
Creating Functions

Functional Programming

The function calculator

• Functional programming is all about using

functions

• Functions are first class

– Take as input, return as result, store in data

• A functional language is a function calculator

• What buttons do we have for “creating”
functions?

12 ways to get a new function

• By defining one at top level
– By equation

– By cases

– By patterns

• By local definition (where and let)

• By use of a library

• By lambda expression (anonymous functions)

• By parenthesizing binary operators

• By section

• By currying (partial application)

• By composition

• By combinator (higher order functions)

• By using data and lookup (arrays lists and finite functions)

By defining at top level

Module Test where

plus5 x = x + 5

last x = head(reverse x)

CreatingFunctions> plus5 7

12

CreatingFunctions> last [2,3,4]

4

By cases

absolute x | x < 0 = -x

| x >= 0 = x

swap (x,y) | x < y = (x,y)

| x > y = (y,x)

| x==y = (x,y)

Name and argument condition

Vertical Bar
Equal sign

Value for

case

CreatingFunctions> absolute 3

3

CreatingFunctions> absolute (-4)

4

CreatingFunctions> swap (23,5)

(5,23)

By patterns

• Example on Booleans

myand True False = False
myand True True = True
myand False False = False
myand False True = False

• Order Matters
– Variables in Patterns match anything

myand2 True True = True
myand2 x y = False

– What happens if we reverse the order of the two equations above?

Pattern may contain

constructors. Constructors

are always capitalized. True and

False are constructors

By local definition
(where and let)

ordered = sortBy backwards

[1,76,2,5,9,45]

where backwards x y = compare y x

CreatingFunctions> ordered

[76,45,9,5,2,1]

By use of a Library

smallest = List.minimum

[3,7,34,1]

CreatingFunctions> smallest

1

By lambda expression
(anonymous functions)

descending =

sortBy

(\ x y -> compare y x)

[1,76,2,5,9,45]

bySnd =

groupBy

(\ (x,y) (m,n) -> y==n)

[(1,'a'),(3,'a'),(2,'c')]

CreatingFunctions> descending

[76,45,9,5,2,1]

CreatingFunctions> bySnd

[[(1,'a'),(3,'a')],[(2,'c')]]

By parenthesizing binary operators

six:: Integer

-- 1 + 2 + 3 + 0

six = foldr (+) 0 [1,2,3]

CreatingFunctions> six

6

By section

add5ToAll = map (+5) [2,3,6,1]

CreatingFunctions> add5ToAll

[7,8,11,6]

By partial application

hasFour = any (==4)

doubleEach = map (\ x -> x+x)

Note, both map and

any, each take 2

arguments

CreatingFunctions> hasFour

[2,3]

False

CreatingFunctions> hasFour

[2,3,4,5]

True

CreatingFunctions> doubleEach

[2,3,4]

[4,6,8]

By composition

hasTwo = hasFour . doubleEach

empty = (==0) . length

CreatingFunctions> hasTwo

[1,3]

False

CreatingFunctions> hasTwo

[1,3,2]

True

CreatingFunctions> empty [2,3]

False

CreatingFunctions> empty []

True

By combinator
(higher order functions)

k x = \ y -> x

all3s = map (k 3) [1,2,3]

CreatingFunctions> :t k True

k True :: a -> Bool

CreatingFunctions> all3s

[3,3,3]

Using data and lookup
(arrays, lists, and finite functions)

whatDay x =

["Sun","Mon","Tue","Wed","Thu","Fri","Sat"]

!! x

first9Primes = array (1,9)

(zip [1..9]

[2,3,5,7,11,13,17,19,23])

nthPrime x = first9Primes ! x

CreatingFunctions> whatDay 3

"Wed"

CreatingFunctions> nthPrime 5

11

When to define a higher order function?

• Abstraction is the key
mysum [] = 0

mysum (x:xs) = (+) x (mysum xs)

myprod [] = 1

myprod (x:xs) = (*) x (myprod xs)

myand [] = True

myand (x:xs) = (&&) x (myand xs)

• Note the similarities in definition and in use
? mysum [1,2,3]

6

? myprod [2,3,4]

24

? myand [True, False]

False

When do you define a higher order function?

• Abstraction is the key

mysum [] = 0

mysum (x:xs) = (+) x (mysum xs)

myprod [] = 1

myprod (x:xs) = (*) x (myprod xs)

myand [] = True

myand (x:xs) = (&&) x (myand xs)

• Note the similarities in definition and in use

? mysum [1,2,3]

6

? myprod [2,3,4]

24

? myand [True, False]

False

Abstracting

myfoldr op e [] = e

myfoldr op e (x:xs) =

op x (myfoldr op e xs)

? :t myfoldr

myfoldr :: (a -> b -> b) -> b -> [a] -
> b

? myfoldr (+) 0 [1,2,3]

6

?

Functions returned as values

• Consider:

k x = (\ y -> x)

? (k 3) 5

3

• Another Example:

plusn n = (\ x -> x + n)

? (plusn 4) 5

9

• Is plusn different from plus? why?
– plus x y = x + y

