
Privacy Arguments:

Analysing Selective Disclosure Requirements for Mobile Applications

Thein Than Tun
1
, Arosha K. Bandara

1
,

Blaine A. Price
1
, Yijun Yu

1

Charles Haley
2

2
Frogfish Technologies

Inah Omoronyia
3
,

Bashar Nuseibeh
1,3

1
The Open University, UK UK

3
Lero, Ireland

Abstract—Privacy requirements for mobile applications

offer a distinct set of challenges for requirements

engineering. First, they are highly dynamic, changing over

time and locations, and across the different roles of agents

involved and the kinds of information that may be disclosed.

Second, although some general privacy requirements can be

elicited a priori, users often refine them at runtime as they

interact with the system and its environment. Selectively

disclosing information to appropriate agents is therefore a

key privacy management challenge, requiring carefully

formulated privacy requirements amenable to systematic

reasoning. In this paper, we introduce privacy arguments as a

means of analysing privacy requirements in general and

selective disclosure requirements (that are both content- and

context-sensitive) in particular. Privacy arguments allow

individual users to express personal preferences, which are

then used to reason about privacy for each user under

different contexts. At runtime, these arguments provide a

way to reason about requirements satisfaction and diagnosis.

Our proposed approach is demonstrated and evaluated

using the privacy requirements of BuddyTracker, a mobile

application we developed as part of our overall research

programme.

Keywords-privacy arguments; privacy requirements; mobile

applications

I. INTRODUCTION

The prevalence of mobile computing devices and
cloud-based services has generated new opportunities and
new ways in which software systems (“apps”) are used.
These opportunities also present new challenges for
requirements engineering. Although similar in many ways
to the requirements for traditional software systems,
requirements for mobile applications have a significant
privacy dimension, because they capture, store and process
large amounts of personal data. The consequences of
inattention to privacy concerns is illustrated by many well
publicised examples of privacy breaches, such as the
automatic and unintentional uploading of users’ personal
contact databases from their mobile devices to the servers
of the popular mobile social media service, Path [1].

Unlike privacy requirements centrally prescribed in
regulations and site policy statements, user privacy
requirements for mobile applications are difficult to
describe and analyse. First, privacy requirements are
highly dynamic and selective, changing over time and
locations, and across the roles of agents involved, as well
as the kind of information that may be disclosed. Second,

although some general privacy requirements can be
elicited, users are likely to refine their requirements at
runtime as they interact with the mobile system in different
contexts. As privacy requirements become more concrete
and their contexts become clear, a system has to be
adaptive to those requirements.

Selective disclosure defines the conditions for a piece
of information to be communicated to a particular group of
agents (people or software). Such conditions can be
specified as policy rules called “norms” [2]. However,
they are often specified without giving explicit rationale to
answer questions such as why is certain information (not)
shared? Is it worthwhile to sacrifice a low-priority policy
by enlarging the disclosed scope in exchange for some
important functionality or gaining trust from friends? Does
information have different values at different times? What
preferences among different norms need to be traded off at
runtime?

To answer these questions, this paper proposes an
extended argumentation language for such selective
disclosure requirements, in order to reason about their
satisfaction. First, the language allows the definition of
classes of argument capturing how a generic privacy norm
can be satisfied for a group of users within a particular
context, with the goals of such groups explicitly expressed
in the conditions. Individual users of the system can
instantiate the argument class and, when necessary,
augment it with privacy requirements specific to a
particular location, time, or other context. Since there is
clear traceability between the arguments and the
underlying system architecture, changes in the argument
can be used to adapt the system behaviour. Our proposed
privacy arguments can be either formal or semi-formal.
Users can interact with the semi-formal form of arguments
at runtime, by specifying requirements for specific
disclosure contexts. We use the Event Calculus [3] to
formalise these privacy arguments to reason about
requirements satisfaction and diagnosis. Our proposed
approach is demonstrated using examples of selective
disclosure of location information from the BuddyTracker
mobile application developed by our research group.

The main contribution of the paper is therefore the use
of privacy arguments to represent highly dynamic and
changing selective disclosure requirements, and to relate
them to the software architecture in order to enable system
adaptation to runtime privacy requirements.

The remainder of the paper is organized as follows. By
way of background, section II provides an overview of the
BuddyTracker application, a discussion of the privacy

framework that helps us define privacy requirements, the
Problem Frames approach, and the Event Calculus.
Section III explains our proposed approach, by discussing
how functional and privacy requirements are described and
related using a generic architecture, and then introducing
the privacy arguments and their formalisation and
reasoning using the Event Calculus. Section IV provides
some of BuddyTracker’s implementation details. Related
work and conclusions are presented in Sections V and VI
respectively.

II. PRELIMINARIES

A. Case Study: BuddyTracker

BuddyTracker is a smartphone app that regularly
updates a cloud-based server with the phone’s location as
determined by GPS, WiFi, or current cell mast location. At
a given time, it allows the owner to set the precision of
their reported location as well as who is allowed to access
their location. BuddyTracker’s architecture is based on
Altman’s bi-directional privacy theory [4] and the concept
of social translucence [5] where sharing knowledge about
location requests helps provide a kind of two-way
visibility for actions. This means that when an authorized
person (the tracking user) requests the location of another
user (the tracked user, a colleague, a friend, etc.), the
tracked user is notified of the request. BuddyTracker uses
various algorithms to analyse the context of the tracked
user and chooses the most appropriate interface method to
notify her, including natural language, tone, vibrotactile,
and a variety of visual notification methods.

B. Privacy Norms

There are several definitions of privacy requirements,
and in this work we follow the notion of privacy as defined
by the formalized contextual integrity framework [2]. In
that formalization, agents with certain knowledge, who
play different roles, communicate with each other. Their
communication should follow certain norms. Agents may
play different roles at different times, and make deductions
based on the knowledge they have. Norms are established
on the basis of who the personal information is about, how
the information is transmitted, what the subject and the
users of the information have done in the past and will do
in future.

In particular, two types of norms have been
distinguished. A positive norm permits communication
between agents as long as its temporal condition is
satisfied. For instance, a positive norm, may allow an
agent Alice with the role of employee to communicate to
another agent Bob playing the role of colleague, a message
containing the current location information of Alice. This
will allow Alice to tell her colleague Bob about where she
currently is. The norm is violated if Bob knows Alice’s
location when she is not playing the role of colleague to
Bob, for instance.

A negative norm permits communication only if its
temporal condition is not satisfied. For instance, a negative
norm may state that an agent with the role of user is not

allowed to disclose the location information of another
agent with the role of friend to a third party, unless consent
from the second agent has been obtained by the first agent.
For instance, Alice is not allowed to disclose Bob’s
location unless Bob’s consent has been obtained by Alice.
In this work we regard privacy requirements as both
positive and negative norms that must be respected by the
behaviour of the agents in the system.

Since agents can make deductions about the
information they get, the knowledge structure is important.
For instance, if a norm does not allow Carole to know the
location of another agent, Bob, on weekends, then Carole
must not know anything about Bob that might indicate his
location. If his location can be deduced from the postcode,
address, GPS location, or IP address, then agent Carole has
to be prevented from acquiring such knowledge. This
assumes that (i) the privacy models must describe all
inferences agents can make on the information they can
get, and (ii) agents will not acquire knowledge in ways
other than as described in the model.

According to Barth et al [2], the behaviour of a system
is described using the linear temporal logic (LTL) traces
thus supporting verification against privacy requirements.

C. Problem Frames and Security Arguments

In this work, we will use the Problem Frames approach
[6] to make four descriptions: the software (S), the
problem world (W), the requirements (R) and their
relationship through the entailment W, S ├ R [7]. This
approach is suitable for representing and analysing privacy
requirements for two main reasons: (i) it allows us to
describe the structure and properties of the context in
which the requirements are expressed, and (ii) it allows us
to decompose and recompose requirements in a way that
the concerns of the components in the system architecture
are separately addressed. The use of the Problem Frames
approach is not prescriptive in the sense that another
requirements engineering approach that allows us to make
the same four descriptions and separate concerns
addressed by the components could be used instead.

Haley et al [8], have used Toulmin’s argument
structure to recursively represent the rebuttals and
mitigations when reasoning about the satisfaction of
security requirements. In their approach, security
requirements are expressed as claims, and are supported by
grounds and warrants. Rebuttals show evidence that
contradicts other arguments, whilst mitigations describe
how rebuttals may be avoided or tolerated. Franqueira et al
[9] combine the process of security arguments with that of
risk assessment in order to exploit the publicly available
security catalogues [10]. This work extends the security
arguments to address the distinct challenges of selective
disclosure privacy problems.

D. Event Calculus

In order to facilitate formal reasoning, some of the
artefacts will be described in Event Calculus, a logic based
on first-order predicate calculus. It can be used to
represent actions, their deterministic and non-deterministic

effects, concurrent actions and continuous change. We
chose the Event Calculus as our formalism because it is
suitable for describing and reasoning about event-based
temporal systems [3].

Table I. Event Calculus predicates

Predicate Meaning
Happens(a, t) Action a occurs at time t
Initiates(a, f, t) Fluent f starts to hold after action a at

time t

Terminates(a, f, t) Fluent f ceases to hold after action a
at time t

HoldsAt(f, t) Fluent f holds at time t
t1 < t2 Time point t1 is before time point t2

The calculus relates events and event sequences to

‘fluents’ that denote states of a system. Table I gives the
meanings of the elementary predicates of the calculus we
use in this paper. There are several domain-independent
rules, some of which are listed below (see [3] for other
rules). Clipped(t1, f, t2) is equivalent to saying that the
fluent f is terminated by the event instance a occurring
between times t1 and t2.

Clipped(t1, f, t2)   a, t [Happens(a, t) 

t1  t < t2  Terminates(a, f, t)]

The next rule says that the fluent f that has been

initiated by occurrence of an event a continues to hold
until occurrence of a terminating event.

HoldsAt(f, t2) ← [Happens(a, t1) 

Initiates(a, f, t1)  t1 < t2  ¬Clipped(t1, f, t2)]

The last rule says that fluent f persists until an

appropriate terminating event occurs.

HoldsAt(f, t2) ← [HoldsAt(f, t1)  t1 < t2 
¬Clipped(t1, f, t2)]

III. THE PRIVACY ARGUMENTATION APPROACH

In this proposed approach, functional requirements and
requirements relating to privacy norms are handled
separately. Methodologically, functionality requirements
are specified before privacy requirements are considered.
This separation is analogous to the separation of system
behaviour from that of access control.

In this section, we discuss (i) how we describe the
functional and privacy requirements using the Problem
Frames approach, (ii) how privacy arguments are used to
specify norms that underlie privacy, and (iii) how formal
reasoning are performed based on privacy arguments.

We envisage that the problem frames, arguments in the
natural language and the Event Calculus are tools for the
developers. Developers could also define classes of
privacy requirements, which users can instantiate and

personalise perhaps through special user interface
metaphors, such as check buttons and dropdown lists.

A. Problem Description and Analysis

After identifying functional requirements, we relate them
to the problem world domain and the machines using the
Problem Frames approach, as a problem diagram. For
example, the functional requirement of BuddyTracker,
“Display the location information of a user on request” is
modelled as a simple problem diagram in Figure 1.

Figure 1. Problem Diagram: Show Location

It is an instance of the Information Display problem
frame [6], in which the problem world domain User is the
person interacting with the machine Location Display. The
user taps the display when he wants to know where
someone is. The Log has the schema <userid,
GPSLocation, time> in the database that contains entries
of GPS location recorded when users update their
locations. The labels Pa to Pf are explained in Table II.

Table II. Meanings of the phenomena in Figure 1.

Lab
el

Phenomena Meaning

Pa WhereIs(s) The user wants to know the
location of subject identified by s

Pb Tap(u, cIcon) The user u taps the icon
representing the subject
identified by c

Pc Query(s,
GPSPos@t)

The query operation returns the
GPS position of subject s at time
t, which is the time of last know
location

Pd At (s,
GPSPos@t)

The machine indicates that the
subject s is at the location GPSPos
at time t

Pe Log Entries in log
Pf Know(u, s,

GPSPos@t)
The user u knows that subject s is
at GPSPos at time t

In terms of the phenomena, the requirement says that

WhereIs(s) (phenomenon Pa) should lead to Know(u, s,
GPSPos) (phenomenon Pf), meaning that when the user
wants to know the location of someone when tapping the
icon (phenomenon Pb), she will know the position. In
Event Calculus, it is expressed as follows:

Happens(WhereIs(s), time) →
HoldsAt(Know(u, s, GPSPos@t), time+4)

L

Log

U

User

LD

Location

Display

 Show

Location

Pc

Pb, Pd

Pe

Pa, Pf

Notice the difference between time t in GPSPos@t and
time in time+4 in the HoldsAt predicate: the former is the
time at which the GPS position is recorded, while the latter
is the relative time difference between the user action
tapping and the user knowing the location of the subject.
The number 4 is the number of ticks on the logical clock.

It is easy to see that a machine that queries the log
(phenomenon Pc) when the user taps the display
(phenomenon Pb) and immediately shows to the user
where the subject is at the last known time (phenomenon
Pd), will satisfy the requirement. This specification of
Location Display can be formalized as follows:

Happens(Tap(u, cIcon), time) →
[Happens(Query(s, GPSPos@t), time + 1) 
Happens(At(s, GPSPos@t), time+2)]

Full formalisation of this and other examples in the

Event Calculus is given in the appendices.

1) Describing the Norms in Relation to Functions: As

discussed by Barth et al [2], much of the information flow

between agents should conform to certain positive or

negative privacy norms. Although the problem diagram in

Figure 1 describes the physical contexts for the

requirement including User and the location database

Log, the norm that permits such information flow is in

fact missing. Consider the following privacy norm:

“Location information can be disclosed between those
who are colleagues.”

A norm such as the one above is regarded as a privacy

requirement in this work. This requirement is a positive
norm because it states the condition (perhaps one of many
conditions) under which showing location to a user is
acceptable. Note that the requirement is a default
requirement for the entire user class: it says that it is true
for all colleagues. However, an individual user may
choose to personalise it, for instance, by specifying a
preference such as: Alice does not want her colleague
Dave to know her location.

This requirement is related to the principle of selective
disclosure. Three factors are recurrent in such
requirements: agent roles, time and place. Consider, for
instance, what makes two people to be considered as
colleagues. Do they have to work in the same
organization? Do they have to work at the same location
during similar times? These questions require a clear
distinction between these context domains.

The Problem Frames approach allows us to describe
the privacy requirement that underlies the functional
requirements in a modular way. Assuming that userids
contain prefixes indicating the organization the user works
for, we can extend the problem diagram in Figure 1 to
reflect the norm, without modifying the existing machine,
Location Display. This can be achieved by introducing a

wrapper that intercepts events at the machine-world
interface.

Figure 2. Problem Diagram: Colleague Norm 1

Figure 2 shows how the original problem context can
be extended to implement the norm that location
information shall be displayed if the user making the
request and the subject of the request work for the same
organization. The new machine Organization Checker
superimposes itself at the interface between Location
Display and Log. Its specification is to obtain and compare
the organization prefixes of c in Query(c, GPSPos@t) and
u which identifies the user. If the prefixes do not match,
the Organization Checker machine should not to pass the
query from Location Display on to Log. Assuming that the
fluent SamePF(u,c) indicates that the organization prefixes
of the user identified by u, and the subject identified by s,
the condition Organization Checker has to check can be
described in Event Calculus as follows:

HoldsAt(SamePF(u,s), time)

If the condition is not met, Organization Checker must

block the access to Log by Location Display. As a result,
the user can see locations of colleagues only.

One side issue that may arise here is that of
information leak: the user may discover that when access
is not successful, who is not a colleague. Therefore, the
response message to the user must be phrased with care
not to leak the identity of the person.

As well as introducing a wrapper machine such as
Organization Checker, it is possible to add other world
domains when implementing a norm. If, for instance,
organizations that users work for are not defined through
the userid prefix but in a lookup table, then the table may
be included as an additional domain and the Organization
Checker be linked to it.

It is likely that there will be several norms affecting a
particular information transmission. Another norm, in this
example, could be one that states that friends can share
location information and may be implemented by a
machine similar to Organization Checker in Figure 2.

Selective disclosure norms may crosscut several
functional requirements, and hence the problem diagrams.
A wrapper architecture can be used to compose functional
requirements, and norms can be introduced to composed
problem diagrams, as discussed in earlier work [11].

L

Log

U

User

OC

Organisation

Checker

Show

Location

Pc'

Pb, Pd

Pe

Pa, Pf

LD

Location

Display

Pc

2) General Architecture: Notice that the specification

of Location Display has not been changed because of the

addition of a colleague norm. The new machine simply

extends the current context of Location Display and

introduces a condition on its access to Log.
Methodologically, this approach allows us to consider

functional requirements before examining the privacy
norms. Since machines that implement the privacy norms
are introduced after the machines implementing the
functional requirements have been specified, concerns of
the components have been separated. This separation of
functional concerns from privacy concerns is a common
characteristic in access control systems.

Therefore, we consider this wrapper architecture to be
a general solution to the problem of describing privacy
requirements in the Problem Frames approach.

3) Formalising Norms: Formalising norms using the

Event Calculus is relatively straightforward. A disjunction

of conditions for positive norms are conjunct with the

specification of the functional requirements [2]. For

instance, if colleagues or friends can share location

information, the specification in Event Calculus could be:

[HoldsAt(SamePF(u,s), time) 

HoldsAt(Friends(u,s), time)] 
[Happens(Tap(u, cIcon), time) →
Happens(Query(s, GPSPos@t), time + 1) 
Happens(At(s, GPSPos@t), time+2)] (CFN)

The above specification says that the tapping action of

the user u, on the screen for location of user c, will lead to
the machine querying for the last known GPS position of
c, and showing the position within 2 time units, if either
that the users u and c are colleagues, or that they are
friends.

The specification of functional requirements must
imply the disjunction of conditions for negative norms [2].
For instance, if only colleagues or friends can share their
location information, the norm can be specified as:

[Happens(Tap(u, cIcon), time) →
Happens(Query(s, GPSPos@t), time + 1) 
Happens(At(s, GPSPos@t), time+2)] →

[HoldsAt(OrgPrefix(u)= OrgPrefix(c), time) 
HoldsAt(Friends(u,c), time))]

The above specification says that if the tapping leads to

the user knowing the location information of another user,
they must either have some common organization prefix or
they must be defined as friends. In other words, users with
other relationships cannot share their location information
in this system.

B. Privacy Arguments

From a developer’s perspective, a privacy argument
justifies to an audience, such as users of mobile
applications, that the user’s privacy claim has been

respected by the software system. In a formal setting, this
justification may be a proof; in a less formal setting, this
justification may be an argument. Furthermore, privacy
arguments can be used to specify users’ runtime privacy
requirements that are highly contextual, specific to
individual users, location, time and content. Therefore,
although similar to other forms of arguments, such as
security arguments [8], the argumentation language is now
extended in three ways to better describe privacy specific
problems.

First, privacy requirements or selective disclosure
norms are now described as the claim of an argument that
needs to be justified. The ground is the collection of facts
that can be observed from the world domains, which
supports the claim. The warrant is the collection of
domain-specific rules that links the ground to the claim of
the argument. The general structure of privacy arguments
is: (Warrant, Ground → Claim). As with security
arguments, problem diagrams provide the basic structure
for the privacy arguments and traceability between high
level privacy requirements, and access control policies that
should implement those requirements. For instance, the
Organisation Checker machine in Figure 2 is in effect an
access control policy, but the problem diagram and
subsequent privacy arguments will show how the privacy
requirement may be achieved, whilst indicating how the
system may fail to satisfy the requirement.

Second, we now distinguish between an argument class
and an argument instance. An argument class may be
constructed on the basis of general privacy norm for a set
of users within a typical context. In a sense, an argument
class defines a default privacy argument that a user may
instantiate. Once instantiated, an argument instance may
augment the norm with more specific requirements or
preferences that are specific to a user, time, location and
content. For instance, although the colleague norm allows
sharing location information between colleagues, Bob may
opt not to share his with the colleague Dave. Privacy
arguments should be able to express such a preference.

Third, since there may be a number of norms
applicable to a specific piece of information, users may
wish to express a preference for a certain norm over
others. For instance, although there are colleague and
friend norms that allow a user to access and disclose his
location information, Bob may want only his colleagues,
not friends, to access his location information. Privacy
arguments should be able to express such a preference.

In this work, privacy arguments are constructed always
from the perspective of the users, and users may refine
their privacy requirements at runtime in terms of
preferences. Therefore, individual users need only decide
their exact privacy requirements at the time of use.

One implication of this characteristic of privacy
requirements is that privacy arguments cannot remain
static at runtime: they should be responsive to preferences
of individual users in different contexts. Since privacy
arguments are linked to specifications through the shared
phenomena, they can be used to adapt the system
behaviour at runtime.

1) Privacy Argument Grammar: Before reasoning

about the arguments specific to privacy requirements, we

first represent them by extending our earlier security

argument structures [8] [9], with the concepts of temporal

and priority preferences [12].
Figure 3 lists the production rules of an extended

syntax in the TXL grammar definitions [13]. TXL is
chosen instead of Backus Normal Form (BNF) for its
brevity in expressing language extensions.

The “include” statement says that our new syntax
reuses the existing syntax of arguments defined for our
tool OpenArgue [14]. The new keywords in this extended
language are preferred, precedes, except and when.
As in our previous grammar, an argument in the new
grammar still has a claim, zero or more grounds and zero
or more warrants. The additional element preference can
be used to define two things: (i) the precedence of two
arguments over each other under certain optional
conditions; and (ii) the exceptional conditions when a
particular argument should not be applied.

Figure 3. Privacy Argument Grammar

2) Argument Classes: The following example shows

an argument class stating how the privacy requirement is

satisfied by the BuddyTracker system. Arguments shown

here can be visualized graphically [14], but we omit them

here for space reasons. Note that in the argument A1, the

positive norm for location sharing between colleagues is

the claim itself. F1 and F2 are facts. Warrant provides

rules R1 to R5 that can link the supporting facts to the

claim. The person whose location the user is trying to

find is referred to as a subject. The subject and the user

are written in double brackets indicating that they can be

replaced by specific values when an instance is created.

This process of annotating subjects that appeared in the

fact/rule descriptions is called parameterisation. A

parameterised proposition becomes a predicate whose

terms are bound to the grounded facts.

3) Argument Instances: Such arguments can be

instantiated for Bob and Dave with their specific names

and preferences. We now have personal privacy

requirements for each user. For instance, the privacy

argument for the positive norm can be instantiated for

Bob as follows.

Figure 4. Privacy Argument for the Colleague Norm

Figure 5. Instantiation of the Colleague Norm by Bob

This argument when instantiated for Bob shows why
Bob is able to see locations of certain subjects (because
they are his colleagues). When there are multiple privacy
norms, such as the friend norm A3 (not shown here for

include "OpenArgue.grm"
keys

 … preferred precedes except when
end keys
redefine argument
 argument [claim] {
 supported by
 [ground*]
 warranted by
 [warrant*]
 preferred by
 [preference*]
 }
end define

define preference
[id] precedes [id] when [bool_expr]
| [id] except when [bool_expr]
end define

argument: Colleague_Norm_Class
A1 "<<User>> can find out location
information of his/her colleague
<<subject>>" {
 supported by
 F1 "<<User>> wants to know location
of <<subject>>"
 F2 "<<User>> taps the screen icon of
<<subject>>"
 warranted by
 R1 "If <<user>> taps the screen, the
machine checks whether <<user>> and
<<subject>> are colleagues"
 R2 "If <<user>> and <<subject>> are
colleagues, the machine queries the
location of <<subject>>"
 R3 "If the log is queried, it returns
the last known GPS location of
<<subject>>"
 R4 "If GPS location is obtained from
the log, the machine shows it to
<<user>>"
 R5 "If GPS location is shown to
<<user>>, <<user>> knows the location of
<<subject>>" }

argument: Colleague_Norm_Bob
A2 "Bob can find out location information
of his/her colleague <<subject>>" {
 supported by
 F1 "Bob wants to know location of
<<subject>>"
 F2 "Bob taps the screen icon of
<<subject>>"
 warranted by
 R1 "If Bob taps the screen, the
machine checks whether Bob and
<<subject>> are colleagues"
 R2 "If Bob and <<subject>> are
colleagues, the machine queries the
location of <<subject>>"
 R3 "If the log is queried, it returns
the last known GPS location of
<<subject>>"
 R4 "If GPS location is obtained from
the log, the machine shows it to Bob"
 R5 "If GPS location is shown to Bob,
Bob knows the location of <<subject>>" }

space reason) in addition to the existing colleague norm
A2, a user may express preference for one norm over
other, or by adding conditions on time and location for
when those preferences should be used.

For instance, Bob may wish to use the colleague norm
only in weekdays and the friend norm on weekends.

Figure 6. Bob’s Preferences for the Colleague and Frien Norms

As well as defining conditional precedence of privacy
arguments, Bob may also wish to deny Dave access to his
location information by adding an exception to the
colleague norm class A1, as shown below.

Figure 7. Bob’s Exeception #1 to the Colleague Norm

The exception above says that A1 should not be
applied when the user Dave attempts to find out location
information of Bob. An alternative formulation to this
shorthand will be for Bob to create a new argument
denying Dave access to his location and to define a
preference to the new norm over A1. The exception
shorthand is also useful if, for instance, Bob wants to
restrict himself from viewing location of certain colleagues
such as Dave.

Figure 8. Bob’s Exeception #2 to the Colleague Norm

So far, we have assumed that a user is able to prohibit
other users accessing his or her location information, even
when the norm is to share it, and the user can prohibit
himself or herself from accessing location information of
other users. We envisage that privacy norm classes are
defined by developers, and then instantiated and adjusted
by individual users on the basis of their individual
priorities for norms and exceptions to norms. In general,
norms allowing access to information are written either by
the developer or the subject of the information.

4) Formalizing Privacy Arguments: We now discuss

how arguments can be formalized using Event Calculus.

Since we are using the reasoning tool decreasoner, the

discussion here follows the syntax of the tool ([3],

Chapter 13). An argument class is defined using sorts, and

an instance of the class is created as constants for the

sorts.

sort agents
sort subject: agents
sort user: agents
sort loc

user Bob
subject Dave
loc GPSPos

In the above listing, subject and user are defined as
subclasses of the agents sort. Alice, Dave and GPSPos are
constants. For built in sorts, such as integer, value ranges
can be given. The claim of an argument class such as
Colleague_Norm_Class can be written as follows (see also
the earlier rule labelled (CFN)):

[time,user,subject,loc]
(HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time)) &
(Happens(Tap(user,subject),time) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2))).

In the above listing, the square brackets “[” and “]”
denote universal quantification of the variables inside.
Facts are written as observations. The fact that the user
Bob wants to know at time 1 where Dave is written as:

Happens(WhereIs(Dave),0).

Warrants are written as a set of domain-specific rules.

For instance the warrant rule (R5) can be written as:

[time,subject,loc,user]
Initiates(At(subject,loc),
 Know(user, subject, loc),time).

The rule above says that when the event At(subject,
loc) happens, the user will know the location loc of the
colleague subject at the next time point.

In the Event Calculus, exceptions to norms can be
described using the abnormality predicate Abi [3] (Chapter
12). For instance, the following says that the norm
Colleague_Norm_Class holds, unless there are exceptions:

[time,user,subject,loc]
((HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time)) &
Happens(Tap(user,subject),time) &
!Ab1(subject,user,time)) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2)).

It is now possible to provide a list of conditions, in an
elaboration tolerant way, when the norm
Colleague_Norm_Class should not hold. For instance,
Dave can say that Bob should never know his location:

[time] Ab1(Dave,Bob,time).

A1 except when
 (user==Bob & subject==Dave)

A4 "<<User>> can find out location
information of his/her colleague
<<subject>>" {
 preferred by
 A2 precedes A3
 when (day >= Monday & day <= Friday)
 A3 precedes A2
 when (day >= Saturday & day <=
Sunday) }

A1 except when
 (user==Dave & subject==Bob)

This statement can be extended so that the abnormality
predicate is true for all users, rejecting the entire norm.

C. Reasoning about Privacy Arguments

Formalization of privacy norms and arguments are
useful because they can be used to check some important
privacy properties in the system. These properties include:

1. Information availability: Is access to information
according to norms possible? If Bob and Dave are
colleagues according to some norm of location sharing,
can they find out where each other is? This could be useful
if there are other norms preventing the sharing of
information. In the Event Calculus, this is done by means
of deduction or temporal projection of the claim in the
privacy argument.

2. Denial: Is access to information contrary to norms
possible? If Dave and Carole are not colleagues, and if
non-colleagues cannot share location information
according to a norm, can they find out where each other
is? This checking is useful in order to find out possible
violation of privacy requirements. In the Event Calculus,
this is done by means of deduction or temporal projection
that the negation of the claim in the privacy argument
leads to contradiction.

3. Explanation: Why was access to certain
information successful or unsuccessful? If Carole was not
allowed to find out where Bob was, why? If Bob could
find out where Dave was, why? This reasoning gives
explanation in terms of action sequences, and is useful for
diagnostics. In the Event Calculus, this is done by means
of abductive reasoning.

The reasoning tool we use in this work, decreasoner
[3], supports all these types of reasoning.

IV. THE BUDDYTRACKER CASE STUDY

BuddyTracker is currently implemented on iPhone and
Android platforms, although the advanced context
sensitive privacy notification features are only
implemented in the Android version. The architecture of
the system is such that the mobile application regularly
updates a cloud-based server with the phone’s location as
determined by GPS, WiFi, or current cell mast location.
BuddyTracker uses a number of available sensors, such as
the GPS, accelerometer, light sensor, system logs,
information about currently running applications and other
methods to collect the most accurate information about the
user’s context. Calendar entries can be used to determine
the user’s current activity; and Google Geo Service is used
to translate GPS coordinates into more meaningful text
descriptions. The BuddyTracker server has a database of
tracker-trackee relationships and for each tracker, the
trackee can choose to reveal either her exact (street)
location, the city she is in, the country she is in, or reveal
nothing at all (invisible). This last feature provides the
selective disclosure capabilities we are focussing on in this
paper (Figure 4). The BuddyTracker server also integrates
a machine learning system that can automatically infer
constraints on these privacy settings based on user

behaviour [15]. These learned constraints could be used as
warrants in the privacy arguments.

Our case study took a dozen functional requirements of
BuddyTracker to analyse the composition to the selective
disclosure privacy norms defined earlier. We also
implemented the logged events (both contextual
information and the preference changes) during runtime
for an offline analysis because currently the decreasoner
reasoning module only supports a Linux command line
interface. Using the logged events, we found that
decreasoner can reveal whether the selective disclosure
norms, adapted to the preferences specified by individuals,
are violated or not. This finding gives us confidence that
our formalisation of privacy requirements and arguments
can provide useful information regarding the runtime
satisfaction of privacy. Therefore we plan to integrate
decreasoner into a common gateway interface so that the
reasoning system can be accessed at runtime.

Figure 9. BuddyTracker selective disclosure features

V. RELATED WORK

This section discusses existing work in the areas of (i)
requirements engineering for privacy, (ii) mobile privacy
and (iii) formal frameworks for requirements analysis. We
separate the discussion of how these areas are covered by
the contextual integrity framework [2] from other
approaches to privacy and security requirements.

A. Contextual Integrity

There are different justificatory frameworks for
information disclosure that are applicable to mobile
applications. The most common are techniques that resort
to private-public dichotomy to justify scenarios where
privacy is preserved or threatened [16]. Value based trade-
offs is another privacy justifying framework that does not
see privacy as a moral right, but as preference over other
values [17]. Thus, the rationale for a mobile usage scenario

posing a privacy threat is based on its supports or conflicts
with other functionality of the system such as performance
or usability. The challenge with these approaches to
privacy is that software systems provide phenomenal ways
to track and aggregate user’s information in a manner
where neither private-public dichotomy nor value-based
trade-offs is able to capture ensuing privacy implications.

Contextual integrity [2] is another privacy justificatory
framework. This framework posits that the transfer of
information about a subject from a sender to a receiver in a
specific context is tied to certain transmission principles.
Such transmission principles are represented as norms that
define the expected behaviour of interacting agents in a
defined context. Examples of such transmission principles
include notice, consent, confidentiality, fiduciary, secrecy,
and reciprocity [2]. In this paper, we argue that contextual
integrity is a more suitable justificatory framework for
modelling mobile privacy in software systems. This is
because contextual integrity represents an explicit model
of a sender, receiver and a subject when disclosing
personal information, and the transmission principles that
guard the interaction process between these entities [2].
Additionally, contextual integrity provides a means to
identify points in the behaviour of a system where the
tracking and aggregation of private attributes of users can
lead to privacy violation. However, we also found the
notion of contextual integrity needs to be extended to the
“why” dimension, by indicating the exchange for desired
functionality and the avoidance of undesired functionality
as the source of the positive and negative norms.

B. Other Work on Privacy and Security Requirements

Privacy has been commonly viewed as a dialectic and
dynamic boundary regulation process [4]. Palen and
Dourish [18] had gone on to argue that the dialectic nature
of privacy suggests that it is conditioned by individual
subjective experiences and expectations. The dynamic
nature of privacy on the other hand suggests that it is
always under continuous negotiation and management.
Typically, an individual might choose to change her
privacy requirements in exchange for certain benefits or
under certain operational context.

Privacy requirements have been analysed from
different perspectives by the requirements engineering
community. Breaux and Anton [19] have developed a
methodology for extracting access rights and obligations
from regulatory texts to ensure statement-level coverage
for an entire health-care regulation (HIPAA). Similarly,
Yu and Cysneiros [20] modelled privacy as a non-
functional requirement in i* using OECD guidelines.
While these methods are useful in extracting privacy
requirements from existing laws and regulations (e.g.
OECD guidelines, FIP and EU Directives), they do not
specifically address the privacy problems experienced by
mobile users. For example, Mancini et al [21] show that
when mobile users accessed their personal information in
public places such as public transport, fellow commuters
were able to read personal information off the mobile
screen causing privacy issues for the mobile user.

One of the ways to capture behaviour requirements for
a software system is through the use of Use Cases. Seyff et
al [22] developed a software environment called ART-
SCENE to discover and document stakeholder
requirements by walking through scenarios that are
automatically generated from use case specifications. They
created an extended mobile version called Mobile Scenario
Presenter (MSP) using a mobile browser and wireless
access to connect to the server-side ART-SCENE scenario
system. In some ways, this system could help in
discovering the missing privacy requirements that are
closely linked to the functional requirements of existing
systems; however, there are certain drawbacks in using
this system. First, it is difficult to design scenarios a priori
for mobile privacy as it depends on the users’ changing
perception of the (emerging) context. Second, it may not
be practical to ask users to type their privacy requirements
into a PDA or mobile device as mobile users may be in
transit or in a situation where they may be constrained to
use their mobile devices.

Considering the analysis of privacy requirements,
Liaskos et al [12] present a formal reasoning framework
after representing preferences as HTN and PDDL3 rules.
They classify preferences into temporal and priorities, in
addition to the AND/OR semantics of goal refinement
hierarchies. Adopting similar means (i.e. formal
representation of requirements for reasoning), our work
has an additional purpose to compose the requirements
with those selective disclosure constraints expressing the
positive or negative privacy norms.

Recently a Scala programming language extension,
Jeeves, for privacy policies have been proposed [23] to
enforce the privacy controls as a wrapper to filter the
output of any function in the implemented system with
respect to the policies. This is similar to aspect weaving in
traditional programming languages, and the privacy
policies expressible are in the form of privacy norms.
Currently there are difficulties in adopting this language-
level implementation because the rationales to the norms
are not explicitly documented and it requires a runtime
meta-adaptation to enforce the runtime maintenance of
privacy requirements.

In summary, privacy has been researched from many
perspectives but what has not been adequately addressed
are the privacy needs of end-users and in particular mobile
system users. This paper demonstrates how privacy
arguments can be used to capture these end-user privacy
requirements while supporting their run-time evolution.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced privacy arguments as a
way to represent and reason about privacy requirements in
mobile applications. Like privacy norms, privacy
requirements underlie other functional requirements. They
are highly dynamic, selective, and changing, according to
the information being disclosed, the time, place, and social
context of the disclosure. The paper used the Problem
Frames approach to separate the concerns of functional

and privacy requirements, and to relate them using a
generic architecture.

Privacy arguments were proposed to show how privacy
requirements are satisfied by a system, as specified by
functional requirements. A class of privacy argument and
their composition into satisfaction arguments of functional
requirements shows how the general privacy norm is
respected by a system. Individual users can instantiate
argument classes and specify additional conditions for
information disclosure, depending on the place, time,
content and other contexts. Since there may be multiple
privacy norms, users can also specify their preference for
certain privacy norms over others. Therefore, privacy
arguments enable users to elaborate their privacy
requirements at runtime, and to allow the system to adapt
according those privacy requirements elicited at runtime.
Privacy arguments can have both formal and semi-formal
syntax. We illustrated our approach using an example of
selective disclosure from the BuddyTracker application
and demonstrated how it is feasible to design such mobile
apps to maintain satisfaction of privacy concerns.
However, we suggest that arguments can also be
formulated for other privacy norms such as informed
consent and audit logging.

The main benefits of privacy arguments are: (i) they
can be used to relate software component, context and
privacy requirements so that the requirement satisfaction
can be reasoned about, (ii) they allow users to provide
more fine-tuned requirements at runtime, and (iii) they can
be used to give diagnostic information to the users when
the privacy requirements have been violated.

We plan to deploy our privacy arguments framework
through a web service such that mobile apps can look up
privacy arguments for runtime adaptation. Additionally,
we plan to extend our case study to cover other privacy
norms, such as informed consent and control requirements.

ACKNOWLEDGMENTS

This research is partially funded by a Microsoft Software
Engineering Innovation Foundation (SEIF) Award, by
Science Foundation Ireland grant 10/CE/I1855 and by the
European Research Council.

REFERENCES

[1] Associated Press, “CEO apologizes after Path uploads
contact lists,” Yahoo! News.

[2] A. Barth, A. Datta, J. C. Mitchell, and H.

Nissenbaum, “Privacy and Contextual Integrity:
Framework and Applications,” in Proc. of the IEEE

Symp. on Security and Privacy, Washington, DC,

USA, 2006, pp. 184–198.

[3] E. T. Mueller, Commonsense reasoning. Morgan

Kaufmann, 2006.

[4] I. Altman, “Privacy Regulation: Culturally Universal
or Culturally Specific?,” Journal of Social Issues, vol.

33, no. 3, pp. 66–84, Jul. 1977.

[5] T. Erickson and W. A. Kellogg, “Social translucence:
an approach to designing systems that support social

processes,” ACM Trans. Comput.-Hum. Interact., vol.

7, no. 1, pp. 59–83, Mar. 2000.

[6] M. Jackson, Problem Frames: Analysing and

Structuring Software Development Problems.

Addison-Wesley/ACM Press, 2001.

[7] M. Jackson, “Problems and requirements [software
development],” in Proc. of 2nd Int. Symp. on

Requirements Engineering, 1995, pp. 2– 8.

[8] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh,

“Security Requirements Engineering: A Framework
for Representation and Analysis,” IEEE Trans. Softw.

Eng., vol. 34, no. 1, pp. 133–153, 2008.

[9] V. N. L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa,

and B. Nuseibeh, “Risk and argument: A risk-based

argumentation method for practical security,” in Proc.

of 19th Int. Conf. on Requirements Engineering,

Trento, Italy, 2011, pp. 239–248.

[10] S. Barnum, “Common Attack Pattern
Enumeration and Classification (CAPEC) Schema

Description,” 2008.
[11] T. T. Tun, T. Trew, M. Jackson, R. Laney, and

B. Nuseibeh, “Specifying features of an evolving
software system,” Software: Practice and Experience,

vol. 39, no. 11, pp. 973–1002, Aug. 2009.

[12] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J.

Mylopoulos, “Representing and reasoning about
preferences in requirements engineering,” Requir.

Eng., vol. 16, no. 3, pp. 227–249, Aug. 2011.

[13] J. R. Cordy, “The TXL source transformation
language,” Sci. Comput. Program., vol. 61, no. 3, pp.

190–210, Aug. 2006.

[14] Y. Yu, T. T. Tun, A. Tedeschi, V. N. .

Franqueira, and B. Nuseibeh, “OpenArgue:
Supporting argumentation to evolve secure software

systems,” in Proc. of 19th Int. Conf. on Requirements

Engineering, 2011, pp. 351–352.

[15] D. Corapi, O. Ray, A. Russo, A. Bandara, and

E. Lupu, “Learning Rules from User Behaviour,” in
Proc. of AIAI, Boston, MA, 2009, vol. 296, pp. 459–
468.

[16] T. Fahey, “Privacy and the Family: Conceptual
and Empirical Reflections,” Sociology, vol. 29, no. 4,

pp. 687–702, Nov. 1995.

[17] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu,

“SpaceTwist: Managing the Trade-Offs Among

Location Privacy, Query Performance, and Query

Accuracy in Mobile Services,” in Proc. of 24th Int.

Conf. on Data Engineering, 2008, pp. 366–375.

[18] L. Palen and P. Dourish, “Unpacking ‘privacy’
for a networked world,” in Proc. of SIGCHI Conf. on

Human factors in computing systems, New York, NY,

USA, 2003, pp. 129–136.

[19] T. D. Breaux and A. I. Anton, “Analyzing
Regulatory Rules for Privacy and Security

Requirements,” IEEE Transactions on Software

Engineering, vol. 34, no. 1, pp. 5–20, Feb. 2008.

[20] E. Yu and L. M. Cysneiros, “Designing for
Privacy and Other Competing Requirements,” Proc. of

2nd Symp. on RE for Inf. Security, pp. 15–16, 2002.

[21] C. Mancini, K. Thomas, Y. Rogers, B. A. Price,

L. Jedrzejczyk, A. K. Bandara, A. N. Joinson, and B.

Nuseibeh, “From spaces to places: Emerging contexts
in mobile privacy,” in Proc. of 11th Int. Conf. on

Ubiquitous Computing, 2009, pp. 1–10.

[22] N. Seyff, N. Maiden, K. Karlsen, J. Lockerbie,

P. Grunbacher, F. Graf, and C. Ncube, “Exploring
how to use scenarios to discover requirements,”
Requir. Eng., vol. 14, no. 2, pp. 91–111, Apr. 2009.

[23] J. Yang, K. Yessenov, and A. Solar-Lezama, “A
language for automatically enforcing privacy

policies,” in Proc. of 39th Symp. on Princ. of Prog.

Lang., New York, NY, USA, 2012, pp. 85–96.

I. APPENDIX I: FORMALISATION OF THE FUNCTIONAL REQUIREMENT EXAMPLE

load foundations/Root.e
load foundations/EC.e

sort agents
sort subject: agents
sort user: agents
sort loc

user Alice
subject Bob
loc GPSPos_at_t

event WhereIs(subject)
event Tap(user,subject)
event Query(subject,loc)
event At(subject,loc)

;user knows that subject is at location
fluent Know(user, subject, loc)

;Location Display specification
[time,user,subject,loc]
Happens(Tap(user,subject),time) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2)).

;If the display shows that the subject is
;at a location, the user will know where
;the subject is
[time,subject,loc,user]
Initiates(At(subject,loc), Know(user, subject, loc),time).

;The requirement saying that tapping
;the subject (icon) leads to the
;user knowing the location of the subject
[time,user,subject,loc]
Happens(WhereIs(subject),time) ->
HoldsAt(Know(user, subject, loc),time+4).

;The following assertion checks
;whether the negation of the
;the requirement is satisfiable
;[time,user,subject,loc]
;Happens(WhereIs(subject),time) &

;!HoldsAt(Know(user, subject, loc),time+4).

;When the user wants to know the location of
;a subject, the user taps the icon of
;the subject
[time,user,subject]
Happens(WhereIs(subject),time) ->
Happens(Tap(user,subject),time+1).

;Initial states
; Alice wants to know where Bob is
Happens(WhereIs(Bob),0).

;Alice does not know where Bob is
!HoldsAt(Know(Alice, Bob, GPSPos_at_t),0).

;the following command tells the reasoner
;to perform deduction
completion Happens

range time 0 6
range offset 1 1

II. APPENDIX II: FORMALISATION OF THE POSITIVE NORM EXAMPLE

load foundations/Root.e
load foundations/EC.e

sort agents
sort subject: agents
sort user: agents
sort loc

user Alice
subject Bob
loc GPSPos

event WhereIs(subject)
event Tap(user,subject)
event Query(subject,loc)
event At(subject,loc)

;user knows that subject is at location
fluent Know(user, subject, loc)

;user and subject has the same prefix
fluent SamePF(user,subject)

;user and subject are friends
fluent Friends(user,subject)

;If the display shows that the subject is
;at a location, the user will know where
;the subject is
[time,subject,loc,user]
Initiates(At(subject,loc), Know(user, subject, loc),time).

;The requirement saying that tapping
;the subject (icon) leads to the
;user knowing the location of the subject
[time,user,subject,loc]
Happens(WhereIs(subject),time) ->
HoldsAt(Know(user, subject, loc),time+4).

;The following assertion checks
;whether the negation of the
;the requirement is satisfiable
;[time,user,subject,loc]
;Happens(WhereIs(subject),time) &
;!HoldsAt(Know(user, subject, loc),time+4).

;When the user wants to know the location of
;a subject, the user taps the icon of
;the subject
[time,user,subject]
Happens(WhereIs(subject),time) ->
Happens(Tap(user,subject),time+1).

;CFN Specification
[time,user,subject,loc]
(HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time)) &
(Happens(Tap(user,subject),time) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2))).

;Initial states
; Alice wants to know where Bob is
Happens(WhereIs(Bob),0).

;Alice does not know where Bob is
!HoldsAt(Know(Alice, Bob, GPSPos),0).

;Alice and Bob have some prefixes in their IDs
HoldsAt(SamePF(Alice,Bob),0).
;If the above statement is negated,
;then the query will not return the location

;Alice and Bob are not friends
!HoldsAt(Friends(Alice,Bob),0).

;the following command tells the reasoner
;to perform deduction
completion Happens

range time 0 6
range offset 1 1

III. APPENDIX III: FORMALISATION OF THE NEGATIVE NORM EXAMPLE

load foundations/Root.e

load foundations/EC.e

sort agents
sort subject: agents
sort user: agents
sort loc

user Alice
subject Bob
loc GPSPos

event WhereIs(subject)
event Tap(user,subject)
event Query(user,subject,loc)
event At(subject,loc)

;user knows that subject is at location
fluent Know(user, subject, loc)

;user and subject has the same prefix
fluent SamePF(user,subject)

;user and subject are friends
fluent Friends(user,subject)

;If the display shows that the subject is
;at a location, the user will know where
;the subject is
[time,subject,loc,user]
Initiates(At(subject,loc), Know(user, subject, loc),time).

;The requirement saying that tapping
;the subject (icon) leads to the
;user knowing the location of the subject
[time,user,subject,loc]
Happens(WhereIs(subject),time) ->
HoldsAt(Know(user, subject, loc),time+4).

;When the user wants to know the location of
;a subject, the user taps the icon of
;the subject
[time,user,subject]
Happens(WhereIs(subject),time) ->
Happens(Tap(user,subject),time+1).

;CFN Specification - Negative Norm
[time,user,subject,loc]
Happens(Tap(user,subject),time) ->
(Happens(Query(user,subject,loc),time+1) &
Happens(At(subject,loc),time+2) &
(HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time))).

;Initial states
; Alice wants to know where Bob is
Happens(WhereIs(Bob),0).

;Alice does not know where Bob is
!HoldsAt(Know(Alice, Bob, GPSPos),0).

;Alice and Bob have some prefixes in their IDs
HoldsAt(SamePF(Alice,Bob),0).

;Alice and Bob are not friends
!HoldsAt(Friends(Alice,Bob),0).

;the following command tells the reasoner
;to perform deduction
completion Happens

range time 0 6
range offset 1 1

IV. APPENDIX IV: FORMALISATION OF THE EXCEPTION EXAMPLE

load foundations/Root.e
load foundations/EC.e

sort agents
sort subject: agents
sort user: agents
sort loc

user Bob
subject Dave
loc GPSPos

event WhereIs(subject)
event Tap(user,subject)
event Query(subject,loc)
event At(subject,loc)

;user knows that subject is at location
fluent Know(user, subject, loc)

;user and subject has the same prefix
fluent SamePF(user,subject)

;user and subject are friends
fluent Friends(user,subject)

;abnormality predicate
predicate Ab1(subject,user,time)

;If the display shows that the subject is
;at a location, the user will know where
;the subject is
[time,subject,loc,user]
Initiates(At(subject,loc), Know(user, subject, loc),time).

;The requirement saying that tapping
;the subject (icon) leads to the

;user knowing the location of the subject
[time,user,subject,loc]
Happens(WhereIs(subject),time) ->
HoldsAt(Know(user, subject, loc),time+4).

;When the user wants to know the location of
;a subject, the user taps the icon of
;the subject
[time,user,subject]
Happens(WhereIs(subject),time) ->
Happens(Tap(user,subject),time+1).

;CFN Specification
[time,user,subject,loc]
((HoldsAt(SamePF(user,subject),time) |
HoldsAt(Friends(user,subject),time)) &
Happens(Tap(user,subject),time) &
!Ab1(subject,user,time)) ->
(Happens(Query(subject,loc),time+1) &
Happens(At(subject,loc),time+2)).

;Initial states
; Bob wants to know where Dave is
Happens(WhereIs(Dave),0).

;Bob does not know where Dave is
!HoldsAt(Know(Bob, Dave, GPSPos),0).

;Bob and Dave have some prefixes in their IDs
HoldsAt(SamePF(Bob,Dave),0).

;Bob and Dave are not friends
!HoldsAt(Friends(Bob,Dave),0).

;Dave does not want Bob to know his location
[time] Ab1(Dave,Bob,time).

;the following command tells the reasoner
;to perform deduction
completion Happens

range time 0 6
range offset 1 1

