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Abstract

A simple speci�cation test based on fully modi�ed residuals and the CUSUM
test for cointegration of Xiao and Phillips (2002) are considered as means of
testing for functional form in long-run cointegrating relations. It is shown that
both tests are consistent under functional form misspeci�cation and lack of
cointegration. An extensive simulation study is carried out to asess the prop-
erties of the tests in �nite samples. The Dickey-Fuller test is also considered.
The simulation results reveal that the �rst two tests perform well. On the other
hand the Dickey-Fuller test performs poorly in many cases, not only when there
is functional form misspeci�cation, but also when there is lack of cointegration
and the spurious regression is nonlinear.

1 Introduction

The theory of cointegration was developed nearly �fteen years ago. Cointegration
has probably been, the most popular approach in modeling macroeconomic relations
since it was introduced. Although the concept of cointegration is very appealing from
an economic theory point of view, a lot of data sets have failed to show evidence
supporting the existence of long-run macroeconomic equilibria. Lack of evidence for
cointegration in certain data sets has created doubts about the validity of the classi-
cal linear cointegration models and led some researchers to consider the possibility of
nonlinearities in macroeconomic relations. Recent work e.g. Corradi, Swanson and
White (2000), Teräsvirta and Ellianson (2001) among others, consider the case of
nonlinear short-run dynamics in Vector Error Correction Models (VECM). Nonethe-
less the possibility of nonlinear long-run dynamics has been largely ignored. Park and
Phillips (1999, 2001) develop limit distribution theory for nonlinear transformations
of unit root processes and also provide an approach for modeling nonlinear long-run
relations (see also Chang, Park and Phillips (2001)). In their recent work Saikkonen
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and Choi (2004) follow the Park and Phillips (1999, 2001) exposition to model smooth
transitions in long-run cointegrating relations.
Cointegration is generally understood as a property between a set of unit root

processes. The nonlinear cointegration models of Park and Phillips (1999, 2001) de-
part from this approach. Although unit root processes play a central role in these mod-
els, nonlinear cointegration is not necessarily a property between unit root processes.
Park and Phillips (1999, 2001) consider models the form:

yt = f(xt) + ut;

where xt is a unit root process and ut is some stationary error term. Clearly if f(:)
is linear, the variable yt will be a unit root process as well. Nonetheless for nonlinear
f(:), yt will not be of the ARIMA type. After all unit root processes may not be
the only type of relevant nonstationary variables. Having departed from the classical
concept of cointegration, lack of cointegration should be reconsidered as well. Absence
of cointegration in this nonlinear framework may arise because a) the function f(:)
has not been correctly speci�ed i.e. because functional form misspeci�cation has been
committed, b) because yt and xt do not cointegrate for any choice of f(:). The �rst
case will be referred to as Functional Form (FF hereafter) misspeci�cation and to the
second case as lack of cointegration. This distinction is made for technical reasons.
FF misspeci�cation itself can be seen as lack of cointegration.
The recent development of Park and Phillips (1999, 2001) enables the applied

worker to use wide range of nonlinear speci�cations. Nonetheless, when it comes
to applied work, the ultimate problem is to choose the appropriate model. This is
exactly the problem that will be addressed here. Two tests will be considered as
means of testing for FF and lack of cointegration in long-run cointegrating relations.
The �rst is a simple speci�cation test based on fully modi�ed residuals. The test
statistic resembles the one of the Bierens (1990) Conditional Moment (CM) test for
FF. Nonetheless we are not employing any weighting functions as Bierens (1990)
does in order to create a fully consistent test. The second test is the CUSUM test for
cointegration proposed by Xiao and Phillips (2002). It will be shown that both tests
diverge under FF misspeci�cation or lack of cointegration. Using some theoretical
results due to Park and Phillips (1998) and with the aid of the simulation evidence
provided in this paper, it will be argued that the Dickey-Fuller test (DF) that is widely
used as a cointegration test, performs poorly under FF misspeci�cation in many cases.
Finally it is pointed out, that in a nonstationary framework, a simple inspection of
the behaviour of slope and variance estimates can sometimes provide evidence for
FF misspeci�cation. It is shown that under certain types of FF misspeci�cation, the
slope estimators converge to zero or diverge as the sample size increases. Moreover if
FF is committed, the estimator for the variance of the errors of the model diverges as
the sample size increases. This behaviour is not evident in the stationary framework
and can provide useful information about the adequacy of the �tted model.
The present theoretical framework is similar to that of Park and Phillips (1999)
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and Chang et al. (2001). The only work that is closely related to the present, that the
author is aware of, is that of Hong and Phillips (2004) who extend Ramsey�s (1969)
RESET test to a framework similar to this. Hong and Phillips (2004) consider scalar
covariate �tted models linear in parameter and variable. The present theoretical
framework is more general. Multiple regression models, additively separable, linear
in parameters and nonlinear in variables are considered. Therefore we treat linearity
vs. nonlinearity as a special case. The nonlinear functions under consideration belong
to the H -regular class of Park and Phillips (1999). Park and Phillips (1999, 2001)
assume that the error of the model is a martingale di¤erence sequence. We relax this
assumption. Correlated errors and endogeneity are introduced by assuming the errors
of the model and the errors that drive the unit root variables is a vector linear process.
A semiparametric approach is followed for both tests to induce a limit distribution,
under the null hypothesis, free of nuisance parameters. The approach is similar to the
one of Xiao and Phillips (2002). The �tted model is estimated by a Fully Modi�ed
Least Squares (FM-LS) type of estimator and the sample moment of the test statistics
is corrected for endogeneity bias.
We derive the limit distribution of the tests under the null hypothesis (correct

FF) and we obtain divergence rates under the alternative hypothesis (incorrect FF or
lack of cointegration). Under the null hypothesis, the �rst test (CM) has a chi-square
limit distribution while the CUSUM test (CS) has a limit distribution similar to the
one reported by Xiao and Phillips (2002). Under the alternative, the residuals of the
�tted model will be dominated by some H -regular transformation u(:) say of a unit
root process, which is of a higher order of magnitude than the residuals of a correctly
speci�ed model. The underlying feature of the tests under consideration is that they
can detect abnormal �uctuation in the residuals. The divergence rates under the
alternative hypothesis depend on the bandwidth used for the estimation of long-run
covariance matrices. The test statistics (CMn and CSn) are of the form:

SMn

V Nn

;

where SMn is some sample moment, V Nn is a variance normalisation term and n the
sample size. Under the alternative hypothesis we have:

CMn =
Op(nku(

p
n)2)

Op(Mku(
p
n)2)

= Op(n=M) and

CSn =
Op(

p
nku(

p
n))

Op(
p
Mku(

p
n))

= Op(
p
n=M);

as n ! 1; where M is the bandwidth parameter used in the estimation of the
long-run covariances and ku is asymptotic order of the H -regular component u(:),
that dominates the regression residuals. We expect that other FF and cointegration
tests can be used in this framework e.g. White�s (1981) Hauseman and Information
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Equality (IE) tests, the KPSS test. For instance the idea behind the RESET test
and other FF tests is to use some kind of series approximation, e.g. Taylor�s theo-
rem, to approximate (possibly nonlinear) regressor remainings in the residuals of the
model, when that is misspeci�ed. When the model is misspeci�ed in terms of FF,
the information matrix will involve extra terms and this is what the IE test aims to
detect.
The DF test performs poorly, when there is FF misspeci�cation. The DF test

has been widely used as a cointegration test. Ideally, when the �tted model is of
incorrect FF, it would be desirable if the DF test rejected the hypothesis of coin-
tegration(/correct speci�cation). If the DF test is applied to the residuals of model
that is misspeci�ed in terms of FF, in many cases the alternative of cointegration
will be favoured, although the residuals are not stationary. The DF test is designed
to detect unit root processes. In our case however, the residuals will be a nonlinear
transformation of unit root processes.
An explanation for the poor performance of the DF can be found in the work

of Park and Phillips (1998). Park and Phillips (1998) analyse the limit behaviour
of the DF test statistic, when it is applied to a series, which is a nonlinear trans-
formation of a unit root process. In particular they consider integrable and three
H -regular transformations namely, indicator, logarithmic and polynomial functions.
For integrable and indicator functions they �nd that the DF test statistic diverges
to minus in�nity, therefore favouring the alterative of stationarity with probability
approaching one as n ! 1. For logarithmic and concave polynomial functions, the
limit distribution will involve negative components making the test biased towards
the alternative of stationarity. Only for convex polynomial transformations the DF
will favour nonstationarity. These theoretical results are con�rmed by our simulation
experiment.
The rest of this paper is organised as follows. In Section 2 our theoretical frame-

work is speci�ed and some preliminary results are provided. In Section 3 our testing
procedures are presented and their properties derived. Section 4 provides some sim-
ulation results and Section 5 concludes. Before proceeding to the next section some
notation is introduced. For a vector x = (xi) or a matrix A = (aij), jxj and jAj
denotes the vector and matrix respectively of the moduli of their elements. The max-
imum of the moduli is denoted as k:k. The transpose of a matrix A is will be written
as A0. Also a matrix A of dimensions n�m may be written as A(n�m). As usual for
a function f : R! R, _f will denote its �rst derivative with respect to its argument.
Finally IfAg will denote the indicator function of a set A.
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2 Theoretical Framework and Preliminary Results

Assume that the series fytgnt=1 is generated by:

yt = �o1f1(x1t)+; :::;+�opfp(xpt) + ut (1)

= f 0(xt)�o + ut

or by:
yt = s(zt); (2)

where f(:) and s(:) belong to theH -regular family, the variables xt and zt are unit root
processes, and ut is an error term that will be speci�ed in detail later. Our purpose
is to examine the case of incorrect FF and the case of no cointegration. For this
reason two possible data generating mechanisms will be considered for the dependent
variable. The model in (1) will be the true speci�cation when there is cointegration
(possibly nonlinear) between yt and the variables of interest xit. The speci�cation (2)
will be the data generating mechanism when there is no cointegrating relationship
between yt and the variables of interest. When the latter is the case, it is usually
assumed in the literature (e.g. Xiao and Phillips (2002)) that yt is a unit root process,
zt say, that is unrelated to the regressors (xit�s). Here it will be assumed that yt is
possibly a nonlinear transformation of such a process. In this way yt is allowed to be
of di¤erent order of magnitude than zt. Clearly when s(:) is linear, yt is a unit root
process. The �tted model will be given by:

ŷt = â1g1(x1t)+; :::;+âpgp(xpt) + ût (3)

= g0(xt)â+ ût

For notational convenience, the vectors f(xt) and g(xt) in (1) and (3) may be written
as ft and gt respectively.
Next the variables and the functions that appear in (1), (2) and (3) will be speci�ed

in detail. The variables x0t = (x1t; :::; xpt) and zt are a unit root processes given by:

xt = xt�1 + vt and zt = zt�1 + wt:

The following assumption about ut; vt and wt holds:

ASSUMPTION 2.1: The sequence e0t = (ut; v0t; wt) is a linear process given by:

et =

1X

j=1

�j�t�j = �(L)�t;

and the following hold:
(i) The matrix lag polynomial �(L) = diag

�
�(L)(1�1);	(L)(p�p);�(L)(1�1)

�
satis�es

the summability condition
P1

j=1 j
� k�jk <1 with � > 1.
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(ii)The random sequence �t satis�es the following conditions:
(a)

�
�0t =

�
"t; �

0
t+1; !t+1

�
;Ft = � (�s;�1 � s � t)

	
is a stationary and ergodic

martingale di¤erence sequence with E [�t�
0
t j Ft�1] = �.

(b) The sequence �t is i.i.d. with E k�tkl <1 for some l > 4 and its distribution is
absolutely continuous with respect to Lebesgue measure and has characteristic function
'(�) = o(k�k��) as �!1.

For the purpose of the subsequent analysis, the covariance matrix � will be con-
formably partition as follows:

� =

0

@
�"" �"� �"!
��" ��� ��!
�!" �!� �!!

1

A :

For vt; ut and wt de�ne the usual partial sum processes: (Un(r); V 0
n(r);Wn(r)) =

n�1=2
P[nr]

t=1 (ut; v
0
t; wt) with 0 � r � 1. Under Assumption 2.1, it follows from a

multivariate extension of the results of Phillips and Solo (1992) that

(Un(r); V
0
n(r);Wn(r))

d! (U(r); V 0(r);W (r)) ;

with (U(r); V 0(r);W (r)) being an (p+ 2)-dimensional Brownian motion with covari-
ance matrix 
 conformably partitioned as


 =

0

@

uu 
uv 
uw

vu 
vv 
vw

wu 
wv 
ww

1

A :

Under Assumption 2.1, strong approximations hold for the vector (Un(r); V 0
n(r); Wn(r))

that allow the use of embedding arguments (see Phillips (1999)). Such embedding
arguments are extensively utilised by Park and Phillips (1999, 2001) and will be used
here as well. So when convergence in probability or all almost sure convergence ar-
guments are used, those should be interpreted as convergence in distribution unless
the limit is nonstochastic. Moreover the usual long-run covariance matrices will be
employed. Note that 
 can be expressed as:


 =

1X

k=�1
E
�
ete

0
t+k

�

and the one sided long-run covariance matrix, say � is:

�(h) =
1X

k=0

E
�
ete

0
t+k�h

�
=

0

@
�uu �uv �uw
�vu �vv �vw
�wu �wv �ww

1

A (h);

where h 2 Z.
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Next the functions that appear in (1), (2) and (3) are speci�ed. As mentioned
earlier the functions under consideration will be con�ned to the H -regular family of
Park and Phillips (1999). The H -regular family comprises transformations that are
asymptotically homogeneous. An H -regular transformation f(:) say, behaves as

f(�x) � kf (�)hf (x) for large �;

where hf and kf are the so called limit homogenous function and asymptotic order of
f respectively. The limit homogenous function satis�es certain regularity conditions.
Functions that do so are called by Park and Phillips (1999) "regular". The asymptotic
results provided by Park and Phillips (1999) for regular transformations have been
extended by de Jong (2004) to a more general class of transformations that comprise
of locally integrable functions with �nite many poles and which are monotone between
poles1. Due to the introduction of weak dependence in the error structure of the model,
some smoothness will need to be imposed on the �rst derivatives of the functions.
We will restict our functions to a subset of the H -regular class of Park and Phillips
(1999). The present class of functions will be called H 1-regular with H 1-regularity
de�ned as follows:

DEFINITION 2.1:
The transformation f : Rp ! R

p; such that f 0(x) = (f1(x1); ::; fp(xp)) will be called
H 1-regular if:
(i) f(�x) = kf (�)hf (x) +Rf (x; �) with hf (:) regular and
(a) jRf (x; �)j � af (�)Pf (x), with lim sup�!1

af (�)k�1f (�)
 = 0 and Pf (:) locally

integrable, or
(b) jRf (x; �)j � bf (�)Qf (�x), with lim sup�!1

bf (�)k�1f (�)
 < 1 and Qf (:)

locally integrable and vanishing at in�nity.
(ii) � _f(�x) = kf (�) _hf (x) + _Rf (x; �) with _hf (:) regular and

(a)
��� _Rf (x; �)

��� � _af (�) _Pf (x), with lim sup�!1
� _af (�)k�1f (�)

 = 0 and _Pf (:)

locally integrable, or

(b)
��� _Rf (x; �)

��� � _bf (�) _Qf (�x), with lim sup�!1

�_bf (�)k�1f (�)
 < 1 and _Qf (:)

locally integrable and vanishing at in�nity.
(iii) For any 0 < K <1 and some 0 � b < 1=2 there is a sequence sn # 0 as n!1,
such that

lim sup
n!1

n1=2+bkf (
p
n)�1

 sup
kx1k�K

sup
kx1�x2k�sn

 _f(
p
nx1)� _f(

p
nx2)

 = 0:

As usual hf and kf will be called the limit homogenous functions and asymptotic
order of f respectively. Moreover note that when f is a p-dimensional vector, kf

1Pötscher (2004) provides the same asymptotic results under less restrictive assumptions about
the functions but more restrictive conditions about the innovations of the unit root process.
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and _f will be (p� p) diagonal matrices. Condition (iii) in the de�nition above is the
same smoothness condition employed by de Jong (2002)2. The convergence rate of
the sequence sn will be determined by l, i.e. the order of �nite moments of the process
�t. In general the larger the parameter b is, a larger l will be required.
For linear models it is well known (e.g. Phillips (1986, 1988)) that when the errors

of the model are weakly dependent, the covariance asymptotics involve extra terms.
In the limit, apart from the stochastic integral, a long-run covariance matrix appears.
For nonlinear models the long-run covariance matrix is weighted by functionals of
Brownian motion. This result was originally shown by de Jong (2002), when the
errors are near epoch depended. Below a similar result, for errors that are linear
processes, is provided.

THEOREM 2.1:
Let f 0(x) = (f1(x1); :::; f(xp)) be H 1-regular. Under Assumption 2.1, for 1 � t;
t+ h � n, jhj � nb, we have

(i)
1p
n
k�1f (

p
n)

nX

t=1

f(xt+h)ut
d!
Z 1

0

hf (V (r))dU(r) +

Z 1

0

_hf (V (r))dr�vu(h)

and

(ii)
1p
n
k�1f (

p
n)

nX

t=1

f(xt+h)v
0
t
d!
Z 1

0

hf (V (r))dV
0(r) +

Z 1

0

_hf (V (r))dr�vv(h);

as n!1:

For the derivation of the limit distribution theory under correct speci�cation, the
above covariance asymptotic results will be employed with the parameter h set equal
to zero. In this case the condition (iii) of De�nition 2.1 can be relaxed by setting b
equal to zero as well. Under FF misspeci�cation however, the limit behaviour of the
estimators is determined by sample sums like those above with arbitrary value for
the parameter h. Moreover the results of Theorem 2.1 are useful, for the study of
spectral regressions (see for example Phillips (1991)), under the current theoretical
framework.
Next FF misspeci�cation and lack of cointegration will be de�ned precisely.

DEFINITION 2.2:
For g and f H 1-regular:
(i) We will say that the �tted model (3) is of correct FF, when gi(:) = fi(:) for all
i = f1; ::; pg and (1) holds.
(ii) We will say that the �tted model (3) is of incorrect FF, when the true model
is given by (1) and gi(:) 6= fi(:) for some i = f1; :::; pg and one of the following
conditions hold:

2See de Jong (2002) page 21.
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C1: gi � fi = qi with qi H 1-regular such that kqi(�)=kgi(�), kqi(�)=kfi(�)! 0 as
�!1; or
C2: kgi(�)=kfi(�)! 0 or 1 as �!1:

(ii) We will say that there is no cointegration, when the �tted model is given by (3)
and the true model by (2).

Condition C1 postulates that some term is correctly speci�ed up to some lower order
H -regular component, while C2 postulates that a �tted component does not agree
in asymptotic order with its counterpart at all. The possibility of having a second
cointegrating relationship between f1(x1t);...; fp(xpt), will be ruled out. It is obvious
from De�nition 2.2 that the present theoretical framework does not allow for omitted
or redundant variables. An extension of the subsequent results in that direction is
possible but will not be attempted here, as it would result in more complexity in our
presentation.
Notice that the linear model that is commonly used in cointegrating relationships

is H 1-regular. In practice functional form misspeci�cation could arise from neglected
lower order components (lower order than the linear speci�cation). Consider for
instance the case where f(x) = x+ jxj1=2 and g(x) = x. If the errors of the model are
martingale di¤erences as in Park and Phillips (1999), it is possible to obtain power
rates under this kind of FF misspeci�cation. Under the current framework however
we are unable to obtain explicit power rate results as the component jxj1=2 is not
H 1-regular. Below some examples of H 1-regular transformations are provided:

EXAMPLE:
(i) f(x) = jxjc, c > 2:
(ii) f(x) = x exp (x) = (1 + exp (x)) :

(iii) fn(x) =
�
n1=4c1=2

2
+ n�1=4c�1=2

2
x
�
Ifx � n1=2cg+ x1=2Ifx > n1=2cg, c > 0:

(iv) fn(x) =
�
ln
�
cn1=2

�
� 1 + 1

n1=2c
x
�
Ifx � n1=2cg+ ln(x)Ifx > n1=2cg, c > 0:

Saikkonen and Choi (2004) have recently analysed cointegrating Smooth Transi-
tion Regression (STR) models. Their speci�cation is comprised by a linear component
multiplied by a transition function. They explicitly consider a logistic function. Be-
cause distribution type of functions lack identi�cation, when the covariates are unit
root processes (see Park and Phillips (2001)), Saikkonen and Choi (2004) actually
consider models where the covariates are normalised by the square root of the sam-
ple size. In practice one might want to test whether the transition function used
is correctly speci�ed. The present framework does not cover �tted models of this
kind because they are nonlinear in parameters. Limit results for the behaviour of
the Nonlinear Least Squares estimator under FF misspeci�cation in models with unit
roots, have been derived by the author (Kasparis (2004)) and some extensions of the
current results along these lines are possible. Nonetheless models with normalised
variables create an extra complication. It has been assumed (De�nition 2.2) that
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if the �tted model g, is of incorrect FF and of the same order as the true model
f , then g and f agree up to some lower order component q, say. Actually to the
best of the author�s knowledge, this has to be the case (when both f and g are H-
regular). Now if the model involves normalised variables one can �nd examples of
f , and g that are of the same asymptotic order but do not agree at all, for example
let fn(x) = 1 fx=pn > cg and gn(x; a) = exp (ax=

p
n) (1 + exp (ax=

p
n))

�1. Devel-
opment of second order asymptotic theory for H -regular transformations is required,
to obtain asymptotic power rates for this type of models.

3 Detection of Functional Form Misspeci�cation

The main focus in this section is to develop two speci�cation tests as means of testing
for FF in the theoretical framework of Section 2. The �rst test statistic resembles the
Bierens (1990) CM test. The Bierens (1990) test is based on a conditional moment
condition that holds under the null hypothesis (correct FF). A similar condition
can be shown to hold for the �rst test, when the errors of the model are martingale
di¤erences as in Park and Phillips (1999, 2001). Under the current framework though,
such condition does not hold, because the covariates are endogenous. Nonetheless for
purposes of brevity we will call the �rst test CM. The second test is the CUSUM test
for cointegration of Xiao and Phillips (2001) generalised to cope with �tted models
that are nonlinear in variables. The limit properties of the tests are derived under
correct FF, incorrect FF and lack of cointegration.
The asymptotic behaviour of the Least Squares (LS) estimator and the statistical

tests is determined by sample covariances like those in Theorem 2.1. Because the
limit distribution theory is not mixed normal, the usual likelihood based and t-tests
tests do not have standard distributions under the null hypothesis. Moreover the
limit distribution of non standard tests like the CUSUM test will involve nuisance
parameters. To resolve this problem the model is �tted by a FM-LS type of estimator
and an endogeneity correction term is introduced in the statistic. To obtain the
estimator and the correction term, kernel estimators for 
uu, 
vv, 
vu, �vu and �vv
are used:


̂uu =
PM

h=�M �
�
h
M

�
Cuu(h); 
̂vv =

PM
h=�M �

�
h
M

�
Cvv(h);


̂vu =
PM

h=�M �
�
h
M

�
Cvu(h); �̂vv =

PM
h=0 �

�
h
M

�
Cvv(h);

�̂vu =
PM

h=0 �
�
h
M

�
Cvu(h);

where � (:) is the lag window de�ned on [�1; 1] such that � (0) = 1 and M is a band-
width such thatM !1, n=M ! 0 as n!1. Moreover Cuu(h), Cvv(h), and Cvu(h)
are sample covariances de�ned by Cuu(h) = n�1

P0
t ûtût+h, Cvv(h) = n�1

P0
t vtv

0
t+h

and Cvu(h) = n�1
P0

t vtût+h, where û are the residuals from LS estimation and
P0

t is
summation over 1 � t, t+ h � n. Consistency results for this kind of kernel estima-
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tors can be found in Andrews (1991), when the processes satisfy mixing conditions.
Under the current framework consistency results are provided by Phillips (1995).
The estimator under consideration closely resembles the original FM-LS estimator

introduced by Phillips and Hansen (1990). Before the estimator is presented, the
following quantities need to be de�ned:

y+t = yt � v0t
̂
�1
vv 
̂vu and �̂

+
vu = �̂vu � �̂vv
̂�1vv 
̂vu:

The FM-LS estimator under consideration is:

â =

"
nX

t=1

g(xt)g
0(xt)

#�1 " nX

t=1

g(xt)y
+
t � _gn�̂

+
vu

#

;

with _gn =
Pn

t=1 _g(xt). Under correct speci�cation, he following result holds:

LEMMA 3.1:
Under correct FF as n!1

p
nkg (â� �o)

d!
�Z 1

0

hg (V (r))h
0
g (V (r)) dr

��1 Z 1

0

hg (V (r)) dU(r)
+;

where U(r)+ = U(r)� V 0(r)
�1vv 
vu:

Notice that the limit distribution of the estimator is mixed normal as V and U+ are
independent. Both of the tests under consideration are residual based. An endogene-
ity bias correction term is introduced in the residuals of the �tted model giving the
so called fully modi�ed residuals û+t de�ned as

û+t = yt � â0g(xt)� v0t
̂
�1
vv 
̂vu:

Next the test statistics will be presented. First de�ne the matrices Ân, B̂n, A
and B and their inverses, when they exist, as follows:

1

n
k�1g Ân =

1

n
k�1g

nX

t=1

g(xt)
p! A;

and
1

n
k�1g B̂nk

�1
g =

1

n
k�1g

nX

t=1

g(xt)g
0(xt)k

�1
g

p! B:

The CM test statistic is:

CMn =

�Pn
t=1 û

+
t

�2
�

̂uu � 
̂uv
̂�1vv 
̂vu

�Pn
t=1

h
Â0nB̂

�1
n g(xt)� 1

i2 ;
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and the CUSUM test statistic:

CSn = max
k=1;::;n

���
Pk

t=1 û
+
t

���
r
n
�

̂uu � 
̂uv
̂�1vv 
̂vu

� :

The behaviour of the tests under the null hypothesis is shown in the theorem below.

THEOREM 3.1:
Under correct FF as n!1;

CMn
d! �21

and
CSn

d! sup
0�s�1

�� �U(s)
�� =
p

uu � 
uv
�1vv 
vu;

where
�U(s) = U(s)+ �

hR 1
0
dU(r)+hg(V (r))

0
i hR 1

0
hg(V (r))hg(V (r))

0dr
i�1 �R s

0
hg(V (r))dr

�
.

The limit distribution of the CUSUM test is resembles the one derived by Xiao and
Phillips (2002). If hg(:) is allowed to be linear in the expression above, �U(s) will
be as in Xiao and Phillips (2002). Note that the distribution of the CUSUM test is
not standard and simulations are required to obtain critical values. Moreover, the
limit distribution is speci�c to the �tted model and therefore di¤erent critical values
are required for di¤erent models. This makes the test somewhat impractical when
the �tted model is nonlinear. Nonetheless it can be easily implemented as a linear
vs. nonlinear test. On the other hand the CM test has standard limit distribution
irrespective of the empirical model employed.
Next we will examine the asymptotic power of the tests. Note that under the

alternative some of the kernel estimators mentioned earlier will be inconsistent. Before
their limit behaviour is considered, some notation needs to be introduced. De�ne
d = f � g with f; g as in (1) and (3). Moreover denote by "�" the index of the
leading element(s) of d; which can be expressed as d� = f� � g�; and kd� ; kf� ; kg� are
the relevant asymptotic orders. We will consider two scenarios:

S1: kd� < kf� and kg� ,
S2: kd� = kf� or kg� :

Under S1 the leading misspeci�ed component behaves as in C1, while under S2 the
behaviour of the leading misspeci�ed component is given by C2. Denote by âLS the
least squares estimator corresponding to the �tted model. Under FF misspeci�cation

f we will be partitioned as f 0(1�p) =
�
f 10(1�p1); f

20
(1�p2)

�
with f 2 being the components

of f that have not been correctly speci�ed. The leading element(s) of f 2 will be
denoted as f 2� and its asymptotic order is kf2� . The vector �o is also partitioned as

12



�o =
�
�10o(1�p1); �

20
o(1�p2)

�
, where �1o and �

2
o are the coe¢cients of f

1 and f 2 respectively.

Aslo ��o is de�ned by ��
0
o(1�p) =

�
�10o(1�p1); 0

0
(1�p2)

�
. Finally some further notation is

introduced by De�nition 3.1:

DEFINITION 3.1:
De�ne:
(i) The vectors �1, �2 and �3 are the following limits:

kg
kd�
(âLS � �o)

p! �1, under incorrect FF when S1 holds,
kg
kf2�

�
âLS � ��o

� p! �2, under incorrect FF when S2 holds,
kg
ks
âLS

p! �3, under no cointegration.

(ii) The vectors h �d(:)
0
(1�p), h(:)

0
�f2(1�p2) and the matrices

_h �d(:)(p�p), _h �f2(:)(p2�p2) by:

(nkd�)
�1Pn

t=1 dt
p!
R 1
0
h �d(V (r))dr;

(nkf2�)
�1Pn

t=1 f
2
t

p!
R 1
0
h �f2(V (r))dr;

(
p
nkd�)

�1Pn
t=1

_dt
p!
R 1
0
_h �d(V (r))dr;

(
p
nkf2�)

�1Pn
t=1

_ft
p!
R 1
0
_h �f2(V (r))dr:

(iii) The vectors ��1, ��2, ��3, �h1, �h2, �h3 and the matrices _H1, _H2, _H3, �
 by:

��
0
1 = (�

0
o;�� 01) ; ��

0
2 =

�
�20o ;�� 02

�
; ��

0
3 = (1;�� 03) ;

�h01 =
�
h0�d; h

0
g

�
; �h02 =

�
h0
�f2
; h0g

�
; �h03 =

�
hs; h

0
g

�
;

_H 0
1 =

�
_h0�d;
_h0g

�
; _H 0

2 =
�
_h0
�f2
; _h0g

�
; _H 0

3 =
�
_hs; _h

0
g

�
;

�
 = (
vw;
vv) :

The expressions in De�nition 3.1(i) characterise the limit behaviour of the LS estima-
tor under FF misspeci�cation and lack of cointegration. Explicite expressions for the
limits �1; �2 and �3 are given in the Appendix. It is apparent from De�nition 3.1(i)
that under incorrect FF, the slope estimators will not always converge to the para-
meter of interest. For instance, when S1 holds, an individual slope estimator, �̂LSi,
will converge to �oi only if gi dominates d� in terms of asymptotic order. Generally
under FF misspeci�cation one of the following holds: a) The estimator may converge
to the parameter of interest. b) It may converge to functionals of Brownian motion.
c) It may vanish i.e. converge to zero. d) It may be unbounded in probability.
Next, the limits of the covariance estimators under FF misspeci�cation and lack

of cointegration will be presented. Let K(s) = limn!1 (2�M)
�1PM

h=�M � (h=M) eihs

and K1(s) is its one-sided version. The limit behaviour of the kernel estimators under
the alternative hypothesis is given in the following result.
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LEMMA 3.2:
Let Assumption 2.1 hold. As n!1 we have:
(i) Under incorrect FF when S1 holds,

n1=2

Mkd�

̂vu

p! 2�K(0)
R 1
0
dV (r)�h01(V (r))

��1 + 
vv
R 1
0
_H 0
1(V (r))

��1dr;
n1=2

Mkd�
�̂vu

p! 2�K1(0)
R 1
0
dV (r)�h01(V (r))

��1 + 
vv
R 1
0
_H 0
1(V (r))

��2dr;
1

Mk2
d�

̂uu

p! 2�K(0)
R 1
0
��
0
1
�h1(V (r))�h

0
1(V (r))

��1dr:

(ii) Under incorrect FF when S2 holds,

n1=2

Mkf2�

̂vu

p! 2�K(0)
R 1
0
dV (r)�h02(V (r))

��2 + 
vv
R 1
0
_H 0
2(V (r))

��2dr;

n1=2

Mkf2�
�̂vu

p! 2�K1(0)
R 1
0
dV (r)�h02(V (r))

��2 + 
vv
R 1
0
_H 0
2(V (r))

��2dr;

1
Mk2

f2�

̂uu

p! 2�K(0)
R 1
0
��
0
2
�h2(V (r))�h

0
2(V (r))

��2dr:

(iii) Under no cointegration

n1=2

Mks

̂vu

p! 2�K(0)
R 1
0
dV (r)�h03(W (r); V (r))

��3 + �

R 1
0
_H 0
3 (W (r); V (r))

��3dr
n1=2

Mks
�̂vu

p! 2�K1(0)
R 1
0
dV (r)�h03(W (r); V (r))

��3 + �

R 1
0
_H 0
3 (W (r); V (r))

��3dr
1

Mk2s

̂uu

p! 2�K(0)
R 1
0
��
0
3
_H3 (W (r); V (r)) _H

0
3 (W (r); V (r))

��3dr:

The behaviour of the test statistics under the alternative is given by the following
result:

THEOREM 3.2:
Under incorrect FF or no cointegration as n!1 we have

P(CMn > An); P(CSn > Bn)! 1;

for any nonstochastic sequences An and Bn such that

An = o(n=M); Bn = o
�
(n=M)1=2

�
:

The divergence rates in both cases are bandwidth depended. For the �rst test, the
divergence rate is the same with the rate of the KPSS test and the RESET test of
Hong and Phillips (2004). The divergence rate of the CUSUM test is the same with
that reported by Xiao and Phillips (2002), when there is lack of cointegration in the
linear framework.
From the simulation study of Xiao and Phillips (2002) it is obvious that when

it comes to the choice of the bandwidth parameter, there is a trade-o¤ between
size and power. Andrews (1991) proposes an automatic bandwidth method where
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M = 1:447(�̂n)1=3, with �̂ = 4�̂=
�
1� �̂2

�2
and �̂ is the LS estimator from the resid-

uals autoregression. Methods like this one are inappropriate in our case. As Xiao
and Phillips (2002) point out these kind of procedures were developed for stationary
processes. The regression residuals are stationary only under the null hypothesis.
Under the alternative hypothesis they are not stationary. It is apparent from the
simulation results of Xiao and Phillips (2002) that when this bandwidth method is
used, the CUSUM test has no power. Xiao and Phillips (2002) suggest that under
the alternative of their testM � n. As the following result shows, this is true in here
as well.

LEMMA 3.3:
Let Assumption 2.1 hold with f; g and s having H 1-regular derivatives and M =�
�̂n
�1=3

. Then under incorrect FF or no cointegration we have

M = Op(n):

It is apparent from the limit expressions in De�nition 3.1 that if FF misspeci�ca-
tion is committed, the LS estimator will diverge or vanish as the sample size increases,
is some cases. Moreover under incorrect FF the long-run covariance estimator 
̂uu
diverges. Such kind of behaviour would indicate that the �tted model is not correctly
speci�ed. Therefore an informal test that can be easily implemented would be to esti-
mate the model for several sample sizes and check whether the slope and the variance
estimates behave in the way described above. Note that this kind of behaviour is not
evident to stationary models. For stationary models, the LS estimator will typically
converge to a �nite quantity. Moreover the variance estimator will be bounded in
probability (see White (1981)).

4 Simulation Evidence

In this section a Monte Carlo experiment is performed to asses the �nite sample prop-
erties of the CM, CS and DF tests. In particular, �rst the size properties of the CM
and CS tests are examined and secondly the ability of CM, CS and DF to detect lack
of cointegration and FF misspeci�cation. Clearly for CM and CS this corresponds
to the power of the tests. The DF test can be used as a linear cointegration test.
FF misspeci�cation and lack of cointegration in the wider, nonlinear sense, cannot
be rigorously embedded in the hypothesis structure of the test. Nonetheless it would
be desirable if in the presence of FF misspeci�cation, the DF test favoured the unit
root hypothesis, as this would be an indication that the regression residuals are non-
stationary and therefore the �tted model inadequate. For this reason, the frequency
which the DF test favours the unit root hypothesis, will be used as a measure of its
ability to detect incorrect FF or lack of cointegration in the nonlinear sense. We will
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conventionally refer to it as the "power" of the DF test. All the experiments use
1000 simulations and signi�cance level is set at 5%. The Barlett spectral window is
employed for the kernel estimators.
The �tted model used in the experiment is linear with a scalar covariate given by:

ŷt = âxt + ût:

For the data generating mechanism, a wide range of H -regular speci�cations including
threshold, polynomial, logarithmic and smooth transition models are considered. An
integrable speci�cation is also included in the experiment. Under lack of cointegration
and incorrect FF the data is generated by the speci�cations shown in Table A and
Table B respectively:

Table A: (yt = s(zt))

yt = zt (1) yt =
zt

log(1+jztj) (4)

yt = zt=
�
1 + jztj0:5

�
(2) yt = zt1fzt � 0g+ 1:3zt1fzt < 0g (5)

yt = sign(zt) jztj1:5 (3) yt = sign(zt) jztj0:75 (6)

Table B: (yt = f(xt) + ut)

yt = ln(1 + jxtj) + ut (10) yt = xt + jxtj0:5 + ut (70)

yt = 1:8xtIfxt � 0g+ 0:4xtIfxt < 0g+ ut (20) yt = sign(xt) jxtj1:5 + ut (80)
yt = xt + 1:8

xt
1+jxtj0:5

+ ut (30) yt = x2t + ut (90)

yt = xt + log(1 + jxtj) + ut (40) yt = sign(xt) jxtj1:25 + ut (100)
yt = xt log(1 + jxtj) + ut (50) yt = 0:5

�
n1=4 + n�1=4xt

�
If xtp

n
� 1g (110)

+x0:5t If xtp
n
> 1g+ ut

yt = xt + 1:8
xt

1+exp(�xt=
p
n�2)

+ ut (60) yt = exp(�x2t ) + ut (120)

The variables xt, zt and ut are constructed as follows:

ut =  ut�1 + �t;
�xt = vt, with vt =  vt�1 + �t;
�zt = wt, with wt = 0:3wt�1 + !t;

and
�
�t; �t+1; !t+1

�0
= r0t(1�3)A

0
(3�3), where

A =

0

@
1 0:2 0:1
0:3 2 0
0 0:1 1:2

1

A and rt � i:i:d: N(0; I).

As Xiao and Phillips (2002) point out, when the autoregressive parameters ( ) are
close to unity, the innovation errors become nearly integrated and this adversely
a¤ects the size of the test. Actually, the tests will overreject the null hypothesis.
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In order to investigate how sensitive the size of the tests is to the intensity of the
innovation errors, a wide range of values is used for the autoregressive parameters.
In particular,  = 0; 0:2; 0:4; 0:6; 0:8 and 0:9 has been chosen.
It is apparent from the theoretical results, that the performance of the tests de-

pends on the sample size and the bandwidth parameter. In particular to achieve
good size properties a large bandwidth parameter will be required, if the innovation
errors exhibit strong intensity. On the other hand a large bandwidth will adversely
a¤ect the power of the tests. In order to asses the extent of the trade o¤ between size
and power, two values for the bandwidth are considered: M1 = n1=5 and M2 = n1=3.
Moreover we will consider several sample sizes: n = 50; 100; 200; 300 and 500.
Table 1 shows the empirical size of the CM and CS tests for several sample sizes.

The �ndings are similar to those reported by Xiao and Phillips (2002). As seen in
Table 1, the size performance of the tests is good forM =M1 as long as  � 0:2, while
for M = M2 good performance is attained as long as  � 0:4. If the autoregressive
parameters are restricted to this range, the performance of both tests is comparable.
For larger autoregressive coe¢cients, severe overrejection of the null hypothesis occurs
with the CM test performing better.

Table 1: Correct FF, empirical size for CM & CS (5% level)

n = 100 n = 200
M1 M1 M2 M2 M1 M1 M2 M2

 CM CS CM CS CM CS CM CS
0 0:0290 0:0260 0:0270 0:0220 0:0290 0:0240 0:0380 0:0370
0.2 0:0440 0:0450 0:0430 0:0340 0:0560 0:0600 0:0510 0:0510
0.4 0:0980 0:0950 0:0620 0:0500 0:1010 0:1170 0:0710 0:0630
0.6 0:1850 0:1930 0:1120 0:0950 0:1800 0:2190 0:1060 0:0990
0.8 0:3440 0:4160 0:2180 0:2040 0:3620 0:4740 0:2070 0:2100
0.9 0:4700 0:5830 0:3440 0:3400 0:4880 0:6780 0:3330 0:3750

n = 300 n = 500
M1 M1 M2 M2 M1 M1 M2 M2

 CM CS CM CS CM CS CM CS
0 0:0260 0:0260 0:0300 0:0320 0:0420 0:0400 0:0480 0:0540
0.2 0:0500 0:0490 0:0480 0:0460 0:0630 0:0700 0:0570 0:0610
0.4 0:0920 0:0780 0:0650 0:0570 0:0880 0:1080 0:0680 0:0770
0.6 0:1460 0:1510 0:0910 0:0750 0:1560 0:1990 0:0930 0:1030
0.8 0:2870 0:3600 0:1790 0:1740 0:2920 0:4150 0:1740 0:1980
0.9 0:4340 0:6010 0:2990 0:3500 0:4490 0:6670 0:2820 0:3720

Tables 2 and 3 show the empirical power performance of the CM, CS and DF
i.e. the ability of the tests to detect lack of cointegration. Interestingly the DF
test performs very poorly in some cases. For certain nonlinearities the ability of the
DF test to detect lack of cointegration deteriorates as the sample size increases. The
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performance of the CS test is quite good for both choices of the bandwidth parameter,
while the CM test performs moderately well for large M .

Table 2: No Cointegration, empirical power for CM , CS & DF (M =M1, 5% level)

(1) (1) (1) (2) (2) (2) (3) (3) (3)
n CM CS DF CM CS DF CM CS DF
50 0:6180 0:6520 0:9660 0:6770 0:6880 0:3280 0:5830 0:6320 0:9930
100 0:7590 0:8660 0:9660 0:7840 0:8810 0:3010 0:7440 0:8670 1:0000
200 0:8390 0:9770 0:9900 0:8580 0:9810 0:2710 0:8260 0:9740 1:0000
300 0:8210 0:9630 0:9960 0:8470 0:9720 0:2640 0:8020 0:9630 1:0000
500 0:8620 0:9960 0:9940 0:8840 0:9930 0:2120 0:8490 0:9960 1:0000

(4) (4) (4) (5) (5) (5) (6) (6) (6)
n CM CS DF CM CS DF CM CS DF
50 0:6600 0:6840 0:4460 0:7830 0:6980 0:9470 0:6560 0:6860 0:8010
100 0:7760 0:8720 0:4020 0:8760 0:8830 0:9700 0:7740 0:8740 0:8300
200 0:8550 0:9780 0:4040 0:9300 0:9750 0:9810 0:8540 0:9800 0:8020
300 0:8420 0:9660 0:3950 0:9260 0:9710 0:9850 0:8400 0:9680 0:7730
500 0:8700 0:9930 0:3460 0:9480 0:9930 0:9880 0:8720 0:9940 0:7400

Table 3: No Cointegration, empirical power for CM , CS & DF (M =M2, 5% level)

(1) (1) (1) (2) (2) (2) (3) (3) (3)
n CM CS DF CM CS DF CM CS DF
50 0:5330 0:4900 0:9660 0:5880 0:5340 0:3280 0:5100 0:4660 0:9930
100 0:6440 0:6420 0:9660 0:6920 0:6810 0:3010 0:6190 0:6280 1:0000
200 0:7390 0:8360 0:9900 0:7700 0:8390 0:2710 0:7280 0:8210 1:0000
300 0:7450 0:8740 0:9960 0:7840 0:8760 0:2640 0:7290 0:8710 1:0000
500 0:7990 0:9390 0:9940 0:8250 0:9510 0:2120 0:7850 0:9350 1:0000

(4) (4) (4) (5) (5) (5) (6) (6) (6)
n CM CS DF CM CS DF CM CS DF
50 0:5720 0:5210 0:4460 0:5620 0:5080 0:9470 0:5700 0:5160 0:8010
100 0:6820 0:6660 0:4020 0:6700 0:6520 0:9700 0:6810 0:6660 0:8300
200 0:7630 0:8450 0:4040 0:7490 0:8390 0:9810 0:7650 0:8460 0:8020
300 0:7720 0:8770 0:3950 0:7530 0:8670 0:9850 0:7740 0:8750 0:7730
500 0:8170 0:9540 0:3460 0:8000 0:9390 0:9880 0:8180 0:9500 0:7400

The Monte Carlo results under FF misspeci�cation are presented in Tables 4
and 5. It is obvious that the performance of the DF test is very poor in most of the
cases under consideration. The CM test outperforms the CS test, when the regression
residuals are dominated by some component, u(xt), that is either positive or negative.
If u(:) is allowed to change sign, the CS test performs better despite the fact that
the CM test attains a better divergence rate. Clearly the larger the sample moment
is, the better the test performs. Now if the component u(:) is allowed to change
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sign, u(xt) will have the typical random walk type of behaviour. Lengthy periods
in which the term is positive, will alternate with lengthy periods in which the term
in negative, undermining the magnitude of the sample moment of the test. The CS
test is more adequate in this case. The CS test adjusts the summation horizon in a
way that maximises the sample moment and as result, better power performance is
attained. This is con�rmed by the simulation results. The underling principle behind
a MOSUM test that uses fully modi�ed residuals is similar to that of the CS test and
it is therefore expected that this kind of test will also perform well. The test statistic
of a MOSUM test involves a sum of regression residuals that belong to subsample
windows of prespeci�ed length and the window that maximises the sample moment
of the test will be eventually opted (see Xiao and Phillips (2002) for some further
discussion). Note that none of the tests are consistent when the true model is an
integrable transformation of a unit root process. The inconsistency of the DF test
can be explained by the results of Park and Phillips (1998). Moreover it is shown in
Kasparis (2004) that in this case the CM statistic is bounded in probability under the
alternative hypothesis. The regression residuals under this type of misspeci�cation
are driven by integrable components which are known to be of the same order of
magnitude as a stationary process (see Park and Phillips (1999)). The �uctuation in
the residuals under the alternative hypothesis is the same with that under the null
hypothesis and as result none of the two tests under consideration can pick up this
kind of misspeci�cation.

Table 4: Incorrect FF, empirical power for CM , CS & DF (M = M1, 5% level)

(10) (10) (10) (20) (20) (20) (30) (30) (30)
n CM CS DF CM CS DF CM CS DF
50 0:4230 0:3570 0:1180 0:4010 0:3420 0:2820 0:1130 0:1000 0:0400
100 0:7620 0:6640 0:0090 0:5610 0:4990 0:2640 0:2510 0:2310 0
200 0:9660 0:8860 0 0:6760 0:6110 0:2600 0:4560 0:4770 0
300 0:9940 0:9490 0 0:7050 0:6560 0:2630 0:5340 0:5890 0
500 1:0000 0:9910 0 0:7820 0:7240 0:2450 0:6520 0:7730 0

(40) (40) (40) (50) (50) (50) (60) (60) (60)
n CM CS DF CM CS DF CM CS DF
50 0:4230 0:3570 0:1180 0:5000 0:3870 0:6520 0:2460 0:1920 0:1810
100 0:7620 0:6640 0:0090 0:6210 0:6550 0:6240 0:4050 0:3640 0:1470
200 0:9660 0:8860 0 0:7050 0:8460 0:6430 0:6160 0:6120 0:1380
300 0:9940 0:9490 0 0:7150 0:8740 0:6540 0:6880 0:7090 0:1550
500 1:0000 0:9910 0 0:7780 0:9440 0:6680 0:8030 0:8350 0:1410
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(70) (70) (70) (80) (80) (80) (90) (90) (90)
n CM CS DF CM CS DF CM CS DF
50 0:5480 0:4530 0:2040 0:5280 0:4460 0:8010 0:7160 0:6170 0:9970
100 0:8530 0:7510 0:0650 0:6430 0:6930 0:8520 0:8160 0:8440 1:0000
200 0:9800 0:9230 0:0080 0:7070 0:8690 0:9020 0:8890 0:9470 1:0000
300 0:9960 0:9650 0:0010 0:7230 0:8840 0:9340 0:8590 0:9460 1:0000
500 1:0000 0:9970 0 0:7840 0:9520 0:9560 0:9000 0:9890 1:0000

(100) (100) (100) (110) (110) (110) (120) (120) (120)
n CM CS DF CM CS DF CM CS DF
50 0:3470 0:2440 0:2110 0:0870 0:6300 0:5750 0:0880 0:0660 0:0140
100 0:5590 0:5140 0:1760 0:2230 0:7810 0:5040 0:1050 0:0890 0
200 0:6690 0:7810 0:1870 0:4070 0:9300 0:4550 0:0940 0:0920 0
300 0:6800 0:8400 0:2180 0:4640 0:9750 0:4210 0:0810 0:0710 0
500 0:7600 0:9200 0:2610 0:4790 0:9950 0:3850 0:1030 0:0910 0

Table 5: Incorrect FF, empirical power for CM , CS & DF (M = M2, 5% level)

(10) (10) (10) (20) (20) (20) (30) (30) (30)
n CM CS DF CM CS DF CM CS DF
50 0:3770 0:3120 0:1180 0:3730 0:3070 0:2820 0:0890 0:6500 0:0400
100 0:7020 0:5920 0:0090 0:5250 0:4550 0:2640 0:2170 0:1660 0
200 0:9520 0:8370 0 0:6510 0:5680 0:2600 0:4160 0:3880 0
300 0:9900 0:9250 0 0:6910 0:6280 0:2630 0:4960 0:3880 0
500 1:0000 0:9820 0 0:7620 0:6920 0:2450 0:5990 0:6680 0

(40) (40) (40) (50) (50) (50) (60) (60) (60)
n CM CS DF CM CS DF CM CS DF
50 0:3770 0:3120 0:1180 0:4300 0:2850 0:6520 0:1950 0:1480 0:1810
100 0:7020 0:5920 0:0090 0:5370 0:4640 0:6240 0:3260 0:2880 0:1470
200 0:9520 0:8370 0 0:6150 0:6530 0:6430 0:5480 0:4990 0:1380
300 0:9900 0:9250 0 0:6240 0:7280 0:6540 0:6390 0:6220 0:1550
500 1:0000 0:9820 0 0:6890 0:8240 0:6680 0:7570 0:7630 0:1410

(70) (70) (70) (80) (80) (80) (90) (90) (90)
n CM CS DF CM CS DF CM CS DF
50 0:5010 0:4090 0:2040 0:4540 0:3030 0:8010 0:6320 0:4740 0:9970
100 0:8080 0:6740 0:0650 0:5420 0:4830 0:8520 0:7290 0:6330 1:0000
200 0:9710 0:8790 0:0080 0:6140 0:6460 0:9020 0:8070 0:7910 1:0000
300 0:9940 0:9510 0:0010 0:6290 0:7300 0:9340 0:8080 0:8390 1:0000
500 1:0000 0:9870 0 0:6970 0:8230 0:9560 0:8500 0:9120 1:0000
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(100) (100) (100) (110) (110) (110) (120) (120) (120)
n CM CS DF CM CS DF CM CS DF
50 0:2880 0:1710 0:2110 0:0680 0:5950 0:5750 0:0500 0:0410 0:0140
100 0:4700 0:3820 0:1760 0:1700 0:7270 0:5040 0:0480 0:0410 0
200 0:5800 0:5970 0:1870 0:3620 0:8920 0:4550 0:0600 0:0600 0
300 0:6030 0:6940 0:2180 0:4400 0:9580 0:4210 0:0540 0:0510 0
500 0:6840 0:8070 0:2610 0:4620 0:9900 0:3850 0:0600 0:0680 0

5 Conclusion

We have considered two tests as means for testing for functional form in long-run
cointegrating relations. The �rst test resembles the Bierens (1990) test for functional
form. The second test is a cointegration test. A semiparametric approach was followed
to induce limit distributions free of nuisance parameters. The limit distribution of the
CM statistic is chi-square, while the limit distribution of the CS test statistic involves
functionals of Brownian motion and is speci�c to the �tted model. We have shown
that both test statistics diverge under FF misspeci�cation or lack of cointegration and
explicit asymptotic power rates have been obtained. Divergence rates are bandwidth
dependent and are n=M for the �rst test and

p
n=M for the second.

The Monte Carlo experiment carried out here suggests that both tests perform
well in terms of size and power. For most type of nonlinearities considered in our
simulation study, the CUSUM test performs better in terms of power than the CM
test, particularly when large bandwidth parameters are used in the estimation of long-
run covariance matrices. The simulation study in Hong and Phillips (2004) seems to
suggest that the performance of the RESET test is comparable to performance of the
tests considered here.
A �nding of this paper that is of importance to empirical work, is that the DF

test which is widely used as a cointegration test, performs very poorly under FF
misspeci�cation. If the DF test is applied to the residuals of a model misspeci�ed
in terms of FF, in many cases it will suggest that the residual process is stationary,
when in fact it is driven by nonstationary components. Surprisengly, the DF test
may also perform quite poorly under lack of cointegration, if the spurious regression
is nonlinear. The work of Park and Phillips (1998) provides some useful theoretical
results that can justify this.
The present theoretical framework is by no means exhaustive. A lot of speci�-

cations that are appealing for applied econometric work are not included. In order
to handle the more complicated asymtotic theory resulting from the introduction
of weak dependence in the error structure of the model, the theoretical framework
has been con�ned to continuously di¤erentiable transformations. Moreover a lot of
speci�cations of interest are nonlinear in parameters. Extentions to these directions
may prove quite challenging. Some extensions to models nonlinear in parameters, are
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possible and are under development by the author.
Appart from the CM, CS and RESET tests, several other FF and cointegration

tests that have been developed over time that may prove to be adequate means of
testing for FF in a nonstationary framework. For instance the simulation results
of Kim, Lee and Newbold (2004) suggest that various FF tests can detect lack of
cointegration. It will not be surprising if these tests can detect FF misspeci�cation
as well. There are many forms in which FF misspeci�cation can manifest itself and
therefore a lot of future work will be required to asses the adequacy and relative
performance of all these tests.

6 Appendix

LEMMA A:
Let Assumption 2.1 hold and f H 1-regular. Then for jhj � nb, 0 � b < 1, we have
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a:s:! 0 as n!1;

given condition (iii) of De�nition 2.2 and the fact that E kvt~"t�1k is bounded by a
�nite constant that can be easily checked. Therefore we have shown that
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Now given the H 1-regularity of f and the fact that E
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Next we will consider the case 0 < h < nb. The proof for �nb < h < 0 is the same
and therefore will be omitted. For 1 � t; t+ h � n, note that
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k�1gp
n

nX

t=1

g(xt)ut �
k�1gp
n

nX

t=1

g(xt)v
0
t
̂

�1
vv 
̂vu:

The �rst term

k�1gp
n

nX

t=1

g(xt)ut =

Z 1

0

hg (V (r)) dU(r) +

Z 1

0

_hg(V (r))dr�vu + op(1);

by Theorem 2.1(i). The second term on the right hand side above is

k�1gp
n

nX

t=1

g(xt)v
0
t
̂

�1
vv 
̂vu

=

Z 1

0

hg (V (r)) d
�
V 0(r)
�1vv 
vu

�
+

Z 1

0

_hg(V (r))dr�vv

�1
vv 
vu + op(1);

by Theorem 2.1 (ii). Hence

k�1gp
n

nX

t=1

g(xt)u
+
t

p!
Z 1

0

hg (V (r)) dU
+(r) +

Z 1

0

_hg(V (r))dr
�
�vu � �vv
�1vv 
vu

�
(A3)

In view of (A1), (A2) and (A3) the result follows.�

PROOF OF THEOREM 3.1:
For CM note that

CMn =
[
Pn

t=1 (g
0
t (â� ao)� ut + v0t


�1
vv 
vu)]

2

(
uu � 
uv
�1vv 
vu)
Pn

t=1

h
Â0nB̂

�1
n gt � 1

i2 + op(1)
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=

h
1
n

Pn
t=1 g

0
tk
�1
g

�
1
n
k�1g

Pn
i=1 gig

0
ik
�1
g

��1
k�1g

1p
n

hPn
j=1 gju

+
j � _gn�̂

+
vu

i
� 1p

n

Pn
t=1 (ut + v0t


�1
vv 
vu)

i2

(
uu � 
uv
�1vv 
vu) 1n
Pn

t=1

h
Â0nk

�1
g kgB̂�1

n kgk�1g gt � 1
i2

=

hR 1
0
[A0B�1hg(V (r))� 1] dU+(r)

i2

(
uu � 
uv
�1vv 
vu)
R 1
0
[A0B�1hg(V (r))� 1]2 dr

+ op(1);

where the last line is due to Theorem 2.1. In view of the fact that V and U+ are
independent the result follows.
For CS with 0 � s � 1;

CSn =
sup0�s�1

1p
n

���
P[sn]

t=1 (g
0
t (â� ao)� ut + v0t


�1
vv 
vu)

���
p

uu � 
uv
�1vv 
vu

+ op(1)

The numerator of the above expression

sup
0�s�1

������

1

n

X[sn]

t=1
g0tk

�1
g

"
1

n
k�1g

nX

i=1

gig
0
ik
�1
g

#�1
k�1g

1p
n

"
nX

j=1

gju
+
j � _gn�̂

+
vu

#

� 1p
n

X[sn]

t=1

�
ut + v0t


�1
vv 
vu

�
������

= sup
0�s�1

�� �U(s)
��+ op(1)

by Theorem 2.1 and the result follows.�

PROOF OF LEMMA 3.2:
We start with the proof of part (i). The arguments we use are similar to the ones of
Phillips (1991). Under incorrect FF the LS estimator can be written as

kg
kd�

(âLS � �o) =

"
1

n
k�1g

nX

t=1

gtg
0
tk
�1
g

#�1
1

nkd�

"
nX

t=1

gtd
0
t�o + k�1g

nX

t=1

gtut

#

Hence by Theorem 2.1

kg
kd�

(âLS � �o) =

�Z 1

0

hg (V (r))h
0
g (V (r)) dr

��1 Z 1

0

hg (V (r))h
0
d� (V (r)) �odr+Op(1=

p
nkd�)

= �1 + op(1):

De�ne the normalising matrixNd�;n =

�
Ip 0

0 kg=kd�

�
. In what follows the regression

residuals (from OLS estimation) will be written in the following form:

ût = f 0t�o � g0tâ+ ut

= d0t�o � g0t (â� �o) + ut
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Hence

n1=2

Mkd�

̂vu =

1

Mkd�

MX

h=�M
�

�
h

M

� 
1

n

nX

t=1

vt
�
d0t+h g0t+h

�
N�1
d�;nNd�;n

�
�o

� (â� �o)

�!

+
n1=2

Mkd�

vu + op(1)

= 2�K(0)

Z 1

0

dV (r)
�
h0d�(V (r))�o � h0g(V (r))�1

�

+
vv

Z 1

0

h
_h0d�(V (r))�o � _h0g(V (r))�1

i
dr +

n1=2

Mkd�

vu + op(1)

= 2�K(0)

Z 1

0

dV (r)�h01(V (r))
��1 + 
vu

Z 1

0

_H 0
1(V (r))

��1dr +
n1=2

Mkd�

vu + op(1);

where the second equality is by Theorem 2.1 with nb =M . Therefore


̂vu = Op

�
Mkd�

n1=2

�
+Op(1): (A4)

Now using similar arguments as above it turns out that

n1=2

Mkd�
�̂vu = 2�K1(0)

Z 1

0

dV (r)�h01(V (r))
��1 +
vv

Z 1

0

_H 0
1(V (r))

��dr+
n1=2

Mkd�
�vu + op(1)

So,

�̂vu = Op

�
Mkd�

n1=2

�
(A5)

Next we will �nd the order of 
̂uu. Note that


̂uu =
MX

h=�M
�

�
h

M

�
Cuu(h)

and

1

k2d�
Cuu(h) =

1

nk2d�

nX

t=1

�
�o � (â0 � �0o)

kg
kd�

�
N�1
d�;n

�
dtd

0
t+h dtg

0
t+h

gtd
0
t+h gtg

0
t+h

�
N�1
d�;n

�
�o

� kg
kd�
(â� �o)

�

+
1

nk2d�

nX

t=1

�
�0o � (â0 � �0o)

kg
kd�

�� dt
gt

�
ut+h+

1

nk2d�

nX

t=1

�
d0t+h g0t+h

�� �o
� (â� �o)

�
ut

=

Z 1

0

��
0
1
�h1(V (r))�h

0
1(V (r))

��1dr

+
1p
nkd�

�
2

Z 1

0

��
0
1
�h1(V (r))dU(r) +

Z 1

0

��
0
1
_H1(V (r))dr (�vu(�h) + �vu(h))

�
+ op(1);
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where the last line is due to Lemma A and Theorem 2.1. Hence,

1

Mk2d�

̂uu = 2�K(0)

Z 1

0

��
0
1
�h1(V (r))�h

0
1(V (r))

��1dr +Op

�
1

M
p
nkd�

�

Hence we have


̂uu = Op
�
Mk2d�

�
+Op

�
kd�p
n

�
= Op

�
Mk2d�

�
(A6)

Consequently under incorrect FF (A4) and (A6) give


̂uu � 
̂uv
̂�1vv 
̂vu = Op
�
Mk2d�

�
+Op

�
M2k2d�

n

�

= Op
�
Mk2d�

�
when M=n! 0 as n!1: (A7)

For (ii) without loss of generality partition g0 = (f 10; g20) and kg = diag (kf1 ; kg2).
Using results for partitioned matrices it follows after some lengthy but straightforward
algebraic manipulations that

kg
kf2�

�
âLS � ��o

�
=

�
P 1n
P 2n

�
�2o +Op(1=kf2�

p
n)

where P 1n
p! P 1 and P 2n

p! P 2 with

P 1 =

�R 1
0
hf2�(V )hf1(V )

0 �
R 1
0
hf2�(V )hg2(V )

0
�R 1

0
hg2(V )hg2(V )

0
��1 R 1

0
hg2(V )hf1(V )

0
�
(P 3)

�1
;

P 2 =
R 1
0
hf2�(V )hg2(V )

0
�R 1

0
hg2(V )hg2(V )

0
��1

+

�R 1
0
hf2�(V )hg2(V )

0
�R 1

0
hg2(V )hg2(V )

0
��1 R 1

0
hg2(V )hf1(V )

0 �
R 1
0
hf2�(V )hf1(V )

0
�

� (P 3)�1
R 1
0
hf1(V )hg2(V )

0
�R 1

0
hg2(V )hg2(V )

0
��1

and

P 3 =
R 1
0
hf1(V )hf1(V )

0 �
R 1
0
hf1(V )hg2(V )

0
�R 1

0
hg2(V )hg2(V )

0
��1 R 1

0
hg2(V )

0hf1(V ):

Setting � 02 = �20o
�
P 1

0

; P 20
�
the LS residuals

1

nkf2�

Xn

t=1
(yt � g(xt)

0âLS) =
1

nkf2�

Xn

t=1
f 0t�o �

1

nkf2�

Xn

t=1
g(xt)

0âLS + op(1)

=
1

nkf2�

Xn

t=1
f 20t �

2
o �

1

n

Xn

t=1
g(xt)

0k�1g
kg
kf2�

�
âLS � ��o

�
+ op(1)

=

Z 1

0

�
h0f2� (V (r)) �o � h0g (V (r)) �2

�
dr + op(1) =

Z 1

0

�h02 (V (r))
��2dr + op(1):
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Now similar arguments as those above give

n1=2

Mkf2�

̂vu = 2�K(0)

Z 1

0

dV (r)�h02(V (r))
��2+
vv

Z 1

0

_H 0
2(V (r))

��2dr+Op

�
1

M
p
nkf�

�
;

n1=2

Mkf2�
�̂vu = 2�K1(0)

Z 1

0

dV (r)�h02(V (r))
��2+
vv

Z 1

0

_H 0
2(V (r))

��2dr+Op

�
1

M
p
nkf�

�

and

1

Mk2f2�

̂uu = 2�K(0)

Z 1

0

��
0
2
�h2(V (r))�h

0
2(V (r))

��2dr +Op

�
1

M
p
nkf�

�
:

The proof for (iii) is similar to that of (i) and (ii) and therefore omitted.�

PROOF OF THEOREM 3.2:
We will prove the result under incorrect FF when S1 holds. The proof for the other
cases is similar and will be omitted. Note that the FM-LS estimator

â =

"
nX

t=1

g(xt)g
0(xt)

#�1 " nX

t=1

g(xt)y
+
t � _gn�̂

+
vu

#

;

rearranging

kg
kd�

(â� �o) =

"
1

n
k�1g

nX

t=1

gtg
0
tk
�1
g

#�1

� 1

nkd�
k�1g

"
nX

t=1

gtd
0
t�o +

nX

t=1

gtut �
nX

t=1

gtv
0
t
̂

�1
vv 
̂vu � _gn�̂

+
vu

#

= �1 +Op

�
1p
nkd�

�

where we have used the fact that �̂vu; 
̂vu = Op

�
Mkd�p

n

�
(equations (A4),(A5)).

Recall that the CM test statistic is

CMn =

hPn
t=1

�
y+t � g(xt)

0â� v0t
̂
�1
vv 
̂vu

�i2

�

̂uu � 
̂uv
̂�1vv 
̂vu

�Pn
t=1

h
Â0nB̂

�1
n g(xt)� 1

i2 ;

Consider �rst the numerator rescaled by (nkd�)
2:

�
1

nkd�

Xn

t=1

n�
y+t � g(xt)

0â
�
� v0t
̂

�1
vv 
̂vu

o�2

=

�
1

nkd�

Xn

t=1

��
d0t g0t

�
N�1
d�;nNd�;n

�
�o

� (â� �o)

�
+
�
ut � v0t
̂

�1
vv 
̂vu

���2

=

�Z 1

0

�h01(V (r))
��1dr +Op

�
1p
nkd�

�
+Op

�
M

n

��2
: (A8)
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Now the the denominator rescaled by n

�

̂uu � 
̂uv
̂�1vv 
̂vu

� 1
n

Xn

t=1

h
Â0nB̂

�1
n g(xt)� 1

i2

=
�

̂uu � 
̂uv
̂�1vv 
̂vu

�Z 1

0

�
A0B�1hg(V (r))� 1

�2
dr + op(1)

= Op
�
Mk2d�

�
, (A9)

where the last lines due to equation (A7). In view of (A8) and (A9)

CMn � (n=M)
�Z 1

0

�h01(V (r))
��1dr

�2
;

which gives the requisite result.
For CS test note that the numerator of test statistic rescaled by

p
nkd�

max1�k�n
nkd�

����
Xk

t=1

��
d0t g0t

�
N�1
d�;nNd�;n

�
�o

� (â� �o)

�
+
�
ut � v0t
̂

�1
vv 
̂vu

������

= sup
0�s�1

����

Z s

0

�h01(V (r))
��1dr +Op

�
1p
nkd�

�
+Op

�
M

n

����� :

The denominator rescaled by
p
n is

r�

̂uu � 
̂uv
̂�1vv 
̂vu

�
=n = Op

�p
Mkd�

�
:

Therefore

CSn � (n=M)1=2 sup
0�s�1

����

Z s

0

�h01(V (r))
��1dr;

����

which completes the proof.�

PROOF OF LEMMA 3.3:
We will show that the result under FFM when C1 holds. The proof for the

other cases is similar and therefore omitted. Denote by u(xt) the regressions resid-
uals from FM-LS estimation and without loss of generality assume that xt is scalar.
From the proof of Lemma 3.2 (equation (12)) we have that (nkd)

�1Pn
t=1 u(xt) =R 1

0
�h01(V (r))

��1dr+ op(1) =
R 1
0
hu(V (r))dr+ op(1) and similarly de�ne _u(xt), �u(xt), _hu

and �hu. First consider

�̂2 � 1 =
(
Pn

t=2 u(xt)u(xt�1))
2 � (

Pn
t=2 u(xt�1)

2)
2

f
Pn

t=2 u(xt�1)
2g2

=
fPn

t=2 u(xt) (u(xt) + u(xt�1))g f
Pn

t=2 u(xt) (u(xt)� u(xt�1))g
fPn

t=2 u(xt�1)
2g2
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Hence by Lemma A and Theorem 2.1 we have

p
nkd
kd

�
�̂2 � 1

�
�

�Z 1

0

hu (V (r))
2 dr

��1
�

�Z 1

0

hu(V (r))
2dV (r) +

Z 1

0

�
_hu(V (r))

2dr + hu(V (r))�hu (V (r))
�
dr�vv

�
:

Since kd=k _d =
p
n, �

�̂2 � 1
�2
= Op(1=n

2):

Hence
�̂2=
�
�̂2 � 1

�2
= Op(n)

and therefore �
�̂n
�1=3

= Op(n);

as required.�
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