

KJC006			
<u>Review from last lecture:</u> (continued)			
• To do a curve fit in Excel, use the feature			
• In a curve fit the number shows goodness of fit			
\bullet Given a good fit, future results can always be predicted - TRUE / FALSE			
• Use to reduce the amount of viewed data (by some criterion)			
Electronic computers were invented around			
• The logical model for a computer is called the model			
• A "good" PC has about a speed processor, about amount of memory, and about amount of storage.			
College of Engineering			

KJC007			
Review from last lecture: (continued)			
• A Mhz =			
• A Kbyte =			
• A Mbyte =			
• A Gbyte =			
• The binary number 1011 = (in base 10)			
• An ALU is the and needs to perform only two fundamental operations which are and			
College of Engineering			

		KJC032
<u>Successiv</u>	e refinement: (continued)	
• Example – A l	e - Determine if N is prime ittle complex for now but you should understand the idea	
Step #1:	Determine if N is prime	
<u>Step #2:</u>	Input N Divide N by all numbers from 2 to (N - 1) If N divides evenly then output "N is not prime" If N does not divide evenly then output "N is prime"	
<u>Step #3:</u>	J is an integer counter variable Input N Loop J = 2 to (N - 1) Test if N divides evenly by J If yes output "N is not prime" and halt EndLoop Output "N is prime" Halt	lege of

