
Wide-Area SMC Interaction, Implementation and
Emulation

Stephen Strowes∗, Naranker Dulay†, Steven Heeps∗, Sye Loong Keoh†, Emil Lupu†,
Alberto Egon Schaeffer-Filho†, Morris Sloman† and Joe Sventek∗

∗Department of Computing Science, University of Glasgow

{sds,heeps,joe}@dcs.gla.ac.uk
†Department of Computing, Imperial College London

{n.dulay,slk,e.c.lupu,aschaeff,m.sloman}@doc.ic.ac.uk

Abstract— The primary components in a Self Managed Cell
(SMC) – the event bus, the policy management service, and the
discovery service – are required regardless of the scale of the
SMC. However, the behaviour of core services may necessarily
be altered to suit the environment within which an SMC operates.
This paper discusses the design of core services (primarily, the
event bus and discovery service) in wide-area SMCs. Delay-
tolerant networking between SMCs is also discussed, as is the
implementation of core services leading to an emulated network
of SMCs. As the basis for a “healthmap” capable of representing
patient data across a geographic region, the discussion on wide-
area SMCs leads into cursory discussion of geographical imaging
and visualisation systems.

I. INTRODUCTION

The second demonstrator specified by the AMUSe project

is a “health map”, intended to demonstrate the scalability and

flexibility of the Self Managed Cell (SMC) architecture [1].

With this as our goal, we defined the asthma scenario (whereby

a patient’s asthma inhaler usage is logged at the patient and

carried in a delay-tolerant manner, ultimately to be stored at

the GP surgery), and defined the behaviour of core services at

larger scales [2].

The AMUSe project defines the SMC as a repeating pattern

of management components and multiple managed nodes

intended to manage local-area SMCs and wide-area SMCs

alike. A managed node can be remote, dumb sensor, a remote

“intelligent” devices (including other SMCs), or software

services. The required core services are consistent across all

SMCs regardless of environment and scale. All SMCs require

a policy service as the centralised management component, an

event bus for the conveyance of management traffic between

components, and a discovery service to handle the process of

locating other SMCs and group members.

The environments in which we expect these core services

to run, however, can vary widely and so the behaviour of the

services must be altered to suit.

To contrast the mobile personal-area SMC we have previ-

ously focussed on, the wide-area SMCs we envision in [2]

will be required to run on stationary IP-based local-area and

wide-area networks. The notable difference at larger scales

is the behaviour of the discovery service, which varies more

considerably than the behaviour of the event bus at differing

scales.

In a wide-area SMC we are more able to assume permanent

network components which do not appear or disappear fre-

quently (e.g., hosts, printers, databases, etc), which are often

connected via a wired network infrastructure. We must also

consider that this network environment potentially allows for

many more networked components falling under the jurisdic-

tion of one SMC than the localised ZigBee-based personal-

area SMC, owing mainly to the physical characteristics of the

different types of networks.

This paper reviews the design considerations and implemen-

tation experience derived from building a proof-of-concept and

proof-of-existence wide-area SMC and an emulation of a real-

life set of interacting SMCs. We also consider interactions

between mobile and stationary SMCs, and how to transfer

data between SMCs using the principles of delay-tolerant

networking.

While the construction of an actual healthmap was not

achieved due to time constraints, the central issue of core

service scalability has been considered in depth. We believe the

remainder of the healthmap work to pose no major problems

and to be a matter of finding time and resources to build an

implementation.

The remainder of this paper is structured as follows: Section

II discusses the desired behaviour of the core services within

a wide-area SMC. Section III briefly covers the concept of

linking together mobile and stationary SMCs, while Section

IV discusses delay-tolerant networking and how it applies

to our networked SMCs. Section V covers implementation

details, and Section VI the actual experimental setup. The

paper is concluded over Sections VII, VIII and IX which cover

data visualisation for the healthmap, current status, and the

conclusion respectively.

II. CORE SERVICES IN THE WIDE AREA

This section discusses each of the core services separately,

and the requirements placed on each of those in wide-area

environments. The rationale supporting the design of the wide-

area SMC design is detailed more thoroughly in [2].

A. Event Bus

The event bus is required to route management events from

services or devices which are members of an SMC onto any

interested parties within the SMC which have subscribed to

receive events matching certain criteria.

It is essential that the communication of management events

satisfy at most once semantics – i.e. all events are delivered

to each interested component exactly once if the interested

component is still a member of the SMC.

Since there may be causal relationships between pairs of

events from the same source, the event bus must also guarantee

that all events from a particular sender are delivered to each

interested receiver in the order sent. Note that this does not say

anything about delivery order between events from different
sending components, as this would require a model of causality

for the entire SMC.

One additional caveat if we are to consider a wide-area event

bus is scalability in terms of potential throughput; while we

do not expect management traffic in a sensibly constructed

SMC to be onerous, we should design to scale as far as is

reasonable. (i.e., where there is not an equivalent performance

penalty hit in doing so.)

The policy service generates management traffic, but it does

not do so exclusively; for example, the discovery service uses

the event bus to carry membership announcements, which are

certainly also management traffic. Application traffic may be

carried over the event bus, but applications are free to choose

to use whichever communication mechanisms are available to

them, of which the event bus is only one.

Siena is a content-based publish/subscribe event service,

which can be used in a centralised manner with clients

connecting to a central server [3]. Siena also provides scal-

ability by allowing these servers to connect to each other

in a hierarchical fashion, with events then routed over the

hierarchy. The hierarchical structure is fixed, and so there is

no scope for reordering of events if routing tables at Siena

nodes change. Siena can also use TCP links between nodes,

so events in transit should not be reordered.

The compact event bus designed for smaller wireless envi-

ronments was designed to act as a centralised event forwarding

mechanism based on the Siena algorithms [4], and so utilising

Siena for the wide-area SMC allows for easy integration of the

two, without the need to translate events between two different

(and potentially complex) event description languages.

B. Discovery Service

Each SMC requires a discovery service, which implements

a protocol to initiate communications between the SMC and

a new device or service, and to subsequently grant or deny

group membership and integration of that device into the

cell. On granting a new device membership to the SMC,

the discovery service will fire a newMember event describing

that member (or a newSMC event if the new member is

another SMC). There also exist symmetric purgeMember and

purgeSMC events.

The discovery service has several purposes constituting

management of group membership: to handle admission of

new nodes into the cell (employing authentication specific

to the application); to handle handle the removal of nodes

which have left the cell (either cleanly by announcing their

departure, or through being physically removed, disconnected,

etc); and to maintain connectivity to nodes while they are part

of the cell. Services within an SMC should be able to use the

discovery service to lookup other services.

The protocol should mask transient disconnections between

components, e.g. a nurse leaving a room for a short while

to tend to another patient before coming back, or a wireless

connection to a desktop PC being temporarily disrupted.

The discovery service for the personal-area SMC is designed

for heavily localised, connectionless, wireless environments

which make the broadcast-based nature of this discovery proto-

col appropriate. In a more traditional networking environment,

periodic broadcasts in this manner are wasteful.

In more traditional networks the behaviour of the software

components must be reversed, such that devices and services

don’t listen for the discovery service but instead locate the

discovery service (possibly by one of a variety of mechanisms:

DNS, multicast, pre-loaded addresses to ping for the existence

of the discovery service), then initiate communication. Thus,

the actual process of locating nodes is altered to suit the

environment.

Note that we can view two distinct phases to any discov-

ery protocol: initial discovery of services and other SMCs,

followed by subsequent restriction of that set of discovered

items (for example: locate a printer, then choose the most

appropriate; wireless sensors must locate the correct patient’s

discovery service and choose the correct one). The latter

phase can be solved by either of the following methods, for

example: the discovery service could restrict the viewable set

of components to a given node, provided some context (e.g.,

a PC configured to identify itself as belonging to a particular

room may choose the printer also in that room); or a “two-

button” mechanism to enable devices to identify each other

amongst others (thus solving the problem faced by the wireless

sensor).

The latter phase here can be deemed as an application or

environment specific characteristic of SMC interactions. We

focus largely on the initial phase. (Although, in both the

personal-area SMC and wide-area SMC we can offer some

scope for service selection: query based with pre-configured

parameters in the printer example, and proximity based for

wireless sensors.)

1) Discovery Services: Service discovery in traditional net-

working environments utilises directory-based mechanisms to

locate service providers. Access to these directories is provided

by protocols such as the lightweight directory-access protocol

(LDAP).

LDAP is a thoroughly documented protocol [5] which

provides access to various directory services (e.g., an X.500

directory). Hosts can bind or unbind from the LDAP server,

and add, remove or modify entries while they are connected.

We could use LDAP to advertise hosts and services. JNDI is an

interface to allow Java components to access various standard

directory services such as LDAP [6], which may prove useful

for interfacing our existing Java components with traditional

network services to offer a discovery service.

Service discovery protocols generally rely on the existence

of a directory service to arrive at what we would consider

a discovery service. These directories may be centralised or

distributed. Some existing service discovery protocols include

Zeroconf, SLP, UPnP, and Jini.

Zeroconf aims to offer easy setup for IP networks. Vari-

ous implementations exist, such as Apple’s “Bonjour”, and

Linux’s “Avahi”. Zeroconf is based on mDNS, multicast-

DNS, whereby end hosts store their own list of DNS records

describing services they offer. Lookups are performed by

multicasting to a known address and awaiting responses from

matching hosts. This suggests that Zeroconf cannot scale with

the network, since each host receives all lookup packets sent

over the network.

The Service Location Protocol (SLP) is defined by the

IETF for use over IP based network environments [7]. Di-

rectory agents (DAs) in an SLP environment hold the services

registered by service agents (SAs) for other entities to use;

an SA attempts to locate a DA by multicasting to a known

address on joining the network, and DAs periodically multicast

a heartbeat packet to inform the rest of the network of its

presence. The protocol can work in the presence of a DA or

without. If no DA is present, nodes multicast service requests

and SAs respond directly. Multiple DAs can connect to each

other in order to allow this setup to scale. SLP is supported

by various forms of Linux and MacOSX, and open C and

Java implementations are available for download [8]. Its use

of IP multicast may make SLP unsuitable in some network

situations.

Universal Plug and Play (UPnP) is the output of the UPnP

Forum and uses a discovery protocol based on the Simple

Service Discovery Protocol (SSDP) [9]. UPnP uses non-

standard HTTP over UDP across either multicast addresses

or unicast links. Services announce their presence by sending

an ANNOUNCE message, and can query the network for a

resource with an OPTIONS message [10]. Beyond discovery,

the UPnP protocol tackles additional functionality, such as

control & management, event notification, NAT traversal,

amongst others. UPnP is a complex piece of software aiming

to solve a larger problem set than just service discovery.

JINI is an open network architecture for the construction

of distributed systems. JINI services locate the directory

service by requiring that new services or devices multicast

a presence announcement to a known address. On receiving

this announcement, the directory service communicates with

the new device using remote method invocation (RMI), passing

objects to the new device to allow it to join with the directory

service, and to perform lookup operations. This requirement

forces application to use Java’s RMI, which may not suit all

SMC settings.

Our requirements suggest that we need little more than a di-

rectory service, perhaps with some additional code to provide

exactly the semantics we require; sufficient generality such as

to not restrict the SMC platform to a specific programming

language or operating system suggest that either SLP or an

LDAP server are appropriate for our purposes.

For the implementation of these services, we chose SLP

due to the simplicity of the multicast mechanism on which it

is based and the availability of source code.

C. Policy Service

Policies provide the means of specifying the adaptation

strategy for autonomic management [11]. There are two dis-

tinct types of policy: authorisation policies, which specify

what resources the components assigned to a role can access,

and obligation policies (event-condition-action rules) which

specify how components/services react to events and interact

with other components/services.

When a device is discovered and granted membership of

an SMC the appropriate policies, based on device type, are

deployed to it. This is triggered by a newMember event

generated by the discovery service. Policies can be added,

removed, enabled and disabled to change the behaviour of cell

components at runtime. Policies also govern the behaviour of

the discovery service and the policy service itself, enabling

these to be tailored to specific situations.

One key advantage offered by the policy service is the

ability to load ‘missions’ from one SMC onto another; a

mission is a task which that SMC will carry out even while

disconnected from the parent or peer SMC which loaded the

mission. Thus, we are capable of automatically configuring an

SMC to perform a task (e.g., take readings over a period of

time) while it is mobile.

III. BRIDGING THE GAP

Bridging the gap between the mobile environment, with

ZigBee-based SMCs, and stationary SMCs on an Ethernet

network would simply require a gateway to transfer/translate

messages between the two environments. Given the differing

behaviours of the two realms, message translation may be an

important aspect of the gateway’s behaviour.

Using Figure 1 as a reference, the gateway uses one or

more ZigBee transceivers to periodically broadcast the SMC

ID of the stationary network to which it is attached; this

SMC could be a hospital ward, or a hospital building for

example. To accommodate ZigBee-based SMCs, the gateway

performs membership admittance as per a mobile discovery

service and then advertises the mobile SMC in the SLP DA.

It monitors continued group membership via received unicasts

from mobile SMCs.

The gateway translates messages between formats suitable

for the larger-scale and smaller-scale services, as appropriate.

A gateway can also become an SLP DA, thus directly

handling the membership of mobile SMCs and visibility of

mobile SMCs to the rest of the wide-area SMC. This DA can

share the responsibility of the discovery service with another

agent located in the PC marked “SMC Core”. Likewise, the

gateway can join a distributed Siena system to help with event

handling to and from mobile entities.

Fig. 1. Bridge between traditional Ethernet network and ZigBee network,
over which SMC services will be able to communicate.

IV. DELAY-TOLERANT NETWORKING

Given our mix of mobile components based on battery-

powered wireless technologies and mains-powered wired com-

ponents, we can obviously draw borders between a fixed

network infrastructure and mobile networked regions, with

transient links connecting the two. It is apparent then that

mechanisms may be required to ease the data transfer between

the two different networks.

Delay-tolerant networking (DTN) suits our SMC architec-

ture given the mobile nature of (some) cells within most

potential environments. A DTN defines regions which nodes

inhabit; inter-region routing takes place between nodes on the

border of two regions, and intra-region routing is attempted

once a “bundle” of data has arrived at its target region, [12].

DTN region labelling is application-specific, but it is easy to

imagine two extremes: one, where each SMC is a region, and

the other where all SMCs inhabit one large shared region, and

varying levels of fragmentation in-between.

Delay-tolerant networking within the context of interacting

SMCs provides some nice, if subtle, behaviour: the DTN layer

can react to the very same management events that the rest of

an SMC reacts to. For example, the DTN layer does not need

to probe for new connections. Instead, it will accept a newSMC
event and react to it – if the newSMC belongs to a region which

the DTN layer is configured to connect to, then a connection

can be established, triggering the transmission of previously

stored data in direct response to this newSMC event. Likewise,

purgeSMC events close connections, clear up state, and ensure

that undelivered data is retained for later delivery.

The demo application discussed in Section VI sends data via

the DTN, and forgets about that data once acknowledged by

the next node. The DTN implementation uses what is referred

to as custody transfer [12] for data transfer; data is passed to a

custodian who acknowledges receipt, who then forwards to the

next potential custodian or final destination. Custody transfers

fit this scenario if we choose to place trust in the NHS nodes;

other scenarios with untrusted custodians may require different

behaviour of the DTN layer.

Data must be stored on non-volatile storage until the next

node has acknowledged receipt. The next node will be the final

destination if the data is being sent intra-region, otherwise the

DTN node will send the data onto the next region should a

link into that region exist.

It is worth noting that, while long-distance wireless com-

munication technologies may be used by certain types of

mobile SMC (for example, GPRS) which would lessen the

need for such mechanisms, these technologies do not guarantee

network connectivity. That is, even in scenarios where such

technologies were to be included in mobile components, there

still exist periods of time where a delay-tolerant mechanism

between regions is beneficial.

V. IMPLEMENTATION DETAILS OF CORE SERVICES

Implementation of the wide-area SMC involved tying to-

gether a number of largely unrelated codebases. For example,

code which was capable of using the underlying SLP libraries

is also required to use the Siena libraries to generate newSMC,

newMember, purgeMember and purgeSMC events. Likewise,

code is required to translate Siena events into a form which

Ponder2 can understand.

Each of the primary components implements the Manage-

dObject interface to allow control via the Ponder2 policy

service, and is initiated by the policy service using its XML

markup to define commands. This offers the possibility of

reconfiguring components via the policy service at runtime.

This section details the implementation-specific decisions

for each of the core SMC components.

A. Event Bus

The implementation of the compact event bus we built for

smaller environments (e.g., PDAs) was based on the freely

available Siena codebase, but event types in the compact event

bus do not exactly match those from Siena codebase.

It is ideal for the purposes of integration if events adhere

to the same type descriptions in all mechanisms purporting

to be an event bus, thus allowing an easier transfer of events

between environments without translation. It would not take

much effort to re-engineer the smaller event bus to use the

Siena types, thus leading to easier communication between

the two systems.

The wide-area SMC uses the Siena codebase without mod-

ification. A Managed Object component controlled by the

policy service instantiates the event bus, and allows the policy

service to subscribe to events. This Managed Object is also

responsible for translating events to and from the XML format

Ponder2 requires.

B. Discovery Service

The discovery service, as a mechanism contacted by ser-

vices and devices rather than one which actively seeks new

devices is naturally designed as a directory service for lookups,

as discussed in Section II.

SLP provides a simple mechanism for locating such direc-

tory services. SLP entities use a known IP multicast address to

query DAs without the UAs or SAs requiring prior knowledge

of the DAs; this allows for DAs to be added to a local-area

network, boosting scalability while not interfering with the

operation of the other agents. The use of multicast, however,

suggests that SLP works within multicast regions, but not

across regions.

There are two potential solutions to this problem:

• UAs and SAs can be pre-configured to know the location

of certain specific DAs, thus using unicast links to operate

across multicast regions. In this situation, the SLP entities

operate like a traditional directory service.

• Multicast regions can be explicitly connected by a net-

work engineer, after which normal SLP functionality can

come into play.

DAs store service advertisements, such as services local

to an SMC like the event bus, and global services such

as the discovery service itself. Thus, within an SMC there

exists at least one directory within which all local services

are registered. Other directories can be added transparently to

allow scaling, should an SMC require it.

SLP scopes are used to restrict the visibility of SMC

components. Each SMC is a member of two scopes, SM-
CDiscoveryZone, and a scope name derived from that SMC’s

ID and type (e.g., Hospital:0013A90F201C). Only discovery

services advertise themselves within the discovery zone (and

thus globally visible to all other discovery services), with all

other services contained within the SMC-specific scope (only

visible locally).

This is suitable for SMCs located within the same LAN,

assuming multicast is available. For example, we have often

discussed a hospital SMC consisting various wards, offices,

beds, etc.

To cross multicast regions SLP nodes can be made aware

of other directory services at configuration time (and, in some

implementations, runtime). Unicast links can be used to talk

to these other directory services, allowing access in a much

more traditional directory-lookup manner.

The SLP Managed Object is configured with names or types

of other SMCs which it should attempt to connect to; when

one of those is spotted within the SMCDiscoveryZone, the

Managed Object creates a new TCP connection to exchange

information required to initiate policy-level interactions not

otherwise stored in the advertisement, prior to the generation

of a newSMC event within each SMC (see Section V-C).

While the personal-area discovery service worked on the

principle of periodic broadcasts and unicasts to ensure that

stale membership data did not linger, SLP advertisements are

tagged with a lifetime which can be used to achieve the same

effect, provided services are willing to re-advertise themselves

periodically. Thus, services can fail (or be removed without

notification) and related state will eventually be removed.

C. Policy Service

Ponder2 is used as the policy service as before, but we’re

now using Alberto’s code ?? to form interactions between the

SMCs. This opens up the possibility of loading missions, etc,

onto child SMCs.

Appropriate Managed Objects for the event bus and the

discovery service have been built to allow policy control of

these components.

D. Delay-Tolerant Networking

While a DTN implementation is available [13], it would

have been time consuming to engineer Java code to reliably

interact with the DTN libraries. Instead, an entirely custom

implementation in Java was built which obeyed the semantics

we required of the asthma scenario, but which will not

interoperate with other DTN implementations.
Data in transit is serialised and stored in non-volatile

storage. Each bundle of data passing through a DTN net-

work is uniquely identified by the destination region plus a

unique identifier maintained at the current node. Thus, a node

forwarding data from multiple nodes can deliver data in the

order it was received, and no mechanism for globally unique

identifiers is required.

Our DTN implementation obeys custody transfer semantics;

that is, that as data is moved upstream the next intermediate

node acknowledges custody of data in transfer, thus allowing

the previous node (the original source or another intermediate)

to immediately free up space.

Nodes are addressed as region:region id; in the ZigBee

realm, this would translate to Patient SMC ID:Device ID, and

in the wide-area may translate to NHS:gp0001.nhs.sco.uk.

E. Tying SMCs together

Based on the descriptions provided in the preceding sec-

tions, the following sequence of events takes place to pair two

SMCs, as depicted in Figure 2:

1) The DiscoveryService Managed Object of an SMC peri-

odically queries the DiscoveryScope SLP scope for other

SMCs with which communication might be initiated;

SMCs can be set up to either connect to other SMCs

by type, or by a specific name. On location of a valid

SMC, the initiating discovery service Managed Object

will open a TCP connection over which any additional

information required to initiate policy-level interaction

will be exchanged (for example, Ponder2 requires an

object ID (OID) in the remote policy service to initiate

any kind of interaction).

2) Provided both SMCs agree to continue, each discov-

ery service independently generates a “newSMC” event

which carries all the appropriate information: remote

SMC name, type, DTN region, policy OID.

3) The event bus delivers this event to subscribers; one such

subscriber must be the policy service.

4) The policy service in the SMC which did not initi-

ate contact will then initiate the high-level connection

with the initiator using the information carried in the

“newSMC” event.

This final stage, incurring actual policy-level interactions

between SMCs, uses the work we presented in [14].

VI. EXPERIMENTAL SETUP & PROOF OF EXISTENCE

The asthma scenario [2] was designed as a useful example

within the e-health context to demonstrate SMC interactions

and the scalability of the SMC management pattern. In sum-

mary, the asthma scenario calls for asthma inhaler usage to

Fig. 2. Setting up policy-level interactions.

be logged at the patient, and periodically transferred to that

patient’s GP surgery. Data is transferred in a delay-tolerant

manner, and is tagged with both timestamp and location1, to

be later accessed by a healthmap application.

Figure 3 shows the hierarchy designed to run across 49

virtual machines. Each virtual machine is a Xen guest domain,

running kernel version 2.6.11 and configured with 180MB

RAM. Each SMC is using the same wide-area SMC codebase,

though a real-life implementation would utilise the personal-

area SMCs previously developed and methods for interfacing

the two realms (Section III). The SMCs configured and

connected to each other as follows:

• 3 hospitals, connected to each other.

• 3 GP surgeries for each hospital (totalling 9)

• 2 home gateways per GP surgery (totalling 18)

• 1 patient per home gateway (totalling 18)

• 1 ambulance, configured to belong to one of the hospitals.

Thus, the 49 SMCs form a hierarchy, with multiple mobile

SMCs interacting with stationary SMCs.

Patients disappear and reappear regularly, to simulate the

roaming ability of the mobile SMC. Note that all patients may

come into range of the single ambulance inhabiting this world,

or their parent ‘home’ node. In real life, a patient might come

into range of any other node listed here.

A. Description

The “NHS” region is the fixed network infrastructure in

the simulation; all nodes within this region are assumed to be

stationary points which do not move, and do not disappear.

Indeed, in a real situation, the only nodes within the NHS

likely to change regularly are the home gateways.

1Location can either be an accurate location, via GPS, or a location later
appended by the GP surgery based on the postal code region in which the
surgery operates. Datasets mapping postal codes onto geographic coordinates
are freely downloadable (e.g., http://www.npemap.org.uk/data/,
available as of 07/Aug/2007).

Data is transferred via the DTN from the

PATIENT MOBILE region into the NHS region, where

it is routed to the appropriate GP surgery; the data to be

shipped into the NHS region is tagged not only with the target

region, but also with the target host. We may assume that

the patient’s SMC is loaded with the hostname and region to

send data to when it is loaded with a particular mission.

The simulation runs by instantiating a new “patient” SMC at

a certain time. Days run 24 minutes long, so in each 24 minute

cycle, a patient SMC will be destroyed after 8 minutes, and

restarted after 18 minutes (similar to a fairly normal commute-

work-commute cycle). For the duration of the simulation, a

separate process generates the false inhaler data; this ensures

that data is present for the DTN layer to transfer when the

SMC is restarted, in much the same way that data would be

available when the SMC came into range of to another SMC.

During the ‘hours’ in which the patient is roaming the

controlling script may randomly bring the patient back into

existence for a short time, but this time configured to connect

to the ambulance in the environment. The random chance is

approximately 0.2%. This allows for data to be transferred to

the NHS MOBILE region by the DTN, prior to the patient

“disappearing” again. The ambulance, while technically a

mobile unit, does not appear and disappear from the simulation

in this fashion, but stays in place to demonstrate the DTN

routing appropriately between regions.

In reality, a patient SMC would be configured to talk to

home, or the surgery, or the ambulance, etc, in some order of

preference, rather than the reconfiguration which is required

here. Generally, the patient SMC would only be in wireless

range of one of these entities.

Data is stored at the GP surgery in a database; for

simplicity, each GP surgery node runs a mysql database,

which the application code accessed via JDBC. Data is

stored in the form (uid, patientId, timestamp,
arbitraryData). We assume there must exist other tables

Fig. 3. Simulated SMCs mapped onto DTN regions.

holding other data about the patient, in particular one indexed

by patientId and holding personal data, e.g., (patientId,
foreNames, surName, DOB, address, ...).

“arbitraryData” is ignored in the simulation, but it could be

used to store the current geographical location logged at the

same time as inhaler usage if we assume the patient is also

carrying a GPS receiver as part of their SMC. Otherwise, given

that GP surgeries operate within certain postal code regions,

we can map usage statistics onto a specific location. This

method, would reduce cost of such a device, but provides

a more coarsely-grained representation of inhaler usage. (In

particular, while it may show longer-term trends such as

greater total inhaler usage per person near to a city, it may not

be able to accurately display city centre inhaler usage during

rush hour, for example.)

B. Running the SMC

Each SMC is represented by a virtual machine. To configure

each VM including its SMC, we requires three independent

configuration files:

1) One config file for the Xen VM itself, configuring its

filesystem, IP address, and volume of RAM.

2) One script to start up the SMC. This script ensures that

the environment is sane, restarts running daemons (such

as slpd, and rmiregistry for the policy service), clears

up stale data (e.g., DTN data, if starting afresh), and

kick starts the policy service. These scripts are named

“start hospital.sh”, “start patienthome.sh”, etc, though

the only variation between these scripts is in the naming

of SLP scopes. Patient SMCs run this script through

another script which handles the regular appearance and

disappearance of the SMC while still generating data

for the SMC next time it is started. Most configuration

details come from the configuration passed to the policy

service.

3) The policy service reads in ./resource/boot.xml. This file

starts up and configures core services, and defines key

characteristics of the SMC, such as the SMC ID, type

(profile, in Ponder2 parlance), DTN settings such as re-

gion, which regions are valid for upstream transmission,

etc.

Once booted, each virtual machine represents an SMC,

and is capable of connecting to other SMCs via the SLP

mechanisms and interacting with those SMCs.

For the purposes of emulation, SMCs are similar enough

that each of the VM configs, startup scripts, and boot.xml files

were batch generated, with a symlink created from boot.xml

to the configuration appropriate for the host.

VII. VISUALISATION OF DATA

The purpose of data generation and collection in the en-

vironment we have considered is to facilitate visualisation of

stored data. This section covers briefly some of the software

platforms available which may be capable of handling such

visualisation tasks.

The healthmap we envision is not intended for the visual-

isation of real-time data, but rather for the analysis of data

gathered over time. Given that SMCs must be instructed to

collect data according to certain variables (e.g., characteristics

to monitor, frequency of reading, etc) in advance of any actual

visualisation, we expect the healthmap to be flexible within the

dataset available to it. In particular, transferring data across

a DTN may result in the situation where timestamped data

arrives out of order, so the visualisation much be redrawn.

We do not view this as an interactive application capable of

“pushing” missions out to patient SMCs.

There are various visualisation tools (commonly, Geo-

graphic Information System, or GIS) available for use, each

of which allows some level of configuration to allow the

customised display of various datasets.

Quantum GIS is an open-source, 2-dimensional GIS [15],

capable of generating custom overlays for the visualisation of

datasets. However, the software does not come bundled with

geographic data while other applications do.

Google Earth is a commonly used GIS available free for

use on multiple platforms. Unfortunately, to use Google Earth

as a GIS platform requires purchase of the “Pro” version, at

a cost of $400 per annum.

Fig. 4. UK map displaying postal code regions.

NASA World Wind (and the recently released World Wind

Java SDK) is a strikingly similar project to Google Earth, in

that it provides a 3-dimensional globe which can be zoomed,

rotated, spun, etc. World Wind provides an open platform from

which all manner of visualisation tools can be constructed.

The new Java SDK should allow for an open, cross-platform

approach.
Perhaps the easiest to integrate software currently available

is the NASA World Wind Java SDK [16], released May

2007.The Java SDK would offer the easiest, most malleable

method of building a custom visualisation system. Figure 4

demonstrates a basic overlay of postal code regions mapped

onto their geographic coordinates using NASA World Wind;

a visualisation using the Java SDK would likely be easier to

build, but would appear similar to the image shown here.

VIII. CURRENT STATUS

Each of the various core SMC components as described in

this document have been built and tested. The delay-tolerant

networking code has also been built and tested. Each of these

components has been used within the context of the network

emulation we constructed across multiple virtual machines.
The simulated network did not run to the full 49 VMs,

but instead ran to 33, given the time constraints placed on

generating the simulation. There is no reason why 49 SMCs

would pose any problems, given the working status of the

simulation at 33.
Having successfully run this emulated SMC infrastructure,

the simulation of data generation for the purposes of display on

a healthmap is close to complete. Additional work is required

to retrieve data from databases and draw data onto a map

surface to demonstrate a simple healthmap application.
Worth serious consideration is a more efficient method of

storing of data across GP surgeries, in particular one designed

with NHS concerns in mind.
Further, the real-world equivalent of this network would see

mobile units using a more lightweight codebase to the wide-

area SMC codebase they are using here; each node in the

simulation uses the same codebase on the assumption that the

core services are the same no matter the size of the SMC, and

that the building of a gateway between the mobile realm and

the stationary realm is an achievable task.

IX. CONCLUSION

We have built SMCs suitable for wide-area environments

which behave differently to the body-area SMCs previously

explored for monitoring patient state. These wide-area SMCs

expect the presence of IP-based networks.
To bridge the two very different worlds, we have considered

delay-tolerant networking for data transfer, and how the be-

haviour of the two discovery services can be mapped to avoid

problems. The event bus is designed such that events crossing

the boundaries can still be forwarded in either realm, and the

same policy service is used in all SMCs.
Thus, we have constructed SMCs to operate in two very dif-

ferent environments which should be able to interoperate with

each other, autonomously forging connections and managing

themselves.
Our work leads nicely into the concept of a “healthmap”,

which would be capable of building visualisations of data

stored at GP surgeries.

REFERENCES

[1] E. Lupu, M. Sloman, N. Dulay, and J. Sventek, “AMUSE:
Autonomic Management of Ubiquitous Systems for e-Health,”
http://www.dcs.gla.ac.uk/˜joe/auxiliary/files/amuse-CfS-final.pdf, last
accessed 07/Aug/2007.

[2] S. Strowes, “Health Map Scenario: Asthma,”
http://www.dcs.gla.ac.uk/˜sds/papers/sds healthmap07.pdf, University
of Glasgow, Tech. Rep., Febuary 2007.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and Evaluation
of a Wide-Area Event Notification Service,” ACM Transactions on
Computer Systems, vol. 19, no. 3, pp. 332–383, Aug. 2001.

[4] S. Strowes, N. Badr, S. Heeps, E. Lupu, and M. Sloman, “An Event
Service Supporting Autonomic Management of Ubiquitous Systems for
e-Health,” ICDCS Workshops, pp. 22 – 27, 2006.

[5] O. Foundation, “Lightweight Directory Access Protocol (LDAP): Tech-
nical Specification Road Map,” http://tools.ietf.org/rfc/rfc4510.txt, June
2006.

[6] “Core Java: Java Naming and Directory Interface (JNDI),” http://java.
sun.com/products/jndi/, accessed 07/Aug/2007.

[7] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol, Version 2,” http://tools.ietf.org/rfc/rfc2608.txt, June 1999.

[8] “OpenSLP,” http://www.openslp.org/, accessed 07/Aug/2007.
[9] Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple Service

Discovery Protocol/1.0,” Oct 1999, expired Apr 2000. http://tools.ietf.
org/id/draft-cai-ssdp-v1-03.txt, accessed 08/11/2006.

[10] S. Helal, “Standards for service discovery and delivery,” PERVASIVE
Computing, vol. 1, no. 3, pp. 95 – 100, July – Sept 2002.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in POLICY ’01: Proceedings of the Interna-
tional Workshop on Policies for Distributed Systems and Networks.
London, UK: Springer-Verlag, 2001, pp. 18–38.

[12] F. Warthman, “Delay-Tolerant Networks (DTNs); A Tutorial,” May
2003.

[13] “Delay Tolerant Networking Research Group,” http://dtnrg.org/, accessed
07/Aug/2007.

[14] A. E. Schaeffer-Filho, E. Lupu, N. Dulay, S. L. Keoh, K. Twidle,
S. Heeps, S. Strowes, and J. Sventek, “Towards Supporting Interactions
Between Self-Managed Cells,” 1st Internation Conference on Self-
Adaptive and Self-Organizing Systems (SASO), vol. 0, pp. 224 – 236,
July 2007.

[15] “Quantum gis website,” http://qgis.org/, accessed 7th Aug, 2007.
[16] “Nasa world wind: Java sdk,” http://worldwind.arc.nasa.gov/java/, ac-

cessed 7th Aug, 2007.

