
Google App Engine
Programming Session

ae-09-session

Textbook: Using Google App Engine (Chapter 7)

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2009, Charles Severance and Jim Eng

First Look: Sessions are Magic!

• Sessions are usually part of the built-in web application
framework

• Ruby on Rails

• Java Web Applications

• PHP

• The framework does all the cookie setting and data finding

First Look: Sessions are Magic!

• In our controller code we simply ask to create and/or access a
session

• We treat the session like a dictionary storing whatever we like in
the session under a set of string keys that we choose

Session Best Practice

• Keep them small - we don’t want to put too much in the session
or we start taxing memory and other storage resources and
slowing down our application

• Focus on data that is used on nearly every incoming request -
the lookup key of the current user - the email address of the
current user

• Sessions generally go away when the user closes their browser
(cookie is lost) or after a period of inactivity (1-3 hours)

Best Practice

• Indication of the current user - management of the login and log
out process

• Shopping cart - items / quantities

Our Magic - sessions.py

• Since the Google Application Engine does
not provide a session capability, we need to
add one - extending our application

• Download from

 http://www.appenginelearn.com/downloads/util.zip

• Install in your application in the directory util to make it available
in your application

Using the
Session

from util.sessions import Session

class LogoutHandler(webapp.RequestHandler):

 def get(self):
 self.session = Session()
 self.session.delete_item('username')
 doRender(self, 'index.htm')

The Session() call either
establishes a session or

accesses the current
session.

Inside the Session() call

• We use a session cookie to look up our session

• If the cookie exists and the session exists, return that session

• If not pick a large random number as the session key, make a
session and set a temporary cookie with the session key as its
value

• See Chapter 11 for more details

The Login/Logout Pattern

• We use a key named ‘username’ in the session to indicate that
the user is logged in

• If the key is missing the user is logged out

• If the key is present, its value is the account of the logged in
user (e.g. “csev”)

def post(self):
 self.session = Session()
 acct = self.request.get('account')
 pw = self.request.get('password')
 logging.info("Checking account="+acct+" pw="+pw)

 self.session.delete_item('username')

 if pw == "" or acct == "":
 doRender(self,"login.htm",{'error' : 'Please specify Acct/PW'})
 elif pw == "secret":
 self.session['username'] = acct
 doRender(self,"index.htm",{ })
 else:
 doRender(self,"login.htm",{'error' : 'Incorrect password'})

Get the Session

Log out previous user

Log in new user

Logout

from util.sessions import Session

class LogoutHandler(webapp.RequestHandler):

 def get(self):
 self.session = Session()
 self.session.delete_item('username')
 doRender(self, 'index.htm')

Get the Session

Log out previous user

Navigation

• We want to have the Login /
Logout button flip when we log in
or out and we want to see the
name of the current logged in
user.

 <a href="topics.htm"
 {% ifequal path '/topics.htm' %}
 class="selected"
 {% endifequal %}
 >Topics
 {% ifequal username None %}
 <a href="/login"
 {% ifequal path '/login' %}
 class="selected"
 {% endifequal %}
 >Login
 {% else %}
 Logout ({{username}})
 {% endifequal %}

In the view template, we send
an additional context variable

to the template called
“username” if the user is

logged in. We use logic in the
template to either generate the

Login link or the Logout +
account name link.

_base.htm

def doRender(handler, tname = "index.htm", values = { }):
 logging.info(tname)
 temp = os.path.join(os.path.dirname(__file__),'templates/'+tname)
 if not os.path.isfile(temp):
 return False

 # Make a copy of the dictionary and add basic values
 newval = dict(values)
 if not 'path' in newval:
 path = handler.request.path
 newval['path'] = handler.request.path

 if not 'username' in newval:
 handler.session = Session()
 if 'username' in self.session:
 newval['username'] = handler.session["username"]

 outstr = template.render(temp, newval)
 handler.response.out.write(outstr)
 return True

We check to see if the
username is in the session
and if username is in the
session we add it to the
context variables to be

passed into the template.

Summary

• The Cookies and Session work together to give us a relatively
simply way to programmatically stash data associated with a
particular user/browser

• While the mechanisms are a bit complex, the session pattern
turns out to be pretty simple to use in our applications

• The Google Application Engine does not provide us with a
Session feature - so we need to write or borrow some code

• Clever use of session is important to application performance

