Creating Functions

Functional Programming

The function calculator

- Functional programming is all about using functions
- Functions are first class
- Take as input, return as result, store in data
- A functional language is a function calculator
- What buttons do we have for "creating" functions?

12 ways to get a new function

- By defining one at top level
- By equation
- By cases
- By patterns
- By local definition (where and let)
- By use of a library
- By lambda expression (anonymous functions)
- By parenthesizing binary operators
- By section
- By currying (partial application)
- By composition
- By combinator (higher order functions)
- By using data and lookup (arrays lists and finite functions)

By defining at top level

Module Test where
plus5 $x=x+5$
last $\mathrm{x}=$ head (reverse x$)$

CreatingFunctions> plus5 7
12
CreatingFunctions> last [2,3,4] 4

$$
\begin{aligned}
& \text { CreatingFunctions> absolute } 3 \\
& 3 \\
& \text { CreatingFunctions> absolute }(-4) \\
& 4 \\
& \text { CreatingFunctions> swap }(23,5) \\
& (5,23)
\end{aligned}
$$

By patterns

- Example on Booleans
myand True False = False myand True True = True myand False False = False myand False True = False
- Order Matters
- Variables in Patterns match anything

```
myand2 True True = True
myand2 x y = False
```

- What happens if we reverse the order of the two equations above?

By local definition

(where and let)
ordered $=$ sortBy backwards

$$
[1,76,2,5,9,45]
$$

where backwards $x \mathrm{y}=$ compare $\mathrm{y} x$

> CreatingFunctions> ordered
> $[76,45,9,5,2,1]$

By use of a Library

smallest $=$ List.minimum

$$
[3,7,34,1]
$$

CreatingFunctions> smallest 1

By lambda expression

(anonymous functions)
descending =

```
CreatingFunctions> descending
[76,45,9,5,2,1]
CreatingFunctions> bySnd
[[(1,'a'),(3,'a')],[(2,'c')]]
```

sortBy
($\backslash x$ y $->$ compare $y ~ x)$
$[1,76,2,5,9,45]$
bySnd =
groupBy

$$
\begin{aligned}
& (\backslash(x, y)(m, n)->y==n) \\
& {\left[\left(1, a^{\prime}\right),\left(3, a^{\prime}\right),\left(2, c^{\prime}\right)\right]}
\end{aligned}
$$

By parenthesizing binary operators

six: : Integer
$-1+2+3+0$
six $=$ foldr $(+) 0 \quad[1,2,3]$

```
CreatingFunctions> six

\section*{By section}
add5ToAll \(=\operatorname{map}(+5)[2,3,6,1]\)
\[
\begin{aligned}
& \text { CreatingFunctions> add5ToAll } \\
& {[7,8,11,6]}
\end{aligned}
\]

\section*{By partial application}

Note, both map and any, each take 2 arguments
\[
\begin{aligned}
& \text { hasFour }=\text { any }(==4) \\
& \text { doubleEach }=\operatorname{map}(\backslash x->x+x)
\end{aligned}
\]
```

CreatingFunctions> hasFour
[2,3]
False
CreatingFunctions> hasFour
[2,3,4,5]
True
CreatingFunctions> doubleEach
[2,3,4]
[4,6,8]

```

\section*{By composition}

\section*{hasTwo = hasFour . doubleEach empty = (==0) . length}
```

CreatingFunctions> hasTwo
[1,3]
False
CreatingFunctions> hasTwo
[1,3,2]
True
CreatingFunctions> empty [2,3]
False
CreatingFunctions> empty []
True

```

\section*{By combinator}
(higher order functions)
\[
\begin{aligned}
& \mathrm{k} x=\backslash y->x \\
& \operatorname{all} 3 \mathrm{~s}=\operatorname{map}(\mathrm{k} 3) \quad[1,2,3]
\end{aligned}
\]
```

CreatingFunctions> :t k True
k True :: a -> Bool
CreatingFunctions> all3s
[3,3,3]

```

\section*{Using data and lookup}
(arrays, lists, and finite functions)
```

whatDay x =
["Sun","Mon", "Tue", "Wed", "Thu", "Fri","Sat"]
!! x
first9Primes = array (1,9)
(zip [1..9]
[2,3,5,7,11,13,17,19,23])
nthPrime x = first9Primes ! x
CreatingFunctions> whatDay 3
"Wed"
CreatingFunctions> nthPrime 5
11

```

\section*{When to define a higher order function?}
- Abstraction is the key
```

mysum [] = 0
mysum (x:xs) = (+) x (mysum xs)
myprod [] = 1
myprod (x:xs) = (*) x (myprod xs)
myand [] = True
myand (x:xs) = (\&\&) x (myand xs)

```
- Note the similarities in definition and in use
```

? mysum [1,2,3]
6
? myprod [2,3,4]
24
? myand [True, False]
False

```

\section*{When do you define a higher order function?}
- Abstraction is the key
```

mysum [] = 0
mysum (x:xs) = (+) x (mysum xs)
myprod [] = I
myprod (x:xs) = (*) x (myprod xs)
myand [] = True
myand (x:xs) = (\&\&) x (myand xs)

```
- Note the similarities in definition and in use
```

? mysum [1,2,3]
6
? myprod [2,3,4]
24
? myand [True, False]
False

```

\section*{Abstracting}
\[
\begin{aligned}
& \text { myfoldr op } e[]=e \\
& \text { myfoldr op } e(x: x s)= \\
& \text { op } x \text { (myfoldr op e xs) }
\end{aligned}
\]
? :t myfoldr
myfoldr : : (a -> b -> b) -> b -> [a] \(>\mathrm{b}\)
? myfoldr (+) 0 [1,2,3]
6
?

\section*{Functions returned as values}
- Consider:
\(\mathrm{k} x=(\backslash \mathrm{y}->\mathrm{x})\)
? (k 3) 5
3
- Another Example:
plusn \(n=(\backslash x->x+n)\)
? (plusn 4) 5
9
- Is plusn different from plus? why?
- plus \(x y=x+y\)```

