
Sketching Sampled Data Streams

Florin Rusu1, Alin Dobra2

CISE Department

University of Florida

Gainesville, FL, USA
1
frusu@cise.ufl.edu

2
adobra@cise.ufl.edu

Abstract—Sampling is used as a universal method to reduce
the running time of computations – the computation is performed
on a much smaller sample and then the result is scaled to
compensate for the difference in size. Sketches are a popular
approximation method for data streams and they proved to be
useful for estimating frequency moments and aggregates over
joins. A possibility to further improve the time performance of
sketches is to compute the sketch over a sample of the stream
rather than the entire data stream.

In this paper we analyze the behavior of the sketch estimator
when computed over a sample of the stream, not the entire
data stream, for the size of join and the self-join size problems.
Our analysis is developed for a generic sampling process. We
instantiate the results of the analysis for all three major types of
sampling – Bernoulli sampling which is used for load shedding,
sampling with replacement which is used to generate i.i.d.
samples from a distribution, and sampling without replacement
which is used by online aggregation engines – and compare these
particular results with the results of the basic sketch estimator.
Our experimental results show that the accuracy of the sketch
computed over a small sample of the data is, in general, close to
the accuracy of the sketch estimator computed over the entire
data even when the sample size is only 10% or less of the dataset
size. This is equivalent to a speed-up factor of at least 10 when
updating the sketch.

I. INTRODUCTION

Data streaming has received a lot of attention from the

research community in the last decade. The requirement to

process fast data streams motivates the need for approximation

methods that make use of both small space and small time.

AGMS sketches [1], [2] and their improved variant F-AGMS

sketches [3], [4] proved to be a viable solution for estimating

aggregates over joins. The main strengths of the sketching

techniques are the simple and fast update procedure, the small

memory requirement, and provable error guarantees. When

the data streams that need to be processed are extremely

fast, for example in the case of networking data or large

datasets streamed over the Internet, it is desirable to further

reduce the update time of sketches in order to achieve the

required processing rates. Sampling is a universal method for

data reduction and, in principle, it can be used to reduce

the amount of data that needs to be sketched. If samples are

sketched instead of the original data, an immediate update time

reduction results. This is similar to the existing load shedding

techniques employed in data stream processing engines [5].

The main concern when samples rather than the original data

are sketched is how to extend the error guarantees sketches

provide to this new situation. The formulas resulting from such

an analysis could be used to determine how aggressive the load

shedding can be without a significant loss in the accuracy of

the sketch over samples estimator.

A seemingly unrelated, but, as shown in the paper, techni-

cally related, problem is analyzing streams of samples from

unknown distributions. Samples from unknown distributions

– the so called i.i.d. samples – are the input to most of the

online data-mining algorithms [6]. In this case the samples

are not used as a data reduction technique, but rather they are

the only information available about the unknown distribution.

A fundamental problem in this context is how to characterize

the unknown distribution using only the samples. This is one

of the fundamental problems in statistics [7]. If the samples

are streamed, as is the case in online data-mining, the aim

is to characterize the unknown distribution by using small

space only, thus making sketches a natural candidate for

computations that involve aggregates. It is a simple matter to

use sketches in order to estimate aggregates over the samples.

If predictions about the unknown distribution need to be

made, the problem is significantly more difficult. Interestingly,

this problem is mathematically similar to the load shedding

problem in which sampling is used to reduce the update time

of sketching. A third problem is sketching tuples that are

processed by an online aggregation engine in order to compute

statistics useful for decision making [8], [9].

In this paper we analyze the sketch over samples estimator

for generic sampling. Then we instantiate the results for three

different types of sampling. Our technical contributions are:

• We provide a generic analysis of the sketch over samples

estimator. The analysis consists in expressing the first

two frequency moments of the estimator in terms of the

moments of the sampling frequency random variables.

• We instantiate the results for sketching Bernoulli samples.

This immediately indicates how random load shedding

for sketching data streams behaves.

• We instantiate the generic analysis for sketching samples

with replacement from a large population. The analysis

generalizes to sketching i.i.d. samples from an unknown

distribution. The ability to sketch i.i.d. data is important

if sketches are to be used for data-mining applications.

• We instantiate the generic analysis for sketching samples

without replacement. Such samples are processed by

online aggregation engines. By sketching the samples,



important statistics can be derived with little computa-

tional overhead.

• We present empirical evidence that the analysis is neces-

sary since the error of the sketch over samples estimator

is not simply the sum of the errors of the two individual

estimators. The interaction, which is predicted by the

analysis, plays a major role. The experiments also point

out that in the majority of the cases a 10% sample results

in minimal error degradation – the sketching of streams

can thus be sped-up by a factor of 10.

In the rest of the paper, we introduce the formal problem

in Section II. Section III gives an overview on sampling

while Section IV introduces sketches. The formal analysis

of the combined sketch over samples estimator is detailed

in Section V. We discuss possible applications of sketching

sampled data in Section VI. The empirical evaluation of

the combined estimator is presented in Section VII, while

Section VIII concludes the paper.

Related Work

There exists a large body of work on approximate query

processing methods. The idea of combining two estimators

to capitalize on the strengths of both is not new. F-AGMS

sketches [3] are essentially a combination of random his-

tograms and AGMS sketches. [10] presents a method to build

incremental histograms from samples. To the best of our

knowledge, sketching and sampling have not been combined

in a principled fashion before. The main difficulty in charac-

terizing sketches over samples is the fact that the sampling

analysis [8], [11] is performed in the tuple domain while the

sketch analysis [1] is performed in the frequency domain. This

is the first obstacle we overcome in this paper. The work on

sketching probabilistic data streams [12], [13] is somehow

similar to our work. The important difference is the fact that

sampling is part of the estimate in our work while it represents

only a way to interpret the probabilistic data in the related

work. The results in [12] do not characterize the sketch over

sample estimator but approximate the probabilistic aggregates

using sketches. The only overlap in terms of analysis seems

to be the computation of the expected value of sketch over

samples for the second frequency moment computation in [13].

[14] presents an alternative method to improve the sketching

rate of a data stream by deterministically skipping stream

items. In our work the items that are sketched are randomly

selected through a sampling process.

II. PRELIMINARIES

The general problem we discuss throughout the paper is

how to approximate the size of join of two relations and the

self-join size or second frequency moment of a relation. Let

F and G be two streaming relations, each having a single

attribute A, with domain I . Furthermore, let fi and gi be the

frequency of the value i in F and G, respectively. With this,

the size of join of relations F and G can be written as the

dot-product of their frequency vectors:

|F ⋊⋉A G| =
∑

i∈I

figi (1)

When relations F and G are identical, the quantity
∑

i∈I f2
i

is known as the self-join size of F .

In order to compute the size of join exactly, the frequency

vectors of the two relations have to be stored in full. This re-

quires space proportional to the domain of the joining attribute

A, which is infeasible for large domains, e.g., |I| = 264. Thus,

randomized solutions with reduced space requirements and

provable error guarantees have been proposed. The standard

techniques [7], [15] to derive error guarantees or confidence

intervals for an estimate is to compute the expected value and

the variance and then to use either distribution-independent

bounds given by Chernoff’s and Chebyshev’s inequalities, or

to use distribution-dependent bounds. In the latter case, usually

the Central Limit Theorem or one of its generalizations is used

to argue that the distribution of the estimate has a particular

shape, and then error bounds based on the assumed distribution

with the same expected value and variance are computed. In

order to simplify the exposition, we provide results in the form

of expected values and variances throughout the paper. Actual

error guarantees can be obtained straightforwardly using the

mentioned techniques.

III. SAMPLING

Sampling as an approximation technique consists in obtain-

ing samples F ′ and G′ from relations F and G, respectively,

computing the size of join aggregate over the samples, and

applying a correction to ensure that the sampling estimator is

unbiased. This method is generic and applies to all types of

sampling. To simplify the theoretical exposition, we keep the

treatment of sampling as generic as possible.

In Section II we expressed the size of join aggregate as a

function of fi and gi, the frequencies of value i of the join

attribute in relations F and G, respectively. If we define f ′
i

and g′i to be the frequencies of i in F ′ and G′, respectively,

the size of join of the sample relations is:

|F ′
⋊⋉A G′| =

∑

i∈I

f ′
ig

′
i (2)

f ′
i and g′i are random variables that depend on the type

of sampling and the parameters of the sampling process.

Interestingly, a large part of the characterization of sampling

can be carried out without specifying the type of sampling.

This is also true for sketches over samples in Section V.

A. Generic Sampling

In general, |F ′
⋊⋉A G′| is not an unbiased estimator for

the size of join |F ⋊⋉A G|. Fortunately, in the majority of

the cases, a constant correction that scales for the difference

in size between the samples and the original relations can

be made to obtain an unbiased estimator. If we define the

estimator as X = C
∑

i∈I f ′
ig

′
i, where C is the scaling factor,

we can determine the value of C such that X is unbiased. In



order to derive error bounds for the estimator, the expectation

E [X] and the variance Var [X] have to be computed. It turns

out that expressions for E [X] and Var [X] can be written for

generic sampling in terms of the moments of the frequency

random variables f ′
i and g′i. There are two distinct cases that

need separate treatment. The first case is when relations F and

G are different and the samples are obtained independently

from the two relations. The second case is when F and G

are identical, thus only one sample is available. This situation

arises in the case of self-join size.

When F ′ and G′ are obtained independently, the random

variables f ′
i and g′i are also independent.

Proposition 1 (Size of Join): Let X = C
∑

i∈I f ′
ig

′
i be the

estimator for the size of join defined over the generic samples

F ′ and G′. Then:

E [X] = C
∑

i∈I

E [f ′
i ]E [g′i]

Var [X] =

C2





∑

i∈I

∑

j∈I

E
[

f ′
if

′
j

]

E
[

g′ig
′
j

]

−

(

∑

i∈I

E [f ′
i ]E [g′i]

)2




(3)

When F and G are identical and only the sample F ′ is

available, the random variables f ′
i and g′i are also identical.

Proposition 2 (Self-Join Size): Let X = C
∑

i∈I f ′2
i be the

estimator for the self-join size defined over the generic sample

F ′. Then the expectation and the variance of X are given by:

E [X] = C
∑

i∈I

E
[

f ′2
i

]

Var [X] = C2





∑

i∈I

∑

j∈I

E
[

f ′2
i f ′2

j

]

−

(

∑

i∈I

E
[

f ′2
i

]

)2




(4)

A specific type of sampling determines the values of the

expectations that appear in the formulas. These expectations

are moments of the frequency random variables. They can be

derived from the moment generating function corresponding to

the sampling process. For the types of sampling we consider

in this paper the moment generating function is well known

(see for example [16]). Deriving final formulas for E [X]
and Var [X] and determining the constant C might seem just

a matter of plugging in these quantities for a specific type

of sampling, but the actual process is intricate because the

frequency moments have to be separately computed before

the algebraic manipulations are carried out.

The advantage of analyzing sampling in the frequency

domain, as we do in this section, is that it allows the analysis

to be extended to sketches over samples. Sampling estimators

like the ones considered here have been analyzed in the

published literature (the theory in [9] provides the analysis

for all types of simple uniform sampling and for an arbitrary

number of relations), but the analysis is in the tuple domain

not the frequency domain. Interestingly, the analysis in the

frequency domain is simpler than the analysis in the tuple

domain since, as we show in this paper, the frequency random

variables have easily identifiable distributions for which the

moment generating functions are available. Deriving formulas

for expected value and variance becomes just a matter of

carrying the necessary algebraic manipulations.

We consider three types of sampling: Bernoulli sampling,

sampling with replacement, and sampling without replace-

ment. We derive the formulas for expectation and variance as

a function of the sampling frequencies both for sampling and

for sketching over samples (Section V). This parallel treatment

simplifies the interpretation of the complex results obtained for

sketches over samples.

B. Bernoulli Sampling

When the sampling process is Bernoulli, each tuple in F

and G is selected independently in the sample F ′ and G′ with

probability p or q, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, respectively. Then,

f ′
i and g′i are independent binomial random variables [16],

f ′
i = Binomial(fi, p) and g′i = Binomial(gi, q), respectively,

with expected values:

E [f ′
i ] = pfi, E [g′i] = qgi (5)

The scaling factor for the size of join estimator is in this

case C = 1
pq

. The expectation and the variance for Bernoulli

sampling can be derived in a straightforward manner using

the frequency moments of the binomial random variables

corresponding to the sampling frequencies.

Proposition 3 (Size of Join): Let X = 1
pq

∑

i∈I f ′
ig

′
i be

the estimator for the size of join defined over the Bernoulli

samples F ′ and G′. Then the expectation and the variance of

X are given by:

E [X] =
∑

i∈I

figi

Var [X] =

1 − p

p

∑

i∈I

fig
2
i +

1 − q

q

∑

i∈I

f2
i gi +

(1 − p)(1 − q)

pq

∑

i∈I

figi

(6)

The situation is more complicated for self-join size because

the generic estimator X = C
∑

i∈I f ′2
i has a bias that cannot

be corrected by simply multiplying with a scaling factor.

Nevertheless, the generic formula for the variance in Equation

(4) is still applicable.

Proposition 4 (Self-Join Size): Let X = 1
p2

∑

i∈I f ′2
i −

1−p
p2

∑

i∈I f ′
i be the estimator for self-join size defined over

the Bernoulli sample F ′. Then:

E [X] =
∑

i∈I

f2
i

Var [X] =

1−p

p3

[

4p2
∑

i∈I

f3
i + 2p(1−3p)

∑

i∈I

f2
i − p(2−3p)

∑

i∈I

fi

]

(7)



C. Notation for Sampling Coefficients

In order to write compact formulas for sampling with and

without replacement, we use the following notation throughout

the rest of the paper:

α =
|F ′|

|F |
, α1 =

|F ′| − 1

|F | − 1
, α2 =

|F ′| − 1

|F |

β =
|G′|

|G|
, β1 =

|G′| − 1

|G| − 1
, β2 =

|G′| − 1

|G|

(8)

α and β are the sampling fractions from relations F and G,

respectively. α1, α2, β1, β2 are just small variations that appear

in formulas.

D. Sampling with replacement

A sample of fixed size can be generated by repeatedly

choosing a random tuple from the base relation for the

specified number of times. If the same tuple can appear

in the sample multiple times, the process is sampling with

replacement. In this case the random variables corresponding

to the frequencies in the sample, f ′
i and g′i, respectively, are

the components of a multinomial random variable [16] with

parameters the size of the sample and the probability fi

|F | and
gi

|G| , respectively, where |F | and |G| are the size of F and G.

Since each component of a multinomial random variable is a

binomial random variable, the expectations in Equation 5 still

hold but with different probabilities:

E [f ′
i ] = αfi, E [g′i] = βgi (9)

The exact formulas for expectation and variance can be derived

as for Bernoulli sampling. The moments of a multinomial

random variable have to be used instead.

Proposition 5 (Size of Join): Let X = 1
αβ

∑

i∈I f ′
ig

′
i be the

estimator for the size of join defined over the samples with

replacement F ′ and G′. Then the expectation and the variance

of X are given by:

E [X] =
∑

i∈I

figi

Var [X] =
1

αβ

[

∑

i∈I

figi + |F |αβ2

∑

i∈I

fig
2
i

+|G|α2β
∑

i∈I

f2
i gi + (α2β2−αβ)

(

∑

i∈I

figi

)2




(10)

An unbiased estimator for self-join size defined over the

sample with replacement F ′ is X = 1
αα2

∑

i∈I f ′2
i − 1

α2

|F |.
Notice that the estimator depends only on the size of the base

relation and the size of the sample. Var [X] can be derived from

the formula of the variance for generic sampling in Equation

(4). We omit the actual formula here due to lack of space.

E. Sampling without replacement

A sample without replacement from a relation consists of

a random subset of tuples selected from the relation. The

difference between sampling with replacement and sampling

without replacement is that a tuple can appear at most once

in a sample without replacement while it can appear multiple

times in a sample with replacement. In this case the random

variables corresponding to the frequencies in the sample, f ′
i

and g′i, respectively, are the components of a multivariate

hypergeometric random variable [16]. In order to derive the

exact formulas for expectation and variance, the actual mo-

ments of the multivariate hypergeometric distribution have to

be plugged in.

Proposition 6 (Size of Join): Let X = 1
αβ

∑

i∈I f ′
ig

′
i be the

estimator for the size of join defined over the samples without

replacement F ′ and G′. Then the expectation and the variance

of X are given by:

E [X] =
∑

i∈I

figi

Var [X] =
1

αβ

[

(1−α1)(1−β1)
∑

i∈I

figi + (1−α1)β1

∑

i∈I

fig
2
i

+α1(1−β1)
∑

i∈I

f2
i gi + (α1β1−αβ)

(

∑

i∈I

figi

)2




(11)

The only difference between sampling with replacement and

sampling without replacement is the coefficients of the terms

appearing in the variance formula. While the variance of

sampling without replacement becomes 0 when the entire

relation is sampled, the variance of sampling with replacement

never becomes 0.

An unbiased estimator for self-join size defined over the

sample without replacement F ′ is X = 1
αα1

∑

i∈I f ′2
i −

1−α1

α1

|F |. The variance of X can be derived from the formula

of the variance for generic sampling in Equation (4). We do

not include the actual formula here.

IV. SKETCHES

While sampling techniques select a random subset of tuples

from the input relation, sketching techniques summarize all

the tuples as a small number of random variables. This is

accomplished by projecting the domain of the input relation

on a significantly smaller domain using random functions.

Multiple sketching techniques are proposed in the literature

for estimating the size of join and the second frequency

moment (see [4] for details). Although using different random

functions, i.e., {+1,−1} or hashing, the existing sketching

techniques have similar analytical properties, i.e., the sketch

estimators have the same variance. For this reason we focus

on the basic AGMS sketches [1], [2] throughout the paper.

The basic AGMS sketch of relation F consists of a single

random variable S that summarizes all the tuples t from F . S

is defined as:

S =
∑

t∈F

ξt.A =
∑

i∈I

fiξi (12)

where ξ is a family of {+1,−1} random variables that are

4–wise independent. Essentially, a random value of either +1
or −1 is associated to each point in the domain of attribute A.



Then, the corresponding random value is added to the sketch

S for each tuple t in the relation. We can define a sketch T

for relation G in a similar way and using the same family ξ.

Proposition 7 (Size of Join): The sketch-based estimator X

defined as:

X = S · T =
∑

i∈I

fiξi ·
∑

j∈I

gjξj (13)

is an unbiased estimator for the size of join |F ⋊⋉A G|. The

variance of the sketch estimator is given by:

Var [X] =
∑

i∈I

f2
i

∑

j∈I

g2
j +

(

∑

i∈I

figi

)2

− 2
∑

i∈I

f2
i g2

i (14)

Proposition 8 (Self-Join Size): The unbiased estimator for

the self-join size is defined as:

X = S2 =
∑

i∈I

∑

j∈I

fifjξiξj (15)

The variance of the sketch estimator is given by:

Var [X] = 2





(

∑

i∈I

f2
i

)2

−
∑

i∈I

f4
i



 (16)

A common technique to reduce the variance of an estimator

is to generate multiple independent instances of the basic

estimator and then to build a more complex estimator as the

average of the basic estimators. While the expected value

of the complex estimator is equal with the expectation of

one basic estimator, the variance is reduced by a factor of

n since Var
[

1
n
·
∑n

k=1 Xk

]

= 1
n2

∑n

k=1 Var [Xk] = Var[Xk]
n

,

where n is the number of basic estimators being averaged.

This technique can be applied to reduce the variance of the

sketch estimator if different families ξ are used for the basic

estimators (see [1], [2] for details).

V. SKETCHES OVER SAMPLES

Given the ability of sampling to make predictions about

an entire dataset from a randomly selected subset and that

sketches require the entire dataset in order to determine any of

its properties, an interesting question that immediately arises is

how to combine these two randomized techniques. Although

the intuitive answer to this question seems to be simple –

the sketch is computed over a sample of the data instead of

the entire dataset – the behavior of the combined estimator

is not the simple composition of the individual behavior of

the ingredients. A careful analytical characterization of the

estimator needs to be carried out. Furthermore, the sampling

process can be either explicit and executed as an individ-

ual step before sketching is done, or implicit, situation in

which the input dataset is assumed to be a sample from

a large population. In the first case, a significant speed-

up in updating the sketch structure can be obtained since

only a random subset of the data is actually sketched. This

process is essentially a load shedding technique for sketching

extremely fast data streams that cannot be otherwise sketched.

It can be implemented as an explicit Bernoulli sampling that

randomly filters the tuples that update the sketch structure. In

the second case, the data is assumed to be a sample from

a large population and the goal is to determine properties

of the population based on the sample. The sample itself is

assumed to be large enough so it cannot be stored explicitly,

thus sketching is required. If the population is infinite, the

entire process can be seen as sketching i.i.d. samples from

an unknown distribution. We provide the analysis both for

sampling with replacement and sampling without replacement.

The analysis straightforwardly extends to i.i.d. samples if all

estimators are normalized by the size of the population and

the limit, when the population size goes to infinity, is taken. In

such a circumstance, the frequencies in the original unknown

population become densities of the unknown population, but

everything else remains the same.

In this section, we provide a generic framework for sketch-

ing sampled data streams in order to estimate the size of

join and the self-join size. Then we compute the first two

frequency moments of the combined estimator for the most

common types of sampling – Bernoulli sampling, sampling

with replacement, and sampling without replacement. This

provides sufficient information to allow the derivation of

confidence bounds for the combined estimator.

A. Sketches over Generic Sampling

Consider F ′ to be a generic sample obtained from relation

F . Sketching the sample F ′ is similar to sketching the entire

relation F and consists in summarizing the sampled tuples t′

as follows:

S =
∑

t′∈F ′

ξt′.A =
∑

i∈I

f ′
iξi (17)

where ξ is a family of {+1,−1} random variables that are

4–wise independent. A sample G′ from relation G can be

sketched in a similar way using the same family ξ:

T =
∑

t′∈G′

ξt′.A =
∑

i∈I

g′iξi

Size of Join

We define the estimator X for the size of join |F ⋊⋉A G|
based on the sketches computed over the samples as follows:

X = C · ST = C ·
∑

i∈I

f ′
iξi ·

∑

j∈I

g′jξj (18)

Notice that the estimator is similar to the sketch estimator

computed over the entire dataset in Proposition 7 multiplied

with a constant scaling factor C that compensates for the

difference in size.

Self-Join Size

The self-join size or second frequency moment of a relation

is the particular case of size of join between two instances

of the same relation. One way of analyzing the sketches over

samples estimator for the self-join size problem is to build two

independent samples and two independent sketches from the

same base relation and then to apply the results corresponding

to size of join. Although sound from an analytical point of



view, this solution is inefficient in practice. In the following

we consider a practical solution that requires the construction

of only one sample and one sketch from the base relation. A

new estimator for the self-join size has to be defined instead,

but the analysis is closely related to the analysis of the size of

join estimator. With S defined in Equation 17, we define the

self-join size estimator X as follows:

X = S2 = C ·

(

∑

i∈I

f ′
iξi

)2

= C ·
∑

i∈I

f ′
iξi ·

∑

j∈I

f ′
jξj (19)

where C is the same scaling factor compensating for the

difference in size. Notice that the difference between the size

of join estimator and the self-join size estimator is only at the

sampling level since the same family of ξ random variables is

used for sketching in both cases. For this reason we carry out

the analysis for the two estimators in parallel and make the

distinction only when necessary.

In order to derive confidence bounds for the estimator X ,

the first two moments, expected value and variance, have to

be computed. Intuitively, the scaling factor C should com-

pensate for the difference in size and make the estimator

unbiased. Since the two processes, sampling and sketching,

are independent and sequential, the interaction between them

is minimal and the sum of the two variances should be a good

estimator for the variance of the combined estimator. In the

following, we derive the exact formulas for the expectation

and the variance in the generic case. The independence of

the families of random variables corresponding to sampling

and sketching, f ′
i , g

′
i and ξ, respectively, plays an important

role in simplifying the computation. This independence is due

to the independence of the two random processes. While the

computation of the expectation is straightforward, the compu-

tation of the variance is more intricate since the interaction

between sketching and sampling is more complex and it can

be characterized only through a detailed analysis.

The first step in our analysis is to derive the formulas for

the moments of the basic estimator. Proposition 9 and 10

characterize the behavior of the basic sketch over samples

estimator.

Proposition 9 (Size of Join): Let the sketch over samples

estimator for the size of join to be defined as X = C ·
∑

i∈I f ′
iξi ·

∑

j∈I g′jξj . Then, the expectation and the variance

of X are given by:

E [X] = C ·
∑

i∈I

E [f ′
i ]E [g′i]

Var [X] =

C2 ·
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i∈I

E
[

f ′2
i

]
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]

+ 2 ·
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E
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′
j

]

E
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g′ig
′
j

]

−2 ·
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i∈I

E
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f ′2
i

]

E
[

g′2i
]

−

(

∑

i∈I

E [f ′
i ]E [g′i]

)2
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Proposition 10 (Self-Join Size): Let the sketch over sam-

ples estimator for the self-join size to be defined as C ·
∑

i∈I f ′
iξi ·

∑

j∈I f ′
jξj . Then, the expectation and the variance

of X are given by:

E [X] = C ·
∑

i∈I

E
[

f ′2
i

]

Var [X] = C2



3 ·
∑

i∈I

∑

j∈I

E
[

f ′2
i f ′2

j

]

− 2 ·
∑

i∈I

E
[

f ′4
i

]

−

(

∑

i∈I

E
[

f ′2
i

]

)2




(21)

Notice that the variance of sketching over generic sampling

is an expression depending only on the properties of the

sampling process. More precisely, in order to evaluate the

variance, only expectations of the form E [f ′
i ] and E

[

f ′
if

′
j

]

have to be computed, where f ′
i and f ′

j are random variables

corresponding to the frequencies in the sample.

The averaging technique applied to reduce the variance of

basic sketches in Section IV cannot be used straightforwardly

in the case of sketches computed over samples. This is the

case since, although the basic sketch estimators are built

independently using different ξ families of random variables,

they are computed over the same sample and this introduces

correlations between any two estimators. The variance of the

average estimator is in this case:

Var

[

1

n
·

n
∑

k=1

Xk

]

=
1

n
[Var [Xk] + (n − 1) · Covk 6=l [Xk, Xl]]

(22)

where n is the number of basic estimators being averaged and

Cov [Xk, Xl] = E [XkXl] − E [Xk]E [Xl] is the covariance

between any two basic estimators.

The next step in our analysis is to derive the formulas for

the variance of the average sketch over samples estimator.

Proposition 11 and 12 contain the derived formulas.

Proposition 11 (Size of Join): The variance of the average

sketch over samples size of join estimator is given by:

Var

[

1

n
·

n
∑

k=1

Xk

]

=

C2 ·
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i∈I
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j∈I

E
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if

′
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E
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g′ig
′
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]

−

(
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i ]E [g′i]

)2

+
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n
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E
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−2 ·
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i∈I

E
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f ′2
i

]

E
[

g′2i
]

)]

(23)

Essentially, the variance of the average estimator is the sum of

the variance of the generic sampling estimator in Equation 3,

the variance of the sketch estimator in Equation 14, and a



term corresponding to the interaction between the two random

processes. For the particular types of sampling considered

in this work, we derive the exact formula of the interaction

term. Notice that the improvement obtained by averaging is

less significant than a factor of n obtained in the case of

independent estimators.

Proposition 12 (Self-Join Size): The variance of the aver-

age sketch over samples self-join size estimator is given by:

Var

[

1

n
·

n
∑

k=1

Xk

]

= C2 ·
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The independence of sketching and sampling plays an im-

portant role in deriving the formulas for expectation and

variance. The independence has the effect of factorizing the

expectations over products of random variables corresponding

to sketching and sampling. Thus, only expectations involving

the sampling frequency random variables appear in the final

formulas since the expectations corresponding to sketches are

either 0 or 1, i.e., E [ξiξj ] = E [ξi] · E [ξj ] = 0 whenever

i 6= j due to the 4–wise independence of the family ξ,

and E
[

ξ2
i

]

= 1. Using these equalities and some complex

algebraic manipulations, the given formulas are obtained. The

dominant factor that simplifies the analysis is the modeling

of sampling as frequency random variables. This is our main

contribution.

B. Bernoulli Sampling

We instantiate the formulas derived for generic sampling

in Section V-A with the moments of the binomial random

variables corresponding to the Bernoulli sampling frequencies.

Proposition 13 (Size of Join): Let the unbiased sketch over

Bernoulli samples size of join estimator to be defined as X =
1
pq

∑

i∈I f ′
iξi ·

∑

j∈I g′jξj . Then, the variance of the average

estimator is given by:

Var

[

1

n
·

n
∑

k=1

Xk

]

=
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p
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Proposition 14 (Self-Join Size): The variance of the aver-

age unbiased self-join size estimator X = 1
p2

(
∑

i∈I f ′
iξi

)2
−

1−p
p2

∑

i∈I f ′
i is given by:

Var

[

1

n
·

n
∑

k=1

Xk −
1 − p
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]
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The variance of the average estimator is, as derived for

generic sampling, the sum of the average sketch estimator

individual variance, the Bernoulli sampling estimator indi-

vidual variance, and an interaction term. Since deriving an

exact analytical relation between these terms is a daunting

task, we consider some extreme scenarios that allow a partial

characterization. First notice that n, the number of estimators

being averaged, can be ignored when comparing the sketch

variance and the interaction variance because it has the same

effect on both (the variance is reduced by a factor of n). When

the distribution of the frequencies is uniform, the interaction

variance is the dominant term whenever the unique frequency

has a smaller value than the size of the domain |I|. At the

other extreme, when the distribution of the frequencies is

skewed, the sketch variance is the dominant term by far. These

results suggest that the interaction variance could represent a

problem for uniform-like data. This is not necessarily the case

because the value of the variance for uniform distributions is

significantly smaller than for skewed data, thus, although the

interaction variance is the dominant term, its absolute value is

not large.

To better understand the exact significance of each of the

terms appearing in the variance and to confirm the analysis

for the extreme cases, we designed a set of simulations to

determine the relative contribution of each of the terms. The

experimental setup is described in Section VII. Figure 1

and 2 depict the relative contribution of each of the three

terms appearing in the variance of the average estimator

over Bernoulli samples (Equation 26 and 25). The relative

contribution is represented as a function of the data skew for

different sampling probabilities. A common trend both for size

of join and self-join size is that the interaction term is highly

significant for low skew data. This completely justifies the

analysis we develop throughout the paper since an analysis

assuming that the variance of the composed estimator is

the sum of the variances of the basic estimators would be

incorrect. At the same time, this suggests that the accuracy

of the sketch over samples estimator can be significantly



worse than the accuracy of the sketch estimator for non-

skewed data. As already explained, this is not necessarily true.

Moreover, the experimental results we provide in Section VII

show that this is not the case for practical scenarios. As

expected, the impact of the variance of the sampling estimator

is more significant as the size of the sample is smaller.

For self-join size (Figure 2), the variance is dominated by

the term corresponding to the sampling estimator, while for

size of join (Figure 1) the variance of the sketch estimator

quantifies for almost the entire variance irrespective of the

sampling probability. This is entirely supported by the existing

theoretical results which show that sketches are optimal for

estimating the second frequency moment while sampling is

optimal for the estimation of size of join [2].

C. Sampling with replacement

In a similar way to Bernoulli sampling, we instantiate the

formula for the size of join estimator derived for generic sam-

pling with the moments of the multinomial random variables

corresponding to the sampling frequencies. The interaction

between two different sampling frequencies makes the deriva-

tion of the formula more complicated. We do not provide the

formula for self-join size variance due to space constraints.

Proposition 15 (Size of Join): Let the unbiased sketch over

samples with replacement size of join estimator to be defined

as X = 1
αβ

∑

i∈I f ′
iξi ·

∑

j∈I g′jξj . Then, the variance of the

average estimator is given by:
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D. Sampling without replacement

We apply the same procedure for sampling without replace-

ment. We obtain similar results to the other types of sampling

– the terms in the variance are the same, only the coefficients

are dependent on the sampling procedure. The formula for

self-join size is not provided due to space limitations.

Proposition 16 (Size of Join): Let the unbiased sketch over

samples without replacement size of join estimator to be

defined as X = 1
αβ

∑

i∈I f ′
iξi ·

∑

j∈I g′jξj . Then, the variance

of the average estimator is given by:
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E. Discussion

The result we derived in this section is somewhat surprising:

the variance of the combined sketch-sampling estimator can be

written as the sum of the variance of the sketch estimator, the

variance of the sampling estimator, and an interaction term.

This separation of the variance formula was accomplished

for all three types of sampling and both size of join and

self-join-size problems. Although the sketch variance seems

to be the dominant term, the exact significance of each of

the terms is dependent on the actual distribution of the data

(see the experimental results for Bernoulli sampling). When

multiple sketch estimators are averaged in order to decrease

the variance, the covariance must also be considered since

the sketch estimators are computed over the same sample,

thus they are correlated. Our results show that the variance

of the combined estimator does not decrease by a factor equal

to the number of averages, only the sketch variance and the

interaction term do.

VI. APPLICATIONS

In this section, we identify applications for sketching sam-

pled data for each of the types of sampling discussed in the

paper. We also delve into the algorithmic issues corresponding

to the combined randomized process.

A. Bernoulli Sampling

Even though sketching can be implemented for fairly high-

speed data streams, the update time could still become the

limiting factor if all the tuples need to be sketched. In order to

alleviate this problem, some of the tuples need to be dropped.

Bernoulli sampling provides a principled approach to drop

tuples and still be able to characterize the result. Sketching

Bernoulli samples is a method to further increase the rate of

the data streams that can be sketched. Used along hashing,

sketching over Bernoulli samples allows the processing of
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Fig. 2. Self-join size variance

data streams having arrival rates of billions of tuples per

second encountered in the existing networking equipment. The

analysis in Section V-B provides a complete characterization

of the error behavior for the overall process. The experimental

results in Section VII-A show that for a sampling fraction of

1% the decrease in accuracy over sketching the entire data

stream is insignificant.

The basic Bernoulli sampling algorithm consists in gen-

erating a random number for each tuple in the dataset. The

tuples for which the random value is smaller than the sampling

probability are included in the sample. The main drawback of

Bernoulli sampling is that the size of the sample is unknown

prior to running the process. This is not a problem anymore

when the sample is sketched instead of being explicitly stored.

The algorithm for sketching Bernoulli samples is a simple

extension of the basic Bernoulli sampling algorithm. The

tuples that are selected in the sample are inserted into the

sketch data structure instead of being explicitly stored. Since

updating the sketch is an extremely fast operation [17], it could

be doubtful that the extra sampling is indeed beneficial for

speeding the entire process. Fortunately, there exist algorithms

that avoid the coin tossing for each tuple by generating the in-

tervals between the tuples that are selected in the sample [18].

This way there is work to be done only for the tuples that are

actually sampled and subsequently sketched. In this situation

the speedup over sketching the entire data stream is clearly

proportional with the sampling fraction.

B. Sampling with replacement

Consider a generative model that draws samples from a

finite population. The samples are draw with replacement.

A data stream containing all the samples is generated. The

objective is to determine properties, e.g., the second frequency

moment, of the generative model, or correlations between two

different generative models, e.g., the size of join, from the

stream of samples. An additional requirement is that the stream

is large enough that it cannot be stored in full. These kind of

scenarios are frequent in data-mining applications [6].

Sketching the stream of samples obtained with replacement

from the finite population whose size is known represents a

solution to determining properties of the generative model.

The input stream is the actual sample in this case, so no

explicit sampling of the stream is required. Thus, the standard

updating algorithm for sketches can be used in this case.

The estimation algorithm is though different because it has

to take into consideration that the stream is only a sample.

The formulas derived in Section V-C have to be used for

estimation in this case. The important question in this case

is how accurate is the combined estimator. And how large

has to be the sketched sample in order to obtain accurate

estimations. The experimental results in Section VII-B show

that for a sampling fraction of 10% the estimation is accurate

and stable. No significant increase in accuracy is obtained if

the sample size is larger.

C. Sampling without replacement

The application we have in mind for sketching samples

obtained without replacement is online aggregation. In a tradi-

tional database engine, the exact answer to a query is provided

only after the entire data is processed. The user does not get

any clues about the result during the query execution. This may

take a long time for complex queries over a datawarehouse.

Online aggregation has a different strategy. Partial approximate

answers are provided to the user while the query is processed

by executing equivalent queries on a smaller fraction of the

entire data and then scaling the result. As more data is

processed, the accuracy of the approximate result increases

to the point where the exact answer is returned (when the

entire data is processed). The fundamental requirement for

the partial results to be estimates of the final result is that

the portions of the data the equivalent queries are executed

on to represent random samples without replacement from the

entire data. More details on online aggregation can be found

in the literature[8], [11], [9].

Sketching samples obtained without replacement represents

a fast and inexpensive method to gather some of the statistics



(second frequency moment, correlation between attributes)

used by an online aggregation engine to take decisions and to

compute the approximate results. The idea is to build sketches

for the desired statistics while the relations (materialized or

intermediary results) are scanned. The fraction of the relation

seen at each point during the scan represents a sample without

replacement of the entire relation as long as the order of the

tuples is random. More accurate estimates for the computed

statistics are available as the scanning advances. The goal

is to obtain stable estimators as early as possible such that

the online aggregation engine takes the optimal decisions

and provides estimates as accurate as possible. The analysis

in Section V-D provides a complete characterization of the

combined estimators. In Section VII-C we show experimental

results for which accurate estimates are available after only

10% of the relations is scanned.

From an algorithmic point of view, sketching a relation

while it is scanned incurs almost no additional cost. The

advantage over using the samples to provide estimates is that

the samples do not have to be explicitly stored and processed.

There is extra memory required only to store the sketches.

Sketching can be done for arrival rates of tens of millions

of tuples per second without any time penalty. Or it can be

executed as a separate thread in parallel with scanning, which

is necessary. On the modern multi-core processors, sketching

can be done essentially for free.

VII. EXPERIMENTAL EVALUATION

We pursue two main goals in the experimental evaluation

of the sketching over samples estimators. First, we want to

determine the behavior of the error of the sketch over samples

estimator when compared with the error of the sketch esti-

mator. And second, we want to identify what is the behavior

of the estimation error as a function of the sample size. We

design experiments to determine these relations for all three

types of sampling presented in the paper. And both for the size

of join and the self-join size problems. In order to accomplish

these goals, we designed a series of experiments over both

synthetic datasets and the TPC-H dataset. Synthetic datasets

allow a better control of the important parameters that affect

the results, while the TPC-H dataset validates the results for

large scales.

The synthetic datasets used in our experiments contain

either 10 or 100 million tuples generated from a Zipfian

distribution with the coefficient ranging between 0 (uniform)

and 5 (skewed). The domain of the possible values is 1 million.

In the case of size of join, the tuples in the two relations are

generated completely independent. For the experiments over

the TPC-H dataset, we used the scale 1 benchmark data. We

used F-AGMS sketches [3] in all of the experiments due to

their superior performance both in accuracy and update time

(see [4] for details on sketching techniques). The number

of buckets is either 5, 000 or 10, 000. This is equivalent to

averaging 5, 000 or 10, 000 basic estimators. In order to be

statistically significant, all the results presented in this section

are the average of at least 100 independent experiments.

A. Bernoulli Sampling

The experimental relative error, i.e.,
|estimation−true result|

true result
, of

the sketch over Bernoulli samples estimator is depicted in

Figure 3 and 4 as a function of the data skew for different

sampling probabilities. Probability p = 1.0 corresponds to

sketching the entire dataset. These experimental results show

that, with some exceptions, the sampling rate does not signif-

icantly affect the accuracy of the sketch estimator. For Zipf

coefficients smaller than 1, in the case of self-join size, and

smaller than 3, in the case of size of join, the error of the

sketch estimator is almost the same both when the entire

dataset is sketched or when only one tuple out of a thousand

is sketched. The impact of the sampling rate is significant only

for high skew data in the case of self-join size. This is to be

expected from the theoretical analysis (Figure 2). What cannot

be explained from the theoretical analysis is the effect of the

sampling rate for skewed data in the case of size of join. As

shown in [4], the experimental behavior of F-AGMS sketches

is in some cases orders of magnitude better than the theoretical

predictions, thus although the theoretical variance is dominated

by the variance of the sketch estimator, the empirical absolute

value is small when compared to the variance of the sampling

estimator. In the light of [4], the empirical results for high

sampling rates are much better than the theoretical predictions,

increasing thus the significance of the sampling rate for highly

skewed data.

B. Sampling with replacement

In Figure 5 and 6 we depict the experimental relative error

as a function of the sample size for sampling with replacement.

Since the actual size of the sample is different for different Zipf

coefficients, we represent on the x axis the size of the sample

as a fraction from the population size, with 1 corresponding

to a sample with replacement of size equal to the population

size. As expected, the error is decreasing as the sample size

becomes larger, but it stabilizes after a certain sample size (a

0.1 fraction of the population size for the included figures).

Thus, sketching more samples does not provide any increase

in the accuracy after a certain point. For the situations depicted

in Figure 5 and 6, the edge sampling fraction is around 0.1.

C. Sampling without replacement

We used the scale 1 TPC-H data for our experiments on

sketching samples without replacement. Figure 7 depicts the

error as a function of the sampling rate for the size of join

between the relations lineitem and orders. In Figure 8 we plot

the error of the second frequency moment of relation lineitem

on the l orderkey attribute. As expected, the error of the self-

join size estimator decreases while increasing the sample size

and it becomes stable for sampling rates larger than 10%. For

size of join, the behavior of the error is somehow unexpected.

The smallest error in Figure 7 is obtained for a sampling rate

of 10%. Then, the error starts to increase while increasing the

sampling rate. This behavior is due to F-AGMS sketches.
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D. Extreme behavior of F-AGMS sketches

An interesting trend in Figure 7 is the increase of the error as

the sampling rate increases over 10%. This is counter intuitive

since we would expect smaller error as more data is sketched.

This behavior is not predicted by the theory and it must be due

to the fact that the theoretical formulas are derived for AGMS

sketches, but F-AGMS sketches are used in the experiments.

To understand why this is happening we have to reffer to the

analysis of F-AGMS sketches in [4]. F-AGMS sketches use a

combination of hashes and AGMS sketches within each hash

bucket. As more data is sketched, the contention in buckets

increases and this produces a wider variance of the estimates.

This suggests that in some situations it is better to sketch only

a sample of the data rather than the entire data for F-AGMS

sketches.

E. Discussion

We provide experimental results for each of the types of

sampling presented in the paper. The goal is to compare

the combined sketch over samples estimator with the sketch

estimator and to determine their relation. Our experiments for

Bernoulli sampling show that a significant speed-up (a factor

of 10 in general and a factor of up to 1000 in some cases)

can be obtained by sketching only a small sample of the data

instead of the entire data. The decrease in accuracy due to

sampling seems to be insignificant. For sampling with replace-

ment, the difference in accuracy between sketching only a

small sample (a fraction of 0.1 or less from the population

size) and sketching the entire data is minimal. Moreover,

the error becomes stable and it does not decrease anymore

if the sample size is increased above a certain threshold

(10% in our results). Although the situation is almost similar

for sampling without replacement, we also observed some

unexpected results for this type of sampling. The smallest error

is obtained when only a sample of the data (10%) is sketched,

not the entire dataset. This is due to the extreme behavior of F-

AGMS sketches in some particular situations [4]. Essentially,

sketching more data can actually decrease the accuracy of F-

AGMS sketch estimators if the sketched sample captures well

enough the distribution of the entire dataset. Summarizing,

the experimental results show that the sketch over samples

estimator has almost similar accuracy to the sketch estimator

starting with sampling rates of 10% or smaller.

VIII. CONCLUSIONS

In this paper we introduce the sketch over samples estimator

for size of join and self-join size. We provide a detailed

analysis of the error of this estimator for generic sampling

based on the moment generating function of the sampling

frequencies. Then, we instantiate the general results for three

different types of sampling: Bernoulli sampling, sampling

with replacement, and sampling without replacement. Our

results show that it is possible to express the variance of

the combined estimator as the sum of the variance of the

sampling estimator, the variance of the sketch estimator, and

an interaction term. Although the sketch variance seems to

be the dominant term, the exact importance of each of the

terms is highly dependant on the exact distribution of the

actual data. We provide experimental results that show that

the accuracy of the combined estimator is almost similar (and

sometimes better) to the accuracy of the sketch estimator even

for small sampling rates of 10%. We also identify possible

applications of the sketch over samples estimator for each type

of sampling. In conclusion, we believe that the sketch over

samples estimator can be used instead of the sketch estimator

without a significant degradation in accuracy and with a clear

gain in processing time as long as the sample rate is around

10%.
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