Experiment No. 2

Z -TRANSFORM

The z-transform $G(z)$ of a sequence $g[n]$ is defined as

$$
G(z)=\mathcal{Z}\{g[n]\} \sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

where z is a complex variable. The set of values of z for which the z-transform $G(z)$ converges is called its region of convergence (ROC). In general, the region of convergence of a Z-transform of a sequence $g[n]$ is an annular region of the z-plane:

$$
R_{g-}<|z|<R_{g+}
$$

In the case of LTI discrete-time systems, all pertinent z-transforms are rational functions of \boldsymbol{z}^{-1}, that is, they are ratios of two polynomials in z^{-1} :

$$
G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\ldots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\ldots+d_{N-1} z^{-(N-1)}+d_{N} z^{-N}}
$$

which can be alternately written in factored form as

$$
G(z)=\frac{p_{0}}{d_{0}} \frac{\prod_{r=1}^{M}\left(1-\xi_{r} z^{-1}\right)}{\prod_{s=1}^{N}\left(1-\lambda_{s} z^{-1}\right)}=\frac{p_{0}}{d_{0}} z^{N-M} \frac{\prod_{r=1}^{M}\left(z-\xi_{r}\right)}{\prod_{s=1}^{N}\left(z-\lambda_{s}\right)}
$$

The zeros of $G(z)$ are given by $z=\xi r$ while the poles are given by $z=\lambda$. There are additional $(N-M)$ zeros at $z=0$ (the origin in the z-plane) if $N>M$ or additional $(M-N)$ poles at $z=0$ if $N<M$.

For a sequence with a rational z-transform, the ROC of the z-transform cannot contain any poles and is bounded by the poles.
The inverse z-transform $g[n]$ of a z-transform $G(z)$ is given by

$$
g[n]=\frac{1}{2 \pi j} \oint_{C} G(z) z^{n-1} d z
$$

where C is a counterclockwise contour encircling the point z_{0} in the ROC of $G(z)$.
A rational z-transform $G(z)=P(z) / D(z)$, where the degree of the polynomial $P(z)$ is M and the degree of the polynomial $D(z)$ is N, and with distinct poles at $z=\lambda s, s=1,2, \ldots, N$, can be expressed in a partial-fraction expansion form given by

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\sum_{s=0}^{N} \frac{\rho_{s}}{1-\lambda_{s} z^{-1}}
$$

Assuming $M \geq N$.
The constants ρ_{s} in the above expression, called the residues, are given by

$$
\rho_{s}=\left.\left(1-\lambda_{s} z^{-1}\right) G(z)\right|_{z=\lambda_{s}} .
$$

Evaluation of z-Transforms on Unit Circle

The function freqz can be used to evaluate the values of a rational z-transform on the unit circle. The evaluation of Z- Transform on a unit circle leads to the Frequency Response or Fourier Transform.

Sample Program 1

```
% Discrete-Time Fourier Transform Computation
%
% Read in the desired number of frequency samples
k = input('Number of frequency points = ');
% Read in the numerator and denominator coefficients
num = input('Numerator coefficients = ');
den = input('Denominator coefficients = ');
% Compute the frequency response/Evaluate Z transform on unit circle
w = 0:pi/(k-1):pi;
h = freqz (num, den, w);
% Plot the frequency response
subplot(2,2,1)
plot(w/pi,real(h));grid
title('Real part')
xlabel('\omega/\pi'); ylabel('Amplitude')
subplot(2,2,2)
plot(w/pi,imag(h));grid
title('Imaginary part')
xlabel('\omega/\pi'); ylabel('Amplitude')
subplot(2,2,3)
plot(w/pi,abs(h));grid
title('Magnitude Spectrum')
xlabel('\omega/\pi'); ylabel('Magnitude')
subplot(2,2,4)
plot(w/pi,angle(h));grid
title('Phase Spectrum')
xlabel('\omega/\pi'); ylabel('Phase, radians')
```


Pole Zero Plot

The pole-zero plot of a rational z-transform $G(z)$ can be readily obtained using the function zplane. There are two versions of this function. If the z-transform is given in the form of a rational function, the command to use is zplane(num, den) where num and den are row vectors containing the coefficients of the numerator and denominator polynomials of $G(z)$ in ascending powers of $z-1$. On the other hand, if the zeros and poles of $G(z)$ are given, the command to use is zplane(zeros, poles) where zeros and poles are column vectors. In the pole-zero plot generated by MATLAB, the location of a pole is indicated by the symbol \times and the location of a zero is indicated by the symbol ${ }^{\circ}$.

Rational, Factored Forms of z-transform

The function tf2zp can be used to determine the zeros and poles of a rational z-transform $G(z)$. The program statement to use is $[z, p, k]=t f 2 z p(n u m, d e n)$ where num and den are row vectors containing the coefficients of the numerator and denominator polynomials of $G(z)$ in ascending powers of $z-1$ and the output file contains the gain constant k and the computed zeros and poles given as column vectors Z and p, respectively. The reverse process of converting a z-transform given in the form of zeros, poles, and the gain constant to a rational form can be implemented using the function $z p 2 t f$. The program statement to use is [num,den] $=\mathrm{zp} 2 \mathrm{tf}(\mathrm{z}, \mathrm{p}, \mathrm{k})$.

The factored form of the z-transform can be obtained from the zero-pole description using the function sos $=$ zp2sos(z,p,k). The function computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos where

$$
\operatorname{sos}=\left[\begin{array}{cccccc}
b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{21} \\
b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{0 L} & b_{1 L} & b_{2 L} & a_{0 L} & a_{1 L} & a_{2 L}
\end{array}\right]
$$

where the L th row contains the coefficients of the numerator and the denominator of the L th second-order factor of the z-transform $G(z)$:

$$
G(z)=\prod_{\ell=1}^{L} \frac{b_{0 \ell}+b_{1 \ell} z^{-1}+b_{2 \ell} z^{-2}}{a_{0 \ell}+a_{1 \ell} z^{-1}+a_{2 \ell} z^{-2}}
$$

Sample Program 2

```
%Analysis of Z-Transforms
%Definition of numerators and denominator coefficients
num=[[5 6 -44 21 32];
den=[[5 13 15 18 -12];
%Conversion from rational to Factored form
[z,p,k]=tf2zp(num,den);
disp('Zeros are at');disp(z);
disp('Poles are at');disp(p);
disp('Gain Constant');disp(k);
%Determination of radius of the poles
radius=abs(p);
disp('Radius of the poles');disp(radius);
%Pole Zero Map using numerator and denominator coefficients
zplane(num,den)
%Conversion from factored to secomd ordered factored
sos=zp2sos(z,p,k)
disp('Second Order Sections');disp(sos);
```


Lab Exercises:

Problem 1 Evaluate the following z-transform on the unit circle:

$$
G(z)=\frac{2+5 z^{-1}+9 z^{-2}+5 z^{-3}+3 z^{-4}}{5+45 z^{-1}+2 z^{-2}+z^{-3}+z^{-4}}
$$

Problem 2 Write a MATLAB program to compute and display the poles and zeros, to compute and display the factored form, and to generate the pole-zero plot of a \boldsymbol{z}-transform that is a ratio of two polynomials in \boldsymbol{Z}^{-1}. Using this program, Find and plot the poles and zeroes of $G(z)$.Also Find the radius of the resulting poles.

Problem 3 From the pole-zero plot generated in Problem 2, determine the number of possible regions of convergence (ROC) of $G(z)$. Show explicitly all possible ROCs. Can you tell from the pole-zero plot whether or not the DTFT exists?

Problem 4 Write a MATLAB program to compute and display the rational z-transform from its zeros, poles and gain constant. Determine the rational form of a z-transform whose zeros are at $\xi_{1}=0.3, \xi_{2}=2.5, \xi_{3}=-0.2+j 0.4$, and $\xi_{4}=-0.2-j 0.4$; the poles are at $\lambda_{1}=0.5, \lambda_{2}=-0.75, \lambda_{3} 0.6+j 0.7$, and $\lambda_{4}=0.6-j 0.7$; and the gain constant k is 3.9.

Inverse z-Transform

The inverse $g[n]$ of a rational z-transform $G(z)$ can be computed using MATLAB in basically two different ways. For finding the Inverse z-transform, it is necessary to know a priori the ROC of $G(z)$.

First Method

The function impz provides the samples of the time domain sequence, which is assumed to be causal. There are three versions of this function:
$[\mathrm{g}, \mathrm{t}]=\operatorname{impz}($ num, den),$[\mathrm{g}, \mathrm{t}]=\operatorname{impz}($ num,den, L$)$, and $[\mathrm{g}, \mathrm{t}]=\operatorname{impz}(\mathrm{num}, \operatorname{den}, \mathrm{L}, \mathrm{FT})$,
where num and den are row vectors containing the coefficients of the numerator and denominator polynomials of $G(z)$ in ascending powers of z^{-1}, L is the desired number of the samples of the inverse transform, g is the vector containing the samples of the inverse transform starting with the sample at $n=0, \mathrm{t}$ is the length of g , and FT is the specified sampling frequency in Hz with default value of unity.

The function $y=f i l t e r(n u m, d e n, x)$ can also be used to calculate the input response of a z-transform . Where num, den represent vectors containing numerator and denominator coefficients of z-transform. While x represents input to the filter / z-transform .The length of output y is equal to input x. If an impulse input sequence is passed to the z transform , the output will be the inverse z-transform.

Sample Program 3

```
%Inverse Z-Transform using impz
%definition of numerator and denominator coefficients
num=[0.1+.4*i 5 .05];
den=[1 .9+0.3*i .12];
%Finding the inverse z transform of G(z)
[a,b]=impz (num, den);
%Evaluating on Unit Circle i.e. Fourier Transform
[c,d]=freqz (num, den);
% Plotting of x[n] and it's fourier transform
subplot (2,2,1)
stem(b,real(a))
title('Real Part of g[n]')
xlabel('Samples'); ylabel('Magnitude')
grid on
subplot (2,2,2)
stem(b,imag(a))
title('Imaginary Part of g[n]')
xlabel('Samples'); ylabel('Magnitude')
grid on
subplot(2,2,3)
plot(d/pi,abs(c))
title('Magnitude Spectrum of g[n]')
xlabel('\omega/\pi'); ylabel('Magnitude')
grid on
subplot (2,2,4)
plot(d/pi,angle(c))
title('Phase Spectrum of g[n]')
xlabel('\omega/\pi'); ylabel('Phase, radians')
grid on
```


Second Method

A closed-form expression for the inverse of a rational z-transform can be obtained by first performing a partialfraction expansion using the function residuez and then determining the inverse of each term in the expansion by looking up a table of z-transforms. The function residuez can also be used to convert a z-transform given in the form of a partial-fraction expansion to a ratio of polynomials in z^{-1}. It has the format $[r, p, k]=$ reiduez(num,den) where r, p, k are the residues, poles and direct terms of the partial-fraction expansion of z-transform described by num and den vectors which contain numerator and denominator coefficients.

$$
\frac{\operatorname{num}(z)}{\operatorname{den}(z)}=\frac{r(1)}{1-p(1) z^{-1}}+\ldots+\frac{r(n)}{1-p(n) z^{-1}}+k(1)+k(2) z^{-1}+\cdots
$$

Problem 5 Write a MATLAB program to compute the first L samples of the inverse of a rational z-transform where the value of L is provided by the user through the command input. Using this program compute and plot the first 50 samples of the inverse of $G(z)$. Use the command stem for plotting the sequence generated by the inverse transform.

Problem 6 Write a MATLAB program to determine the partial-fraction expansion of a rational Z-transform. Using this program determine the partial-fraction expansion of $G(z)$ and then its inverse z-transform $g[n]$ in closed form. Assume $g[n]$ to be a causal sequence.

