
Privacy Arguments: 

Analysing Selective Disclosure Requirements for Mobile Applications 

Thein Than Tun
1
, Arosha K. Bandara

1
, 

Blaine A. Price
1
, Yijun Yu

1
 

Charles Haley
2
 

2
Frogfish Technologies 

Inah Omoronyia
3
, 

Bashar Nuseibeh
1,3

 
1
The Open University, UK UK 

3
Lero, Ireland 

 
Abstract—Privacy requirements for mobile applications 

offer a distinct set of challenges for requirements 

engineering. First, they are highly dynamic, changing over 

time and locations, and across the different roles of agents 

involved and the kinds of information that may be disclosed. 

Second, although some general privacy requirements can be 

elicited a priori, users often refine them at runtime as they 

interact with the system and its environment. Selectively 

disclosing information to appropriate agents is therefore a 

key privacy management challenge, requiring carefully 

formulated privacy requirements amenable to systematic 

reasoning. In this paper, we introduce privacy arguments as a 

means of analysing privacy requirements in general and 

selective disclosure requirements (that are both content- and 

context-sensitive) in particular. Privacy arguments allow 

individual users to express personal preferences, which are 

then used to reason about privacy for each user under 

different contexts. At runtime, these arguments provide a 

way to reason about requirements satisfaction and diagnosis. 

Our proposed approach is demonstrated and evaluated 

using the privacy requirements of BuddyTracker, a mobile 

application we developed as part of our overall research 

programme. 

Keywords-privacy arguments; privacy requirements; mobile 
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I.  INTRODUCTION 

The prevalence of mobile computing devices and 
cloud-based services has generated new opportunities and 
new ways in which software systems (“apps”) are used. 
These opportunities also present new challenges for 
requirements engineering. Although similar in many ways 
to the requirements for traditional software systems, 
requirements for mobile applications have a significant 
privacy dimension, because they capture, store and process 
large amounts of personal data. The consequences of 
inattention to privacy concerns is illustrated by many well 
publicised examples of privacy breaches, such as the 
automatic and unintentional uploading of users’ personal 
contact databases from their mobile devices to the servers 
of the popular mobile social media service, Path [1]. 

Unlike privacy requirements centrally prescribed in 
regulations and site policy statements, user privacy 
requirements for mobile applications are difficult to 
describe and analyse. First, privacy requirements are 
highly dynamic and selective, changing over time and 
locations, and across the roles of agents involved, as well 
as the kind of information that may be disclosed. Second, 

although some general privacy requirements can be 
elicited, users are likely to refine their requirements at 
runtime as they interact with the mobile system in different 
contexts. As privacy requirements become more concrete 
and their contexts become clear, a system has to be 
adaptive to those requirements.  

Selective disclosure defines the conditions for a piece 
of information to be communicated to a particular group of 
agents (people or software). Such conditions can be 
specified as policy rules called “norms” [2]. However, 
they are often specified without giving explicit rationale to 
answer questions such as why is certain information (not) 
shared?  Is it worthwhile to sacrifice a low-priority policy 
by enlarging the disclosed scope in exchange for some 
important functionality or gaining trust from friends? Does 
information have different values at different times? What 
preferences among different norms need to be traded off at 
runtime? 

To answer these questions, this paper proposes an 
extended argumentation language for such selective 
disclosure requirements, in order to reason about their 
satisfaction. First, the language allows the definition of 
classes of argument capturing how a generic privacy norm 
can be satisfied for a group of users within a particular 
context, with the goals of such groups explicitly expressed 
in the conditions. Individual users of the system can 
instantiate the argument class and, when necessary, 
augment it with privacy requirements specific to a 
particular location, time, or other context. Since there is 
clear traceability between the arguments and the 
underlying system architecture, changes in the argument 
can be used to adapt the system behaviour. Our proposed 
privacy arguments can be either formal or semi-formal. 
Users can interact with the semi-formal form of arguments 
at runtime, by specifying requirements for specific 
disclosure contexts. We use the Event Calculus [3] to 
formalise these privacy arguments to reason about 
requirements satisfaction and diagnosis. Our proposed 
approach is demonstrated using examples of selective 
disclosure of location information from the BuddyTracker 
mobile application developed by our research group. 

The main contribution of the paper is therefore the use 
of privacy arguments to represent highly dynamic and 
changing selective disclosure requirements, and to relate 
them to the software architecture in order to enable system 
adaptation to runtime privacy requirements. 

The remainder of the paper is organized as follows. By 
way of background, section II provides an overview of the 
BuddyTracker application, a discussion of the privacy 



framework that helps us define privacy requirements, the 
Problem Frames approach, and the Event Calculus. 
Section III explains our proposed approach, by discussing 
how functional and privacy requirements are described and 
related using a generic architecture, and then introducing 
the privacy arguments and their formalisation and 
reasoning using the Event Calculus. Section IV provides 
some of BuddyTracker’s implementation details. Related 
work and conclusions are presented in Sections V and VI 
respectively. 

II. PRELIMINARIES 

A. Case Study: BuddyTracker 

BuddyTracker is a smartphone app that regularly 
updates a cloud-based server with the phone’s location as 
determined by GPS, WiFi, or current cell mast location. At 
a given time, it allows the owner to set the precision of 
their reported location as well as who is allowed to access 
their location. BuddyTracker’s architecture is based on 
Altman’s bi-directional privacy theory [4] and the concept 
of social translucence [5] where sharing knowledge about 
location requests helps provide a kind of  two-way 
visibility for actions. This means that when an authorized 
person (the tracking user) requests the location of another 
user (the tracked user, a colleague, a friend, etc.), the 
tracked user is notified of the request. BuddyTracker uses 
various algorithms to analyse the context of the tracked 
user and chooses the most appropriate interface method to 
notify her, including natural language, tone, vibrotactile, 
and a variety of visual notification methods. 

B. Privacy Norms 

There are several definitions of privacy requirements, 
and in this work we follow the notion of privacy as defined 
by the formalized contextual integrity framework [2]. In 
that formalization, agents with certain knowledge, who 
play different roles, communicate with each other. Their 
communication should follow certain norms. Agents may 
play different roles at different times, and make deductions 
based on the knowledge they have. Norms are established 
on the basis of who the personal information is about, how 
the information is transmitted, what the subject and the 
users of the information have done in the past and will do 
in future.  

In particular, two types of norms have been 
distinguished. A positive norm permits communication 
between agents as long as its temporal condition is 
satisfied. For instance, a positive norm, may allow an 
agent Alice with the role of employee to communicate to 
another agent Bob playing the role of colleague, a message 
containing the current location information of Alice. This 
will allow Alice to tell her colleague Bob about where she 
currently is. The norm is violated if Bob knows Alice’s 
location when she is not playing the role of colleague to 
Bob, for instance.  

A negative norm permits communication only if its 
temporal condition is not satisfied. For instance, a negative 
norm may state that an agent with the role of user is not 

allowed to disclose the location information of another 
agent with the role of friend to a third party, unless consent 
from the second agent has been obtained by the first agent. 
For instance, Alice is not allowed to disclose Bob’s 
location unless Bob’s consent has been obtained by Alice.  
In this work we regard privacy requirements as both 
positive and negative norms that must be respected by the 
behaviour of the agents in the system. 

Since agents can make deductions about the 
information they get, the knowledge structure is important. 
For instance, if a norm does not allow Carole to know the 
location of another agent, Bob, on weekends, then Carole 
must not know anything about Bob that might indicate his 
location. If his location can be deduced from the postcode, 
address, GPS location, or IP address, then agent Carole has 
to be prevented from acquiring such knowledge. This 
assumes that (i) the privacy models must describe all 
inferences agents can make on the information they can 
get, and (ii) agents will not acquire knowledge in ways 
other than as described in the model. 

According to Barth et al [2], the behaviour of a system 
is described using the linear temporal logic (LTL) traces 
thus supporting verification against privacy requirements. 

C. Problem Frames and Security Arguments 

In this work, we will use the Problem Frames approach 
[6]  to make four descriptions: the software (S), the 
problem world (W), the requirements (R) and their 
relationship through the entailment W, S ├ R [7]. This 
approach is suitable for representing and analysing privacy 
requirements for two main reasons: (i) it allows us to 
describe the structure and properties of the context in 
which the requirements are expressed, and (ii) it allows us 
to decompose and recompose requirements in a way that 
the concerns of the components in the system architecture 
are separately addressed. The use of the Problem Frames 
approach is not prescriptive in the sense that another 
requirements engineering approach that allows us to make 
the same four descriptions and separate concerns 
addressed by the components could be used instead. 

Haley et al [8],  have used Toulmin’s argument 
structure to recursively represent the rebuttals and 
mitigations when reasoning about the satisfaction of 
security requirements. In their approach, security 
requirements are expressed as claims, and are supported by 
grounds and warrants. Rebuttals show evidence that 
contradicts other arguments, whilst mitigations describe 
how rebuttals may be avoided or tolerated. Franqueira et al 
[9] combine the process of security arguments with that of 
risk assessment in order to exploit the publicly available 
security catalogues [10]. This work extends the security 
arguments to address the distinct challenges of selective 
disclosure privacy problems. 

D. Event Calculus 

In order to facilitate formal reasoning, some of the 
artefacts will be described in Event Calculus, a logic based 
on first-order predicate calculus. It can be used to 
represent actions, their deterministic and non-deterministic 



effects, concurrent actions and continuous change. We 
chose the Event Calculus as our formalism because it is 
suitable for describing and reasoning about event-based 
temporal systems [3]. 

Table I. Event Calculus predicates 

Predicate Meaning 
Happens(a, t) Action a occurs at time t 
Initiates(a, f, t) Fluent f starts to hold after action a at 

time t 

Terminates(a, f, t) Fluent f ceases to hold after action a 
at time t 

HoldsAt(f, t) Fluent f holds at time t 
t1 < t2   Time point t1 is before time point t2 

 
The calculus relates events and event sequences to 

‘fluents’ that denote states of a system. Table I gives the 
meanings of the elementary predicates of the calculus we 
use in this paper. There are several domain-independent 
rules, some of which are listed below (see [3] for other 
rules). Clipped(t1, f, t2) is equivalent to saying that the 
fluent f is terminated by the event instance a occurring 
between times t1 and t2.  

 

Clipped(t1, f, t2)   a, t [Happens(a, t)  

t1  t < t2  Terminates(a, f, t)] 
 
The next rule says that the fluent f that has been 

initiated by occurrence of an event a continues to hold 
until occurrence of a terminating event.  

 

HoldsAt(f, t2) ← [Happens(a, t1)  

Initiates(a, f, t1)  t1 < t2  ¬Clipped(t1, f, t2)] 
 
The last rule says that fluent f persists until an 

appropriate terminating event occurs. 
 

HoldsAt(f, t2) ← [HoldsAt(f, t1)  t1 < t2  
¬Clipped(t1, f, t2)] 
 

III. THE PRIVACY ARGUMENTATION APPROACH 

In this proposed approach, functional requirements and 
requirements relating to privacy norms are handled 
separately. Methodologically, functionality requirements 
are specified before privacy requirements are considered. 
This separation is analogous to the separation of system 
behaviour from that of access control. 

In this section, we discuss (i) how we describe the 
functional and privacy requirements using the Problem 
Frames approach, (ii) how privacy arguments are used to 
specify norms that underlie privacy, and (iii) how formal 
reasoning are performed based on privacy arguments. 

We envisage that the problem frames, arguments in the 
natural language and the Event Calculus are tools for the 
developers. Developers could also define classes of 
privacy requirements, which users can instantiate and 

personalise perhaps through special user interface 
metaphors, such as check buttons and dropdown lists. 

A. Problem Description and Analysis 

After identifying functional requirements, we relate them 
to the problem world domain and the machines using the 
Problem Frames approach, as a problem diagram. For 
example, the functional requirement of BuddyTracker, 
“Display the location information of a user on request” is 
modelled as a simple problem diagram in Figure 1. 

 
Figure 1.  Problem Diagram: Show Location 

It is an instance of the Information Display problem 
frame [6], in which the problem world domain User is the 
person interacting with the machine Location Display. The 
user taps the display when he wants to know where 
someone is. The Log has the schema <userid, 
GPSLocation, time> in the database that contains entries 
of GPS location recorded when users update their 
locations. The labels Pa to Pf are explained in Table II. 

Table II. Meanings of the phenomena in Figure 1. 

Lab
el 

Phenomena Meaning 

Pa WhereIs(s) The user wants to know the 
location of subject identified by s  

Pb Tap(u, cIcon) The user u taps the icon 
representing the subject 
identified by c 

Pc Query(s, 
GPSPos@t) 

The query operation returns the 
GPS position of subject s at time 
t, which is the time of last know 
location 

Pd At (s, 
GPSPos@t) 

The machine indicates that the 
subject s is at the location GPSPos 
at time t 

Pe Log Entries in log 
Pf Know(u, s, 

GPSPos@t) 
The user u knows that subject s is 
at GPSPos at time t 

 
In terms of the phenomena, the requirement says that 

WhereIs(s) (phenomenon Pa) should lead to Know(u, s, 
GPSPos) (phenomenon Pf), meaning that when the user 
wants to know the location of someone when tapping the 
icon (phenomenon Pb), she will know the position. In 
Event Calculus, it is expressed as follows: 

 

Happens(WhereIs(s), time) →  
HoldsAt(Know(u, s, GPSPos@t), time+4)    
 

L 

 

Log 

U 

 

User 

LD 
 

Location 

Display 

  Show 

Location 

Pc 

Pb, Pd 

Pe 

Pa, Pf 



Notice the difference between time t in GPSPos@t and 
time in time+4 in the HoldsAt predicate: the former is the 
time at which the GPS position is recorded, while the latter 
is the relative time difference between the user action 
tapping and the user knowing the location of the subject. 
The number 4 is the number of ticks on the logical clock.  

It is easy to see that a machine that queries the log 
(phenomenon Pc) when the user taps the display 
(phenomenon Pb) and immediately shows to the user 
where the subject is at the last known time (phenomenon 
Pd), will satisfy the requirement. This specification of 
Location Display can be formalized as follows: 

 
Happens(Tap(u, cIcon), time) →  
[Happens(Query(s, GPSPos@t), time + 1)  
Happens(At(s, GPSPos@t), time+2)]  
 
Full formalisation of this and other examples in the 

Event Calculus is given in the appendices. 
 

1) Describing the Norms in Relation to Functions: As 

discussed by Barth et al [2], much of the information flow 

between agents should conform to certain positive or 

negative privacy norms. Although the problem diagram in 

Figure 1 describes the physical contexts for the 

requirement including User and the location database 

Log, the norm that permits such information flow is in 

fact missing. Consider the following privacy norm: 
 

“Location information can be disclosed between those 
who are colleagues.” 

 
A norm such as the one above is regarded as a privacy 

requirement in this work.  This requirement is a positive 
norm because it states the condition (perhaps one of many 
conditions) under which showing location to a user is 
acceptable. Note that the requirement is a default 
requirement for the entire user class: it says that it is true 
for all colleagues. However, an individual user may 
choose to personalise it, for instance, by specifying a 
preference such as: Alice does not want her colleague 
Dave to know her location. 

This requirement is related to the principle of selective 
disclosure. Three factors are recurrent in such 
requirements: agent roles, time and place. Consider, for 
instance, what makes two people to be considered as 
colleagues. Do they have to work in the same 
organization? Do they have to work at the same location 
during similar times? These questions require a clear 
distinction between these context domains. 

The Problem Frames approach allows us to describe 
the privacy requirement that underlies the functional 
requirements in a modular way. Assuming that userids 
contain prefixes indicating the organization the user works 
for, we can extend the problem diagram in Figure 1 to 
reflect the norm, without modifying the existing machine, 
Location Display. This can be achieved by introducing a 

wrapper that intercepts events at the machine-world 
interface.    

  

 
Figure 2.  Problem Diagram: Colleague Norm 1 

Figure 2 shows how the original problem context can 
be extended to implement the norm that location 
information shall be displayed if the user making the 
request and the subject of the request work for the same 
organization. The new machine Organization Checker 
superimposes itself at the interface between Location 
Display and Log. Its specification is to obtain and compare 
the organization prefixes of c in Query(c, GPSPos@t) and 
u which identifies the user. If the prefixes do not match, 
the Organization Checker machine should not to pass the 
query from Location Display on to Log. Assuming that the 
fluent SamePF(u,c) indicates that the organization prefixes 
of the user identified by u, and the subject identified by s, 
the condition Organization Checker has to check can be 
described in Event Calculus as follows: 

 
HoldsAt(SamePF(u,s), time) 
 
If the condition is not met, Organization Checker must 

block the access to Log by Location Display. As a result, 
the user can see locations of colleagues only.  

One side issue that may arise here is that of 
information leak: the user may discover that when access 
is not successful, who is not a colleague. Therefore, the 
response message to the user must be phrased with care 
not to leak the identity of the person. 

As well as introducing a wrapper machine such as 
Organization Checker, it is possible to add other world 
domains when implementing a norm. If, for instance, 
organizations that users work for are not defined through 
the userid prefix but in a lookup table, then the table may 
be included as an additional domain and the Organization 
Checker be linked to it. 

It is likely that there will be several norms affecting a 
particular information transmission. Another norm, in this 
example, could be one that states that friends can share 
location information and may be implemented by a 
machine similar to Organization Checker in Figure 2. 

Selective disclosure norms may crosscut several 
functional requirements, and hence the problem diagrams. 
A wrapper architecture can be used to compose functional 
requirements, and norms can be introduced to composed 
problem diagrams, as discussed in earlier work [11]. 
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2) General Architecture: Notice that the specification 

of Location Display has not been changed because of the 

addition of a colleague norm. The new machine simply 

extends the current context of Location Display and 

introduces a condition on its access to Log.  
Methodologically, this approach allows us to consider 

functional requirements before examining the privacy 
norms. Since machines that implement the privacy norms 
are introduced after the machines implementing the 
functional requirements have been specified, concerns of 
the components have been separated. This separation of 
functional concerns from privacy concerns is a common 
characteristic in access control systems. 

Therefore, we consider this wrapper architecture to be 
a general solution to the problem of describing privacy 
requirements in the Problem Frames approach. 

 

3) Formalising Norms: Formalising norms using the 

Event Calculus is relatively straightforward. A disjunction 

of conditions for positive norms are conjunct with the 

specification of the functional requirements [2].  For 

instance, if colleagues or friends can share location 

information, the specification in Event Calculus could be: 
 

[HoldsAt(SamePF(u,s), time)   

HoldsAt(Friends(u,s), time) ]  
[Happens(Tap(u, cIcon), time) →  
Happens(Query(s, GPSPos@t), time + 1)  
Happens(At(s, GPSPos@t), time+2)] (CFN) 
 
The above specification says that the tapping action of 

the user u, on the screen for location of user c, will lead to 
the machine querying for the last known GPS position of 
c, and showing the position within 2 time units, if either 
that the users u and c are colleagues, or that they are 
friends.  

The specification of functional requirements must 
imply the disjunction of conditions for negative norms [2]. 
For instance, if only colleagues or friends can share their 
location information, the norm can be specified as: 

 
[Happens(Tap(u, cIcon), time) →  
Happens(Query(s, GPSPos@t), time + 1)  
Happens(At(s, GPSPos@t), time+2)] → 

[HoldsAt(OrgPrefix(u)= OrgPrefix(c), time)    
HoldsAt(Friends(u,c), time))] 
 
The above specification says that if the tapping leads to 

the user knowing the location information of another user, 
they must either have some common organization prefix or 
they must be defined as friends. In other words, users with 
other relationships cannot share their location information 
in this system. 

B. Privacy Arguments 

From a developer’s perspective, a privacy argument 
justifies to an audience, such as users of mobile 
applications, that the user’s privacy claim has been 

respected by the software system. In a formal setting, this 
justification may be a proof; in a less formal setting, this 
justification may be an argument. Furthermore, privacy 
arguments can be used to specify users’ runtime privacy 
requirements that are highly contextual, specific to 
individual users, location, time and content. Therefore, 
although similar to other forms of arguments, such as 
security arguments [8], the argumentation language is now 
extended in three ways to better describe privacy specific 
problems.  

First, privacy requirements or selective disclosure 
norms are now described as the claim of an argument that 
needs to be justified. The ground is the collection of facts 
that can be observed from the world domains, which 
supports the claim. The warrant is the collection of 
domain-specific rules that links the ground to the claim of 
the argument. The general structure of privacy arguments 
is: (Warrant, Ground → Claim). As with security 
arguments, problem diagrams provide the basic structure 
for the privacy arguments and traceability between high 
level privacy requirements, and access control policies that 
should implement those requirements. For instance, the 
Organisation Checker machine in Figure 2 is in effect an 
access control policy, but the problem diagram and 
subsequent privacy arguments will show how the privacy 
requirement may be achieved, whilst indicating how the 
system may fail to satisfy the requirement.  

Second, we now distinguish between an argument class 
and an argument instance. An argument class may be 
constructed on the basis of general privacy norm for a set 
of users within a typical context. In a sense, an argument 
class defines a default privacy argument that a user may 
instantiate. Once instantiated, an argument instance may 
augment the norm with more specific requirements or 
preferences that are specific to a user, time, location and 
content. For instance, although the colleague norm allows 
sharing location information between colleagues, Bob may 
opt not to share his with the colleague Dave. Privacy 
arguments should be able to express such a preference.  

Third, since there may be a number of norms 
applicable to a specific piece of information, users may 
wish to express a preference for a certain norm over 
others. For instance, although there are colleague and 
friend norms that allow a user to access and disclose his 
location information, Bob may want only his colleagues, 
not friends, to access his location information. Privacy 
arguments should be able to express such a preference. 

In this work, privacy arguments are constructed always 
from the perspective of the users, and users may refine 
their privacy requirements at runtime in terms of 
preferences. Therefore, individual users need only decide 
their exact privacy requirements at the time of use. 

One implication of this characteristic of privacy 
requirements is that privacy arguments cannot remain 
static at runtime: they should be responsive to preferences 
of individual users in different contexts. Since privacy 
arguments are linked to specifications through the shared 
phenomena, they can be used to adapt the system 
behaviour at runtime. 



1) Privacy Argument Grammar: Before reasoning 

about the arguments specific to privacy requirements, we 

first represent them by extending our earlier security 

argument structures [8] [9], with the concepts of temporal 

and priority preferences [12].  
Figure 3 lists the production rules of an extended 

syntax in the TXL grammar definitions [13]. TXL is 
chosen instead of Backus Normal Form (BNF) for its 
brevity in expressing language extensions.  

The “include” statement says that our new syntax 
reuses the existing syntax of arguments defined for our 
tool OpenArgue [14]. The new keywords in this extended 
language are preferred, precedes, except and when. 
As in our previous grammar, an argument in the new 
grammar still has a claim, zero or more grounds and zero 
or more warrants. The additional element preference can 
be used to define two things: (i) the precedence of two 
arguments over each other under certain optional 
conditions; and (ii) the exceptional conditions when a 
particular argument should not be applied.  

 
Figure 3.  Privacy Argument Grammar 

2) Argument Classes: The following example shows 

an argument class stating how the privacy requirement is 

satisfied by the BuddyTracker system. Arguments shown 

here can be visualized graphically [14], but we omit them 

here for space reasons.  Note that in the argument A1, the 

positive norm for location sharing between colleagues is 

the claim itself. F1 and F2 are facts. Warrant provides 

rules R1 to R5 that can link the supporting facts to the 

claim.  The person whose location the user is trying to 

find is referred to as a subject. The subject and the user 

are written in double brackets indicating that they can be 

replaced by specific values when an instance is created. 

This process of annotating subjects that appeared in the 

fact/rule descriptions is called parameterisation. A 

parameterised proposition becomes a predicate whose 

terms are bound to the grounded facts.  

3) Argument Instances: Such arguments can be 

instantiated for Bob and Dave with their specific names 

and preferences. We now have personal privacy 

requirements for each user. For instance, the privacy 

argument for the positive norm can be instantiated for 

Bob as follows. 

 
Figure 4.  Privacy Argument for the Colleague Norm 

 
Figure 5.  Instantiation of the Colleague Norm by Bob 

This argument when instantiated for Bob shows why 
Bob is able to see locations of certain subjects (because 
they are his colleagues). When there are multiple privacy 
norms, such as the friend norm A3 (not shown here for 

include "OpenArgue.grm" 
keys 

 … preferred precedes except when 
end keys 
redefine argument 
   argument [claim] { 
      supported by 
          [ground*] 
      warranted by 
          [warrant*] 
      preferred by 
          [preference*] 
   } 
end define 

 
define preference 
[id] precedes [id] when [bool_expr] 
| [id] except when [bool_expr] 
end define 

argument: Colleague_Norm_Class 
A1 "<<User>> can find out location 
information of his/her colleague 
<<subject>>" { 
  supported by  
    F1 "<<User>> wants to know location 
of <<subject>>" 
    F2 "<<User>> taps the screen icon of 
<<subject>>" 
  warranted by 
    R1 "If <<user>> taps the screen, the 
machine checks whether <<user>> and 
<<subject>> are colleagues" 
    R2 "If <<user>> and <<subject>> are 
colleagues, the machine queries the 
location of <<subject>>" 
    R3 "If the log is queried, it returns 
the last known GPS location of 
<<subject>>" 
    R4 "If GPS location is obtained from 
the log, the machine shows it to 
<<user>>" 
    R5 "If GPS location is shown to 
<<user>>, <<user>> knows the location of 
<<subject>>" } 

argument: Colleague_Norm_Bob 
A2 "Bob can find out location information 
of his/her colleague <<subject>>" { 
  supported by  
    F1 "Bob wants to know location of 
<<subject>>" 
    F2 "Bob taps the screen icon of 
<<subject>>" 
  warranted by 
    R1 "If Bob taps the screen, the 
machine checks whether Bob and 
<<subject>> are colleagues" 
    R2 "If Bob and <<subject>> are 
colleagues, the machine queries the 
location of <<subject>>" 
    R3 "If the log is queried, it returns 
the last known GPS location of 
<<subject>>" 
    R4 "If GPS location is obtained from 
the log, the machine shows it to Bob" 
    R5 "If GPS location is shown to Bob, 
Bob knows the location of <<subject>>" } 

 



space reason) in addition to the existing colleague norm 
A2, a user may express preference for one norm over 
other, or by adding conditions on time and location for 
when those preferences should be used.  

For instance, Bob may wish to use the colleague norm 
only in weekdays and the friend norm on weekends.  

 
Figure 6.  Bob’s Preferences for the Colleague and Frien Norms 

As well as defining conditional precedence of privacy 
arguments, Bob may also wish to deny Dave access to his 
location information by adding an exception to the 
colleague norm class A1, as shown below. 

 
Figure 7.  Bob’s Exeception #1 to the Colleague Norm 

The exception above says that A1 should not be 
applied when the user Dave attempts to find out location 
information of Bob. An alternative formulation to this 
shorthand will be for Bob to create a new argument 
denying Dave access to his location and to define a 
preference to the new norm over A1. The exception 
shorthand is also useful if, for instance, Bob wants to 
restrict himself from viewing location of certain colleagues 
such as Dave. 

  
Figure 8.  Bob’s Exeception #2 to the Colleague Norm 

So far, we have assumed that a user is able to prohibit 
other users accessing his or her location information, even 
when the norm is to share it, and the user can prohibit 
himself or herself from accessing location information of 
other users. We envisage that privacy norm classes are 
defined by developers, and then instantiated and adjusted 
by individual users on the basis of their individual 
priorities for norms and exceptions to norms. In general, 
norms allowing access to information are written either by 
the developer or the subject of the information.  

 

4) Formalizing Privacy Arguments: We now discuss 

how arguments can be formalized using Event Calculus. 

Since we are using the reasoning tool decreasoner, the 

discussion here follows the syntax of the tool ([3], 

Chapter 13). An argument class is defined using sorts, and 

an instance of the class is created as constants for the 

sorts. 

  
sort agents 
sort subject: agents 
sort user: agents 
sort loc 
 
user Bob 
subject Dave 
loc GPSPos 

 

In the above listing, subject and user are defined as 
subclasses of the agents sort. Alice, Dave and GPSPos are 
constants. For built in sorts, such as integer, value ranges 
can be given. The claim of an argument class such as 
Colleague_Norm_Class can be written as follows (see also 
the earlier rule labelled  (CFN)): 

 

[time,user,subject,loc] 
(HoldsAt(SamePF(user,subject),time) | 
HoldsAt(Friends(user,subject),time)) & 
(Happens(Tap(user,subject),time) -> 
(Happens(Query(subject,loc),time+1) & 
Happens(At(subject,loc),time+2))). 
 

In the above listing, the square brackets “[” and “]” 
denote universal quantification of the variables inside. 
Facts are written as observations. The fact that the user 
Bob wants to know at time 1 where Dave is written as:  
 
Happens(WhereIs(Dave),0). 

 
Warrants are written as a set of domain-specific rules. 

For instance the warrant rule (R5) can be written as: 
 

[time,subject,loc,user] 
Initiates(At(subject,loc),  
            Know(user, subject, loc),time). 

 

The rule above says that when the event At(subject, 
loc) happens, the user will know the location loc of the 
colleague subject at the next time point. 

In the Event Calculus, exceptions to norms can be 
described using the abnormality predicate Abi [3] (Chapter 
12). For instance, the following says that the norm 
Colleague_Norm_Class holds, unless there are exceptions: 

 

[time,user,subject,loc] 
(( HoldsAt(SamePF(user,subject),time) | 
HoldsAt(Friends(user,subject),time)) & 
Happens(Tap(user,subject),time) & 
!Ab1(subject,user,time) ) -> 
(Happens(Query(subject,loc),time+1) & 
Happens(At(subject,loc),time+2)). 

 

It is now possible to provide a list of conditions, in an 
elaboration tolerant way, when the norm 
Colleague_Norm_Class should not hold. For instance, 
Dave can say that Bob should never know his location: 

 

[time] Ab1(Dave,Bob,time). 

A1 except when 
    (user==Bob & subject==Dave) 

A4 "<<User>> can find out location 
information of his/her colleague 
<<subject>>" { 
 preferred by 
   A2 precedes A3  
     when (day >= Monday & day <= Friday) 
   A3 precedes A2  
     when (day >= Saturday & day <= 
Sunday) } 

A1 except when 
    (user==Dave & subject==Bob)  



This statement can be extended so that the abnormality 
predicate is true for all users, rejecting the entire norm.  

C. Reasoning about Privacy Arguments 

Formalization of privacy norms and arguments are 
useful because they can be used to check some important 
privacy properties in the system. These properties include: 

1. Information availability: Is access to information 
according to norms possible? If Bob and Dave are 
colleagues according to some norm of location sharing, 
can they find out where each other is? This could be useful 
if there are other norms preventing the sharing of 
information. In the Event Calculus, this is done by means 
of deduction or temporal projection of the claim in the 
privacy argument. 

2. Denial: Is access to information contrary to norms 
possible? If Dave and Carole are not colleagues, and if 
non-colleagues cannot share location information 
according to a norm, can they find out where each other 
is? This checking is useful in order to find out possible 
violation of privacy requirements. In the Event Calculus, 
this is done by means of deduction or temporal projection 
that the negation of the claim in the privacy argument 
leads to contradiction. 

3. Explanation:  Why was access to certain 
information successful or unsuccessful? If Carole was not 
allowed to find out where Bob was, why? If Bob could 
find out where Dave was, why? This reasoning gives 
explanation in terms of action sequences, and is useful for 
diagnostics. In the Event Calculus, this is done by means 
of abductive reasoning. 

The reasoning tool we use in this work, decreasoner 
[3], supports all these types of reasoning.  

IV. THE BUDDYTRACKER CASE STUDY 

BuddyTracker is currently implemented on iPhone and 
Android platforms, although the advanced context 
sensitive privacy notification features are only 
implemented in the Android version. The architecture of 
the system is such that the mobile application regularly 
updates a cloud-based server with the phone’s location as 
determined by GPS, WiFi, or current cell mast location.   
BuddyTracker uses a number of available sensors, such as 
the GPS, accelerometer, light sensor, system logs, 
information about currently running applications and other 
methods to collect the most accurate information about the 
user’s context. Calendar entries can be used to determine 
the user’s current activity; and Google Geo Service is used 
to translate GPS coordinates into more meaningful text 
descriptions. The BuddyTracker server has a database of 
tracker-trackee relationships and for each tracker, the 
trackee can choose to reveal either her exact (street) 
location, the city she is in, the country she is in, or reveal 
nothing at all (invisible).  This last feature provides the 
selective disclosure capabilities we are focussing on in this 
paper (Figure 4).  The BuddyTracker server also integrates 
a machine learning system that can automatically infer 
constraints on these privacy settings based on user 

behaviour [15].  These learned constraints could be used as 
warrants in the privacy arguments.  

Our case study took a dozen functional requirements of 
BuddyTracker to analyse the composition to the selective 
disclosure privacy norms defined earlier. We also 
implemented the logged events (both contextual 
information and the preference changes) during runtime 
for an offline analysis because currently the decreasoner 
reasoning module only supports a Linux command line 
interface. Using the logged events, we found that 
decreasoner can reveal whether the selective disclosure 
norms, adapted to the preferences specified by individuals, 
are violated or not. This finding gives us confidence that 
our formalisation of privacy requirements and arguments 
can provide useful information regarding the runtime 
satisfaction of privacy.  Therefore we plan to integrate 
decreasoner into a common gateway interface so that the 
reasoning system can be accessed at runtime.  

 

 
Figure 9.  BuddyTracker selective disclosure features 

V. RELATED WORK 

This section discusses existing work in the areas of (i) 
requirements engineering for privacy, (ii) mobile privacy 
and (iii) formal frameworks for requirements analysis.  We 
separate the discussion of how these areas are covered by 
the contextual integrity framework [2] from other 
approaches to privacy and security requirements. 

A. Contextual Integrity 

There are different justificatory frameworks for 
information disclosure that are applicable to mobile 
applications. The most common are techniques that resort 
to private-public dichotomy to justify scenarios where 
privacy is preserved or threatened [16]. Value based trade-
offs is another privacy justifying framework that does not 
see privacy as a moral right, but as preference over other 
values [17]. Thus, the rationale for a mobile usage scenario 



posing a privacy threat is based on its supports or conflicts 
with other functionality of the system such as performance 
or usability. The challenge with these approaches to 
privacy is that software systems provide phenomenal ways 
to track and aggregate user’s information in a manner 
where neither private-public dichotomy nor value-based 
trade-offs is able to capture ensuing privacy implications. 

Contextual integrity [2] is another privacy justificatory 
framework. This framework posits that the transfer of 
information about a subject from a sender to a receiver in a 
specific context is tied to certain transmission principles.  
Such transmission principles are represented as norms that 
define the expected behaviour of interacting agents in a 
defined context. Examples of such transmission principles 
include notice, consent, confidentiality, fiduciary, secrecy, 
and reciprocity [2]. In this paper, we argue that contextual 
integrity is a more suitable justificatory framework for 
modelling mobile privacy in software systems. This is 
because contextual integrity represents an explicit model 
of a sender, receiver and a subject when disclosing 
personal information, and the transmission principles that 
guard the interaction process between these entities [2]. 
Additionally, contextual integrity provides a means to 
identify points in the behaviour of a system where the 
tracking and aggregation of private attributes of users can 
lead to privacy violation. However, we also found the 
notion of contextual integrity needs to be extended to the 
“why” dimension, by indicating the exchange for desired 
functionality and the avoidance of undesired functionality 
as the source of the positive and negative norms. 

B. Other Work on Privacy and Security Requirements 

Privacy has been commonly viewed as a dialectic and 
dynamic boundary regulation process [4]. Palen and 
Dourish [18] had gone on to argue that the dialectic nature 
of privacy suggests that it is conditioned by individual 
subjective experiences and expectations. The dynamic 
nature of privacy on the other hand suggests that it is 
always under continuous negotiation and management. 
Typically, an individual might choose to change her 
privacy requirements in exchange for certain benefits or 
under certain operational context. 

Privacy requirements have been analysed from 
different perspectives by the requirements engineering 
community. Breaux and Anton [19] have developed a 
methodology for extracting access rights and obligations 
from regulatory texts to ensure statement-level coverage 
for an entire health-care regulation (HIPAA). Similarly, 
Yu and Cysneiros [20] modelled privacy as a non-
functional requirement in i* using OECD guidelines. 
While these methods are useful in extracting privacy 
requirements from existing laws and regulations (e.g. 
OECD guidelines, FIP and EU Directives), they do not 
specifically address the privacy problems experienced by 
mobile users. For example, Mancini et al [21] show that 
when mobile users accessed their personal information in 
public places such as public transport, fellow commuters 
were able to read personal information off the mobile 
screen causing privacy issues for the mobile user.   

One of the ways to capture behaviour requirements for 
a software system is through the use of Use Cases. Seyff et 
al [22] developed a software environment called ART-
SCENE to discover and document stakeholder 
requirements by walking through scenarios that are 
automatically generated from use case specifications. They 
created an extended mobile version called Mobile Scenario 
Presenter (MSP) using a mobile browser and wireless 
access to connect to the server-side ART-SCENE scenario 
system.  In some ways, this system could help in 
discovering the missing privacy requirements that are 
closely linked to the functional requirements of existing 
systems; however, there are certain drawbacks in using 
this system. First, it is difficult to design scenarios a priori 
for mobile privacy as it depends on the users’ changing 
perception of the (emerging) context. Second, it may not 
be practical to ask users to type their privacy requirements 
into a PDA or mobile device as mobile users may be in 
transit or in a situation where they may be constrained to 
use their mobile devices.  

Considering the analysis of privacy requirements, 
Liaskos et al [12] present a formal reasoning framework 
after representing preferences as HTN and PDDL3 rules. 
They classify preferences into temporal and priorities, in 
addition to the AND/OR semantics of goal refinement 
hierarchies. Adopting similar means (i.e. formal 
representation of requirements for reasoning), our work 
has an additional purpose to compose the requirements 
with those selective disclosure constraints expressing the 
positive or negative privacy norms. 

Recently a Scala programming language extension, 
Jeeves, for privacy policies have been proposed [23] to 
enforce the privacy controls as a wrapper to filter the 
output of any function in the implemented system with 
respect to the policies.  This is similar to aspect weaving in 
traditional programming languages, and the privacy 
policies expressible are in the form of privacy norms. 
Currently there are difficulties in adopting this language-
level implementation because the rationales to the norms 
are not explicitly documented and it requires a runtime 
meta-adaptation to enforce the runtime maintenance of 
privacy requirements. 

In summary, privacy has been researched from many 
perspectives but what has not been adequately addressed 
are the privacy needs of end-users and in particular mobile 
system users. This paper demonstrates how privacy 
arguments can be used to capture these end-user privacy 
requirements while supporting their run-time evolution. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced privacy arguments as a 
way to represent and reason about privacy requirements in 
mobile applications. Like privacy norms, privacy 
requirements underlie other functional requirements. They 
are highly dynamic, selective, and changing, according to 
the information being disclosed, the time, place, and social 
context of the disclosure. The paper used the Problem 
Frames approach to separate the concerns of functional 



and privacy requirements, and to relate them using a 
generic architecture.  

Privacy arguments were proposed to show how privacy 
requirements are satisfied by a system, as specified by 
functional requirements. A class of privacy argument and 
their composition into satisfaction arguments of functional 
requirements shows how the general privacy norm is 
respected by a system. Individual users can instantiate 
argument classes and specify additional conditions for 
information disclosure, depending on the place, time, 
content and other contexts. Since there may be multiple 
privacy norms, users can also specify their preference for 
certain privacy norms over others. Therefore, privacy 
arguments enable users to elaborate their privacy 
requirements at runtime, and to allow the system to adapt 
according those privacy requirements elicited at runtime. 
Privacy arguments can have both formal and semi-formal 
syntax. We illustrated our approach using an example of 
selective disclosure from the BuddyTracker application 
and demonstrated how it is feasible to design such mobile 
apps to maintain satisfaction of privacy concerns.  
However, we suggest that arguments can also be 
formulated for other privacy norms such as informed 
consent and audit logging. 

The main benefits of privacy arguments are: (i) they 
can be used to relate software component, context and 
privacy requirements so that the requirement satisfaction 
can be reasoned about, (ii) they allow users to provide 
more fine-tuned requirements at runtime, and (iii) they can 
be used to give diagnostic information to the users when 
the privacy requirements have been violated. 

We plan to deploy our privacy arguments framework 
through a web service such that mobile apps can look up 
privacy arguments for runtime adaptation.  Additionally, 
we plan to extend our case study to cover other privacy 
norms, such as informed consent and control requirements. 
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I. APPENDIX I: FORMALISATION OF THE FUNCTIONAL REQUIREMENT EXAMPLE 

load foundations/Root.e 
load foundations/EC.e 
 
sort agents 
sort subject: agents 
sort user: agents 
sort loc 
 
user Alice 
subject Bob 
loc GPSPos_at_t 
 
event WhereIs(subject) 
event Tap(user,subject) 
event Query(subject,loc) 
event At(subject,loc) 
 
;user knows that subject is at location 
fluent Know(user, subject, loc) 
 
;Location Display specification 
[time,user,subject,loc] 
Happens(Tap(user,subject),time) -> 
(Happens(Query(subject,loc),time+1) & 
Happens(At(subject,loc),time+2)). 
 
 
;If the display shows that the subject is  
;at a location, the user will know where  
;the subject is 
[time,subject,loc,user] 
Initiates(At(subject,loc), Know(user, subject, loc),time). 
  
;The requirement saying that tapping  
;the subject (icon) leads to the  
;user knowing the location of the subject 
[time,user,subject,loc]  
Happens(WhereIs(subject),time) ->  
HoldsAt(Know(user, subject, loc),time+4). 
 
;The following assertion checks 
;whether the negation of the  
;the requirement is satisfiable 
;[time,user,subject,loc]  
;Happens(WhereIs(subject),time) &  



;!HoldsAt(Know(user, subject, loc),time+4). 
 
 
;When the user wants to know the location of  
;a subject, the user taps the icon of  
;the subject 
[time,user,subject]  
Happens(WhereIs(subject),time) ->  
Happens(Tap(user,subject),time+1). 
 
;Initial states 
; Alice wants to know where Bob is 
Happens(WhereIs(Bob),0). 
 
;Alice does not know where Bob is 
!HoldsAt(Know(Alice, Bob, GPSPos_at_t),0). 
 
;the following command tells the reasoner  
;to perform deduction 
completion Happens 
 
range time 0 6 
range offset 1 1 
 

II. APPENDIX II: FORMALISATION OF THE POSITIVE NORM EXAMPLE 

load foundations/Root.e 
load foundations/EC.e 
 
sort agents 
sort subject: agents 
sort user: agents 
sort loc 
 
user Alice 
subject Bob 
loc GPSPos 
 
event WhereIs(subject) 
event Tap(user,subject) 
event Query(subject,loc) 
event At(subject,loc) 
 
;user knows that subject is at location 
fluent Know(user, subject, loc) 
 
;user and subject has the same prefix 
fluent SamePF(user,subject) 
 
;user and subject are friends 
fluent Friends(user,subject) 
 
;If the display shows that the subject is  
;at a location, the user will know where  
;the subject is 
[time,subject,loc,user] 
Initiates(At(subject,loc), Know(user, subject, loc),time). 



  
;The requirement saying that tapping  
;the subject (icon) leads to the  
;user knowing the location of the subject 
[time,user,subject,loc]  
Happens(WhereIs(subject),time) ->  
HoldsAt(Know(user, subject, loc),time+4). 
 
;The following assertion checks 
;whether the negation of the  
;the requirement is satisfiable 
;[time,user,subject,loc]  
;Happens(WhereIs(subject),time) &  
;!HoldsAt(Know(user, subject, loc),time+4). 
 
 
;When the user wants to know the location of  
;a subject, the user taps the icon of  
;the subject 
[time,user,subject]  
Happens(WhereIs(subject),time) ->  
Happens(Tap(user,subject),time+1). 
 
;CFN Specification 
[time,user,subject,loc] 
(HoldsAt(SamePF(user,subject),time) | 
HoldsAt(Friends(user,subject),time)) & 
(Happens(Tap(user,subject),time) -> 
(Happens(Query(subject,loc),time+1) & 
Happens(At(subject,loc),time+2))). 
 
 
;Initial states 
; Alice wants to know where Bob is 
Happens(WhereIs(Bob),0). 
 
;Alice does not know where Bob is 
!HoldsAt(Know(Alice, Bob, GPSPos),0). 
 
;Alice and Bob have some prefixes in their IDs 
HoldsAt(SamePF(Alice,Bob),0). 
;If the above statement is negated,  
;then the query will not return the location  
 
;Alice and Bob are not friends 
!HoldsAt(Friends(Alice,Bob),0). 
 
;the following command tells the reasoner  
;to perform deduction 
completion Happens 
 
range time 0 6 
range offset 1 1 
 

III. APPENDIX III: FORMALISATION OF THE NEGATIVE NORM EXAMPLE 

load foundations/Root.e 



load foundations/EC.e 
 
sort agents 
sort subject: agents 
sort user: agents 
sort loc 
 
user Alice 
subject Bob 
loc GPSPos 
 
event WhereIs(subject) 
event Tap(user,subject) 
event Query(user,subject,loc) 
event At(subject,loc) 
 
;user knows that subject is at location 
fluent Know(user, subject, loc) 
 
;user and subject has the same prefix 
fluent SamePF(user,subject) 
 
;user and subject are friends 
fluent Friends(user,subject) 
 
;If the display shows that the subject is  
;at a location, the user will know where  
;the subject is 
[time,subject,loc,user] 
Initiates(At(subject,loc), Know(user, subject, loc),time). 
  
;The requirement saying that tapping  
;the subject (icon) leads to the  
;user knowing the location of the subject 
[time,user,subject,loc]  
Happens(WhereIs(subject),time) ->  
HoldsAt(Know(user, subject, loc),time+4). 
 
 
;When the user wants to know the location of  
;a subject, the user taps the icon of  
;the subject 
[time,user,subject]  
Happens(WhereIs(subject),time) ->  
Happens(Tap(user,subject),time+1). 
 
;CFN Specification - Negative Norm 
[time,user,subject,loc] 
Happens(Tap(user,subject),time) -> 
(Happens(Query(user,subject,loc),time+1) & 
Happens(At(subject,loc),time+2) & 
(HoldsAt(SamePF(user,subject),time) | 
HoldsAt(Friends(user,subject),time))). 
 
;Initial states 
; Alice wants to know where Bob is 
Happens(WhereIs(Bob),0). 



 
;Alice does not know where Bob is 
!HoldsAt(Know(Alice, Bob, GPSPos),0). 
 
;Alice and Bob have some prefixes in their IDs 
HoldsAt(SamePF(Alice,Bob),0). 
 
;Alice and Bob are not friends 
!HoldsAt(Friends(Alice,Bob),0). 
 
;the following command tells the reasoner  
;to perform deduction 
completion Happens 
 
range time 0 6 
range offset 1 1 
 

IV. APPENDIX IV: FORMALISATION OF THE EXCEPTION EXAMPLE 

 
load foundations/Root.e 
load foundations/EC.e 
 
sort agents 
sort subject: agents 
sort user: agents 
sort loc 
 
user Bob 
subject Dave 
loc GPSPos 
 
event WhereIs(subject) 
event Tap(user,subject) 
event Query(subject,loc) 
event At(subject,loc) 
 
;user knows that subject is at location 
fluent Know(user, subject, loc) 
 
;user and subject has the same prefix 
fluent SamePF(user,subject) 
 
;user and subject are friends 
fluent Friends(user,subject) 
 
;abnormality predicate 
predicate Ab1(subject,user,time) 
 
;If the display shows that the subject is  
;at a location, the user will know where  
;the subject is 
[time,subject,loc,user] 
Initiates(At(subject,loc), Know(user, subject, loc),time). 
  
;The requirement saying that tapping  
;the subject (icon) leads to the  



;user knowing the location of the subject 
[time,user,subject,loc]  
Happens(WhereIs(subject),time) ->  
HoldsAt(Know(user, subject, loc),time+4). 
 
 
;When the user wants to know the location of  
;a subject, the user taps the icon of  
;the subject 
[time,user,subject]  
Happens(WhereIs(subject),time) ->  
Happens(Tap(user,subject),time+1). 
 
;CFN Specification 
[time,user,subject,loc] 
( ( HoldsAt(SamePF(user,subject),time) | 
HoldsAt(Friends(user,subject),time) ) & 
Happens(Tap(user,subject),time) & 
!Ab1(subject,user,time) ) -> 
(Happens(Query(subject,loc),time+1) & 
Happens(At(subject,loc),time+2)). 
 
;Initial states 
; Bob wants to know where Dave is 
Happens(WhereIs(Dave),0). 
 
;Bob does not know where Dave is 
!HoldsAt(Know(Bob, Dave, GPSPos),0). 
 
;Bob and Dave have some prefixes in their IDs 
HoldsAt(SamePF(Bob,Dave),0). 
 
;Bob and Dave are not friends 
!HoldsAt(Friends(Bob,Dave),0). 
 
;Dave does not want Bob to know his location 
[time] Ab1(Dave,Bob,time). 
 
;the following command tells the reasoner  
;to perform deduction 
completion Happens 
 
range time 0 6 
range offset 1 1 
 


