be changed afterwards. This means, our

reconfiguration takes place while the system is running, we

are not trying to achieve an ad-hoc component change.

We assume that a (sub)system can take only four states

at runtime: running, ready to configure, reconfiguring and
restoring(Figure 3). For each state a corresponding part of

ComponentRunTimeStates

free

passive &
busy

active
 &
not busy

active
 &
busy

blocked
 /
ready
 to
change

no
longer used

execution finished

use requested

execution finished

execution started

no
longer used

execution started

use requested

change request accepted

change completed

Figure 2. Component Run Time States

SystemRunTimeStates

ready
 to
reconfigure
running

reconfiguring

restoring

rollback completed

reconfiguration failed

reconfiguration successful

passivate
 &
isolate subsystem

reconfiguration request accepted

Figure 3. System Run Time States

the reconfiguration manager initiates and controls possible

changes from one state into another.

3 Summary

We present an approach to enabling reconfiguration of

component-based systems at runtime. This approach com-

bines the disciplines software architecture, configuration

management and component deployment.

As an implementation platform we are using J2EE-

Technology [10]. We are intending to extend its Specifi-

cation of the deployment process with a subprocess of re-
configuration[9]. Currently, we are investigating the possi-

bilities to control or manipulate the deployment process at

different application servers and develop a methodology for

determining and formally specifying dependencies among

already deployed components.

2

References

[1] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek,

D. Heimbigner, and A. L. Wolf. A characterization frame-

work for software deployment technologies. Technical Re-

port 857-98, Department of Computer Science, University

of Colorado, Apr. 1998.

[2] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] Gamma, Helm, Johnson, and Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Object-

Oriented Technology. Addison-Wesley, Massachusetts,

1995.

[4] J. Kramer and J. Magee. The evolving philosophers prob-

lem: Dynamic change management. IEEE Transactions on
Software Engineering, 16(11):1293–1306, Nov. 1990.

[5] M. Larsson. Applying Configuration Management Tech-
niques to Component-Based Systems. PhD thesis, Uppsala

University, Sweden, Dec. 2001.

[6] M. Larsson and I. Crnkovic. Configuration management for

component-based systems. In Proceedins of the Tenth Inter-
national Workshop on Software Configuration Management,

Toronto, Canada, May 2001.

[7] N. Medvidovic and R. N. Taylor. A classification and

comparison framework for software architecture description

languages. IEEE Transactions on Software Engineering,

26(1):70–93, 2000.

[8] R. H. Reussner. Parametrisierte Vertr̈age zur Protokolladap-
tion bei Software-Komponenten. PhD thesis, Universität (T.

H.) Karlsruhe, 2001.

[9] M. J. Rutherford, K. Anderson, A. Carzaniga, D. Heim-

bigner, and A. L. Wolf. Reconfiguration in the Enterprise

JavaBean component model. In J. Bishop, editor, Pro-
ceedings of IFIP/ACM Working Conference on Component
Deployment, pages 67–81, Berlin, Germany, June 2002.

Springer-Verlag Berlin Heidelberg.

[10] Sun Microsystems. Java 2 Platform, Enterprise Edition
Specification, Version 1.3, 2002.

[11] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr.,

J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow.

A component- and message-based architectural style for

GUI software. IEEE Transactions on Software Engineering,

22(6):390–406, 1996.

[12] A. van der Hoek, R. S. Hall, A. Carzaniga, D. Heimbigner,

and A. L. Wolf. Software deployment: Extending config-

uration management support into the field. CrossTalk The
Journal of Defense Software Engineering, 11(2):9–13, Feb.

1998.

[13] A. van der Hoek, D. Heimbigner, and A. L. Wolf. Soft-

ware architecture, configuration management, and config-

urable distributed systems: A ménage a trois. Technical Re-

port 948-98, University of Colorado, Department of Com-

puter Science, Software Engineering Research Laboratory,

Colorado, 1998.

3

Supporting Evolution in Software using

Frame Technology and Aspect Orientation

Neil Loughran, Awais Rashid

Computing Department, Lancaster University, Lancaster LA1 4YR, UK

{loughran | awais} @comp.lancs.ac.uk

Abstract

This paper discusses how the problems involved in

supporting evolution in software can be resolved by

using aspect oriented programming and frame

technology. Throughout the lifetime of a software

system, new requirements may arise that will require the

existing system to be altered or evolved in someway.

Evolution is something which is almost impossible to

predict at the design stage. Although it is common to

anticipate future evolutions and therefore prepare and

design our code to accommodate this, there will

eventually come a time when a certain feature or

scenario appears where this may not be practical.

1. Introduction

Throughout the lifetime of a software system or

architecture, new requirements may arise that will

require the existing system to be altered or evolved in

someway. Therefore an effective mechanism for

evolution is an important factor in the creation of

software systems. It is estimated that up to 80% of

lifetime expenditure on a system will be spent on

maintenance and evolution. However, achieving

effective evolution across the board with current

technologies is difficult because of the complexities

involved.

Evolution is something which is almost impossible to

predict at the design stage. Although it is common to

anticipate future evolutions and therefore prepare and

design our code to accommodate this, there will

eventually come a time when a certain feature is required

or a scenario appears where this may not be practical.

2. Background

2.1 Categories of evolution

Software evolution and maintenance can be divided

into the categories shown in Table 1, which are derived

from [6].

Table 1. Traditional categorisation of evolution

Category Description / Example

Corrective Fixing of bugs

Adaptive Addition of new features

Changing of functionality

Support for new platforms

Perfective Improving system

functionality

Improving performance

Preventative Preventing problems before

they occur

It should be noted here that any evolution made to a

system could fall into one or more of the categories

shown. For instance perfective evolution where, for

example, the performance of a particular component

needs to be improved, may also require other components

of the system to be evolved thus requiring adaptive and

possibly preventative evolution. Evolution of a particular

component or feature may require other assets at different

stages of the software lifecycle to also be evolved such as

testing and documentation. This brings forward cases

where evolution effectively crosscuts system structure and

architecture. From this we can add two sub categories to

the aforementioned, namely crosscutting and non-

crosscutting evolution.

Corrective

Perfective

Adaptive

Preventative

Crosscutting

Non-Crosscutting

Anticipated

Unanticipated
Evolution

Corrective

Perfective

Adaptive

Preventative

Crosscutting

Non-Crosscutting

Anticipated

Unanticipated
Evolution

Figure 1. Evolution types

Another important notion is that of anticipated and

unanticipated evolution. While anticipated evolutions

can be obviously accommodated, unanticipated

evolutions are of great concern if the system or

architecture is to avoid erosion. Figure 1 illustrates the

possible evolutions types.

Aspect orientation is designed to be used with

conventional separation of concerns mechanisms, such as

object-orientation, and should not be seen as a

replacement for these techniques. It should be noted that

the notion of aspect orientation now goes far beyond just

programming level and is now being used at different

levels of the software lifecycle such as the software

design [7] [8] and requirements stages [9][10].

2.2 Crosscutting and separation of concerns

One of the principle requirements in software

composition is to achieve a good level of separation

between the different concerns in the system. By

separation of concerns we mean the encapsulation of

particular functional or non functional properties of the

system which crosscut the system structure. This allows

each concern to be viewed in it own space making system

comprehensibility and manageability easier to understand

thus facilitating reuse and evolution.

2.3 Software erosion

Erosion occurs when software, which has been

continually evolved, eventually becomes difficult to

understand, maintain and therefore evolve and reuse.

When evolving a system we want to lessen the negative

effects of the evolution in order to minimise the

possibility for erosion. Erosion can occur anywhere from

erosion of a particular component to the much larger

problem of erosion in software designs and architectures.

[1] cites cases where projects have had to be started from

scratch as the source had become eroded beyond repair.

3. Approaches

3.1 Frame Based Technologies

Frame technology [2] is a concept that has its roots in

the 1970s and was conceived by Paul G. Bassett as a

means to providing adaptive reuse. By adaptive reuse we

mean the process of creating generalised components that

can be easily adapted or modified to different reuse

contexts. From a simple perspective frame technology is

a language independent textual pre-processor that creates

software modules by using code templates and a

specification from the developer. Variations of the

technology inspired by Bassetts work such as XVCL [3]

and FPL [4] use the XML language in order to

implement the framing syntax. Frame technology works

by organising frames into a hierarchy as shown in Figure

2, which depicts a partial view of a simple web browser.

Web

Browser

GUI

Spec

Toolbar Menu
Editor
Pane

Look

and
Feel

Services

Network Cache Navigation

Web

Browser

GUIGUI

Spec

Toolbar Menu
Editor
Pane

Look

and
Feel

Services

Network Cache Navigation

Figure 2. Example of frame technology hierarchy

Frames allow points of interest in the code, such as

variation points, code repetition, configuration routines,

optionality etc…, to be explicitly marked in place with

metadata tags or moved to a child frame. By allowing

these points of interest to be marked or modularised the

developer can quickly create highly customisable

systems. The basic granularity for a frame is the

separation of a particular concern, class, method or

related attributes with the hierarchy of frames serving to

isolate content into separate layers, allowing the

localisation of the effects of change and easing evolution.

Usually the lower order frames are the most reusable as

they contain less context sensitive information such as IO

routines, library functions etc...

3.2 Aspect Oriented Programming

Aspect oriented programming (AOP) [5] technologies

are now gaining popularity as a means for supporting the

separation of concerns for features and constructs that

would otherwise cause unmanageable code tangled across

multiple classes in traditional object-oriented systems

(Figure 3).

Aspect

Weaver

Executable

Code

Class A Class B

Classes

Aspects

Synchronisation Debug

Other

Members

Other

Members
Class A Class B

Other

Members

Other

Members

Synchronisation

Debugging

(a) (b)

L
e
g
e
n

d

Class Aspect

Figure 3. (a) Crosscutting concerns in OO languages (b)

Separation of crosscutting concerns with AOP

Examples of the type of concerns that can cause this

fragmentation of context are logging, profiling and

tracing. Having all of the code for each particular

concern modularised has the benefit of making system

code easier to evolve, maintain and be reused hence

increasing productivity, flexibility and reducing costs

thus making them conducive for use within the software

product line context.

There are numerous aspect oriented programming

approaches available for use with the most well known

being AspectJ [11], Hyper/J [12], and composition filters

[13]. There also AOP approaches to run time evolution

of programs such as Java Aspect Components [16] (JAC)

and JMangler [17]. Run time evolution promises the

facility for programs to be modified while they are

executing. This facility will be of great importance to

systems where stopping the system and evolving the code

thus rendering the system from functioning is an

undesirable characteristic from economic and safety

perspectives. Examples of these systems could be 24/7

banking facilities, online commerce and air traffic

control systems.

3.3 Other approaches

There are other approaches which seek to solve the

problems associated with software product line issues

notably Gen Voca [14] and work from the SEI [15].

However for the purpose of this paper we will only

concentrate on frame based and aspect oriented

approaches.

4. Supporting evolution

4.1 Evolution with frames

In section 2 we mentioned the notion of crosscutting

and non crosscutting evolution. Non crosscutting

evolutions are generally easy to solve with frame

technology as their implementations are localised, the

main problem being where the evolution might be spread

out over many child frames spawned from the parent

frame. In this sense the framing process can suffer from

fragmentation of context.

Crosscutting evolution however, is not very effective

with framing alone as there is no separation of concern

mechanism beyond class and frame boundaries. For this

reason aspect oriented technologies can play an

important role in improving the evolution of systems

which impart crosscutting behaviour.

4.2 Evolution with aspect orientation

Aspect orientation has been created with separation of

crosscutting concerns in mind and thus would seem to be

an ideal candidate for supporting the crosscutting

evolutions that is difficult to achieve by framing.

However, while it is possible to use aspect oriented

technologies alone to perform some form of evolution, it

is constrained by the lack of configurability,

generalisation and optionality that framing allows.

4.3 Hybrid approach

We have previously made a case where neither

framing nor aspect orientation can support various

evolutionary scenarios effectively in isolation. With this

in mind it makes sense to combine the two technologies

to improve on current techniques. Table 2 shows a

comparison of the two techniques with their associated

merits and demerits.

Table 2. Comparing frames and aspect orientation

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte

code level

Not supportedUse on Legacy Systems

Constrained to implementation
language although this will

change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Not supportedAllows autogeneration of code

and refactoring.

Code Generation

Not supportedAllows code to be generalised to

aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFramingCapability

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte

code level

Not supportedUse on Legacy Systems

Constrained to implementation
language although this will

change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Not supportedAllows autogeneration of code

and refactoring.

Code Generation

Not supportedAllows code to be generalised to

aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFramingCapability

By combining the two approaches we gain increased

flexibility which will allow aspects to handle the

crosscutting concerns and framing to impart

configuration, optionality and generalisation of those

aspects where required. Figure 4 demonstrates how a

generalised aspect can be used to perform a crosscutting

evolution on a system or architecture

System/Architecture

Framed

Aspect

Config

Proposed evolution

Classes and aspects

System/Architecture

Framed

Aspect

Config

Proposed evolution

Classes and aspects

Framed

Aspect

Config

Proposed evolution

Classes and aspects

Figure 4. Evolution with framed aspects

It should be noted here that the framed aspect could

work on the architecture even if the architecture itself

was framed or not, thus allowing frames in some sense to

work on legacy systems. Using these approaches brings

forward exciting possibilities for the following:-

• Generalised reusable components which solve

crosscutting problems.

• Refactorisation of aspectual code

• Configurable dynamic run time aspects

• Configurable legacy aspects

• Configurable development aspects (tracing, profiling

etc)

These could be used to perform various kinds of tasks

and evolutions that previously would have been difficult

to realise in a particular technology alone.

5. Conclusion

We have seen that neither frame technology nor aspect

oriented technologies alone can solve all the problems

that evolution brings. There is clearly a need for

configurable aspects for crosscutting evolution. By

combining aspect orientation with a variant configuration

mechanism such as frame technology we get the best of

what both have to offer in terms of flexibility and

evolvability. Generalisation of aspects allows them to be

used in different situations thus making them ideal

candidates for use within software product lines. By

utilising aspect orientation and allowing crosscutting

concerns to be localised we improve our understanding of

system comprehensibility and thus lessen the risks of

architectural erosion.

6. Acknowledgements

The authors would like to thank Dr Stan Jarzabek and

Dr Zhang Weishan of the National University of

Singapore with regards to queries on framing

technologies.

References

[1] van Gurp J. and Bosch J., “Design Erosion: Problems &

Causes”, Journal of Systems & Software, volume 61, issue 2,

2002.

[2] Bassett, P. 1997. Framing software reuse - lessons from real

world, Yourdon Press, Prentice Hall.

[3] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang,

H.Y. “XML Implementation of Frame Processor,” Symposium

on Software Reusability, SSR’01, Toronto, Canada, May 2001,

pp. 164-172.

[4] Sauer, F. “Metadata driven multi-artifact code generation

using Frame Oriented Programming”, OOPSLA 2002.

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C. V., Loingtier, J.-M., Irwin, J., “Aspect Oriented

Programming,” Proc. of the European Conference on Object-

Oriented Programming (ECOOP), 1997.

[6] Lientz, B., Swanson, E., and Tompkins, G., "Characteristics

of Application Software Maintenance," CACM 21, No. 6 June

1978

[7] Clarke, S., Walker, R. J., "Composition Patterns: An

Approach to Designing Reusable Aspects" proceedings of the

23rd International Conference on Software Engineering

(ICSE), Toronto, Canada, May 2001.

[8] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N

Degrees of Separation:Multi-Dimensional Separation of

Concerns". Proceedings of the International Conference on

Software Engineering (ICSE'99), May, 1999.

[9] Rashid, A., Sawyer, P. et al., “Early Aspects: A Model for

Aspect-Oriented Requirements Engineering”, IEEE Joint

International Requirements Engineering Conference, IEEE

Computer Society Press, 2002.

[10] Grundy, J., “Aspect-Oriented Requirements Engineering

for Component-based Software Systems”. 4th IEEE

International Sympsium on RE, IEEE Computer Society Press,

1999.

[11] Xerox PARC, USA, AspectJ Home Page,

http://aspectj.org/

[12] IBM Research, Hyperspaces,

http://www.research.ibm.com/hyperspace/

[13] Aksit, M., Bergmans, L. & Vural, S., “An Object-Oriented

Language-Database Integration Model: The Composition-

Filters Approach”, ECOOP '92, LNCS 615, pp 372-395,

Springer-Verlag, 1992.

[14] Batory, D., Chen, G., Robertson, E. and Wang, T. “Design

Wizards and Visual Programming Environments for GenVoca

Generators,” IEEE Trans. on Software Engineering, Vol. 26,

No.5, May 2000, pp. 441-452

[15] Carnegie Mellon, Software Engineering Institute,

homepage http://www.sei.cmu.edu

[16] Pawlak, R., Martelli, L. and Seinturier, L. The JAC project

home page. http://jac.aopsys.com

[17] Kniesel, G., Costanza, P. and Austermann, M. JMangler

home page, http://javalab.cs.uni-bonn.de/research/jmangler/

Managing Software Change for Variability

Christopher Thomson

Department of Computer Science

Sheffield University

Regent Court

211 Portobello Street

Sheffield S1 4DP

UNITED KINGDOM

Email: c.thomson@dcs.shef.ac.uk

Abstract— Software change is considered as motivation for
managing software variability.

I. INTRODUCTION

Understanding how software can be changed is essential if

we want a measure of its variability and if we want to adapt

it easily. Software is in part requirements, specification, code

and test sets. Whenever we change any part we must ensure

that it remains valid in the context of the other parts, if the

system is to remain valid. Therefore we must define system

validity in terms of a semantical structure. Different operators

act on this semantic definition, we call these the change types.

It is hoped that there are a finite number of change types

that could be built into a taxonomy of change. These could be

used to describe how hard a type of change is to implement

(impact) and how likely a change is to occur (risk), these

together could translate to a variability factor. The taxonomy

may also identify where some types of change are invalid (on

areas of the system where a class of change would cause a

semantic schism), and where we may be able to automatically

change another part of the software to reflect a change.

Of course many of the possible change types may be

unmanageable, this suggests that we may want to impose

some design for change restrictions. Whilst these would not

impact on the power of any software they would allow it to

be changed more easily, by imposing a structure which was

capable of change. Such restrictions would be designed to

enhance the variability of the software at all levels of design,

implementation and testing.

Supporting Variability Management at Nokia

Tanya Widen

Software Architecture Group
 Nokia Research Center
tanya.widen@nokia.com

Abstract

At Nokia, software product lines are being invested in
more and more to keep the business units competitive in
today’s market. This short position paper captures our
current goal of evaluating, using, and changing or
extending where necessary current best practices in
variability management in order to provide integrated,
full life cycle, sufficiently detailed support to our business
units to enable them to successfully manage and control
the variability in their domains.

1. Introduction

Nokia is a large, global company in the mobile phone

and network markets, working to stay competitive in

today’s cutthroat business world. Nokia, as many other

organizations nowadays, is moving more and more

towards institutionalized software product lines to realize

the benefits of systematic large scare reuse. In both mobile

phones and networks, Nokia’s two main lines of business,

there are ample opportunities and needs to transition

development to fully supported software product lines.

Some domains even cross mobile phones and networks,

such as DSP. Within these there is also potential benefit

for investing in a joint reuse infrastructure to enhance

development and maintenance efficiency.

As complete products are developed with embedded

software, as opposed to only software, many different

aspects of product variabilities affect the software for the

products developed. These include the

requirements/features and qualities variabilities, as

embedded systems have many, sometimes contradicting,

quality goals that can vary by products. But also include

the possible variations in the HW/SW interface, the

various HW platforms the software must run on, as well as

system configurations. All of these aspects need to be

modeled and managed in a consistent way throughout the

product life cycle.

Variabilities can be introduced in any of the phases or

steps along the infrastructure development path, as well

as, during product instantiation. Therefore, integrated, full

life cycle support is required in order to consistently

variability management.

In addition to the technology aspects of variability

management, technology transition issues must be

addressed. To facilitate transition, detailed, practical

guidelines and examples, whenever possible even in the

domains of Nokia, are to be developed in order to lower

the barriers to transition and acceptance. Additionally, we

tailor the methods whenever necessary to our specific

situation to limit the amount of information developers

need to learn.

2. Variability Management

We are currently looking into many aspects of

variability management as a complete, integrated solution

is required that is tailored to meet the needs of our

business units, yet still flexible to adapt to the varying

situation specifics of each development group.

Much has been published in the field recently, as

software product lines research and practice is becoming

more prevalent. We are looking at these results and

evaluating them for our situation. From these we will

adopt what we can and integrate them with each other and

our existing process, technologies, and tools. Of course,

changing and extending them as necessary to reach our

goal of integrated and detailed coverage.

In particular we are focusing on studying variability

mechanisms in order to provide detailed practical

guidance in:

• Variability mechanism selection

• Setting up support to manage the variabilities

based on the mechanisms used

• Guidance on implementation and testing

• Proving support for instantiation

• Guidance on evolution aspects

For example, in the area of variability selection, we are

looking at the published lists of variability mechanisms

and the currently available comparison frameworks that

support variability mechanism selection [2,3,4]. These

tend to focus only on technology issues in selecting a

mechanism, such as binding time or variability type. We

would like to extend these frameworks to include other

aspects we believe play an important role in variability

mechanism selection. This will include business issues,

such as costs of setting up and maintaining the support

systems; organizational issues, such as culture or

organizational structure and their impact on selecting and

setting up an appropriate mechanism; as well as, skill

level or experience of both developers of the reuse

infrastructure and those who are intended to build systems

from the infrastructure.

Related to this, we are looking at the growing field of

work on variability patterns for product lines in both

functional and quality aspects as these will also support

developers in learning and applying variability

mechanisms in their domains [1]. One key issue here is

the additionally complexity of supporting tradeoff analysis

to determine an appropriate product line architecture, or

architectures, as instances can have varying quality

requirements that would benefit from different

decompositions and connections.

3. References

[1] L. Bass, M. Klein, and F. Bachmann, “Quality Attribute

Design Primitives and the Attribute Design Method”,

Proceedings of PFE- 4, LNCS 2290, Springer-Verlag, Berlin,

2002, pp. 169-186.

[2] C. Gacek, and M. Anastasopoules, “Implementing Product

Line Variabilities”, Proceedings of the 2001 Symposium on
Software Reusability, ACM Press, NY, NY, USA, 2001, pp.

109-117.

[3] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process, and Organisation for
Business Success, Addison-Wesley-Longman, May 1997.

[4] M. Svahnberg, J. van Gurp, and J. Bosch, “A Taxonomy of

Variability Realization Techniques” submitted 2002.

Leaving the Variability Management to the End-User;
A Comparison Between Different Tailoring Approaches

Jeanette Eriksson, Olle Lindeberg, Yvonne Dittrich

Blekinge Institute of Technology
Department of Software Engineering and Computer Science

P.O. Box 520, S-37225 Ronneby, Sweden
Phone: +46 457 385000 Fax: +46 457 27125

jeanette.eriksson@bth.se, olle.lindeberg@bth.se, yvonne.dittrich@bth.se

Extended Abstract

A tailorable system is considered designable after the

system has come in use. This means that some design

decisions are postponed until the system is up and

running. It is the end-user that will adjust the program to

fit altered requirements. In other words tailoring entails

that the variability management of the system is left to the

end-user.

In the article “There’s No Place Like Home:

Continuing Design in Use” the authors [1] identify three

ways of doing tailoring. The three possible ways are:

o To choose between different expected behaviors.

o To construct new behaviors out of existing

components.

o To alter the artifact.

We compare our own approach [4] with two other

approaches within the area of tailoring and end-user

development. Those are Anders M∅∅∅ ∅ rch’s work with

application units [5][6] and the work done within a project

concerning tailorability in CSCW-systems [7][8]. All

three approaches are of the latter kind of tailoring. The

artifact is changed when tailoring the system.

A general problem is that when you add tailoring

capabilities to a system this often makes the system more

complicated: not only do you have to construct the

tailoring interface but the basic program may also become

more complicated. To explore how to avoid this we

constructed a prototype using ideas based on the

metaobject protocol (MOP) approach [2]. The metaobject

protocol approach originates from the CLOS

programming language in which it is possible to change

program behavior by interacting with the runtime system

through a metaobject protocol [3]. The metaobject

protocol is based on the idea that one can and must open

up programming languages so that the developer is able to

adjust the language implementation to fit his or her needs.

This idea has subsequently been generalized to systems

other than compilers and programming language. In the

article “Towards a New Model of Abstraction in the

Engineering of Software” [2] it is argued that the

metaobject protocol concept can be used as a general

principle for abstraction in computer science. The idea is

that any system that is constructed as a service to be used

of client application (as for example an operation system

or a database server) should have two interfaces; a base-

level interface and a meta-level interface [2]. The base-

level interface gives access to the functionality of the

underlying system and through the meta-level interface it

is possible to alter special aspects of the underlying

implementation of the system so that it suits the needs of

the client application. The meta-level interface is called

the metaobject protocol (MOP).

We have adopted a different approach towards the

metaobject protocol. The idea of the metaobject protocol

approach has inspired us to transfer the concept to end-

user tailorable software. In most systems the end-user has

no access to the implementation of the program; in our

approach the end-user is given the opportunity to alter or

tailor the software should the need arise. Our aim is to

give the user the opportunity to add components to the

program in a controlled way which does not require any

programming. To do this we use a dual-interface: a

traditional base-level program and a meta-level program

that provides tailoring for the base-level program. [4]

The distinction between a computational base level and

a tailoring meta level is a useful one in a tailorable system.

In the same way as in a metaobject protocol, the base-

level implements what the system normally does. At the

meta level you can change what the base level does. The

two levels are also often separated in the user interface

with a separate tailoring interface. The same separation

may exist in the internal design. Perhaps the obvious way

to do this is to let the base-level program be controlled by

meta-data which stores the choices the user has made

when tailoring. If the tailoring possibilities affect a large

part of the program, the base-level program may become

littered with tests for the value of the meta-data. If the

tailoring is complicated the result may be that the base-

level program looks more like an interpreter of the meta-

data than a straightforward program. The alternative way

to implement a tailorable system is closely linked to the

metaobject protocol approach. With this approach the

base-level program is a normal program which performs

the normal computation only. When the system is tailored

by the meta-level this is implemented by changing the

base-level program. In the meta-data approach the meta-

level can inspect the meta-data to see how the program is

configured; it is the meta-data that will be changed during

tailoring. In the alternative approach the base-level does

not need any meta-data. The radical solution is to take

away the meta-data from the meta-level too. This means

that it is the base-level program itself that is the meta

description of the current configuration. This is the

method we have chosen in the prototype.

Anders M∅∅∅ ∅ rch at the Oslo University works with issues

concerning tailoring using components called application

units. An application unit is software components

associated with GUI widgets but the application unit is

extended with event handlers that take care of tailoring

events. The structure of everyday artifacts acts as a model

for application units. The units include three aspects: user

interface, rational, and program code. Every aspect has

three characteristics. They all have available point of use,

ability to connect to other aspects by well-defined

interfaces and they can be looked at as separating

concerns. [6]

The application units have been used in a tool for

creating and editing geometric shapes, called BasicDraw.

BasicDraw has different tailoring tools embedded. The

extension editor makes it possible to tailor the application

by changing program code at runtime. The software

components are encapsulated as a glass box. It exposes

program code but the code cannot be modified. [5] The

new code is built on top of the existing code because by

safety reasons none of the old code in Basic Draw may be

removed. The new code is compiled and linked to the

existing before the application can be re-executed. The

application units are to a large extent independent and can

be tailored separated from other aspects but some

application unit aspects are also dependent of others

therefore changing one aspect may require an update of

other aspects or interfaces. [6]

A research team at Bonn University takes another line

of action. The group is working with tailoring in CSCW-

systems. They have constructed a search tool that makes it

possible for different users to tailor the presentation of

search results, the handling of search results and the

search space. The search tool is a part of the POLITeam-

system, which provides electronic support for the work of

the German government in Bonn and Berlin. The opinions

of the functionality of the search tool were diverse among

the users, which resulted in a tailorable system. [7]

The search tool is implemented using the JavaBeans

component model. The search tool employs four different

types of atomic components: search engine, result list,

result switch and control button. The search engine for

example is a complex component that embraces

components for the search specification and for database

connections. The components have a graphical

representation that the user can combine in different ways.

The graphical representation visualizes available ports.

Gray ports visualize input and white ports output. The

shape of the ports indicates the type of input or output.

The graphical representations are used in a compositional

technique that allows the user to customize the

components and link the different ports together.

Simplified, the search tool has the following functionality:

The control button triggers the search engine and the

search results are transported to a switch, which is

parameterized to channel all documents that corresponds

to certain criterion, for example found on the users own

desktop, to one specific result list. Other documents that

correspond to another criterion, for example found

elsewhere, are displayed in another result list. [7]

Conclusively we can say that while BasicDraw supplies

tailoring by adding code to the application units, the

component itself, the search tool in the POLITeam-system

implement tailoring in a different way, by composition of

customized components. Our prototype is implementing

tailoring by making use of a combination of the two

implementing manners.

In the article we provide a comparison between the

three approaches concerning variability, techniques and

usability in the context of variability management.

References

[1] Henderson, Austin & Kyng, Morten. 1991: “There’s No

Place Like Home: Continuing Design in Use” , in Design at
Work, GreenBaum, J & Kyng, M., eds., Lawrence Erlbaum,

Hillsdale, NJ.Kiczales, et.al. 1991: “The Art of the MetaObject

Protocol” , MIT Press, England.

[2] Kiczales, Gregor 1992: “Towards a New Model of

Abstraction in the Engineering of Software”, in Proceedings of
International Workshop on New Models for Software
Architecture (IMSA): Reflection and Meta-Level Architecture,
Tama City, Tokyo, November 1992.

[3] Kiczales, et.al. 1991: “The Art of the MetaObject Protocol” ,

MIT Press, England.

[4] Lindeberg, Olle & Eriksson Jeanette & Dittrich, Yvonne

2002: “Using Metaobject Protocol to Implement Tailoring;

Possibilities and Problems” , in The 6th World Conference on
Integrated Design & Process Technology (IDPT ‘02), Pasadena,

USA, 2002.

[5] M∅∅∅ ∅ rch, Anders I. 2003: ” Tailoring as Collaboration: The

Mediating Role of Multiple Representations and Application

Units”, in N. Patel: Adaptive Evolutionary Information Systems.

Idea group Inc. 2003.

[6] M∅∅∅ ∅ rch, Anders I. & Mehandjiev, Nikolay D. 2000:

”Tailoring as Collaboration: The Mediating Role of Multiple

Representations and Application Units”, in Computer Supported
Work 9:75-100, Kluwer Academic Publishers.

[7] Stiemerling, Oliver & Cremers, Armin B. 1998: ”Tailorable

component architectures for CSCW-systems” in Parallel and
Distributed Processing, 1998. PDP '98. Proceedings of the

Sixth Euromicro Workshop pp: 302-308, IEEE Comput. Soc.

[8] Stiemerling, et.al, 1999: ”The EVOLVE Tailoring Platform:

Supporting the Evolution of Component-Based Groupware”, in

EDOC’99 (Enterprise Distributed Object Computing),

Mannheim, Germany, Sept.27-30, IEEE Press.

A Knowledge-based Product Derivation Process and

some Ideas how to Integrate Product Development
(Position paper)

Lothar Hotz and Andreas Günter

HITeC c/o Fachbereich Informatik

Universität Hamburg

Hamburg, Germany 22527

Email: hotz@informatik.uni-hamburg.de

Thorsten Krebs

Fachbereich Informatik

Universität Hamburg

Hamburg, Germany 22527

Email: krebs@informatik.uni-hamburg.de

Abstract— In this position paper, a product derivation process
is described, which is based on specifications of known customer
requirements, features, artifacts in a knowledge base. In such
a knowledge base a model about all kinds of variability of a
combined software/hardware systems are represented by usinga
logical-based representation language. Having such a language,
a machinery which interprets the model is defined and actively
supports the product derivation process e.g. by handling depen-
dencies between features, customer requirements, and artifacts.
Because the adaptation and new development of artifacts is a
basic task during the derivation process where a product for a
specific customer is developed, the evolution task is integrated in
the proposed knowledge-based derivation process.

I. INTRODUCTION

The product line approach makes the distinction between

a domain engineering part, where a common platform for an

arbitrary number of products is designed and realized, and

an application specific engineering part, where a customer

product is derived (product derivation process) [1], [3]. In this

position paper, a product derivation process which includes

both the selection and assembling of artifacts out of a platform

and their adaptation, modification, and new development for

customer specific requirements is presented.1

The main underlying assumption is based on the existence

of a descriptive model for representing already developed

artifacts and their relations to features and customer re-

quirements as well as the underlying architectural structure

with its variations. All kinds of variability are represented

(described) in such a model. Thus, variability is made explicit

while the realization of the variability in the source code

is still separate. This model is called configuration model.

It is specified in a knowledge base. Thus, we speak of a

knowledge-basedproduct derivation process (kb-pd-process).
Furthermore, it is assumed, that such a model is necessary to

manage the increasing amount of variability in software-based

products. Such a configuration model can be used for auto-

matically configuring technical systems, where ”configuring”

means selecting, parameterizing, constraining, decomposing,

1We only consider engineering aspects of the process, we exclude econom-
ical aspects. As roles we simply see a team of software developers, which
have to do both: developing a commonly used platform for all products and
customer specific products.

specializing, and integrating components of diverse types (e.g.

features, hardware, software, documents, etc.).

A configuration model describes all kinds of variability in

a software system. Thus, it describes all potentially derivable

products. But this is done on a descriptive level: when using

a configuration model with an inference engine, only a de-

scription of a product is derived, not the product itself. But it

is intended to use the description for collecting the necessary

source code modules and realizing (implementing, loading,

compiling etc.) the product in a straight forward manner.

Furthermore, a configuration model is not a model to be used

for implementinga software module, e.g. it does not describe

classes for an object-oriented implementation.

In the following, we first describe some distinct levels

of abstraction which we have to deal with when describing

system entities (Section II). In Section III, we present the

language entities as well as their interplay in the product

derivation process. Evolution aspects are included in Section

IV. A short discussion of some related work is given in Section

V.

II. LEVELS OF ABSTRACTION

We can identify three kinds of work to be done on distinct

levels of abstraction for exploring a knowledge-based product

derivation process:

1) Language for specifying the knowledge base – What
is used for modeling?
This level describes what can be used for modeling the

general aspects of the process and the domain specific

part. This is done by specifying a language, that can

be used to describe the necessary knowledge. Further-

more, a machinery (inference engine) for interpreting

this description is specified and realized in a tool.

Basic ingredients of the language are concepts, relations

between concepts, procedural knowledge and a specific

task description (see [7], [9] for an example of such a

language and a suitable tool). Entities of this language

are further described in Section III.

2) Aspects of the process – What are the general
ingredients of a product derivation process?

On this level, general aspects that have to be modeled

for engineering and developing products are specified.

This level determines, which entities for the kb-pd-

process have to be described. This is intended to be a

description for a number of kb-pd-processes in distinct

business units or companies, ideally for development

of combined hardware/software systems in general. The

description of a specificdomain is done on the next level.

Specification is done on a textual basis as well as on a

model basis by using the language.

Following aspects of the kb-pd-process are currently

taken into account:

� Customer requirements: A description of known

and anticipated requirements expressed in terms

which can be understood by the customer.
� Features: A description of the facilities of the

system and its artifacts.
� Artifacts: A description of the hardware, software

components and textual documentations to be used

in products.
� Phases of the process:A description of general

phases of the process, e.g. ”determine customer

requirements”, ”select appropriate features”, ”select

and adapt necessary artifacts”.
� Reference configurations:A description of typical

combinations of artifacts (cases), which can be

enhanced or modified for a specific product.

For each aspect an upper modelwith e.g. decompositions

(e.g. sub-features) and relations of aspects is expressed.

The upper model describes common parts of domain

specific models. Upper models are used to facilitate

the domain specific modeling. An example of an upper

model is given in Figure 1. Two different views on

features (i.e. customer-view (cv-feature) and technical-

view (tv-feature)) are shown. Both specialize to a con-

cept which has sub-features and one which doesn’t (cv-

no-subs , cv-with-subs). The dotted arrows indicate

places where the domain specific models come in. Lines

indicate specialization relations and arrows decomposi-

tion relations. This example shows how conceptual work

done in [5], [10], [11], [16] can be used for specifying

an upper model, which in turn can be used for automatic

product derivation.

Each aspect of the process is modeled by using the

language. Thus, it is described how e.g. customer re-

quirements and their relations can be represented by

using concepts and concept relations. In this paper, we

do not further elaborate on this topic.

3) Domain specific level – What is modeled for a specific
domain?
On this level a domain specific model is specified by

using the language and the upper model. By interpreting

the model with a machinery (given by a tool), this

model is used for performing the process. For developing

software modules (i.e. on a file, source code, developer

Fig. 1. Example of an upper model

model level) development tools and software manage-

ment tools are integrated. In this paper, we do not further

elaborate on this topic.

III. ENTITIES OF THE KNOWLEDGE BASED MODEL

Basic entities of the model and the process are listed as

follows:

1) A concept model for describing concepts by using

names, parameters and relations between parameters and

concepts. Main relations are decomposition relations,

specialization relations, and n-ary relations between pa-

rameters of arbitrary concepts expressed by constraints.

Such concept models can be used to describe properties

and entities of products like features, customer require-

ments, hardware components, and software modules.

2) Procedural knowledgemainly consists of a description

of strategies. A strategy focuses on a specific part of

the concept model. E.g. a strategy focuses on features,

another one on customer requirements and a next one

on software components, or on the system as a whole.

Furthermore conflict resolution knowledge which is used

for resolving a conflict (e.g. by introducing explicit

backtracking points) is described.

3) A task specification which describes a priori known

facts, a specific product has to fulfill.

Strategies are performed in phases. In each phase one

strategy is used, which focuses on a specific part of the model.

After selecting this part, in a phase all necessary decisions (i.e.

configuration steps) are determined by looking at the model.

Each configuration step represents onedecision, e.g. the setting

of a parameter value, or processing a decomposition relation.

Possible configuration stepsare collected in an agenda, which

can be sorted in a specific order, e.g. first decomposing the

architecture in parts, then selecting appropriate components,

and then parameterizing them. Decisions can be made by

using distinct kinds of methods including automatic or manual

ones. Each decision is computed by a value determination
method, which yields to a specific value representing the

decision. Examples for value determination methods are: “ask

the user”, “take a value of the concept model” or “invoke a

given function”. Thus, in a configuration step the decisions to

be made are described and after applying some kind of value

determination method the resulting value is stored in the cur-
rent partial configuration. A partial configuration represents

all decisions made so far and their implications, which are

drawn by the mechanisms described in the following.

In a cyclic practice, after each configuration step more

global (i.e. systemwide) mechanisms are (optionally) executed.

Examples are:
� Constraint propagation: For computing inferences fol-

lowed by a decision and for validating the made deci-

sions, constraints defined in the knowledge model (i.e.

constraints represent relations between parameters of con-

cepts) are propagated, based on some kind of constraint

propagation mechanism.
� External mechanisms: For performing an external

method, which does not use the concept model but only

the currently configured partial configuration external

techniques can be applied. Examples are:

– simulation techniques: a simulation model is derived

from the partial configuration and a separated module

(like matlab) is called for this task. Some specific

kind of simulation in the area of software product

derivation is ”compiling the source files”.

– optimization techniques: the current partial configu-

ration is used to compute optimal values for some

parameters of the configuration.
� Further logical inferences: Methods, which perform

logical inferences that are not performed using the de-

cision process but use the concept model, can be invoked

(e.g. taxonomic inferencing, description logic etc.).

The objective of global mechanisms is to compute values

for not yet fixed decisions or to validate the already made

decisions. Those mechanisms (if more than one is present) are

processed in an arbitrary order but repeated until no new values

are computed by those mechanisms, i.e. until a fixed point is

reached. If this validation is not successful or the computed

value for a parameter is the empty set, a conflict is detected.

An example would be, if the compilation of the source files

fails. A conflict means that the task description, the subsequent

decisions made by the user, and their logical impacts are not

consistent with the model. For resolving a conflict, diverse

kinds of conflict resolution methods(e.g. backtracking) can

be applied to make other user-based decisions (see [9]). On

the other side, one could also try to change the model, because

if a conflict is detected, with the given model it is not possible

to fulfill the given task descriptions and user needs. This gives

raise to evolution, i.e. to modify or newly develope artifacts

and include them in the model, so that the needs can be

fulfilled (see Section IV).
Summarizing the kb-pd-process performs the following

(slightly simplified) cycle:

Until no more strategy is found:

1) Select a strategy
2) Compute the agenda according to the focus
3) Until the agenda is empty or a termination criteria of the strategy is

satisfied:
� Select an agenda entry

� Perform a value determination method
� (Optionally) execute the global mechanisms
� If a conflict occurs, evaluate conflict resolution knowledge.

IV. INCLUDING EVOLUTION ASPECTS IN THE PROCESS

Above a well-known configuration process is described (see

[4], [6]). The changing of artifacts and further development

of new components (i.e. evolution) can be included in this

process as described in the following subsections. The aspect

of evolution can be seen as a kind of innovative configuration.
We see innovative configuration not as an absolute term but as

a relative one – relative to a model. A model describes a set of

configurations which can be configured by using it. Innovation

related to this model is given, if the configuration process

computes a configuration which does not belong to this set.

For supplying a product derivation process where evolution of

artifacts are a basic task, we expect to apply methods known

in innovative configuration to be used. A survey on innovative

configuration is given in [9], [12].

A. Points of evolution

Following situations which come up in the process described

in Section III indicate the necessity for evolution:

1) Pro-active, foreseen evolution, more general models:

Instead of narrowing the model, broader value ranges for

parameters and relations can be modeled a priori. For

example, the sub-models describing customer require-

ments or features can represent more facilities than the

underlying artifacts can realize. If during the derivation

process such a feature is selected by the task description

or inferred by the machinery, it gives raise to evolution

of an artifact.

2) Conflicts which cannot be resolved by backtracking,

i.e. by using the current model, indicate places where

evolution can take place. For example, if two artifacts

are chosen which are incompatible, a resolution of such

a conflict would be to develop a new compatible artifact

and include it into the model.

3) Points set by the user: Instead of selecting a value at a

given point, the evolution of the model can be started by

the developer for integrating a new or modified artifact

in the partial configuration. Another example is given

when the user does not accept the automatically made

decisions. Thus, an evolution process is explicitly started

by the user to change the model for making another

decision than the model indicates. Thus, evolution as a

kind of value determination method is introduced.

4) A further point is given when evolution is seen as a

further global mechanism. Thus, it is included after a

decision is made. Some conditions are tested on the par-

tial configuration when evolution should be started. One

trivial condition is given when the user does not accept

the automatically made inferences. Thus, transparency

must be given to make such a decision. If the evolution

changes existing descriptions, the partial configuration

must be adapted and the other global mechanisms must

be invoked to find a new fixed point.

B. Evolve the model

All dependencies of the new concept (features, artifacts,

customer requirements) to existing ones must be specified.

Having a model, the context where a new concept will be

included, can be computed on the base of the model. For

instance, the related constraints of an depending aggregate

or a part-of decomposition hierarchy can be presented to the

developer for considering during the evolution of the model.

C. Supporting the evolution of features, customer require-
ments and artifacts by a knowledge-base approach

By analyzing the knowledge base, following information

used for development, can be presented to the developer. The

underlying idea is to present those parts of the model, which

can be used in special development situations, to the developer.
� Present the already defined concepts with their parameters

and relations.
� Present the specialization relation of all, of some selected

or of some depending concepts. In the last case sub-

graphs, which describe a specialization context of a given

concept are computed, e.g. the path to the root concept

with direct successors of each node.
� Present the decomposition relation of a given relation of

all, of some selected or of some depending concepts. In

the last case subgraphs which describe the decomposition

context of a given concept are computed, e.g. all aggre-

gates, which the concept are part-of and all transitive parts

which the concept has.
� Given a concept, present all concepts which are in relation

to it by analyzing the constraints, i.e. also a subgraph

is computed. Because constraints relate parameters of

concepts the subgraph presents not only concepts but also

relations between parameters.
� Given a concept, present all strategies where a parameter

or relation of the concept is configured.
� Given a new concept description (with parameters and

relations), compute a place in the specialization hierarchy

for putting the concept into.

Knowledge modeling can be seen as a specific kind of

evolution. If no given model exists, knowledge modeling is

an evolution of the always given upper model. The mentioned

services can be used for bringing up the first model of the

existing artifacts, features and customer requirements. Thus,

by supporting the evolution task, the task of knowledge

modeling is also be supported.

D. Conflict resolution with an evolved model

When the model is changed, e.g. because new artifacts are

included, the changes must be consistent with the ordinary

model and the already infered impacts stored in the partial

configuration. What kind of resolution techniques are useful

have still to be developed. One trivial approach is to start the

total process again with the new model and the old taks, and

make all decisions of the user automatically. Thus, test the

new model with the user needs, if they are consistent. This

can be done automatically, because all user inputs are stored

as such in the partial configuration, only the impacts have to be

computed again, based on the new model. Another approach is

to start some kind of reconfigration or repair technique, which

changes the partial configuration according to the new model.

E. Evolve the real components

Last but not least the new components have to be build. The

new source code can be implemented by using existing tools

for developing and changing software systems.

F. The kb-pd-process with the evolution task included
Summarizing the kb-pd-process where evolution is included

looks like:

Until no more strategy is found:

1) Select a strategy
2) Compute the agenda according to the focus
3) Until the agenda is empty or a termination criteria of the strategy is

satisfied:
� Select an agenda entry
� Perform a value determination method or start evolution
� (Optionally) execute the global mechanisms, included the evolu-

tion task
� If a conflict occurs, evaluate conflict resolution knowledge.

V. RELATED WORK

There are some approaches which try to automate software

processes [14], [15]. The main distinction to the approach

proposed in this paper is the different kind of knowledge

representation. Instead of using rule-based systems, which

have deficiencies when used for big systems [6], [8], [17], a

basic concern of the language we propose is to separate distinct

types of knowledge (like conceptual knowledge for describing

components and their variability and procedural knowledge for

describing the process of derivation). A requirement which is

e.g. not followed in [2], where information about components

is mixed with information about binding times in UML

diagrams. One has to distinguish the knowledge representation

and the presentation of the knowledge to the user. For present-

ing it might be useful to mix some knowledge types at certain

situations (as described in IV-C). But for maintainability and

adequacy reasons it is of specific importance to separate them.

In [13] a support for human developers, which is not

based on automated software processes, is proposed. E.g.

representations are mainly designed for human readability

instead of machine interpretation. As a promising approach,

structured plain text based on XML notations are considered.

Thus, the combination of formal structured knowledge and

unstructured knowledge should be achieved. On the one hand

XML is only a mark-up language, where the main problem

is to create a document type definition, which describes the

documents to be used for representing software. One could

see the language described in Section III as a specification for

such a DTD. Thus, in our opinion for formally describing

configuration knowledge in a structured way the necessary

type definitions are already known. On the other hand, if un-

structured knowledge should be incorporated one should also

define tools which can handle them in a more than syntactic

way (e.g. similarity-based methods or data-mining techniques),

to get a real benefit of those kinds of representations.

VI. CONCLUSION

Making knowledge about features, customer requirements,

and artifacts explicit in a model and a tool-based usage of such

a model yields to an automatic product derivation process.2 It

was shown, how such a product derivation process can be

defined. Furthermore, the evolution of artifacts is introduced

in the process and can be supported by using the knowledge

which is explicit in the model.

REFERENCES

[1] J. Bosch, Design & Use of Software Architectures: adopting and
evolving a product line approach, Addison-Wesley, 2000.

[2] M. Clauss, ‘Generic modeling using uml extensions for variability’, in
DSVL 2001. Jyvaskylae University Printing House, Jyvaskylae, Finland,
(2001).

[3] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley, 2002.

[4] R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode, ‘Plakon - an
approach to domain-independent construction’, in Proc. of Second Int.
Conf. on Industrial and Engineering Applications of AI and Expert
Systems IEA/AIE-89, (1989).

[5] A. Ferber, J. Haag, and J. Savolainen, ‘Feature interaction and depen-
dencies: Modeling features for re-engineering a legascy product line’,
in Proc. of 2nd Software Product Line Conference (SPLC-2), Lecture
Notes in Computer Science, pp. 235–256, San Diego, CA, USA, (August
19-23 2002). Springer Verlag.

[6] A. Günter and R. Cunis, ‘Flexible control in expert systems for con-
struction tasks’, Journal Applied Intelligence, 2(4), 369–385, (1992).

[7] A. Günter and L. Hotz, ‘Konwerk - a domain independent configuration
tool’, Configuration Papers from the AAAI Workshop, (1999).

[8] A. Günter and C. Kühn, ‘Knowledge-based configuration - survey and
future directions’, in XPS-99: Knowledge Based Systems, Proceedings
5th Biannual German Conference on Knowledge Based Systems, ed.,
F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570, (1999).

[9] A. Günter (Hrsg.), Wissensbasiertes Konfigurieren, Infix, St. Augustin,
1995. in german.

[10] A. Hein, J. MacGregor, and S. Thiel, ‘Configuring software product line
features’, in Proc. of ECOOP 2001 - Workshop on Feature Interaction
in Composed systems, Budapest, Hungary, (June, 18 2001).

[11] A. Hein, M. Schlick, and R. Vinga-Martins, ‘Applying feature models in
industrial settings’, in Proc. of First Software Product Line Conference
- Workshop on Generative Techniques in Product Lines, Denver, USA,
(August, 29th 2000).

[12] L. Hotz and T. Vietze, ‘Innovatives Konfigurieren in technischen
Domänen’, in S. Biundo (Hrsg.), 9. Workshop Planen und Konfigurieren,
Kaiserslautern, Germany, (1995). DFKI Saarbrücken. in german.

[13] R. Kneuper, ‘Supporting software processes using knowledge manage-
ment’, in Handbook of Software Engineering and Knowledge Engineer-
ing, volume 2, Singapore, (2002). World Scientific.

[14] L. Osterweil, ‘Software processes are software too’, in Proceedings
of the 9th International Conference on Software Engineering (ICSE9),
(1987).

[15] H. D. Rombach and M. Verlage, ‘Directions in software process re-
search’, in Advances in Computers, volume 41, (1995).

[16] M. Schlick and A. Hein, ‘Knowledge engineering in software product
lines’, in Proc. of ECAI 2000 - Workshop on Knowledge-Based Systems
for Model-Based Engineering, Berlin, Germany, (August, 22nd 2000).

[17] E. Soloway and al., ‘Assessing the maintainabiliy of xcon-in-rime:
Coping with the problem of very large rule-bases’, in Proc. of AAAI-87,
pp. 824–829, (1987).

2”Automatic” does of cause not mean totally automatic, task descriptions
and user interactions are still possible, but logical impacts can be drawn by
the inference engine.

