
Theoretical Computer Science 372 (2007) 115–121

www.elsevier.com/locate/tcs

Note

A simple storage scheme for strings achieving entropy bounds✩

Paolo Ferragina∗, Rossano Venturini

Dipartimento di Informatica, University of Pisa, Italy

Received 3 July 2006; received in revised form 13 December 2006; accepted 14 December 2006

Communicated by A. Apostolico

Abstract

We propose a storage scheme for a string S[1, n], drawn from an alphabet Σ , that requires space close to the k-th order

empirical entropy of S, and allows one to retrieve any substring of S of length ℓ in optimal O(1 + ℓ
log|Σ | n

) time. This matches

the best known bounds [R. González, G. Navarro, Statistical encoding of succinct data structures, in: Procs CPM, in: LNCS,

vol. 4009, 2006, pp. 295–306; K. Sadakane, R. Grossi, Squeezing succinct data structures into entropy bounds, in: Procs ACM-

SIAM SODA, 2006, pp. 1230–1239], via the use of binary encodings and tables only. We also apply our storage scheme to the

Burrows–Wheeler Transform [M. Burrows, D. Wheeler, A block sorting lossless data compression algorithm, Technical Report

124, Digital Equipment Corporation, 1994], and achieve a space bound which depends on both the k-th order entropy of S and the

k-th order entropy of its BW-transformed string bwt(S).
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Data structures for strings; Data compression

1. Introduction

Starting from [4], the design of compressed (self-)indexes for strings became an active field of research (see [11]

and references therein). The key problem addressed in these papers consists of representing a string S[1, n] drawn

from an alphabet Σ within compressed space, while still being able to answer various types of query (e.g. substring,

approximate, . . .) in efficient time, without incurring in the whole decompression of the compressed data. In these

results, compressed space usually means space close to the k-th order empirical entropy of S,1 and efficient time

means something depending on the length of the searched string and as independent as possible of S’s length. Various

trade-offs are known, and for them we refer the reader to [11].

Recently, Sadakane and Grossi [14] addressed the foundational problem of designing a compressed storage scheme

for a string S which is provably better than storing S as a plain array of symbols. Here, the query operation to

✩ Part of this work appeared in the Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007. The work
was partially supported by Italian MIUR grants Italy–Israel FIRB “Pattern Discovery Algorithms in Discrete Structures, with Applications to
Bioinformatics”, and by a Yahoo! Research grant on “Data compression and indexing in hierarchical memories”.

∗ Corresponding address: Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy. Tel.: +39 050
22127 64; fax: +39 050 22127 26.

E-mail addresses: ferragina@di.unipi.it (P. Ferragina), rossano@di.unipi.it (R. Venturini).
1 This is a lower bound to the space achieved by any k-th order compressor.

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.12.012

116 P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121

be supported is the retrieval of any ℓ-long substring of S in optimal O(1 + ℓ
log|Σ | n

) time. Previous solutions [11],

based on compressed indexes, incurred in an additional sub-logarithmic time overhead. The Sadakane–Grossi storage

scheme achieves the optimal time bound and occupies a number of bits upper bounded by the following function2:

nHk(S)+O(n
log|Σ | n

((k+1) log |Σ |+log log n)), where Hk(S) is the k-th order entropy of string S (see Definition (3)).

This storage scheme is based on a sophisticated combination of various techniques: the Ziv–Lempel string encoding

[16], succinct dictionaries [12], and some novel succinct data structures for supporting navigation and path-decoding

in LZ-tries. Since storing S by means of a plain array of symbols takes Θ(n log |Σ |) bits, the scheme in [14] is

effective when k = o(log|Σ | n).

More recently, González and Navarro [6] proposed a simpler storage scheme achieving the same query time and

an improved space bound:

nHk(S) + O

(

n

log|Σ | n
(k log |Σ | + log log n)

)

. (1)

This storage scheme exploits a statistical encoder (namely, Arithmetic) on most of S’s substrings but, unlike [14],

requires fixing the order k of the entropy bound in advance.

In what follows we propose a very simple storage scheme that: (1) drops the use of any compressor (either statistical

or LZ-like), and deploys only binary encodings and tables; (2) matches the space bound of Eq. (1) simultaneously

over all k = o(log|Σ | n). We then exploit this storage scheme to achieve two corollary results. The first one provides a

novel bound in terms of Hk(S) on the compression ratio achievable by any 0-th order compressor applied on blocks of

l contiguous symbols of S, with k ≤ l (see Theorem 3). The second result shows that our storage scheme can be used

upon the string Burrows–Wheeler Transformed string bwt(S) in order to achieve an interesting compressed-space

bound which depends on the k-th order entropy of both the strings S and bwt(S) (see Theorem 4).

2. Some background

Let S[1, n] be a string drawn from the alphabet Σ = {a1, . . . , ah}. For each ai ∈ Σ , we let ni be the number of

occurrences of ai in S. Let {Pi = ni/n}h
i=1 be the empirical probability distribution for the string S. The 0-th order

empirical entropy of S is defined as3

H0(S) = −
h
∑

i=1

Pi log Pi . (2)

For any string w of length k, we denote by wS the string of single symbols following the occurrences of w in S,

taken from left to right. For example, if S = mississippi and w = si, we have wS = sp since the two occurrences

of si in S are followed by the symbols s and p, respectively. The k-th order empirical entropy of S is defined as

Hk(S) =
1

|S|
∑

w∈Σ k

|wS| H0(wS). (3)

Not surprisingly, for any k ≥ 0 we have Hk(S) ≥ Hk+1(S). The value |S|Hk(S) is a lower bound to the output

size of any compressor that encodes each symbol of S with a code that only depends on the symbol itself and on the

k immediately preceding symbols [9].

We will use B = [ǫ, 0, 1, 00, 01, 10, 11, 000, . . .] to denote the infinite sequence of binary strings ordered first by

length and then lexicographically by their content, with ǫ denoting the empty string.

2.1. The Burrows–Wheeler transform

In [2] Burrows and Wheeler introduced a new compression algorithm based on a reversible transformation now

called the Burrows–Wheeler Transform (BWT). The BWT transforms the input string S into a new string, that is

usually easier to compress, via three basic steps (see Fig. 1):

2 As stated in [6], the term (k + 1) log |Σ | appears erroneously as k in [14]. We therefore use the correct bound in this note.
3 Throughout this paper we assume that all logarithms are taken to the base 2, whenever not explicitly indicated, and we assume 0 log 0 = 0.

P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121 117

mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

H⇒

F L

mississipp i

i #mississip p

i ppi#missis s

i ssippi#mis s

i ssissippi# m

m ississippi #

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

Fig. 1. Example of a Burrows–Wheeler transform for the string S = mississippi. The matrix on the right has the rows sorted in lexicographic

order. The output of the BWT is the column L; in this example the string ipssm#pissii.

(1) append at the end of S a special symbol # smaller than any other symbol of Σ ;

(2) form a conceptual matrix MS whose rows are the cyclic shifts of string S# in lexicographic order;

(3) construct the transformed string L by taking the last column of the sorted matrix MS .

Notice that every column of MS , and hence also the transformed string L , is a permutation of S#. In particular the

first column of MS , call it F , is obtained by lexicographically sorting the symbols of S# (or, equally, the symbols of

L). Note also that when we sort the rows of MS , we are essentially sorting the suffixes of S because of the presence

of the special symbol #. This shows that: (1) there is a strong relation between MS and the suffix array data structure

built on S; (2) symbols following the same substring (context) in S are grouped together in L , thus giving rise to

clusters of nearly identical symbols. Property 1 is crucial for designing compressed indexes (see e.g. [11]), whereas

Property 2 is the key for the design of modern data compressors (see e.g. [9,3]).

The Burrows–Wheeler Transform has changed the way in which fundamental tasks for string processing and data

retrieval, such as compression and indexing, are designed and engineered (see e.g. [4,7,11]). In Section 5 we will

address the problem of succinct storing of the BWT, because this impacts on most modern indexing and compression

tools.

3. Our storage scheme for strings

Let S[1, n] be a string drawn from an alphabet Σ , and assume that n is a multiple of b = ⌊ 1
2 log|Σ | n⌋. If this is not

the case, we append to S the missing symbols taking them as the special null symbol.4 We partition S into blocks Si

of size b each. Let S be the set of distinct blocks of S. The number of all blocks is n
b

; the number of distinct blocks is

|S| = O(|Σ |b) = O(n1/2).

The encoding scheme. We sort the elements of S per decreasing frequency of occurrence in S’s partition. Let r(Si)

be the rank of the block Si in this ordering, and let r−1(j) be its inverse function (namely, the one that returns the

block having the given rank j). The storage scheme for S consists of the following information.

• Each block Si is assigned a codeword enc(i) consisting of the binary string that has rank r(Si) in B. It is simple to

see that |enc(i)| ≤ log i ≤ 1
2 log n. Of course, enc(i) is not a uniquely decodable code, but the additional tables

built below will allow us to decode it in constant time and within a space bounded by Eq. (1).

• We build a bit sequence V obtained by juxtaposing the binary encodings of all S’s blocks in the order of their

appearance in S. Namely V = enc(1) · · · enc(n
b
).

• We store r−1 as a table of O(|Σ |b) entries, taking O(|Σ |b log n) = o(n) bits.

4 This will add to the entropy estimation a negligible additive term equal to O(log |Σ | log|Σ | n) = O(log n) bits.

118 P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121

• To guarantee constant-time access to the encodings of S’s blocks and to ensure their decodings, we use a

two-level storage scheme for the starting positions of encs (see [10]). Specifically, we logically group every

c = Θ(log n) contiguous blocks into one super-block, having thus size bc log |Σ | = Θ(log2 n) bits. Table

TSblk[1, n
bc

] stores the starting position of the encoding of every super-block in V , and table Tblk[1, n
b
] stores

the starting position in V of the encoding of every block relative to the beginning of its enclosing super-block.

Note that the starting position of each super-block is no more than |V | = O(n
b

log n) = O(n log |Σ |), whereas

the relative position of each block within its super-block is O(log2 n). Consequently, tables TSblk and Tblk occupy

O(n
bc

log |V | + n
b

log log n) = O(
n log log n
log|Σ | n

) bits overall, and guarantee a constant-time access to every codeword

enc(i) and its length.5

Theorem 1. Our storage scheme encodes S[1, n] in |V | + O(
n log log n
log|Σ | n

) bits, which is upper bounded by Eq. (1),

simultaneously over all k = o(log|Σ | n).

Proof. For every position i , k < i ≤ n, let us denote by fi the empirical probability of seeing S[i] after the k-th

order context S[i − k, i − 1]. According to the notation in Section 2, this can be rephrased by saying that fi is the

frequency of occurrence of symbol S[i] within wS , where w = S[i − k, i − 1]. It is easy to see that a (semi-static)

k-order modeler can compute all the frequencies fi via two passes over S, and hence in O(n) time.
Arithmetic encoding is one of the most effective statistical encoders [15]. Given the fi s, it represents the string S

with a range of size F = f1 × f2 × · · · × fn . It is well known [15] that 2 + log(1/F) = 2 +
∑n

i=1 log(1/ fi) bits

are enough for distinguishing a number within that range. The binary representation of this number is the Arithmetic

compression of S. If we compute
∑n

i=k+1 log(1/ fi), and then group all the terms referring to the same k-th order

context, we obtain a summation upper bounded by nHk(S) (see Eq. (3)). Additionally, since fi ≥ 1/n, we have that
∑k

i=1 log(1/ fi) = O(k log n). As a result, a (semi-static) k-th order Arithmetic encoder compresses the whole S

within nHk(S) + 2 + O(k log n) bits.
Let us introduce a compressor E that encodes each block Si of S individually: the first k symbols of Si are

represented explicitly; the remaining b − k symbols of Si are compressed via the above k-th order Arithmetic encoder

(hence using their k-th order frequencies f s). It is easy to observe that the codeword so assigned to Si uniquely

identifies it. This blocking approach increases the above Arithmetic encoding of the whole S by O((n/b)k log |Σ |)
bits, which accounts for the cost of explicitly storing the first k symbols of each Si .

To show that the string V produced by our storage scheme enc is shorter than the compressed string produced by

E , it suffices to note that the codewords assigned by E are a subset of B, whereas the codewords assigned by enc

are the first |S| binary strings of B. Given that B is the set of the shortest codewords assignable to S’s strings, our

encoding enc is better than E because it follows the golden rule of data compression: it assigns shorter codewords to

more frequent symbols. Summing up the cost of the block’s encodings and the space occupancy of the decoding table,

we get the space bound of Eq. (1), whenever k = o(log|Σ | n) and independently of it. �

We now show how to decode in constant time a generic block Sk . This will be enough to prove the result

for any ℓ-long substring of S. We first derive the starting position p(k) of the string enc(k) that encodes Sk

in V . Namely, we compute the super-block number h = ⌈k/c⌉ containing enc(k), and its starting bit-position

y = TSblk[h] within V . Then, we compute x = Tblk[k] as the relative bit-position of enc(k) within its enclosing

super-block. Thus p(k) = x + y. Similarly, we derive the starting position p(k + 1) of enc(k + 1) in V (if any,

otherwise we set p(k + 1) = |V | + 1). We can thus fetch enc(k) = V [p(k), p(k + 1) − 1] in constant time since

|enc(k)| = p(k + 1) − p(k) = O(log n) bits.
We finally decode enc(k) as follows. Let v be the integer value represented by the binary string enc(k),

where v = 0 if enc(k) = ǫ. Because of the canonical ordering of S, Sk is computed as the block having rank

z = 2|enc(k)| + v. That is, Sk = r−1(z).

Theorem 2. Our storage scheme retrieves any substring of S of length ℓ in optimal O(1 + ℓ
log|Σ | n

) time.

Proof. The algorithm described above allows us to retrieve any block Sk in constant time. The theorem follows by

observing that any ℓ-long substring S[j, j + l − 1] spans O(1 + l
log|Σ | n

) blocks of S. �

5 It suffices to compute the starting position of enc(i) and enc(i + 1), if any.

P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121 119

4. Huffman on blocks of symbols

It is well known that the Huffman compressor cannot represent a symbol with less than one bit. To circumvent this,

the string S is usually partitioned into n
l

blocks of length l each, and then Huffman is applied onto the alphabet Σl

of these new symbols, i.e. l-long blocks. This blocking strategy spreads the per-symbol inefficiency over the entire

block, thus reducing it to 1
l

bits. It is natural to ask which is the compression ratio of this block-Huffman algorithm.

The following theorem bounds the 0-th order entropy of Sl by the k-th order empirical entropy of original string S.

Theorem 3. H0(Sl) ≤ l Hk(S) + O(k log |Σ |), simultaneously over all k ≤ l.

Proof. Consider the compressor E in the proof of Theorem 1. E does not depend on the size of the blocks into

which S has been decomposed. Hence, we can set b = l, apply E onto the blocked S and thus assign a distinct

prefix-free codeword to each distinct block in S (i.e. symbol of Σl). As seen in that proof, the space necessary for

representing the whole Sl is bounded by nHk(S)+ O((n/ l)k log |Σ |) bits. The stated theorem follows by the classical

information-theory lower bound, since every prefix-free encoder needs on Sl at least |Sl |H0(Sl) = n
l

H0(Sl) bits. �

We note that the case k = 0 of Theorem 3 has been proved in [13]. Given Theorem 3, the output produced by

Huffman over Sl is bounded by n
l

H0(Sl) + n
l

≤ nHk(S) + O(n
l
(k log |Σ | + 1)).

5. BWT compression and access

In Section 2 we introduced the Burrows–Wheeler transform of a string S[1, n], denoted by bwt(S). In this section

we show that our storage scheme can be used upon the string bwt(S) in order to achieve an interesting compressed-

space bound which depends on both Hk(S) and Hk(bwt(S)). The relation between these two entropies will be

commented on below.

Theorem 4. Our storage scheme applied on the string L = bwt(S) takes no more than min{nHk(L), nHk(S)} +
o(n log |Σ |) bits, simultaneously over all k = o(log|Σ | n). Any ℓ-long substring of L can be retrieved in optimal

O(1 + ℓ
log|Σ | n

) time.

Proof. Let Ck(j) be the k-long prefix of the j-th row of MS . By the properties of bwt(S) (see Section 2), Ck(j)

follows L[j] in S and thus Ck(j) is the following k-long context of L[j]. If we change in Definition (3) of Hk(S)

the notion of preceding k-long contexts with the one of following k-long contexts, the difference between the two

quantities turns out negligible [4]. Therefore, to ease our discussion we consider the following k-long contexts and

work with Hk(S) as it was defined over them.

We partition L into substrings of length b = ⌊ 1
2 log|Σ | n⌋, say L1L2 . . . Ln/b (called hereafter blocks). Note that

each block L i corresponds to a range of b rows in the BWT-matrix MS . We say that the block L i is k-prefix-equal if

all rows in MS[(i − 1)b + 1, ib] have the same prefix of length k. Otherwise, L i is said to be k-prefix-different. The

total number of k-prefix-different blocks is O(|Σ |k), because that is the number of distinct strings of length k over Σ .

Moreover, we note that the first k symbols of S belong to k-prefix-different blocks because of the special symbol #.

To prove the theorem we consider a preliminary encoding scheme for L’s blocks. A k-prefix-different block

L i is written without any compression as k occurrences of a special null symbol plus L i itself. This takes

O((b + k) log |Σ |) = O(log n + k log |Σ |) bits. Since there are O(|Σ |k) k-prefix-different blocks and we assumed

k = o(log|Σ | n), the (plain) encoding of the k-prefix-different blocks takes O(|Σ |k log n) = o(n) bits.

As far as k-prefix-equal blocks are concerned, we encode a block L i as follows: we write explicitly the k-long

following context shared by all L i ’s symbols, using k log |Σ | bits; and then use a k-th order Arithmetic encoder on

the individual symbols of L i . This encoder computes for any symbol L[j] the empirical probability f j of seeing

this symbol followed by the context Ck(j) in S. In the proof of Theorem 1, we considered f as the preceding

contexts and showed that a (semi-static) k-th order Arithmetic encoder that uses the f s compresses S within

Hk(S) + (n/b)k log |Σ | + O(k log n) + 2 bits. Here we are compressing L , which is a permutation of string S,

and we are considering the following contexts of S’s symbols. Given our comment above on the definition of Hk(S),

we can conclude that this bound still holds for the Arithmetic encoder applied on L . Summing up, the space required

by this encoding scheme over all blocks of L is nHk(S) + O((n/b)k log |Σ |) bits.

120 P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121

Let us now take our storage scheme enc of Section 3, apply it to string L , and compare the length of the

resulting compressed string against the previous encoding. By Theorem 1, we know that enc encodes L within

nHk(L)+O((n/b)k log |Σ |) bits, and this proves one part of the theorem. As far as the other term Hk(S) is concerned,

we observe that any block L i may occur many times in the partition of L and each occurrence may have associated a

different k-long following context. As a result, the above scheme encodes all occurrences of L i with at most O(|Σ |k)
different codewords, because it has at most |Σ |k distinct k-contexts (as a k-prefix-equal block) and at most |Σ |k plain

encodings (as a k-prefix-different block). If we re-assign to all these codewords the shortest one, we have that each

distinct block of L gets one codeword in B. Following an argument similar to the one used in the proof of Theorem 1,

this encoding of L’s blocks is worse than enc because this latter assigns the shortest codewords of B to the distinct

blocks of L . Therefore enc takes no more than nHk(S) + O((n/b)k log |Σ |) bits. �

The relation between Hk(S) and Hk(L) is not fully known. In [6] it was proved that H1(L) ≤ 1 + Hk(S) log |Σ | +
o(1) for any k < (1 − ǫ) log|Σ | n and any constant 0 < ǫ < 1. Actually the gap may be quite large. For example, let

us consider the string S = (bba)m and set k = 1. By Eq. (3) we have

nH1(S) = (m − 1)H0(b
m−1) + 2m H0((ba)m) = 2m =

2

3
n.

On the other hand, since L = bwt(S) = b2mam , we have

nH1(L) = (m − 1)H0(a
m−1) + 2m H0(b

2m−1a)

= −(2m − 1) log
2m − 1

2m
− log

1

2m
= 2m log 2m − (2m − 1) log(2m − 1)

= O(log n)

which is exponentially smaller than nH1(S), for any m > 1. On the other hand, we show an example in which

nH1(L) > nH1(S). Let S = (a1a2 . . . am)m and k = 1. We have nH1(S) = 0. Since L = bwt(S) = am
m am

1 . . . am
m−1,

we have

nH1(L) = −(m − 1)

(

(m − 1) log
m − 1

m
+ log

1

m

)

= Θ(
√

n log
√

n).

6. Conclusions

The simplification we have proposed in this paper to the results of [6,14] drives us to two possible considerations.

One is that we now have a class-note solution for the string storage problem that, as deeply illustrated in [14], may

find successful applications into many other interesting contexts: e.g. it may turn succinct or 0-th order entropy data

structures into k-th order entropy data structures (see [1,8,14] and references therein). The second consideration refers

to future research. All known solutions are far from being usable in practice because of the additive term which usually

dominates the k-th order entropy term. More research is still needed to either achieve a space bound close to the one

attainable with the k-th order compressors of the BZIP-family [9,7,3], for which the additive term is O(|Σ |k log n)

bits rather than o(n log |Σ |) bits, or to show a lower bound related to k-th order entropy, in the vein of [5]. Since our

storage scheme, unlike that of [14,6], does not use any sophisticated data compression machinery, we are led to think

that there is room for improvement!

References

[1] J. Barbay, J.I. Munro, M. He, S.S. Rao, Succinct indexes for strings, binary relations and multi-labeled trees, in: Procs ACM-SIAM SODA,

2007.

[2] M. Burrows, D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994.

[3] P. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, Boosting textual compression in optimal linear time, Journal of the ACM 52 (4) (2005)

688–713.

[4] P. Ferragina, G. Manzini, Indexing compressed text, Journal of the ACM 52 (4) (2005) 552–581.

[5] A. Golynski, Optimal lower bounds for rank and select indexes, in: Procs ICALP, in: LNCS, vol. 4051, 2006, pp. 370–381.

[6] R. González, G. Navarro, Statistical encoding of succinct data structures, in: Procs CPM, in: LNCS, vol. 4009, 2006, pp. 295–306.

P. Ferragina, R. Venturini / Theoretical Computer Science 372 (2007) 115–121 121

[7] R. Grossi, A. Gupta, J. Vitter, High-order entropy-compressed text indexes, in: Procs ACM-SIAM SODA, 2003, pp. 841–850.

[8] J. Jansson, K. Sadakane, K.K. Sung, Ultra-succinct representation of ordered trees, in: Procs ACM-SIAM SODA, 2007.

[9] G. Manzini, An analysis of the Burrows–Wheeler transform, Journal of the ACM 48 (3) (2001) 407–430.

[10] I. Munro, Tables, in: Procs FST-TCS, in: LNCS, vol. 1180, 1996, pp. 37–42.

[11] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Computing Surveys, 2007 (in press).

[12] R. Raman, V. Raman, S. Srinivasa Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Procs

ACM-SIAM SODA, 2002, pp. 233–242.

[13] K. Sadakane, New text indexing functionalities of the compressed suffix arrays, Journal of Algorithms 48 (2) (2003) 294–313.

[14] K. Sadakane, R. Grossi, Squeezing succinct data structures into entropy bounds, in: Procs ACM-SIAM SODA, 2006, pp. 1230–1239.

[15] I.H. Witten, A. Moffat, T.C. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, second edn, Morgan Kaufmann

Publishers, Los Altos, CA 94022, USA, 1999.

[16] J. Ziv, A. Lempel, Compression of individual sequences via variable length coding, IEEE Transactions on Information Theory 24 (1978)

530–536.

