
Experiment No. 2 

 

Z –TRANSFORM 
 

The z-transform G(z) of a sequence g[n] is defined as  

 
where z is a complex variable. The set  of values of z for which the z-transform G(z) converges is called its region 

of convergence (ROC). In general, the region of convergence of a z-transform of a sequence g[n] is an annular 

region of the z-plane: 

 
In the case of LTI discrete-time systems , all pertinent z-transforms are rational functions of z−1

, that is, they are 

ratios of two polynomials in z−1
: 

 
which can be alternately written in factored form as 

 
The zeros of G(z) are given by z = ξr while the poles are given by z = λs. There are additional (N − M) zeros at      

z = 0 (the origin in the z-plane) if N > M or additional (M − N) poles at z = 0 if N <M. 

 

For a sequence with a rational z-transform, the ROC of the z-transform cannot contain any poles and is bounded by 

the poles. 

The inverse z-transform g[n] of a z-transform G(z) is given by 

 
where C is a counterclockwise contour encircling the point z0 in the ROC of G(z). 
 

A rational z-transform G(z) = P(z)/D(z), where the degree of the polynomial P(z) is M and the degree of the 

polynomial D(z) is N, and with distinct poles at z =λs, s = 1, 2, . . . , N, can be expressed in a partial-fraction 

expansion form given by 

 
Assuming M ≥ N.  

The constants ρs in the above expression, called the residues , are given by  

 

 

 

 

 

 



 

 
 
 
 
 
Evaluation of z-Transforms on Unit Circle 
The function freqz can be used to evaluate the values of a rational z-transform on the unit circle. The evaluation of 

Z- Transform on a unit circle leads to the Frequency Response or Fourier Transform.  

 

Sample Program 1  
% Discrete-Time Fourier Transform Computation 
% 
% Read in the desired number of frequency samples 
k = input('Number of frequency points = '); 
% Read in the numerator and denominator coefficients 
num = input('Numerator coefficients = '); 
den = input('Denominator coefficients = '); 
% Compute the frequency response/Evaluate Z transform on unit circle 
w = 0:pi/(k-1):pi; 
h = freqz(num, den, w); 
% Plot the frequency response 
subplot(2,2,1) 
plot(w/pi,real(h));grid 
title('Real part') 
xlabel('\omega/\pi'); ylabel('Amplitude') 
subplot(2,2,2) 
plot(w/pi,imag(h));grid 
title('Imaginary part') 
xlabel('\omega/\pi'); ylabel('Amplitude') 
subplot(2,2,3) 
plot(w/pi,abs(h));grid 
title('Magnitude Spectrum') 
xlabel('\omega/\pi'); ylabel('Magnitude') 
subplot(2,2,4) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum') 
xlabel('\omega/\pi'); ylabel('Phase, radians') 
 

Pole Zero Plot 
The pole-zero plot of a rational z-transform G(z) can be readily obtained using the function zplane. There are two 

versions of this function. If the z-transform is given in the form of a rational function , the command to use is 

zplane(num, den) where num and den are row vectors containing the coefficients of the numerator and 

denominator polynomials of G(z) in ascending powers of z−1. On the other hand, if the zeros and poles of G(z) are 

given, the command to use is zplane(zeros, poles) where zeros and poles are column vectors. In the pole-zero 

plot generated by MATLAB, the location of a pole is indicated by the symbol × and the location of a zero is 

indicated by the symbol º. 

 

Rational , Factored Forms  of  z-transform 
The function tf2zp can be used to determine the zeros and poles of a rational z-transform G(z) . The program 

statement to use is [z, p, k] = tf2zp(num,den) where num and den are row vectors containing the coefficients of 

the numerator and denominator polynomials of G(z) in ascending powers of z−1 and the output file contains the gain 

constant k and the computed zeros and poles given as column vectors z and p, respectively. The reverse process of 

converting a z-transform given in the form of zeros, poles, and the gain constant to a rational form can be 

implemented using the function zp2tf. The program statement to use is [num,den] = zp2tf(z,p,k). 
 



 

The factored form of the z-transform can be obtained from the zero-pole description using the function sos = 

zp2sos(z,p,k). The function computes the coefficients of each second-order factor given as an L × 6 matrix sos 

where 

 
where the Lth row contains the coefficients of the numerator and the denominator of the Lth second-order factor of 

the z-transform G(z): 

 
Sample Program 2  
%Analysis of Z-Transforms 
%Definition of numerators and denominator coefficients 
num=[5 6 -44 21 32]; 
den=[5 13 15 18 -12]; 
%Conversion from rational to Factored form 
[z,p,k]=tf2zp(num,den); 
disp('Zeros are at');disp(z); 
disp('Poles are at');disp(p); 
disp('Gain Constant');disp(k); 
%Determination of radius of the poles 
radius=abs(p); 
disp('Radius of the poles');disp(radius); 
%Pole Zero Map using numerator and denominator coefficients  
zplane(num,den) 
%Conversion from factored to secomd ordered factored 
sos=zp2sos(z,p,k) 
disp('Second Order Sections');disp(sos); 
 
Lab Exercises: 
Problem 1 Evaluate the following z-transform on the unit circle: 
 

 
Problem 2 Write a MATLAB program to compute and display the poles and zeros, to compute and display the 

factored form, and to generate the pole-zero plot of a z-transform that is a ratio of two polynomials in z−1. Using this 

program, Find and plot the poles and zeroes of  G(z) .Also Find the radius of the resulting  poles. 

 

Problem 3 From the pole-zero plot generated in Problem 2, determine the number of possible regions of 

convergence (ROC) of G(z). Show explicitly all possible ROCs . Can you tell from the pole-zero plot whether or not 

the DTFT exists? 

 
Problem 4 Write a MATLAB program to compute and display the rational z-transform from its zeros, poles and 

gain constant. Determine the rational form of a z-transform whose zeros are at ξ1 = 0.3, ξ2 = 2.5, ξ3 = −0.2+j 0.4, 

and ξ4 = −0.2−j 0.4; the poles are at λ1 = 0.5, λ2 = −0.75, λ30.6 + j 0.7, and λ4 = 0.6 − j 0.7; and the gain constant 

k is 3.9. 

 
 



Inverse z-Transform 
The inverse g[n] of a rational z-transform G(z) can be computed using MATLAB in basically two different ways. 

For finding the Inverse z-transform, it is necessary to know a priori the ROC of G(z). 
 

First Method 
The function impz provides the samples of the time domain sequence, which is assumed to be causal. There are 

three versions of this function:  

[g,t] = impz(num,den), [g,t]= impz(num,den, L), and [g,t] = impz(num,den, L, FT), 
where num and den are row vectors containing the coefficients of the numerator and denominator polynomials of 

G(z) in ascending powers of z−1, L is the desired number of the samples of the inverse transform, g is the vector 

containing the samples of the inverse transform starting with the sample at n = 0, t is the length of g, and FT is the 

specified sampling frequency in Hz with default value of unity. 

 

The function y=filter(num,den,x) can also be used to calculate the input response of a z-transform . Where num, den 

represent vectors containing numerator and denominator coefficients of z-transform.While x represents input to the 

filter / z-transform .The length of output y is equal to input x. If an impulse input sequence is passed to the z-

transform , the output will be the inverse z-transform. 

 
Sample Program 3  
%Inverse Z-Transform using impz 
%definition of numerator and denominator coefficients 
num=[0.1+.4*i 5 .05]; 
den=[1 .9+0.3*i .12]; 
%Finding the inverse z transform of G(z) 
[a,b]=impz(num,den); 
%Evaluating on Unit Circle i.e. Fourier Transform 
[c,d]=freqz(num,den); 
% Plotting of x[n] and it's fourier transform 
subplot(2,2,1) 
stem(b,real(a)) 
title('Real Part of g[n]') 
xlabel('Samples'); ylabel('Magnitude') 
grid on 
subplot(2,2,2) 
stem(b,imag(a)) 
title('Imaginary Part of g[n]') 
xlabel('Samples'); ylabel('Magnitude') 
grid on 
subplot(2,2,3) 
plot(d/pi,abs(c)) 
title('Magnitude Spectrum of g[n]') 
xlabel('\omega/\pi'); ylabel('Magnitude') 
grid on 
subplot(2,2,4) 
plot(d/pi,angle(c)) 
title('Phase Spectrum of g[n]') 
xlabel('\omega/\pi'); ylabel('Phase, radians') 
grid on 
 
Second Method 
A closed-form expression for the inverse of a rational z-transform can be obtained by first performing a partial-

fraction expansion using the function residuez and then determining the inverse of each term in the expansion by 

looking up a table of z-transforms. The function residuez can also be used to convert a z-transform given in the 

form of a partial-fraction expansion to a ratio of polynomials in z−1.It has the format [r,p,k] = reiduez(num,den) 

where r,p,k are the residues, poles and direct terms of the partial-fraction expansion of z-transform described by num 

and den vectors which contain numerator and denominator coefficients. 



 

 

  

 

     

Problem 5 Write a MATLAB program to compute the first L samples of the inverse of a rational z-transform where 

the value of L is provided by the user through the command input. Using this program compute and plot the first 50 
samples of the inverse of G(z). Use the command stem for plotting the sequence generated by the inverse 

transform. 

 

Problem 6 Write a MATLAB program to determine the partial-fraction expansion of a rational z-transform. Using 

this program determine the partial-fraction expansion of G(z) and then its inverse z-transform g[n] in closed form. 

Assume g[n] to be a causal sequence. 


