Today's topic: A quadratic form takes $\overrightarrow{\mathbf{x}}$ to $\langle\overrightarrow{\mathrm{x}}, A \overrightarrow{\mathrm{x}}\rangle=\overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathrm{x}}$. Compare this to a linear transformation that takes $\overrightarrow{\mathbf{x}}$ to $A \overrightarrow{\mathbf{x}}$. Informally, linear transformations tell you coordinates, while quadratic forms tell you energy.
Important example: The sample mean M_{n} and the sample variance V_{n} are important statistics defined on a series of observations $\overrightarrow{\mathbf{x}}$. The sample mean is linear:

$$
M_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad(\text { the average })
$$

The sample variance is a quadratic form:

$$
V_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-M_{n}\right)^{2}
$$

For $n=2$, we get

$$
V_{2}(x, y)=\frac{1}{1}\left((x-(x+y) / 2)^{2}+(y-(x+y) / 2)^{2}\right)=\frac{1}{2} x^{2}-x y+\frac{1}{2} y^{2}
$$

This is the same as

$$
V_{2}=\overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathbf{x}} \quad \text { for } \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { and } A=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

Is there a simpler formula for V_{2} ? Yes, there is and we'll use chapter $5-7$ to find it! The formula $\frac{1}{2} x^{2}-x y+\frac{1}{2} y^{2}$ is ugly because " x " and " y " are the wrong variables. We need to choose better variables; we need to choose eigenvectors.
Find the eigenpairs of A. I'll call them $\left(c_{0}, \overrightarrow{\mathbf{v}}_{0}\right)$ and $\left(c_{1}, \overrightarrow{\mathbf{v}}_{1}\right)$.

Every $\overrightarrow{\mathbf{x}}=(x, y)$ can be written as the sum of two vectors: $\frac{\overrightarrow{\mathbf{v}}_{0} \cdot \overrightarrow{\mathbf{x}}}{\overrightarrow{\mathrm{v}}_{0} \cdot \overrightarrow{\mathbf{v}}} \overrightarrow{\mathbf{v}}_{0}$ added to $\frac{\overrightarrow{\mathbf{v}}}{1} \cdot \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{1}$. Simplify those two vectors using your values for $\overrightarrow{\mathbf{v}}_{i}$.

That means that

$$
V_{2}=\overrightarrow{\mathbf{x}}^{T} A \overrightarrow{\mathbf{x}}=\left(a \overrightarrow{\mathbf{v}}_{0}^{T}+b \overrightarrow{\mathbf{v}}_{1}^{T}\right)\left(A\left(a \overrightarrow{\mathbf{v}}_{0}+b \overrightarrow{\mathbf{v}}_{1}\right)\right)
$$

$$
\text { Simplify this using your values for } a, b, c_{i} \text {, and } \overrightarrow{\mathbf{v}}_{i} . \quad=a^{2} c_{0}\left\|\overrightarrow{\mathbf{v}}_{0}\right\|^{2}+b^{2} c_{1}\left\|\overrightarrow{\mathbf{v}}_{1}\right\|^{2}
$$

Main Idea of 7.2: The principal axes of a quadratic form are the eigenvectors of its associated symmetric matrix. If $\overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathbf{x}}$ is the quadratic form, $\left(c_{i}, \overrightarrow{\mathbf{v}}_{i}\right)$ are its eigenpairs, then the spectral decomposition of A is

$$
A=\sum_{i=1}^{n} \frac{c_{i}}{\overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{v}}_{i}} \overrightarrow{\mathbf{v}}_{i} \overrightarrow{\mathbf{v}}_{i}^{T} \quad \text { and } \quad \overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathbf{x}}=\sum_{i=1}^{n} \frac{c_{i}}{\overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{v}}_{i}}\left(\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{v}}_{i}\right)^{2}
$$

Important example: Let's examine sample variance for n samples, instead of just 2 .

$$
V_{n}=\overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathbf{x}} \quad \text { for } \overrightarrow{\mathbf{x}}=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { and } A=\frac{1}{n-1} I-\frac{1}{n(n-1)} J
$$

where I is the identity matrix and J is the matrix of all ones (a very famous matrix).
We can find an orthogonal basis of eigenvectors using chapter 5: The first eigenpair is $\left(c_{1}, \overrightarrow{\mathbf{v}}_{1}\right)=(0, \overrightarrow{\mathbf{j}})$ where $\overrightarrow{\mathbf{j}}$ is the vector of all ones. The other eigenvalues are all $\frac{1}{n-1}$, so we have to be a little clever to find orthogonal eigenvectors. I'll use the output of Gram-Schmidt when applied to the consuecutive difference eigenvectors $\overrightarrow{\mathbf{e}}_{i-1}-\overrightarrow{\mathbf{e}}_{i}$. We get the i th eigenpair is $\left(c_{i}, \overrightarrow{\mathbf{v}}_{i}\right)$ where $c_{i}=\frac{1}{n-1}$ and $\overrightarrow{\mathbf{v}}_{i}=\sum_{j=1}^{i-1}\left(e_{j}-e_{i}\right)$ is the vector that is all ones up to the ($i-1$)st coordinate, is $1-i$ as the i th coordinate, and zero afterwards.
Here are the relevant dot products (here $i=2,3, \ldots, n$):

$$
\begin{aligned}
\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{v}}_{1} & =x_{1}+x_{2}+\ldots+x_{n} & & =n M_{n} \\
\overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{1} & =1^{2}+1^{2}+\ldots+1^{2} & & =n \\
\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{v}}_{i} & =x_{1}+x_{2}+\ldots+x_{i-1}-(i-1) x_{i} & & =(i-1)\left(M_{i-1}-x_{i}\right) \\
\overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{v}}_{i} & =1^{2}+1^{2}+\ldots+1^{2}+(i-1)^{2}=(i-1)+(i-1)^{2} & & =i(i-1)
\end{aligned}
$$

Using the principal axes of A we get

$$
V_{n}=\overrightarrow{\mathbf{x}} \cdot A \overrightarrow{\mathbf{x}}=\sum_{i=1}^{n} \frac{c_{i}}{\overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{v}}_{i}}\left(\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{v}}_{i}\right)^{2}=\frac{1}{n-1} \sum_{i=2}^{n}\left(M_{i-1}-x_{i}\right)^{2}(1-1 / i)
$$

Notice that

$$
V_{n+1}=(1-1 / n) V_{n}+\left(M_{n}-x_{n+1}\right)^{2} /(n+1)
$$

This gives a simple, numerically stable, memory-less algorithm, published as Welford (1962), to update a running variance:

```
function [ new_count, new_ave, new_var] = init( new_obs )
    new_count = 1
    new_ave = new_obs
    new_var = 0
function [ new_count, new_ave, new_var] = update( old_count, old_ave, old_var, new_obs )
    new_count = old_count + 1;
    new_ave = old_ave + (new_obs - old_ave)/new_count
    new_var = old_var*(1-1/old_count) + ( old_ave - new_obs )^2/(new_count);
```

This demonstrates how eigenvectors can be unexpectedly useful (especially in real time computing such as aircraft control).

Name: \qquad
7.1: Let A be the diagonal matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$.
(a) Compute the eigenpairs $\left(c_{i}, \overrightarrow{\mathbf{v}}_{i}\right)$ of A :
(b) Compute the rank one matrices $\frac{c_{i}}{\overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{v}}_{i}} \overrightarrow{\mathbf{v}}_{i} \overrightarrow{\mathbf{v}}_{i}^{T}$
(c) Add them up to get the spectral decomposition of A :
7.2: Find a matrix B so that if $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x \\ y\end{array}\right]$ then $\overrightarrow{\mathbf{x}} \cdot B \overrightarrow{\mathbf{x}}=x^{2}+14 x y+5 y^{2}$.
(b) Actually multiply out $B \overrightarrow{\mathbf{x}}$
(c) Actually multiply out $\overrightarrow{\mathbf{x}} \cdot B \overrightarrow{\mathbf{x}}$

