Real psd ternary forms with many zeros

Bruce Reznick
University of Illinois at Urbana-Champaign

2014 SIAM Conference on Optimization
Polynomial and Copositive Optimization
San Diego, California May 21, 2014

The new work in this presentation is joint with Greg Blekherman.

The new work in this presentation is joint with Greg Blekherman.
In this talk, we are concerned with $P_{3,2 k}$, the cone of psd real $2 k$-ic ternary forms: i.e., homogeneous polynomials $p(x, y, z)$ of degree $2 k$ with the property that $p(a, b, c) \geq 0$ for $(a, b, c) \in \mathbb{R}^{3}$. We'll also be interested in the subcone $\Sigma_{3,2 k}$ consisting of sums of squares of ternary forms of degree k.

The new work in this presentation is joint with Greg Blekherman.
In this talk, we are concerned with $P_{3,2 k}$, the cone of psd real $2 k$-ic ternary forms: i.e., homogeneous polynomials $p(x, y, z)$ of degree $2 k$ with the property that $p(a, b, c) \geq 0$ for $(a, b, c) \in \mathbb{R}^{3}$. We'll also be interested in the subcone $\Sigma_{3,2 k}$ consisting of sums of squares of ternary forms of degree k.

For such forms, we are particularly interested in the zero set of p, written $\mathcal{Z}(p)$, and the projective number of zeros, $|\mathcal{Z}(p)|$, counted this way because forms vanish on lines through the origin. We will describe $\mathcal{Z}(p)$ by picking a representative from each such line.

An example is instructive. Let

$$
p(x, y, z)=\prod_{i=1}^{k}(x-i z)^{2}+\prod_{j=1}^{k}(y-j z)^{2}
$$

An example is instructive. Let

$$
p(x, y, z)=\prod_{i=1}^{k}(x-i z)^{2}+\prod_{j=1}^{k}(y-j z)^{2}
$$

It is evident that $p \in \Sigma_{3,2 k}$ and that

$$
\mathcal{Z}(p)=\{(i, j, 1): 1 \leq i, j \leq k\}
$$

so that $|\mathcal{Z}(p)|=k^{2}$.

An example is instructive. Let

$$
p(x, y, z)=\prod_{i=1}^{k}(x-i z)^{2}+\prod_{j=1}^{k}(y-j z)^{2}
$$

It is evident that $p \in \Sigma_{3,2 k}$ and that

$$
\mathcal{Z}(p)=\{(i, j, 1): 1 \leq i, j \leq k\}
$$

so that $|\mathcal{Z}(p)|=k^{2}$.
If e.g. $p(x, y, z)=x^{2} q(x, y, z)$ for some psd q, then the entire plane $\{x=0\}$ is contained in $\mathcal{Z}(p)$, so $|\mathcal{Z}(p)|=\infty$. We will only be interested in those cases where $|\mathcal{Z}(p)|$ is finite, so we assume no indefinite square factors.

An example is instructive. Let

$$
p(x, y, z)=\prod_{i=1}^{k}(x-i z)^{2}+\prod_{j=1}^{k}(y-j z)^{2}
$$

It is evident that $p \in \Sigma_{3,2 k}$ and that

$$
\mathcal{Z}(p)=\{(i, j, 1): 1 \leq i, j \leq k\},
$$

so that $|\mathcal{Z}(p)|=k^{2}$.
If e.g. $p(x, y, z)=x^{2} q(x, y, z)$ for some psd q, then the entire plane $\{x=0\}$ is contained in $\mathcal{Z}(p)$, so $|\mathcal{Z}(p)|=\infty$. We will only be interested in those cases where $|\mathcal{Z}(p)|$ is finite, so we assume no indefinite square factors.
If $p(a, b, 0)=0$, then p has a "zero at infinity". In the absence of these, it makes sense to dehomogenize to $p(x, y, 1)$. If $\epsilon>0$ is sufficiently small, then the real solutions to $p(x, y)=\epsilon$ will consist of $|\mathcal{Z}(p)|$ disjoint ovals in the plane, one around each of the zeros.

Here is one example of ovals with $2 k=8$:
infle $=$ ContourPlot [Product [(x-i) ^2, \{i, 1, 4\}] + Product [$(\mathrm{y}-\mathrm{j})^{\wedge} 2$, $\left.\{j, 1,4\}\right]==1,\{x, .5,4.5\}$, $\{y, .5,4.5\}$, ContourStyle \rightarrow Black, PlotPoints \rightarrow 100]

M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:

- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:
- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
- $\alpha\left(2 k_{1}+2 k_{2}\right) \geq \alpha\left(2 k_{1}\right)+\alpha\left(2 k_{2}\right)$. (A product of forms with a change of variables to insure that zeros are distinct.)
M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:
- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
- $\alpha\left(2 k_{1}+2 k_{2}\right) \geq \alpha\left(2 k_{1}\right)+\alpha\left(2 k_{2}\right)$. (A product of forms with a change of variables to insure that zeros are distinct.)
- $\alpha(2)=1, \alpha(4)=4, \alpha(6)=10$. (Examples to follow.)
M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:
- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
- $\alpha\left(2 k_{1}+2 k_{2}\right) \geq \alpha\left(2 k_{1}\right)+\alpha\left(2 k_{2}\right)$. (A product of forms with a change of variables to insure that zeros are distinct.)
- $\alpha(2)=1, \alpha(4)=4, \alpha(6)=10$. (Examples to follow.)
- $k^{2} \leq \alpha(2 k) \leq \frac{3}{2} k(k-1)+1$ for $k \geq 4$. (Lower bound: previous example; upper bound: Petrovskii's work on ovals from the 1970s.)
M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:
- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
- $\alpha\left(2 k_{1}+2 k_{2}\right) \geq \alpha\left(2 k_{1}\right)+\alpha\left(2 k_{2}\right)$. (A product of forms with a change of variables to insure that zeros are distinct.)
- $\alpha(2)=1, \alpha(4)=4, \alpha(6)=10$. (Examples to follow.)
- $k^{2} \leq \alpha(2 k) \leq \frac{3}{2} k(k-1)+1$ for $k \geq 4$. (Lower bound: previous example; upper bound: Petrovskii's work on ovals from the 1970s.)
- If $p \in \Sigma_{3,2 k}$, then $|\mathcal{Z}(p)| \leq k^{2}$. (Essentially, Bezout.)
M. D. Choi, T. Y. Lam and I studied this topic systematically in 1980. Here are some of our results:
- There is an integer $\alpha(2 k)$ with the property that if $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|>\alpha(2 k)$, then there exists an indefinite form h so that $p=h^{2} q$. (If p is irreducible over \mathbb{C} and $p(\pi)=0$, then p is singular at π, and p has at most $(k-1)(2 k-1)$ singular points; four variable fail: $x^{2} y^{2}+z^{2} w^{2}$!)
- $\alpha\left(2 k_{1}+2 k_{2}\right) \geq \alpha\left(2 k_{1}\right)+\alpha\left(2 k_{2}\right)$. (A product of forms with a change of variables to insure that zeros are distinct.)
- $\alpha(2)=1, \alpha(4)=4, \alpha(6)=10$. (Examples to follow.)
- $k^{2} \leq \alpha(2 k) \leq \frac{3}{2} k(k-1)+1$ for $k \geq 4$. (Lower bound: previous example; upper bound: Petrovskii's work on ovals from the 1970s.)
- If $p \in \Sigma_{3,2 k}$, then $|\mathcal{Z}(p)| \leq k^{2}$. (Essentially, Bezout.)
- $\alpha(2 r k) \geq r^{2} \alpha(2 k)$. (Argument to follow.)

Examples. If p is a real ternary form of degree $2 k=2,4$, then psd implies sos, so the upper bounds are $1^{2}, 2^{2}$. These are achieved by:

$$
\begin{gathered}
\mathcal{Z}\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)=\{(1,1,1)\} \\
\mathcal{Z}\left(x^{4}+y^{4}+z^{4}-x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}\right)=\{(\pm 1, \pm 1,1)\}
\end{gathered}
$$

Examples. If p is a real ternary form of degree $2 k=2,4$, then psd implies sos, so the upper bounds are $1^{2}, 2^{2}$. These are achieved by:

$$
\begin{gathered}
\mathcal{Z}\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)=\{(1,1,1)\} \\
\mathcal{Z}\left(x^{4}+y^{4}+z^{4}-x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}\right)=\{(\pm 1, \pm 1,1)\}
\end{gathered}
$$

The construction of psd ternary sextics which are not sos goes back to Hilbert, but the first specific example is due to Robinson.

Examples. If p is a real ternary form of degree $2 k=2,4$, then psd implies sos, so the upper bounds are $1^{2}, 2^{2}$. These are achieved by:

$$
\begin{gathered}
\mathcal{Z}\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)=\{(1,1,1)\} \\
\mathcal{Z}\left(x^{4}+y^{4}+z^{4}-x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}\right)=\{(\pm 1, \pm 1,1)\}
\end{gathered}
$$

The construction of psd ternary sextics which are not sos goes back to Hilbert, but the first specific example is due to Robinson. Let $F=x\left(x^{2}-z^{2}\right)$ and $G=y\left(y^{2}-z^{2}\right)$. Then F and G have 9 common real zeros, at $\{(a, b, 1): a, b \in\{-1,0,1\}\}$; that is, on a 3×3 grid. We pick the 8 zeros minus the center and note that $K(x, y, z)=\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}-y^{2}\right)$ is singular at the first 8. It turns out that $R:=F^{2}+G^{2}+K$ is psd and has the original 8 zeros plus 2 at infinity. Miraculously, R is symmetric in x, y, z, even though z was treated differently from x and y.

Here are some dehomogenized pictures. This shows the set $F^{2}+G^{2}=.1$.
$\ln (\mid)=$ ContourPlot $\left[x^{\wedge} 2\left(x^{\wedge} 2-1\right)^{\wedge} 2+y^{\wedge} 2\left(y^{\wedge} 2-1\right)^{\wedge} 2==.1\right.$, $\{x,-1.5,1.5\},\{y,-1.5,1.5\}$, ContourStyle \rightarrow Black, PlotPoints \rightarrow 100]

This shows the set $R=F^{2}+G^{2}+K=.1$. You can't see the zeros at infinity.

After algebraic simplification,

$$
\begin{gathered}
R(x, y, z)=x^{6}+y^{6}+z^{6} \\
-\left(x^{4} y^{2}+x^{2} y^{4}+x^{4} z^{2}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right) \\
+3 x^{2} y^{2} z^{2}
\end{gathered}
$$

We have

$$
\mathcal{Z}(R)=\{(\pm 1, \pm 1,1),(\pm 1,0,1),(0, \pm 1,1),(1, \pm 1,0)\}
$$

The last two zeros are at infinity; note that $|\mathcal{Z}(R)|=10$ as promised. Both the singularity upper bound and the oval upper bound for sextics give 10 , so $\alpha(6)=10$.

Let $T_{r}(t):=\cos (r \arccos (t))$ be the r-th Chebyshev polynomial $\left(\operatorname{deg}\left(T_{r}\right)=r\right)$; e.g. $T_{3}(t)=4 t^{3}-3 t$. Chebyshev polynomials have the property that $T_{r}:[-1,1] \mapsto[-1,1]$ in such a way that for $u \in(-1,1)$, the equation $T_{r}(t)=u$ has exactly r solutions.

Let $T_{r}(t):=\cos (r \arccos (t))$ be the r-th Chebyshev polynomial $\left(\operatorname{deg}\left(T_{r}\right)=r\right)$; e.g. $T_{3}(t)=4 t^{3}-3 t$. Chebyshev polynomials have the property that $T_{r}:[-1,1] \mapsto[-1,1]$ in such a way that for $u \in(-1,1)$, the equation $T_{r}(t)=u$ has exactly r solutions. If $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|=m$, then after an invertible linear change of variables, we may assume that

$$
\mathcal{Z}(p)=\left\{\left(a_{i}, b_{i}, 1\right): 1 \leq i \leq m\right\}
$$

with $\left|a_{i}\right|,\left|b_{i}\right|<1$.

Let $T_{r}(t):=\cos (r \arccos (t))$ be the r-th Chebyshev polynomial $\left(\operatorname{deg}\left(T_{r}\right)=r\right)$; e.g. $T_{3}(t)=4 t^{3}-3 t$. Chebyshev polynomials have the property that $T_{r}:[-1,1] \mapsto[-1,1]$ in such a way that for $u \in(-1,1)$, the equation $T_{r}(t)=u$ has exactly r solutions. If $p \in P_{3,2 k}$ and $|\mathcal{Z}(p)|=m$, then after an invertible linear change of variables, we may assume that

$$
\mathcal{Z}(p)=\left\{\left(a_{i}, b_{i}, 1\right): 1 \leq i \leq m\right\}
$$

with $\left|a_{i}\right|,\left|b_{i}\right|<1$.
We construct a new polynomial of degree $2 k r$:

$$
\begin{aligned}
& p_{r}(x, y, z):=z^{2 k r} p\left(T_{r}(x / z), T_{r}(y / z), 1\right) \Longrightarrow \\
& \mathcal{Z}\left(p_{r}\right)=\left\{\left(T_{r}^{-1}\left(a_{i}\right), T_{r}^{-1}\left(b_{i}\right), 1\right): 1 \leq i \leq m\right\}
\end{aligned}
$$

so we see that $\left|\mathcal{Z}\left(p_{r}\right)\right|=r^{2} m$. And this is how we get the quadratic growth.

Now I will mention some new results (this is joint work with Greg).

- $\alpha(8) \geq 17$. (In fact, "morally", we have $\alpha(8)=18$; the oval upper bound is 19.)

Now I will mention some new results (this is joint work with Greg).

- $\alpha(8) \geq 17$. (In fact, "morally", we have $\alpha(8)=18$; the oval upper bound is 19.)
- $\alpha(10) \geq 30$. (This example is due to my 1992 PhD student William Harris in his thesis; the oval upper bound is 31 .)

Now I will mention some new results (this is joint work with Greg).

- $\alpha(8) \geq 17$. (In fact, "morally", we have $\alpha(8)=18$; the oval upper bound is 19.)
- $\alpha(10) \geq 30$. (This example is due to my 1992 PhD student William Harris in his thesis; the oval upper bound is 31.)
- We conjecture that $\alpha(2 k) \geq k^{2}+1$ for $k \geq 3$, as a concrete manifestation of the fact that $P_{3,2 k} \backslash \Sigma_{3,2 k} \neq \emptyset$ in this case.

Now I will mention some new results (this is joint work with Greg).

- $\alpha(8) \geq 17$. (In fact, "morally", we have $\alpha(8)=18$; the oval upper bound is 19.)
- $\alpha(10) \geq 30$. (This example is due to my 1992 PhD student William Harris in his thesis; the oval upper bound is 31.)
- We conjecture that $\alpha(2 k) \geq k^{2}+1$ for $k \geq 3$, as a concrete manifestation of the fact that $P_{3,2 k} \backslash \Sigma_{3,2 k} \neq \emptyset$ in this case.

Now I will mention some new results (this is joint work with Greg).

- $\alpha(8) \geq 17$. (In fact, "morally", we have $\alpha(8)=18$; the oval upper bound is 19.)
- $\alpha(10) \geq 30$. (This example is due to my 1992 PhD student William Harris in his thesis; the oval upper bound is 31.)
- We conjecture that $\alpha(2 k) \geq k^{2}+1$ for $k \geq 3$, as a concrete manifestation of the fact that $P_{3,2 k} \backslash \Sigma_{3,2 k} \neq \emptyset$ in this case.
The octic examples come from emulating Robinson's construction, but starting with a 4×4 grid. First ignore two zeros. It turns out that the set of quartics which vanish on these 14 points is a pencil with generators, say, F and G. We then look at octic forms which are singular at these 14 points. When we are lucky, they form a subspace of ternary octics with basis $\left\{F^{2}, F G, G^{2}, K\right\}$ for some K. We then play with taking $\phi(F, G)+\lambda K$ where ϕ is a pd quadratic form, and, when things work out just right, we find the examples.

The example with 17 zeros comes from a variation. We start with a 3×4 grid and a symmetric pair above and below.) The resulting $F_{1}(x, y, z)$ is unfortunately, quite ugly: $F_{1} \in \mathbb{Q}(\sqrt{345})[x, y, z]$, and the three new zeros are at infinity; at $(0,1,0)$ and $(a, b, 0)$, where $3 \sqrt{345} a^{2}=23 b^{2}$. We have varied the starting points and found many similar examples, but none with rational coefficients.

The example with 17 zeros comes from a variation. We start with a 3×4 grid and a symmetric pair above and below.) The resulting $F_{1}(x, y, z)$ is unfortunately, quite ugly: $F_{1} \in \mathbb{Q}(\sqrt{345})[x, y, z]$, and the three new zeros are at infinity; at $(0,1,0)$ and $(a, b, 0)$, where $3 \sqrt{345} a^{2}=23 b^{2}$. We have varied the starting points and found many similar examples, but none with rational coefficients.

$$
\begin{aligned}
F_{1}(x, y, z):= & -y^{2}\left(5 x^{2}+9 y^{2}-81 z^{2}\right)\left(5 x^{2}+y^{2}-9 z^{2}\right)\left(y^{2}-4 z^{2}\right) \\
& +\frac{2}{27}(675+23 \sqrt{345}) x^{2} y^{2}\left(y^{2}-4 z^{2}\right)^{2} \\
& +9\left(5 x^{4}-y^{4}-50 x^{2} z^{2}+4 y^{2} z^{2}+45 z^{4}\right)^{2}
\end{aligned}
$$

In 1893, Hilbert proved that if $p \in P_{3,2 k}$ and $2 k \geq 4$, then there exists $q \in P_{3,2 k-4}$ so that $p q \in \Sigma_{3,4 k-4}$ is a sum of three squares of forms of degree $2 k-2$.

In 1893, Hilbert proved that if $p \in P_{3,2 k}$ and $2 k \geq 4$, then there exists $q \in P_{3,2 k-4}$ so that $p q \in \Sigma_{3,4 k-4}$ is a sum of three squares of forms of degree $2 k-2$.
This example F_{1} has the property that the only quadratic q (up to multiple) so that $q F_{1}$ is a sum of squares is

$$
q_{1}(x, y, z)=90 x^{2}+\sqrt{345} y^{2}+14 \sqrt{345} z^{2}
$$

It turns out that $q_{1} F_{1}$ is a sum of four squares, not three, so this example has genuine theoretical interest: for at least one octic, you really need a multiplier of degree 4 , not 2 .

In 1893, Hilbert proved that if $p \in P_{3,2 k}$ and $2 k \geq 4$, then there exists $q \in P_{3,2 k-4}$ so that $p q \in \Sigma_{3,4 k-4}$ is a sum of three squares of forms of degree $2 k-2$.
This example F_{1} has the property that the only quadratic q (up to multiple) so that $q F_{1}$ is a sum of squares is

$$
q_{1}(x, y, z)=90 x^{2}+\sqrt{345} y^{2}+14 \sqrt{345} z^{2}
$$

It turns out that $q_{1} F_{1}$ is a sum of four squares, not three, so this example has genuine theoretical interest: for at least one octic, you really need a multiplier of degree 4 , not 2 .

Now we turn to the "morally 18 zero" example. It has 16 zeros, but two of them are "deep", with the polynomial vanishing to fourth order in a certain direction. In a geometric sense, this happens when two zeros coalesce at a point, and $16+2=18$.

The 14 zeros we start with are

$$
\{(a, b, 1): a, b \in\{ \pm 1, \pm 3\},(a, b) \neq(3,3),(-3,-3)\}
$$

the two new zeros turn out to be at $(\pm s, \pm s, 1)$, where $s=\sqrt{\frac{45}{13}}$.

The 14 zeros we start with are

$$
\{(a, b, 1): a, b \in\{ \pm 1, \pm 3\},(a, b) \neq(3,3),(-3,-3)\}
$$

the two new zeros turn out to be at $(\pm s, \pm s, 1)$, where $s=\sqrt{\frac{45}{13}}$.

$$
\begin{gathered}
F_{2}(x, y, z)= \\
25 x^{8}+72 x^{6} y^{2}+144 x^{5} y^{3}+194 x^{4} y^{4}+144 x^{3} y^{5}+72 x^{2} y^{6} \\
+25 y^{8}-572 x^{6} z^{2}-144 x^{5} y z^{2}-1436 x^{4} y^{2} z^{2}-1728 x^{3} y^{3} z^{2} \\
-1436 x^{2} y^{4} z^{2}-144 x y^{5} z^{2}-572 y^{6} z^{2}+4192 x^{4} z^{4} \\
+1584 x^{3} y z^{4}+6584 x^{2} y^{2} z^{4}+1584 x y^{3} z^{4} \\
+4192 y^{4} z^{4}-9720 x^{2} z^{6}-1440 x y z^{6}-9720 y^{2} z^{6}+8100 z^{8}
\end{gathered}
$$

The next page shows $F_{2}(x, y, 1)=400 ; 400$ is small!

You can count 16 zeros and you can see the squeezed shape of the zeros at $(\pm 1, \mp 1)$, which is consistent with their 4 th order.

Bruce Reznick University of Illinois at Urbana-Champaign
Real psd ternary forms with many zeros

> I had forgotten about my student William Harris's example in degree 10 until I was reminded of it last month by Salma Kuhlmann at Konstanz and her Ph.D. student Charu Goel. Here it is:

I had forgotten about my student William Harris's example in degree 10 until I was reminded of it last month by Salma Kuhlmann at Konstanz and her Ph.D. student Charu Goel. Here it is:

$$
\begin{gathered}
W(x, y, z)=16 \sum x^{10}-36 \sum x^{8} y^{2}+20 \sum x^{6} y^{4} \\
+57 \sum x^{6} y^{2} z^{2}-38 \sum x^{4} y^{4} z^{2}
\end{gathered}
$$

(The sums above should be taken so as to make W symmetric.)

I had forgotten about my student William Harris's example in degree 10 until I was reminded of it last month by Salma Kuhlmann at Konstanz and her Ph.D. student Charu Goel. Here it is:

$$
\begin{gathered}
W(x, y, z)=16 \sum x^{10}-36 \sum x^{8} y^{2}+20 \sum x^{6} y^{4} \\
+57 \sum x^{6} y^{2} z^{2}-38 \sum x^{4} y^{4} z^{2}
\end{gathered}
$$

(The sums above should be taken so as to make W symmetric.) Harris showed that W is psd and $\mathcal{Z}(W)$ consists of $(1,1, \sqrt{2})$, $\left(1,1, \frac{1}{2}\right)$, and $(1,1,0)$ with all choices of sign and permutation. This gives $12+12+6=30$ zeros, of which 28 zeros are not at infinity. (It seems likely that the future examples in higher degree will be symmetric.) The next page shows $W(x, y, 1)=.08$.

The zeros are at $\left(\pm 1, \pm \frac{1}{2}\right)\left(\pm \frac{1}{2}, \pm 1\right),\left(\pm \sqrt{\frac{1}{2}}, \pm \sqrt{\frac{1}{2}}\right),(\pm 1, \pm \sqrt{2})$, $(\pm \sqrt{2}, \pm 1),(\pm 1,0),(0, \pm 1),(\pm 2, \pm 2)$. The last 4 are barely visible, but choosing a larger ϵ makes the ovals coalesce.

On the conjecture, Choi, Lam and I remarked in 1980 that because of the Chebyshev-fueled quadratic growth,

$$
\begin{aligned}
\alpha(6 s) & \geq 10 s^{2}, \\
\alpha(6 s+2) & \geq 10 s^{2}+1, \\
\alpha(6 s+4) & \geq 10 s^{2}+4 .
\end{aligned}
$$

This is already enough to prove that $\alpha(2 k) \geq k^{2}+1$ for all but 18 cases: $6 s+2$ for $1 \leq s \leq 6$ and $6 s+4$ for $1 \leq s \leq 12$. The new information about $\alpha(8)$ and $\alpha(10)$ reduces the open cases to eight: $2 k \in\{14,22,26,28,34,38,46,58\}$.

On the conjecture, Choi, Lam and I remarked in 1980 that because of the Chebyshev-fueled quadratic growth,

$$
\begin{aligned}
\alpha(6 s) & \geq 10 s^{2}, \\
\alpha(6 s+2) & \geq 10 s^{2}+1, \\
\alpha(6 s+4) & \geq 10 s^{2}+4 .
\end{aligned}
$$

This is already enough to prove that $\alpha(2 k) \geq k^{2}+1$ for all but 18 cases: $6 s+2$ for $1 \leq s \leq 6$ and $6 s+4$ for $1 \leq s \leq 12$. The new information about $\alpha(8)$ and $\alpha(10)$ reduces the open cases to eight: $2 k \in\{14,22,26,28,34,38,46,58\}$.
We think the conjecture is true. It's hard to believe that there's anything interesting about ternary forms of these degrees.

Finally, we mention one application, taken from my 1992 Memoir. Let $Q_{3,2 k}$ be the closed cone of sums of $2 k$-th powers of real linear forms; this is the dual cone to $P_{3,2 k}$.

Finally, we mention one application, taken from my 1992 Memoir. Let $Q_{3,2 k}$ be the closed cone of sums of $2 k$-th powers of real linear forms; this is the dual cone to $P_{3,2 k}$.
If $\mathcal{Z}(p)=\left\{\left(a_{i}, b_{i}, c_{i}\right)\right\}$ and the $|\mathcal{Z}(p)|$ forms $\left\{\left(a_{i} x+b_{i} y+c_{i} z\right)^{2 k}\right\}$ are linearly independent, then any expression of the form

$$
\sum_{i=1}^{|\mathcal{Z}(p)|} \lambda_{i}\left(a_{i} x+b_{i} y+c_{i} z\right)^{2 k}, \quad\left(\lambda_{i}>0\right)
$$

has no other expression as a sum of $2 k$-th powers of linear forms.

Finally, we mention one application, taken from my 1992 Memoir. Let $Q_{3,2 k}$ be the closed cone of sums of $2 k$-th powers of real linear forms; this is the dual cone to $P_{3,2 k}$.
If $\mathcal{Z}(p)=\left\{\left(a_{i}, b_{i}, c_{i}\right)\right\}$ and the $|\mathcal{Z}(p)|$ forms $\left\{\left(a_{i} x+b_{i} y+c_{i} z\right)^{2 k}\right\}$ are linearly independent, then any expression of the form

$$
\sum_{i=1}^{|\mathcal{Z}(p)|} \lambda_{i}\left(a_{i} x+b_{i} y+c_{i} z\right)^{2 k}, \quad\left(\lambda_{i}>0\right)
$$

has no other expression as a sum of $2 k$-th powers of linear forms. The a priori lower bound on "maximal width" is $\frac{(k+1)(k+2)}{2}$, which e.g. for $2 k=10$ is 21 . It is easy to find sums of 10 th powers of linear ternary forms which need 21 summands. The Harris example thus demonstrates the existence of forms needing 30 summands.

Thanks to the organizers for your invitation and to the audience for your attention!

