
Parallel P r o g r a m m i n g Using Skeleton

Funct ions

J. Darlington, A.J. Field, P.G. Harrison,

P.H.J. Kelly, D.W.N. Sharp, Q. Wu

Dept. of Computing, Imperial College, London SW7 2BZ

email: (j d,ajf, pgh,phj k,dwns,wq}@doc.ic.ac.uk

R.L. While

Dept. of Computer Science, University of Western Australia,

Nedlands, Western Australia 6009

email: lyndon@cs.uwa.edu.au

Abs t rac t

Prograxnming parallel machines is notoriously difficult. Factors contribut-

ing to this difficulty include the complexity of concurrency, the effect of

resource allocation on performance and the current diversity of parallel

machine models. The net result is that effective portability, which de-

pends crucially on the predictability of performance, has been lost.

Functional programming languages have been put forward as solutions

to these problems, because of the availability of implicit parallelism. How-

ever, performance will be generally poor unless the issue of resource alloca-

tion is addressed explicitly, diminishing the advantage of using a functional

language in the first place.

We present a methodology which is a compromise between the extremes

of explicit imperative programming and implicit functional programming.

We use a repertoire of higher-order parallel forms, skeletons, as the basic

building blocks for parallel implementations and provide program transfor-

mations which can convert between skeletons, giving portability between

differing machines. Resource allocation issues are documented for each
skeleton/machine pair and are addressed explicitly during implementation

in an interactive, selective manner, rather than by explicit programming.

1 Introduction

The main obstacle to the commercial uptake of parallel computing is the com-

plexity and cost of the associated software development process. Programming

parMlel machines is more difficult than programming sequential machines in at

least two fundamental ways: p r e d i c t a b i l i t y o f p e r f o r m a n c e and p o r t a b i l i t y .

147

Pred i c t ab i l i t y of p e r f o r m a n c e

Sequential programming languages, incorporating the von-Neumann model of

computation, enjoy a simple one-to-one mapping between language constructs

and their underlying machine implementation. Issues such as memory alloca-

tion are resolved by the compiler with no performance implications, allowing the

programmer to concentrate on high-level aspects of the algorithm. The program-

mer can fairly confidently predict the performance of a program on a particular

machine, whilst avoiding the burden and complexity of run-time resource allo-

cation.

In contrast, the mapping of a parallel program onto a multiprocessor machine

is typically a complex process involving decisions about the distribution of pro-

cesses over the processors of the machine, scheduling of processor time between

competing processes, communication patterns, etc. Often the only way for the

programmer to achieve the desired level of performance is to take explicit control

of these decisions in the program, with the obvious increase in program complex-

ity and a corresponding deterioration in program reliability. Some predictability

is retained with shared-memory multiprocessors, which attempt to sustain the

von-Neumann model at low degrees of parallelism, but such machines are not

scalable to the levels of performance required by many application areas.

Portability

The universality of the von-Neumann model guarantees portability of sequential

programs at the language level, with no danger of an unforeseen degradation in

performance. A sequential program moved to a machine with a faster processor

will, almost certainly, run faster.

In the world of parallel machines the explicit nature of resource allocation means

there is rarely any portability at all. Even where a high-level language can be

compiled for different machines, the wide disparity in the architectures available

means that the performance of a program can vary wildly and in unpredictable

ways unless it is radically altered as part of the porting process.

The diversity of parallel machine architectures and the lack of a common model

of computation has led the application development community to fragment

into incompatible, machine-oriented camps with proprietary languages/language

extensions predominating at the expense of a proper understanding of the field.

There appear to be two routes out of the current state of affairs.

One approach is the development of a 'parallel von-Neumann machine',

an abstract machine to which any useful programming model can be com-

piled with predictable (small) loss of performance, and which can itself be

implemented on a scalable physical architecture, again at a known cost.

This is the route taken by research into the parallel random-access ma-

chine (PRAM[17]) and distributed shared memory[12], which attempts to

148

provide the illusion of a shared address space on a physically-distributed

machine, in effect taking the shared-memory model to arbitrary degrees of

parallelism.

The second, perhaps more direct, approach is the development of a pro-

gramming methodology for parallel machines which allows portability both

of programs and their performance across the whole range of architectures.

This is the approach taken in this paper.

Our approach involves abandoning the search for portability at the language level

in favour of a structured decision-making process based on the use of high-level

program forms, source-level program transformation and performance modelling.

2 An Overv iew of the M e t h o d o l o g y

The central idea is to replace explicit parallel programming, using a parallel

language, by the selection and instantiation of a variety of pre-packaged parallel

algorithmic forms known as skeletons. The approach is similar to that taken

by Cole[2] for imperative languages and follows Backus's principle[l] that the

key to effective (functional) programming is the availability of a small fixed set

of special operators (program-forming operations) which allow new functions

to be created from old ones. The methodology can be broken down into three

principal components: skeletons, pe r fo rmance models and p rog ram trans-

fo rmat ion .

Skele tons

A skeleton captures an algorithmic form common to a range of programming

applications. In our work, skeletons have been developed as polymorphic, higher-

order, functions in a non-strict functional programming language.

Each skeleton has a declarative meaning, established by its functional language

definition. This meaning is independent of any particular implementation of

the skeleton: this allows skeletal programs to be prototyped rapidly on sequen-

tial platforms and to be fully portable between different parallel machines. A

skeleton also has specific behaviours on particular parMlel machines on which

it is known to be implementable. Of course, in principle, any skeleton can be

executed on any machine: however, each skeleton is associated with a set of

architectures on which efficient realisations are known to exist.

All parallelism in a program derives from the behaviour of its skeletons on the

machine in question. Functions to which skeletons are applied are executed se-

quentially. All aspects of a skeleton's parallel behaviour, such as process place-

ment or interconnectivity, are either clear from its definition or documented as

issues to be addressed explicitly during implementation.

149

P e r f o r m a n c e mode l s

Each skeleton/machine pair has associated with it a performance model which

can be used to predict the performance of a program written using the skeleton

on that machine. These models are used by the programmer, the transformation

system and the compiler to guide decision-making at all levels of the program

development process, l~esource allocation in particular relies heavily on the use

of these performance models.

Program t r an s fo rma t ion

Program transformation is used in the development process at all levels. At

the topmost level, for example, it can be used to transform high-level problem

specifications into initial skeleton forms. At the lower levels it can be used

to convert programs from one skeleton form to another e.g. for the purposes

of portability. At the lowest level, transformation can be used to fine-tune

an architecture-specific program to a particular machine in that class. This

may involve, for example, partial evaluation[4] to vary the grain-size used in an

application or to configure the program for a particular machine size.

Wherever possible, the methodology aims to replace (re)invention, both of pro-

grams and transformations, by selection from a limited range of possibilities

determined by context. The skeletons and associated transformations form a

decision-tree that can be navigated by the programmer to map high-level speci-

fications onto concrete machine architectures.

Portability of programs is provided by the high-level nature of the the original

program specification and the ability to record, replay and alter the derivation

process from specification to implementation. Resource allocation is tackled

explicitly by addressing the important performance questions directly rather

than implicitly by writing a program with the desired properties.

The next three sections of the paper discuss the three main aspects of the

methodology in more detail. Section 6 discusses the implementation of the

methodology and Section 7 concludes the paper.

3 Parallel Algorithmic Skeletons

3 .1 I n i t i a l S k e l e t o n s

An initial set of skeletons has been defined to capture the most common forms

used in parallel algorithms. These are listed below, all definitions are expressed

in Haskell [S].

Simple linear process-parallelism is captured by the PIPE skeleton. A list of

functions are composed together so that elements can be streamed through them.

150

Parallelism is achieved by allocating each function to a different processor. Note

that this idea can easily be extended to higher dimensions.

P I P E " [~ --. a] ~ (a ~ c~)

PIPE = f o l d r l (,)

The FARM skeleton captures the simplest form of data-parallelism. A function

is applied to each of a list of 'jobs'. The function also takes an environment,

which represents data which is common to all of the jobs. Parallelism is achieved

by utilising multiple processors to evaluate the jobs (i.e. 'farming them out' to

multiple processors).

F A R M "" (e - + / ~ --~ 7) --~ ~ --~ ([/3] ---+ [7])

F A R M f env = map . (f env)

Many algorithms work by splitting a large task into several sub-tasks, solving

the sub-tasks independently, and combining the results. This approach is known

as divide-and-conquer and it is captured by the DC skeleton. Trivial tasks (t)

are solved (s) directly on the home processor: larger tasks are divided (d) into

sub-tasks and the sub-tasks passed to other processors to be solved recursively.

The sub-results are then combined (c) to produce the main result.

DC (. Boo0 --* (- --* (- [-]) Z) -

D C t s d c x l t x = s x

I n o t (t x) = (c . map (D C t s d c) . d) x

Another common class of algorithms describes systems where each object in the

system can potentially interact with any other object. Each individual inter-

action is calculated and the results are combined to produce a result for each

object. This is described by the RaMP skeleton ('Reduce-and-Map-over-Pairs').

This skeleton is typically used for initial specification and implemented by trans-

formation to an alternative form, for example by farming out the calculations

for each object or by pipelining over the flmctions f and g.

R a M P " (~ --~ c~ ---,/3) --~ ([3 --* ~ --+/3) --~ [c~] --~ [~]

R a M P f g xs = map h xs

where h x = f o l d r l g (m a p (f x) x s)

More dynamic algorithms are typified by the D M PA skeleton ('Dynamic-Message-

Passing-Architecture'). Here any process can interact directly with any other

process via message-passing, the actual connections being determined using run-

time data. Each process has an internal state which records values local to the

process: messages from other processes may modify the process's state and gen-

erate new messages to other processes. Parallelism arises from evaluating the

processes on different processors.

151

DMPA " { { ~ } ~ {(_/nt, ~) } } ---+ { (I n t , o~)} ~ { ~ }

DMPA { Pi ini tStatei I 1 < i < n } initMess

= f i l terms 0 mess

where mess = P1 in i tState l (f i l terms 1 mess) U . . . U

Pn initStaten (f i l terms n mess) U initMess

filterms i ms = { conts [(j , conts) E ms, i =-= j }

Pi IocalState (c U cs) = replies U Pi updState cs

All these skeletons describe MIMD modes of operation. The work described

in [i0] brings SIMD machines, such as the Thinking Machines' CM-2, within

the range of our techniques. There a small set of higher-order primitives is

defined corresponding to the basic computation and communication capabilities

of such machines. There is a very natural fit between these primitives and the

aggregate view of computation, providing both a congenial abstraction of SIMD

machines and a basis for the efficient support of array operations in functional

languages. These primitives provide a platform on which skeletons describing

SIMD computations can be defined.

3 .2 E x a m p l e A p p l i c a t i o n s

This section gives examples of the use of the skeletons in describing typical

applications. Some functions which only perform low-level arithmetic or data

manipulations are not fully specified.

As an example of the use of the PIPE skeleton the function compile below de-

fines the general structure of a compilation route for a high-level programming

language.

compile :: [Char] ~ [Char]
compile = PIPE [writefile, genCode, typeCheck, parse, lex, readfile]

writefile, genCode, typeCheck, parse, lex, readfile " [Char] --~ [Char]

various stages in compiling a program

In the flmction exposedFaces, the FARM skeleton, is used to determine which faces

of a convex 3-dimensional body are visible from the origin of the co-ordinate

system. Each face is checked individually by reference to a point which is 'inside

the body. The co=ordinates of this point form the shared environment of the

farm.

exposedFaces J i [Fac] [(Fac } Bool)]
exposedFaces fs = zip fs (FARM checklfVisible (pointlnBody fs) fs)

pointlnBody "" [Face] --+ Point

calculate a point which is inside the body fs (assumed convex)

152

checklfVisible "" Point --~ Face ---+ Bool

given a point p inside the body, check if face f is visible

An example application of the DC skeleton is mergesort. Given a function merge

which combines two sorted lists whilst retaining their ordering, mergesort works

by recursively splitting its argument into smaller sublists until the sublists are

trivially sorted, then using merge to build a sorted permutat ion of the original

list.

mergesort "" (e~ -+ e~ ---+ Bool) ~ [e~] -+ [eel

mergesort = (DC isSingleton id sp l i t) . f o l d r l . merge

where isSingleton xs = length xs < I

split "" [a]---+ [[all

split xs into a list of its sublists

merge "" ((~ --~ c~ --* Bool) --~ loll ~ [e~] ---* [(~]

merge two sorted lists into a sorted list

An example of the RaMP skeleton is the classical problem of nBody simulation.

At each step of the simulation, the force between each pair of bodies is calculated

and these are summed to determine the total force acting on each body and hence

its new position and velocity.

nBody "" [Planet]---+ [[Planet]]

nBody ps = ps ' nBody (map newPos

(zip ps (RaMP calcF sumFs ps)))

newPos " (Planet , Force) ~ Planet

calculate the new position and velocity of planet p

calcF "" Planet ~ Planet ~ Force

calculate the force exerted by planet Pl on planet P2

sumFs "" Force --+ Force ~ Force

combine the effects of forces fl and f2

The DMPA skeleton describes the most dynamic algorithms, where the inter-

actions between processes are determined using run-time data. Interaction is

via message-passing. The function database describes a dynamically-changing

database whose contents are distributed over a network of processors. Each

node has to be capable of handling requests for the whole database: requests

which cannot be handled locally are forwarded to the relevant processor.

data Message = Query Dataltem I Add Dataltem I Del Dataltem

I other message-types

153

database :: {(Int , Message)} ---+ {Message}

database = DMPA { dbmanageri ini tDatai I 1 < i < n }

dbmanageri :: Localdata ---* {Message} ---* {(Int , Message)}

dbmanageri dat (Query info U ms)

I DB

I DB

dbmanageri dat (

I DB
I DB

dbrnanager~ dat (

I DB
I DB

= = i = (0 , reply) U dbmanageri dat ms

/ = i = (D B , Query info) U dbmanageri dat ms

where DB = whereStored info

Add info U ms)

= = i = dbrnanager~ (insert info dat) ms

/ = i = (DB , Add info) U dbmanageri dat ms

where DB = whereStored info

Del info U ms)

= = i = dbmanageri (delete info dat) ms

/ = i = (DB , Del info) U dbmanager~ dat ms

where DB = whereStored info

whereStored :: Data l tem ~ Int

where is data of the type of item stored?

insert, delete :: DataItem --~ Localdata -+ Localdata

insert/delete an item into/from the local database

Many other examples of the DMPA skeleton in action are described in [16],

including a novel approach using dynamically-generated patterns of communi-

cation to maximise the potential of the network facilities of MIMD machines.

Examples include a new algorithm for parallel quicksort of O(log n) 2 and new

algorithms for fractal generation and tesselation.

4 P e r f o r m a n c e M o d e l s

The ult imate aim of a parallel programmer is to write a program that will exe-

cute efficiently on the chosen target machine.With today's software technology

targeted at non-uniform machines it is a difficult task to even predict the perfor-

mance of a given parallel program, let alone to ensure that it will be optimal. We

would characterise today's approach by the term performance debugging. The

programmer writes a program that he hopes is reasonably efficient, executes it

and observes its behaviour. The information gained from these observations is

then used to modify the resource allocation decisions embodied in the program,

and the modified program is executed again to see if any improvement ensues.

Often the programmer is proceeding in the dark, as he may not even know what

factors are important in determining the performance of the program.

Here we seek to develop a more scientific methodology based on the use of

154

performance model.s which, given a program, can both predict its performance

and suggest what may be done to improve that performance. Such a performance

model is typically a set of analytical formulae parameterised by attributes of both

the program and the machine. There has been an impressive body of work in

producing such models for parallel hardware and software [7]. However, the state

of the art is unable to provide practical methods to predict the performance of an

arbitrary program executing on an arbitrary machine. By limiting our programs

to instantiations of known skeletons, each targetted at a specific set of machines,

the methodology becomes more practical.

A performance model is associated with each skeleton/machine pair and is used

constructively in the programming process. A preliminary model is produced

and verified and quantified experimentally. The model is adjusted until it is

shown to be a reliable predictor of performance. This is equivalent to playing out

the 'performance debugging' process once for each configuration and recording

the result for future reference.

Consider as an example the Divide-and-Conquer skeleton, DC, targetted onto a

distributed-memory machine. Such an architecture results in very non-uniform

memory access times, with local store access being much cheaper than remote

store access. The two most important factors governing program performance

will thus be process granularity and data placement. The model, therefore, needs

to take account of the complexity of each of the argument functions of DC and

the speed of communication between processors. Taking all these factors into

account, an application should be solved in parallel if the following condition

holds (assuming a binary division function):

TsolG > TdivG + TsoIG/2 + TcombG/2 + Tcomms

where Tsolx is the time to solve a problem of size x on one processor, Tdivx is

the time to split a problem of size x into two sub-problems, Tcomb x is the time

to combine the results from two problems of size x and Tcomms is the time to

communicate problems and results between processors. The reasoning behind

this formulae is that the right hand side represents the worst case involved in

going parallel, i.e. there is no further gain to be made from further parallel

execution and the two subproblems are solved sequentially. If this worst case is

still less than the time to solve sequentially, Tsolx , then it pays to keep dividing.

We can expand this to calculate the total time required to solve a problem of

size G on M processors:

log M

Tsol G = Z (TdivG/2i_l + + Tcomms) + i=1 Tc~ TS~

Solving this equation for M will tell us the optimal number of processors to

use in the evalnation. Note that further decisions will have to be made about

whether shared data should be evaluated once and accessed remotely, evaluated

155

once and copied to each processor or re-evaluated at each processor. [5] gives a

performance model combining all these factors.

Many decisions in resource allocation can be expressed as source-level transfor-

mations, for example balancing the stages of a pipeline or matching the number

of pipe-stages to the number of physical processors available. Decisions such

as these can be implemented as transformation routines to be applied by the

programmer after consultation with the performance model. Other decisions sit

more naturally in the compilation process from the skeleton to the native code

of the target machine. In particular, some skeletons will have multiple imple-

mentations on some machines, and the choice of the optimal one will be guided

by the performance model.

We believe that this constructive use of performance models complements our

structured approach to parallel programming. We consider it important that

factors affecting performance are identified and quantified so they can be ad-

dressed explicitly and the relevant decisions documented, rather than being left

unstated and accomplished indirectly as a side effect of a program with the

appropriate behaviour.

5 P r o g r a m T r a n s f o r m a t i o n

Transformation provides a natural route to portability in that a program written

in terms of a skeleton which cannot be implemented easily on a given architecture

can be re-expressed in terms of another skeleton which does have an efficient

implementation on that architecture. This particularly applies to the higher-

level skeletons which may not map easily onto any architectures.

As an example, a program written in terms of the RaMP skeleton can be imple-

mented as a pipeline with length xs + 2 stages[Ill:

RaMP f g xs = (map snd . PIPE (map map (map g' xs))

�9 map (pair unitg)) xs

where g' b Ca, c) = (a, gCfa b) c)
pair a b = (b , a)

Alternatively it can be implemented on a distributed architecture as a FARM:

R a M P f g x s - F A R M h (f , g , xs) xs

where h (f , g , x s) x = f o l d r l g (m a p (f x) x s)

Note that transforming a RaMP to a FARM leaves many implementation issues

still to be resolve.~l, in particular whether the environment is to be accessed

remotely or passed to each processor.

An inter-skeleton transformation which relies heavily on fine-tuning is DC to

PIPE. By assuming that an application of DC is overrun-tolerant[19], we can

obtain the equivalence[18]i6]

156

m a p (D C t s d c) - P I P E (r e p t q (map ' n c)) . m a p s .

PIPE (rept q (fo ldr l (+ +) . map d))

rept "" I n t - + o~ ---* [o~]

rept n = take n . repeat

m a p ' " I n t --* ([c~] ~ ~) -~ [c~] --~ [fl]

map' n f xs I length xs _> n = f (take n xs) �9 map' n f (drop n xs)

I length xs < n = []

where q is the number of levels in the evaluation tree and map' is a variation

of map which consumes its argument list in chunks of n elements. In the above

expression, n is the arity of each node in the evaluation tree, i.e. the length of

the result list of d. This transformation gives us a version of the application

which evaluates on a pipeline of length 2q + 1 for arguments up to 'size' nq.

For specific applications of DC we are often able to do much better, however.

Take the definition of mergesort from Section 3.2:

mergesort = (DC isSingleton id split) . fo ldr l . merge

where isSingleton xs = length xs _< i

Unfolding the definition of mergesort once, and assuming the non-trivial case,

we can derive

mergesort f ---- fo ldr l (merge f) . map (mergesort f) . split

This equivalence holds for any implementation of split which satisfies the prop-

erty

mergesort f . fo ldr l (+ +) . split _= mergesort f

which is essentially the specification of split. We will choose a definition of split

which reduces its argument list to singletons in one pass (it is trivally shown to

satisfy the above property):

split , , [~] ~ [[~]]

split = map mkSingleton

where mkSingleton x = [x]

Applying the DC to PIPE transformation to the definition of mergesort gives us

map (mergesort f) ~- PIPE (rept q (map' n (fo ldr l (merge f)))) .

map id

PIPE (rept q (fo ldr l (+ +) . map split))

It is trivial to show that the expression foldrl (+ +) . map split is idempotent,

so we have the equivalence

157

PIPE (rept q (foldrl (-I--I-). map split)) - foldrl (++). map split

for q > 0, together with the obvious equivalences

m a p id - id

f . i d - f

The final pipeline for mergesort therefore has only q + 2 stages:

m a p (mergesort f) _= PIPE (rept q (map' n (fo ldr l (merge f)))) .
foldrl (-l-+) . map split

This is clearly a significant improvement over the naive application of the trans-

formation.

In short, transformation allows us to take a high-level, portable specification and

target it onto any architecture which is at hand, and to fine-tune an instantiation

of the specification to take advantage of the particular characteristics of an

architecture without compromising program legibility and reliability. Portability

arises directly from the ability to replay the transformation using different rules

for different architectures.

6 Implementation

We have constructed an initial implementation of the skeletons using the func-

tional language Hope+J15] as the source language and using C as the target

language. This compiler makes extensive use of macros, giving us maximum

flexibility to explore different implementation options, e.g. remote vs. local pat-

terns of data access (e.g. FARM) and process placement options (e.g. DMPA).

The initial installation was carried out on a Meiko Transputer surface, using

the CS Tools [13] library to provide flexibility in communication. Initial re-

sults, in terms of both speed-up and the usability of the methodology , have been

promising although we have not, as yet, made direct comparisons with hand-

coded versions of the same algorithms.. A subsequent, partial, implementation

has been carried out on a Fujitsu AP1000 made available under Fujitsu Parallel

Computing Centre Facilities programme. The AP1000 is of particular interest

as its richer communication capabilities allow greater varieties of implementa-

tions to be considered. Further implementations of the skeletons on networks of

workstations and a SIMD machine are planned.

158

7 C o n c l u s i o n s and Future Wor k

I m p l e m e n t a t i o n op t ions

A preliminary study and implementation of compiler options has been carried

out [9]. For each of the skeletons apart from DMPA two or three alternative

implementation options were identified and the compiler extended to realise

these options. Experiments showed that each of the options were more effective

for some range of inputs than the general implementation.

Appl ica t ion-speci f ic ske le tons

Many potential application areas for parallel computing, for example databases

and solid modelling, have their own characteristic high-level data and control

structures. We plan to extend our skeleton-based methodology into these areas.

We aim to construct domain-specific skeletons which would allow specialists

to construct applications in these areas directly, without recourse to low-level

programming. These initial system specifications could then be mapped onto

the selected target machines by an extension of the program transformation and

structured implementation techniques we have already developed. Preliminary

studies in the area of solid modelling [14] and data bases have been encouraging.

'Language less p r o g r a m m i n g '

The ultimate goal of our work is to completely replace the requirement for inven-

tion or creation during application development by a process of selection from

a range of possibilities determined by context. We aim to factor out all the

decisions involved in creating an application and mapping it efficiently onto a

machine and present them as a sequence of selections of appropriate skeletons,

transformations and implementation options. Achieving this goal would have

many benefits: simplifying application development; documenting the decisions

made during the development of an application; and ensuring that the program-

mer addresses all the issues involved in the implementation process.

Given this framework, the system could be used via a menu-driven interface,

with the skeletons and options presented visually. Visual programming is very

attractive, but we feel that many current systems miss the point and simply

present an unchanged programming paradigm in a visual manner. We consider

that it is important to first convert the programming process from one of inven-

tion to one of selection, which lends itself well to the visual style of presentation.

159

8 Acknowledgements

We would like to thank all our colleagues at Imperial College for their inputs

and assistance. The influence of and Backus's ideas on our work is obvious.

The work reported here was initially developed in the UK SERC/DTI funded

project 'The Exploitation of Parallel Hardware using Functional Languages and

Program Transformation' and used equipment funded under the SERC's Parallel

Equipment Initiative.We are also grateful to Fujitsu, Japan, for making the

AP1000 machine available tinder the Fujitsu Parallel Research Centre Facilities

programme.

References

[1] J. Backus, Can Programming Be Liberated from the von-Neumann Style?
A Functional Style and its Algebra of Programs, CACM voI. 21, no. 8, pp.

613-41, 1978.

[2] M. Cole, Algorithmic S]celetons: Structured Management of Parallel Com-
putation, Pi tman/MIT Press, 1989.

[3] J. Darlington, Y-k. Guo and H.M. Pull, A New Perspective on Integrat-

ing Functional and Logic Languages, Conf. on Fifth Generation Computing

Systems, Tokyo, June 1992.

[4] J. Darlington and H.M. Pull, A Program Development Methodology Based
on a Unified Approach to Execution and Transformation, in Partial Evalu-

ation and Mixed Computation, North-Holland, 1988.

[5] J. Darlington, M.J. Reeve and S. Wright, Programming Parallel Computer

Systems using Functional Languages and Program Transformation, in Par-

allel Processing '89, Leiden, 1989.

[6] P.G. Harrison, Towards the Synthesis of Static Parallel Algorithms: a Cate-

gorical Approach, IFIP TC2 Working Conference on Constructing Programs

from Specifications, Pacific Grove, California, May 1991 (published as Con-
structing Programs from Specifications, North-Holland).

[7] P.G. Harrison and N. Patel, Performance Modelling: Application to Com-
munication Networks and Computer Architecture, Addison-Wesley, 1992.

[8] P. Hudak, S.L. Peyton Jones, P.L. Wadler, B. Boutel, J. Fairburn, J. Fasel,

M. Guzms K. Hammond, J. Hughes, T. Johnsson, R. Kieburtz, R.S.

Nikhil, W. Partain and J. Peterson, Report on the Functional Programming
Language Has]cell, SIGPLAN Notices 27(5), May 1992.

[9] C. A. Isaac, Structural Implementations of Functional Skeletons, MSc

Project Report, Dept. of Computing, Imperial College 1992.

160

[10] G.K. Jouret, Compiling Functional Languages for SIMD Architectures, 3 rd
IEEE Symposium on Parallel and Distributed Processing, Dallas, December

1991.

[11] P.I-I.J. Kelly, Functional Programming for Loosely-coupled Microprocessors,
Pitman/MIT Press, 1989.

[12] K. Li and P. Hudak, Memory Coherence in Shared Virtual Memory Systems,
ACM Transactions on Computer Systems vol.7, no. 4, pp. 329-59, 1989.

[13] Meiko Ltd., C'S Tools for SunOS, 1990 Edition: 83-009A00-02.02.

[14] G. Papachrysantou, High Level Forms for Computation in Solid Modelling,

MSc Project Report, Dept. of Computing, Imperial College 1992.

[15] N. Perry, Hope +, Internal document IC/FPI~/LANG/2.5.1/7, Dept. of
Computing, Imperial College, 1989.

[16] D.W.N. Sharp and M.D. Cripps, Parallel Algorithms that Solve Problems
by Communication, 3 rd IEEE Symposium on Parallel and Distributed Pro-

cessing, Dallas, December 1991.

[17] L.G. Valiant, General Purpose Parallel Architectures, in Handbook of The-

oretical Computer Science, North-Holland, 1990.

[18] R.L. While, Transforming Divide-and-Conquer to Pipeline, Internal note,

Dept. of Computing, Imperial College, 1991.

[19] J.H. Williams, On the Development of the Algebra of Functional Programs,
ACM Transactions on Programming Languages and Systems vol. 4, pp.

733-57, 1982.

