
Spencer Burdette Self Balancing Robot Project Report Page 1 of 31

A Zilog ZNEO based Self-
Balancing Robot with PID
control.

Spencer Burdette
CS297: Embedded Systems

The George Washington University
Spring 2007

Abstract
This project undertakes the construction and implementation of a two-wheeled robot that is capable of
balancing itself. The structural, mechanical, and electronic components of the bot are assembled in a
manner that produces an inherently unstable platform that is highly susceptible to tipping in one axis.

The wheels of the robot are capable of independent rotation in two directions, each driven by a servo
motor. A pololu servo motor controller provides current for the motors and generates the required pulse
width modulated signals to position the servos. Information about the angle of the device relative to the
ground (i.e. tilt) is obtained from two reflective object sensors mounted on the device. A Zilog ZNEO
microcontroller receives sensor information from two analog-to-digital input ports and generates motor
control signals on the serial output. The sensor information is fed to the microcontroller and is processed
by a crude proportional, integral, derivative (PID) algorithm to generate compensating position control
signals in order to balance the device.

Spencer Burdette Self Balancing Robot Project Report Page 2 of 31

Table of Contents
Abstract ... 1
Table of Contents ... 2
Bot Construction... 3
Hardware Components.. 4
Software Modules ... 6

Hardware Abstraction Layer ... 7
Device Interaction Layer .. 8
Integration Layer... 9
User Interface Layer .. 10

Implementation Issues.. 12
Servo Motor Control Issues .. 12
Sensor Issues.. 13
PID Issues .. 14

Lessons Learned... 14
Future Work... 15
Appendix A: Self Balancing Bot Construction ... 16
Appendix B: QRB-1134 Reflective Object sensor connector assembly 22
Appendix C: Project Settings.. 26

Spencer Burdette Self Balancing Robot Project Report Page 3 of 31

Bot Construction
The self balancing robot consists of a double-decker platform, two servo motors, two wheels, a servo
motor controller, a microcontroller, two reflective object sensors, and various wires and connectors. The
platform, wheels, and servo motors were purchased in a single package kit. Table 1 below is a detailed
description of the components.

Component Manufacturer Supplier Cost

Double decker base,
wheels, and servo

motors

Budget Robotics
“Scooterbot”

www.budgetrobotics.com $57.95

Motor controller
Pololu serial 8-servo

controller
www.pololu.com $26.95

Microcontroller Zilog ZNEO Contest Kit www.mouser.com $49.99

Reflective object
sensors

Fairchild QRB-1134
reflective object sensors

www.hobbyengineering.com $2.25 (ea)

various wires,
connectors, screws, and

fasteners
various

various general stores
(Home Depot, Target, etc.)

~$14.00

Table 1: Detailed list of robot components.

Selection of an appropriate base for the robot was a significant design decision. The base had to be
relatively easy to construct as well as susceptible to tipping. The scooterbot platform from
budgetrobotics.com proved to be the most attractive solution. The kit includes two decks, two wheels,
two servo motors, the necessary wiring, and all of the required hardware. The assembly process is
cataloged in photos in Appendix A, however the description below details the key steps.

Minor modifications were required to allow the robot to tip in one axis and to mount the sensors. First,
the base of the device needs to be flipped before the upper deck is mounted to ensure that it rides more
than an inch or so off of the ground (instead of the standard height of only a ¼ of an inch). This
requires the 1” screws supporting the adjustable “skids” to be replaced with longer screws, specifically
#8-32 1½” screws. The Fairchild sensors conveniently fit inside the bracket that mounts the servo
motors to the base. This, too, requires the shorter mounting screws to be replaced with longer
counterparts, specifically #4-40 1” screws.

The wires from the sensors and servo motors were routed along the bottom of the base to the top and
tightened down with a zip tie. This prevents slack in the wires touching the ground or interfering with
the sensors. The motor controller was mounted to the lower deck with screws that came with the
scooterbot kit after drilling an additional hole. On the bottom of the top deck, a small bubble level
(optional) and Velcro tabs for weights were mounted. The weights that I used for balancing were a
battery pack and a heavy padlock. On the top surface of the upper deck, 4 velcro pads were attached to
secure the microcontroller. The ZNEO board’s center foot conveniently sits in the center hole of the top
deck, while the 4 corner feet of the board hang off of the round deck.

Spencer Burdette Self Balancing Robot Project Report Page 4 of 31

Hardware Components
The hardware components that require interfacing are the microcontroller, the servo motor controller,
and the sensors. The servo motors themselves connect directly to the servo controller, and thus do not
require any wiring description.

The pololu servo motor controller is shown below in Figure 1. The controller handles the task of
generating the varying with pulse width modulated signals that are required to position the two servo
motors (the device can control up to 8 servo motors). It accepts 5 or 6 byte input commands that are
sent 8 bits at a time with no parity and 1 stop bit (8N1) via the serial output pin. It supports commands
to configure the controller and position the servos. The maximum baud rate is not deterministic, but is
somewhere near 50K baud. This project worked reliably at 38K baud.

Figure 1: The Pololu serial servo motor controller.

The VIN, GND, servo power, servo ground, and logic level serial input pins are the only pins that are
used. The DB9 connector is not used, and thus the similar pololu device that does not provide a DB9
connector would also have been a suitable choice. Note that the protocol selection jumper must be
removed for operation with the self balancing bot.

Servo outputs 0 and 1 are used to control the two servo motors on the bot. It does not matter which
output mates with which servo, since the bot does not necessarily have a concept of forward and aft.

The Fairchild QRB-1134 reflective object sensors consist of an infrared emitting diode and an NPN silicon
phototransistor mounted side by side in a protective housing. The transistor varies the voltage on the
collector based on the intensity of the reflected light from the LED that it detects. A 10K Ohm resistor is
used to pullup the collector output to Vcc, therefore it is implied that the transisitor collector actually pulls
down the voltage in operation. A schematic of the sensor is depicted below in Figure 2.

Spencer Burdette Self Balancing Robot Project Report Page 5 of 31

Figure 2: Schematic of the Fairchild QRB-1134 reflective object sensor.

The components were wired to the ZNEO controller as depicted below in Figure 3. Note that the wires of
the reflective object sensors were modified into a connector with inline resistors as illustrated with
photographs in Appendix B.

Figure 3: Wiring schematic for connecting the microcontroller to the motor controller and
two reflective object sensors.

Spencer Burdette Self Balancing Robot Project Report Page 6 of 31

To further clarify the above diagram, the following is a tabular summary of the connections from the
ZNEO board to the sensors and motor controller.

Device Pin Description ZNEO Pin connection

VIN (9 -16V) 9V

servo power (4-6V) VCC

GNDs GND
motor controller

logic-level serial input PD4_TXD1

LED anode (orange) VDD

LED cathode (green) GND
QRB-1134 [1] and QRB-

1134 [2]
phototransistor emitter (blue) GND

QRB-1134 [1] phototransistor collector (white) PB0_ALG1 (before resistor),
VDD (after resistor)

QRB-1134 [2] phototransistor collector (white) PB0_ALG1 (before resistor),
VDD (after resistor)

Table 2: Pin connections from the hardware devices to the microcontroller.

Software Modules
The nature of the project and the separation of hardware components leant itself nicely to a layered API.
The API layers, in order of increasing abstraction, can be summarized as shown below. Each layer makes
use of the previous layers in order to ultimately interface with the microcontroller peripherals and
external devices.

Hardware abstraction layer – timer, analog to digital conversion, button, LED, and serial
interface components.

Device interaction layer – motor controller and sensor input functionality.

Integration layer –PID controller algorithms that processes input from the sensors and sends
compensatory outputs to the servo controller.

User interface layer – rich, menu-based UI available on the serial port in order to directly
interact with the integration and device layers. Additionally, a “manual” interface is available on
the ZNEO board itself (via the buttons and LED display) to configure the integration layer.

A diagram of the interaction among software layers is shown below in Figure 4.

Spencer Burdette Self Balancing Robot Project Report Page 7 of 31

Figure 4: Interaction diagram of the software layers.

Note that the interaction among layers is not strictly hierarchical. Clearly, any layer is free to make use
of the hardware abstraction layer, as that is its precise purpose. Notice also the menu component’s
interaction with the PID, motor, and sensor components. The menu interface was designed as a testing
tool to allow the user to exercise the functionality provided by each of the underlying components. A
detailed description of each layer is described in the following sections.

Hardware Abstraction Layer
The hardware abstraction layer handles the micro-controller specific port and register configurations that
are required to interact with the onboard device peripherals. It exports an API to upper layers that is
independent of the specific controller hardware. Ideally, it could allow an application that utilizes the
layer to be run on an entirely different controller, presuming the device-specific glue code were properly
ported.

The layer supports controlling the LEDs, analog-to-digital converter, timers, buttons, and serial interface.
It can be expanded to support additional timer and serial modes, or to support additional ZNEO
peripherals (such as the DMA or SPI interfaces, for example). Components that require interrupts
typically accept a function pointer to their initialization function. For example, the button component
initialization function has the following signature:

button_init_b0(unsigned int do_debounce, interrupt_cb icb);

Spencer Burdette Self Balancing Robot Project Report Page 8 of 31

The second argument is a function pointer to a function that is called when the given interrupt is
triggered. This approach insulates the application writer from dealing with interrupt vector tables and
interrupt service routine pragmas and the like. A summary of the useful hardware abstraction layer
functions (in psuedocode) is as follows. Where the meaning is not immediately obvious from the name
of the function, the respective source code headers in the project source code repository can be
inspected.

ADC
adc_n_init(adc_port, is_continuous, priority, user_callback)
adc_get_analog_value(value_out)

Button
button_init_b<x>(do_debounce, user_callback)

Timer
timer_init_next(timeout, mode, priority, user_callback)
timer_n_init(timer_num, timeout, mode, priority, user_callback)

LED
led_init(refresh_microseconds)
set_display(display_text)

SerialIO*
menu_get_input(input_destination, maximum_length)

*the serial input is currently married to the menu functionality, but should ideally be separated to its own
component.

Each of the components has been tested and has evolved through the completion of earlier labs for the
class. This abstraction proves to be quite powerful in rapidly developing a prototype application. With
the proper selection of functions from the hardware abstraction layer, a developer can effortlessly
develop a test application that, for example, displays analog sensor inputs at a fixed interval on the LEDs
in only a few lines of code.

Device Interaction Layer
The device interaction layer is responsible for retrieving inputs from the analog reflective object sensors
and for sending commands to the motor controller. It also accepts and maintains configuration data for
the sensors and motors. Like the hardware abstraction layer, the device interaction layer strives to
present an API that insulates upper layers from the specific details of interacting with the devices.

The motor control layer provides a rich API that allows the setting and querying of a number of motor
parameters. The caller of these functions is not responsible for formatting the commands and sending
the data to the controller through the serial port.

Likewise, the sensor component provides the user with information about the raw sensor information by
managing the ADC interaction itself. The sensor component can also calculate and report an error value,
indicating the absolute lean of the robot. The range of the error is from -1000 to 1000, with 0 indicating
level, a negative value indicating forward lean, and a positive value indicating an aft lean. Finally, the
sensor layer manages calibration information for the two sensors, since it is ultimately responsible for
determining the error based on this data. The following is an excerpt of useful functions from the
interaction layer.

Spencer Burdette Self Balancing Robot Project Report Page 9 of 31

Motor
int motor_turn_on(which_servo)
int motor_turn_off(which_servo)
int motor_set_direction(which_servo, direction)
int motor_get_direction(which_servo)
int motor_set_position(which_servo, position)
int motor_get_position(which_servo)

Sensor
int sensor_set_sample_rate(sample_rate_us)
int sensor_calibrate_level()
int sensor_get_value(which_sensor, values_out)*
int sensor_is_grounded(values_in)
int sensor_calc_error(values_in)

*the sensor_get_value() function blocks until a new value is obtained from the ADC. This allows the
application code to call the function in a continuous loop without worrying about timers and interrupts.
The values are retrieved from the sensors at the sample rate set in sensor_set_sample_rate(). The
function retrieves values from both sensors, despite the value of which_sensor, so therefore the function
can block for up to 2 times sample_rate_us per invocation.

Integration Layer
The integration layer is intended to intelligently respond to inputs from the sensor component by sending
corrective output to the motor component. The manifestation of this functionality is a proportional,
integral, and derivative controller. Briefly, a PID controller seeks to adjust the output of a device based
on feedback from the inputs in order to achieve a specified goal or setpoint. Each component of the
controller (proportional, integral, and derivative) calculates its contribution and provides its own
adjustment in order to shape the behavior of the device. A more thorough explanation of the
characteristics and algorithms associated with a PID controller can be found in the document
“SystemControlWithFeedback.pdf.”

The PID controller implements the algorithms for each of the three components. PID algorithms are, by
nature, highly dependant on their respective gain factors. Properly tuned gains can stabilize the device
output, while improperly tuned gains can dramatically deteriorate device stability. The integration layer
supports the setting and querying of each of the component gains. It also serves as the main entry point
for beginning control of the robot. Balance control is started and stopped with calls to the PID controller.
The PID controller also supports the tuning of the device for a given number of iterations. The
interaction layer functions are as follows:

PID
int pid_set_kp(kpin)
float pid_get_kp()

int pid_set_ki(kiin)
float pid_get_ki()

int pid_set_kd(kdin)
float pid_get_kd()

int pid_control_start(is_tune_mode, tune_iterations)
int pid_control_stop()*

*The pid_control_stop() function must be called from an interrupt context, since the pid_control_start()
will execute on the processor without yielding until tune_iterations have elapsed.

Spencer Burdette Self Balancing Robot Project Report Page 10 of 31

User Interface Layer
The user interface layer provides a means of controlling the functionality of the lower layer components
at run time. This flexibility allows the developer to test the entire system without needing to recompile
and reflash the controller between each test. The menu interface serves primarily as a tool to
characterize, test, and validate the underlying component behaviors.

The menu based user interface provides a means to exercise the entire API provided by the motor,
sensor, and PID components. Certain menus also display relevant information about the current state of
the device. The user interacts with the controller across a serial link on the console port. A serial
interface application such as hyperterm can display the options and retrieve inputs using the users PC.
The main menu and motor, sensor, and PID control menus are demonstrated below.

Self-Balancing Bot Main Menu.

 M Display motor control menu
 S Display sensor menu
 P Display PID controller menu
 R Run

Enter command [MSPR]:

Figure 5: User interface main menu.

Self-Balancing Bot Motor Menu

 B Back to main menu.
 M Toggle which motor is being controlled. [BOTH]
 O Toggle servo motors on or off. [OFF – OFF]

 D Set servo motor direction. [FWD – REV]
 R Set servo motor range. [15 – 15]
 S Set servo motor speed. [0 – 0]
 P Set servo motor position. [62 – 62]
 A Set servo motor position absolute. [0 – 0]
 N Set the servo motor neutral position. [0 – 0]

 C Oscillate motors.

Enter command [BMODRSPANC]:

Figure 6: Motor control menu.

 Self-Balancing Bot Sensor Menu.

 B Back to main menu.
 S Set sample interval. [50 ms]
 D Display sensor data on LEDs. [NONE]
 F Calibrate full forward tilt. [1023 – 1023]
 A Calibrate full aft tilt. [1023 – 1023]
 L Calibrate level. [845 – 719]
 C Calibrate corners. [115 – 109]
 T Set sensor tolerance band levels.[g:.05 l: .08: c: .02]

 Enter command [BSDFALCT]:

Figure 7: Sensor interface menu.

Spencer Burdette Self Balancing Robot Project Report Page 11 of 31

Self-Balancing Bot PID Menu.

 B Back to main menu.
 S Set sample interval. [50 us]
 L Set system goal. [845 – 719]
 P Set proportional gain. [0.60]
 I Set integral gain. [0.02]
 D Set derivative gain. [0.15]
 T Tune gains.

 Enter command [BSPIDRNE]:

Figure 8: PID control menu.

In addition to the serial-based menu interface, the project also required a means to tune the gain
parameters on board the device. A “manual” mode was developed, in which the device is modified using
the onboard buttons and LED display as a readout. Button 0 cycles the various input modes, and buttons
1 and 2 execute mode-specific actions as summarized below.

Mode (cycled by pressing button 0) Button 1 Button 2

Calibrate forward tilt start calibration start calibration

Calibrate aft tilt start calibration start calibration

Calibrate corners start calibration start calibration

Calibrate level start calibration start calibration

Modify Kp increment 0.02 decrement 0.02

Modify Ki increment 0.002 decrement 0.002

Modify Kd increment 0.002 decrement 0.002

Modify num cycles increment 1 decrement 1

Start PID control start start

Enter console mode start start

Table 2: Summary of manual configuration modes and button functionality.

Spencer Burdette Self Balancing Robot Project Report Page 12 of 31

Implementation Issues
There were a number of implementation issues with the project, most of which were overcome during
development. The issues corresponded to each of the three high level components: the motor controller,
sensors, and PID controller.

Servo Motor Control Issues
A standard servo motor typically rotates through a maximum range of only 90 or 180 degrees. It
employs a potentiometer or other feedback device in order to assure accurate positioning of the servo.
The servo motors that ship with the scooterbot kit, however, have been modified for continuous rotation.
This allows the servo to continuously rotate 360 degrees, at the expense of sacrificing accurate position
control. The servo motors did not come with documentation, and the pololu servo controller provides a
command interface with the assumption that it is controlling standard servos. This discrepancy was the
initial impetus for creating the menu based interface in order to exercise and characterize the exact
behavior of the customized servo motors.

First, a brief description of the servo controller command interface is required. A single servo command
consists of a sequence of five or six bytes as follows:

start byte =
0x80

device ID = 0x01 command servo
num

data 1 data 2

The six available commands are sent as 0x00 through 0x05 and are: [set parameters, set speed, set
range, set position (7-bit), set position (8-bit), set position absolute, and set position neutral]. The
values for data1 and data2 are particular to each command, but in all commands the most significant
(7th) bit must be cleared to zero. The motor controller is not committed to a maximum or minimum baud
rate, but is suspected to reach its limits around 50K baud. This project reliably communicates with the
controller at 38K baud.

The development of the motor API logically follows from an inspection of the motor controller command
set. Using the motor component API and the menu interface, it was determined that set neutral, set
absolute, set speed, and set range commands have an unpredictable (or at least difficult to characterize
and illogical) impact on the position of the motor controllers.

This process did, in fact, provide information as to how to properly control the motors. The servo motors
rotate in a direction and speed proportional to the 7 bit position that is specified. The neutral value for
each servo is 62, so a positional value of 61 will turn the motor very slowly in the forward direction while
the value of 10 will turn the motor rapidly forward. Likewise, values of 63 and 120 will turn the motor
slow and rapid (respectively) in the reverse direction.

At this point it was apparent that one of the servo motors was slightly offset from the neutral point. This
was elicited when setting the left servo to the neutral point (62) and observing slight forward rotation. A
compensating factor was implemented within the motor control API, so that the user could send identical
positions for the left and right servos and obtain the expected identical output.

Another issue that was brought to light by the motor menu interface was a power consumption problem.
When the motors were commanded to rapidly reverse directions, the ZNEO controller would occasionally
reset. I hypothesized that the reason for this was that the motor controller was drawing a substantial
amount of current that was sufficient to reset the device. I remedied this error by inserting a small delay
between sending the commands to the left servo and right servo. Trial and error elicited a minimum
delay of approximately 50 ms. This delay has significant impact on the PID controller and hence the
overall stability of the device; since the controller can adjust the servo motor positions at most only 20

Spencer Burdette Self Balancing Robot Project Report Page 13 of 31

times per second. In general, however, the characterization of the motor behavior was attained and the
servo motor issues were overcome.

Sensor Issues
The reflective object sensors are both rapidly responsive and highly sensitive, two characteristics that are
desirable for this robot. The downside of the devices, however, remains their short range and their non-
linear response.

The very short range of the devices can be a ¼” or lower, depending on the resistance value selected for
the diode. When mounted on the robot, the forward and aft sensors entered a state of “saturation” (i.e.
maximum values) before the robot was aligned level. This saturation, in effect, creates a dead zone
where the device cannot detect any further tilt until the sensor re-enters its operating range. The
solution to this problem was to raise the sensors view of the ground a small amount (about an eighth of
an inch) by affixing a piece of cardboard to double sided tape along the sensor’s path.

The most significant problem with the sensors is their non-linear response. The diagram below is
excerpted from the QRB-1134 datasheet.

Figure 9: Reflective object non-linear sensor response, current vs. distance.

Had I been more experienced, I may have identified this as a potential problem prior to purchasing and
utilizing the sensors. The nature of the problem is that at any given position along the sensors response
curve, one cannot tell if it has passed the maximum response value or not. Take for example a voltage
reading of 4 V (corresponding to a current above of .4ma, remember we used a 10 Kohm resistor and
V=IR), looking across the graph the sensor could be reading a distance of 50 mils or 325 mils. Without
more information, it is impossible to determine which value is the correct distance.

My initial solution was to investigate the position information on the other sensor whenever there was
ambiguity with a reading. Clearly, only one sensor could be reporting a far-side or near-side (relative to
the maximum) distance at a time. The problem with this approach, however, returns to the issue of the
limited sensor range. For most of the operating range of one sensor, the other sensor is in a state of
saturation, thus no information can be gleaned from its output.

The second solution appears obvious at first glance – if you know the starting position of the sensor, you
can track it as it traverses back and forth across the maximum. This solution is sound in theory, but does
unfortunately does not hold up in practice. This is attributed to the rapid change in position of the bot
and the sample interval. There are often times where the maximum value is traversed in between sensor
intervals, and the controller cannot determine if the sensor has traveled through the maximum or if it has
simply reached the maximum and turned around. This led to the development of a series of tolerance
bands about the maximum values which, once entered, assumed the device would be exiting the other

Spencer Burdette Self Balancing Robot Project Report Page 14 of 31

side and toggled an is_past_corner value. This value could be consulted to determine the true distance.
Unfortunately, this solution proved problematic again due to the sample rate. Furthermore, an error
detection and correction scheme was implemented which would repair the value of is_past_corner when
known positions were reached (i.e. both sensors registering “level” values). This solution provided only
marginal improvements.

Ultimately, the ambiguity of certain sensor readings proved to be the undoing of the PID controller.
Within known ranges, the controller operated reliably and the sensors provided useful feedback. Beyond
these ranges, however, the error could not be accurately calculated since the function could not
confidently know the true position values.

PID Issues
Surprisingly, the PID controller turned out to be one of the simplest and most straightforward
components to implement. The first issue to overcome was the discrepancy between the error domain
and the motor control domain. As stated earlier, error values range between -1000 and 1000, while the
servo motor controller requires values in the range of 0 – 127 (with 62 being neutral). This domain
mapping was easily achieved by applying some mathematics.

There are two remaining issues with the controller that need to be identified. I am confident that these
issues could have been solved empirically had the sensor problem been resolved. The first issue is
related to the integral component. The function of the integral component is to sum the error over time
and influence the output proportional to the sum. This tactic allows a controller to overcome steady-state
error conditions by essentially “ramping up” the output when it is observed that the current output is not
achieving the desired effect. Note that since the integral component is strictly a sum and the error can
be positive or negative, that the reversing of direction has the effect of reducing the sum. The problem
is that when the error reads zero (i.e. the bot is level), a pure integral algorithm will retain for a small
time a remaining sum component which will force the output to knock the bot from its level stance. I
believe a solution may be to entirely clear the integral sum when it is determined that the bot has
reached (or oscillated beyond) level.

The other problem is related to the nature of the servo motors. In a pure PID implementation, the
controller will not produce any output when the error is zero. With this project, however, recall that the
servo motors have been modified for continuous rotation. This implies that they will continue rotating at
their current speed if they do not receive any input. Clearly, this action quickly knocks the bot from level
when the PID reads a zero error value. I believe that setting the servos to the neutral position upon a
zero error will eliminate this issue and thus enhance stability.

Lessons Learned
Working on the implementation of a full scale PID controller taught me volumes about system control. I
now have a clearer and more concrete understanding of the contributions of each of the PID
components, as well as their interactions. It was very rewarding to develop the mathematical
relationships between the sensing domain and control domain, and to watch the controller calculate
compensating outputs.

The most essential lesson I have learned is to properly scrutinize a device data sheet before selecting the
component for integration into a project. Had I been wearier of the potential issues, I may have rejected
the reflective object sensors as potential tilt measuring sensors due to their non-linear output. I
ultimately attribute the shortfall of this project to the nature of the sensors, so clearly this decision was a
stinging lesson to learn.

Spencer Burdette Self Balancing Robot Project Report Page 15 of 31

Future Work
The components for the self balancing robot were obtained independently. Therefore, work can continue
on the project despite the course being over. I have a high degree of confidence in my PID
implementation, as well as my motor control and sensor APIs. I feel that with the proper adjustment (or
replacement) of the tilt sensors, that I will achieve success in balancing the robot over an extended
period of time.

My first attempt will be to increase the sample rate of the sensors. Typically, PID controllers only sample
their input at the same rate as they generate output. This is logical, since after all there is little sense in
wasting power to sample your environment if you are not going to immediately act on it. I adhered to
this principle in my implementation when, in fact, it turns out there is a purpose to sampling faster than I
calculate outputs. The benefit of an increased sample rate would be an increase in the resolution and
accuracy of tracking the position on the response curve of the sensor data. If I can reliably and
repeatedly detect when a sensor crosses its maximum value, I will be able to calculate accurate error
values.

If the increased sensor sample rate does not work, the reflective object sensors will have to be replaced
with a more suitable gyroscopic, angle, or tilt sensor. Ideally, the PID code can remain unchanged, since
it conforms to the sensor API, and only the underlying sensor implementation will need to be changed to
accommodate the replacement device.

Spencer Burdette Self Balancing Robot Project Report Page 16 of 31

Appendix A: Self Balancing Bot Construction

Spencer Burdette Self Balancing Robot Project Report Page 17 of 31

Figure A1: The unassembled scooterbot components.

Figure A2: The servo motors mounted to the base.

Spencer Burdette Self Balancing Robot Project Report Page 18 of 31

Figure A3: Assembling the wheels.

Figure A4: Inverting the base provides the necessary additional ground clearance.

Spencer Burdette Self Balancing Robot Project Report Page 19 of 31

Figure A5: Photo reflective sensors mounted to the servo-mount brackets. View is of the
underside of the base platform.

Figure A6: Routing the wires to the opposite wheel well along the underside of the bottom
deck.

Spencer Burdette Self Balancing Robot Project Report Page 20 of 31

Figure A7: Top view of the bottom deck showing the mounted motor controller and wire tie-
down. Note that the QRB-1134 connector assembly is described in Appendix B.

Figure A8: Mounting weights and optional bubble level with Velcro to underside of the top
deck.

Spencer Burdette Self Balancing Robot Project Report Page 21 of 31

Figure A9: Top deck installed and Velcro strips ready to accept ZNEO microcontroller board.

Figure A10: The final assembled and wired self balancing robot.

Spencer Burdette Self Balancing Robot Project Report Page 22 of 31

Appendix B: QRB-1134 Reflective Object sensor connector
assembly

Spencer Burdette Self Balancing Robot Project Report Page 23 of 31

The following idea was influenced by a guide on
www.ranchbots.com/club/papers/QRB1134%20quickconnect.pdf. Essentially, the
connectors involve the soldering of two resistors inline with the power and signal wires
of each sensor. The negative leads are also soldered together, and connectors are
crimped to the wire ends.

Figure B1: Cut approximately 8 inches off of each wire (save the cut lengths) and strip the
wires about ¾ of an inch.

Spencer Burdette Self Balancing Robot Project Report Page 24 of 31

Figure B2: Hand twist the green and blue leads together. Slip 1” lengths of shrink tubing
over each of the wires (the blue and green wires are considered one wire beyond this point).
Hand twist the 150 Ohm resistor to the orange wire and the 10K Ohm resistor to the white

wire.

Figure B3: Hand twist the free resistor leads from the orange and white wires together.
Twist the 8” cut length of orange wire to the intertwined resistors. Twist the 8” cut length

of white wire to the top of the resistor on the white wire. The new length of white wire
should be joined to the attached white wire on the side towards the sensor (not towards the
free ends). At this point the excess resistor leads can be trimmed and the connections can

be soldered.

Spencer Burdette Self Balancing Robot Project Report Page 25 of 31

Figure B4: Twist and solder the 8” cut length of the blue wire to the intertwined blue/green
wires.

Figure B5: Position and heat the shrink tubing to protect the joints.

Figure B6: Crimp connectors on the free end of the wires.

Spencer Burdette Self Balancing Robot Project Report Page 26 of 31

Appendix C: Project Settings

Spencer Burdette Self Balancing Robot Project Report Page 27 of 31

The following XML can be pasted into an xxx.zdsproj file in order to reproduce the
working project settings. The version of the Zilog IDE is the ZDS II – ZNEO 4.10.2

<project type="Executable" project-type="Standard" configuration="Debug"
created-by="b:4.10:06062301" modified-by="b:4.10:06062301">
<cpu>Z16F2811AL</cpu>

<!-- file information -->
<files>
<file filter-key="">src\timer.c</file>
<file filter-key="">src\button.c</file>
<file filter-key="">src\led.c</file>
<file filter-key="">src\clock.c</file>
<file filter-key="">src\adc.c</file>
<file filter-key="">src\tilt_sensor_data_collect.c</file>
<file filter-key="">src\tilt_sensor_calibrate.c</file>
<file filter-key="">src\motor.c</file>
<file filter-key="">src\selfbalancebot_main.c</file>
<file filter-key="">src\sensor.c</file>
<file filter-key="">src\menu.c</file>
<file filter-key="">src\pid.c</file>
</files>

<!-- configuration information -->
<configurations>
<configuration name="Debug" >
<tools>
<tool name="Assembler">
<options>
<option name="define" type="string" change-
action="assemble">_Z16F2811AL=1,_Z16F_SERIES=1</option>
<option name="include" type="string" change-action="assemble"></option>
<option name="list" type="boolean" change-action="none">true</option>
<option name="listmac" type="boolean" change-action="none">false</option>
<option name="name" type="boolean" change-action="none">true</option>
<option name="pagelen" type="integer" change-action="none">56</option>
<option name="pagewidth" type="integer" change-action="none">80</option>
<option name="quiet" type="boolean" change-action="none">true</option>
</options>
</tool>
<tool name="Compiler">
<options>
<option name="chartype" type="string" change-action="compile">U</option>
<option name="define" type="string" change-
action="compile">_Z16F2811AL,_Z16F_SERIES</option>
<option name="genprintf" type="boolean" change-action="compile">true</option>
<option name="keepasm" type="boolean" change-action="none">false</option>
<option name="keeplst" type="boolean" change-action="none">true</option>
<option name="list" type="boolean" change-action="none">false</option>
<option name="listinc" type="boolean" change-action="none">false</option>
<option name="model" type="string" change-action="compile">S</option>
<option name="modsect" type="boolean" change-action="compile">false</option>
<option name="stdinc" type="string" change-action="compile"></option>
<option name="usrinc" type="string" change-action="compile">hdr</option>
<option name="regvar" type="boolean" change-action="compile">false</option>
<option name="regvarcache" type="boolean" change-action="none">false</option>
<option name="reduceopt" type="boolean" change-action="compile">true</option>

Spencer Burdette Self Balancing Robot Project Report Page 28 of 31

<option name="watch" type="boolean" change-action="none">false</option>
</options>
</tool>
<tool name="Debugger">
<options>
<option name="target" type="string" change-
action="rebuild">Z16F2811AL</option>
<option name="debugtool" type="string" change-
action="none">USBSmartCable</option>
</options>
</tool>
<tool name="FlashProgrammer">
<options>
<option name="erasebeforeburn" type="boolean" change-
action="none">false</option>
<option name="eraseinfopage" type="boolean" change-
action="none">false</option>
<option name="enableinfopage" type="boolean" change-
action="none">false</option>
<option name="includeserial" type="boolean" change-
action="none">false</option>
<option name="offset" type="integer" change-action="none">0</option>
<option name="snenable" type="boolean" change-action="none">false</option>
<option name="sn" type="string" change-action="none">0</option>
<option name="snsize" type="integer" change-action="none">0</option>
<option name="snstep" type="integer" change-action="none">0</option>
<option name="snstepformat" type="integer" change-action="none">0</option>
<option name="snaddress" type="string" change-action="none">0</option>
<option name="snformat" type="integer" change-action="none">0</option>
<option name="snbigendian" type="boolean" change-action="none">true</option>
<option name="singleval" type="string" change-action="none">0</option>
<option name="singlevalformat" type="integer" change-action="none">0</option>
</options>
</tool>
<tool name="General">
<options>
<option name="warn" type="boolean" change-action="none">true</option>
<option name="debug" type="boolean" change-action="assemble">true</option>
<option name="debugcache" type="boolean" change-action="none">true</option>
<option name="igcase" type="boolean" change-action="assemble">false</option>
<option name="outputdir" type="string" change-
action="compile">Debug\</option>
</options>
</tool>
<tool name="Librarian">
<options>
<option name="outfile" type="string" change-
action="build">.\Debug\counter.lib</option>
<option name="warn" type="boolean" change-action="none">false</option>
</options>
</tool>
<tool name="Linker">
<options>
<option name="directives" type="string" change-action="build"></option>
<option name="createnew" type="boolean" change-action="build">true</option>
<option name="eram" type="string" change-action="build">800000-
87FFFF</option>

Spencer Burdette Self Balancing Robot Project Report Page 29 of 31

<option name="erom" type="string" change-action="build">008000-
01FFFF</option>
<option name="exeform" type="string" change-
action="build">OMF695,INTEL32</option>
<option name="fplib" type="string" change-action="build">Real</option>
<option name="iodata" type="string" change-action="build">FFC000-
FFFFFF</option>
<option name="linkctlfile" type="string" change-action="build"></option>
<option name="map" type="boolean" change-action="none">true</option>
<option name="maxhexlen" type="integer" change-action="build">64</option>
<option name="objlibmods" type="string" change-action="build"></option>
<option name="of" type="string" change-action="build">Debug\counter</option>
<option name="padhex" type="boolean" change-action="build">false</option>
<option name="quiet" type="boolean" change-action="none">true</option>
<option name="ram" type="string" change-action="build">FFB000-FFBFFF</option>
<option name="relist" type="boolean" change-action="build">false</option>
<option name="rom" type="string" change-action="build">000000-007FFF</option>
<option name="sort" type="string" change-action="none">NAME</option>
<option name="startuplnkcmds" type="boolean" change-
action="build">true</option>
<option name="startuptype" type="string" change-
action="build">Standard</option>
<option name="undefisfatal" type="boolean" change-action="none">true</option>
<option name="useadddirectives" type="boolean" change-
action="build">false</option>
<option name="usecrun" type="boolean" change-action="build">true</option>
<option name="warnoverlap" type="boolean" change-action="none">true</option>
<option name="warnisfatal" type="boolean" change-action="none">false</option>
<option name="xref" type="boolean" change-action="none">false</option>
</options>
</tool>
</tools>
</configuration>
<configuration name="Release" >
<tools>
<tool name="Assembler">
<options>
<option name="define" type="string" change-
action="assemble">_Z16F2811AL=1,_Z16F_SERIES=1</option>
<option name="include" type="string" change-action="assemble"></option>
<option name="list" type="boolean" change-action="none">true</option>
<option name="listmac" type="boolean" change-action="none">false</option>
<option name="name" type="boolean" change-action="none">true</option>
<option name="pagelen" type="integer" change-action="none">56</option>
<option name="pagewidth" type="integer" change-action="none">80</option>
<option name="quiet" type="boolean" change-action="none">true</option>
</options>
</tool>
<tool name="Compiler">
<options>
<option name="chartype" type="string" change-action="compile">U</option>
<option name="define" type="string" change-
action="compile">_Z16F2811AL,_Z16F_SERIES</option>
<option name="genprintf" type="boolean" change-action="compile">true</option>
<option name="keepasm" type="boolean" change-action="none">false</option>
<option name="keeplst" type="boolean" change-action="none">true</option>
<option name="list" type="boolean" change-action="none">false</option>
<option name="listinc" type="boolean" change-action="none">false</option>

Spencer Burdette Self Balancing Robot Project Report Page 30 of 31

<option name="model" type="string" change-action="compile">S</option>
<option name="modsect" type="boolean" change-action="compile">false</option>
<option name="stdinc" type="string" change-action="compile"></option>
<option name="usrinc" type="string" change-action="compile">hdr</option>
<option name="regvar" type="boolean" change-action="compile">true</option>
<option name="regvarcache" type="boolean" change-action="none">false</option>
<option name="reduceopt" type="boolean" change-
action="compile">false</option>
<option name="watch" type="boolean" change-action="none">false</option>
</options>
</tool>
<tool name="Debugger">
<options>
<option name="target" type="string" change-
action="rebuild">Z16F2811AL</option>
<option name="debugtool" type="string" change-
action="none">USBSmartCable</option>
</options>
</tool>
<tool name="FlashProgrammer">
<options>
<option name="erasebeforeburn" type="boolean" change-
action="none">false</option>
<option name="eraseinfopage" type="boolean" change-
action="none">false</option>
<option name="enableinfopage" type="boolean" change-
action="none">false</option>
<option name="includeserial" type="boolean" change-
action="none">false</option>
<option name="offset" type="integer" change-action="none">0</option>
<option name="snenable" type="boolean" change-action="none">false</option>
<option name="sn" type="string" change-action="none">0</option>
<option name="snsize" type="integer" change-action="none">0</option>
<option name="snstep" type="integer" change-action="none">0</option>
<option name="snstepformat" type="integer" change-action="none">0</option>
<option name="snaddress" type="string" change-action="none">0</option>
<option name="snformat" type="integer" change-action="none">0</option>
<option name="snbigendian" type="boolean" change-action="none">true</option>
<option name="singleval" type="string" change-action="none">0</option>
<option name="singlevalformat" type="integer" change-action="none">0</option>
</options>
</tool>
<tool name="General">
<options>
<option name="warn" type="boolean" change-action="none">true</option>
<option name="debug" type="boolean" change-action="assemble">false</option>
<option name="debugcache" type="boolean" change-action="none">false</option>
<option name="igcase" type="boolean" change-action="assemble">false</option>
<option name="outputdir" type="string" change-
action="compile">Release\</option>
</options>
</tool>
<tool name="Librarian">
<options>
<option name="outfile" type="string" change-
action="build">.\Release\counter.lib</option>
<option name="warn" type="boolean" change-action="none">false</option>
</options>

Spencer Burdette Self Balancing Robot Project Report Page 31 of 31

</tool>
<tool name="Linker">
<options>
<option name="directives" type="string" change-action="build"></option>
<option name="createnew" type="boolean" change-action="build">true</option>
<option name="eram" type="string" change-action="build">800000-
87FFFF</option>
<option name="erom" type="string" change-action="build">008000-
01FFFF</option>
<option name="exeform" type="string" change-
action="build">OMF695,INTEL32</option>
<option name="fplib" type="string" change-action="build">Real</option>
<option name="iodata" type="string" change-action="build">FFC000-
FFFFFF</option>
<option name="linkctlfile" type="string" change-action="build"></option>
<option name="map" type="boolean" change-action="none">true</option>
<option name="maxhexlen" type="integer" change-action="build">64</option>
<option name="objlibmods" type="string" change-action="build"></option>
<option name="of" type="string" change-
action="build">Release\counter</option>
<option name="padhex" type="boolean" change-action="build">false</option>
<option name="quiet" type="boolean" change-action="none">true</option>
<option name="ram" type="string" change-action="build">FFB000-FFBFFF</option>
<option name="relist" type="boolean" change-action="build">false</option>
<option name="rom" type="string" change-action="build">000000-007FFF</option>
<option name="sort" type="string" change-action="none">NAME</option>
<option name="startuplnkcmds" type="boolean" change-
action="build">true</option>
<option name="startuptype" type="string" change-
action="build">Standard</option>
<option name="undefisfatal" type="boolean" change-action="none">true</option>
<option name="useadddirectives" type="boolean" change-
action="build">false</option>
<option name="usecrun" type="boolean" change-action="build">true</option>
<option name="warnoverlap" type="boolean" change-action="none">true</option>
<option name="warnisfatal" type="boolean" change-action="none">false</option>
<option name="xref" type="boolean" change-action="none">false</option>
</options>
</tool>
</tools>
</configuration>
</configurations>

<!-- watch information -->
<watch-elements>
<watch-element expression="motors" />
<watch-element expression="sensors" />
<watch-element expression="pid" />
</watch-elements>

<!-- breakpoint information -->
<breakpoints>
</breakpoints>

</project>

