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Abstract 
With the development of offshore deep water fields, helicopter transportation and 

consequently helicopter deck becomes a vital part of these fields that located far from 

onshore. To ensure helicopter safe operations, aerodynamic hazards around an offshore 

platform and helideck need to be identified and risks of such disturbances should be 

minimized. The main sources of environmental hazards around an offshore platform are 

vertical air flow fluctuation (σz), and temperature increase above the helideck (Morrison, 

2001). According to British CAP 437 standard, vertical air flow fluctuation should be less 

than 1.75 m/s above the helideck. Furthermore, temperature increase should be less than 

2◦C according to NORSOK C-004 and CAP 437 standards. In order to examine such 

aerodynamic disturbances, Atmospheric Boundary Layer (ABL) and hot air flow is simulated 

by OpenFOAM®2.1.1 as an open source Computational Fluid Dynamic (CFD) toolbox. 

In this thesis, ABL simulation is first done for a simple geometry, and then it is developed for 

real offshore fixed platform geometry as wind environment disturbed in vicinity of offshore 

platform as a major obstacle, and turbulent eddies would be generated. Turbulence models 

applied for helideck simulations are k-ε and RSM turbulence model to assess which one 

going to present the real situation best. In addition, to examine thermal gradient, hot 

exhausted air flow is simulated for a simple geometry. To validate simulation results of this 

project as it is done by an open source code, the models are also simulated by KFX® CFD 

simulator in parallel by Dr. Giljarhus, and its results compared by simulation results of 

OpenFOAM. 

In ABL simulations of simple geometry, results of horizontal velocity, turbulent kinetic 

energy, dissipation rate and turbulent eddy viscosity are plotted for different location at 

geometry length against height to assess how theses profile developed from inlet to outlet, 

and the OpenFOAM results compared with KFX results. In ABL simulation of real platform 

geometry, σz is calculated as it is one of the main missions of this report, and the results are 

plotted for coarse and fine mesh for k-ε and RSM turbulence models, and also turbulent 

kinetic energy pattern is shown and compared with KFX. For hot plume simulation, the 

location of 2◦C isotherm is identified and the plume pattern and sizing is compared with KFX. 

ABL simulation results for a simple geometry show a great homogeneity with KFX results 

especially for velocity profile. Regarding hot plume simulation, the plume pattern and its 

sizing validated as it is fairly similar compare to KFX result. And finally, In ABL helideck 

simulations, it is found that vertical airflow fluctuation is acceptable for the defined wind 

condition, as it is less than 1.75 m/s criterion. Furthermore, comparison between simulation 

results of k-ε and RSM turbulence models show that k-ε turbulence model generate more 
turbulent kinetic energy and consequently more vertical air flow fluctuation compare to 

RSM model.   
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1 Introduction 

1.1 Background 

Although there were no major fatalities resulting from aerodynamics hazards around an 

offshore helideck from 1976 to 1999, several incidents such as heavy landing of helicopter 

have been reported that turbulent wind environment and hot gases were the major reasons 

for the accident.  The most serious report was the Claymore offshore platform accident, in 

1995 that lead to very heavy landing of helicopter. This accident attracts the attentions 

toward an importance of aerodynamic disturbance as a risk factor for helicopter safe 

operation.  However, this accident did not involve major fatalities. (Morrison, 2001) 

In early 1960s, it has become apparent that it would be necessary to adapt some 

requirements for helicopter operations on offshore fixed and mobile installation. In 1964, 

the draft criteria for helicopter landing areas were published. This report was corrected in 

1968 regarding to the proposed size of landing area (CAP 437, May 2012).  

The first edition of CAP 437 was published in 1981 by the Civil Aviation Authority (CAA) of 

the UK. CAP 437 is a standard for offshore helicopter landing areas, and a principal 

instrument which explicitly imposes an obligation on the platform operator to minimize the 

occurrence of aerodynamic hazards. Up to now, this standard was revised and updated 

seven times. The seventh edition of CAP 437 incorporating amendment was published in 

February 2013. 

This standard contains criteria for thermal gradient over the helideck, and limitation for 

vertical component of velocity fluctuation (Rowe et al.). The quantitative turbulence 

criterion for helideck design was first defined by CAP 437. In CAP 437 fifth edition that is 

published in August 2005 , still as a general rule, the vertical mean speed above the helideck 

should not exceed ±9 m/s for a wind speed up to 25 m/s (Safety Regulation Group, May 

2009). 

The research carried out by CAA paper 2008/02 to validate the ±9 m/s wind speed criterion, 

concluded that this criteria cannot link the vertical airflow to any pilot workload or 

helicopter performance. Therefore, a new turbulence criterion should be defined (Safety 

Regulation Group, May 2009).  

The above mentioned long lasting criterion was removed from CAP 437 material, and new 

turbulence criterion implemented in CAP 437- sixth edition published in December 2008. 

The new turbulence criterion is; as a general rule the standard deviation of the vertical 

airflow velocity should have values less than 1.75m/s (CAP 437, May 2012). In this standard, 

there is also a criterion for thermal gradient above the helideck which should have values 

less than 2◦C. 
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In Norway, there is also a standard for design, arrangement and engineering of helideck, 

called NORSOK standard C-004 for helicopter deck on offshore installation. In this standard, 

there is also an implication of the importance of analyzing the wind environment and 

turbulent hot gases around an offshore helideck.  

In NORSOK C-004, the hot air flows are considered as a major risk factor for helicopter 

operation, and the position of 2◦C isotherm shall be verified by CFD analysis (NORSOK Rev. 2, 

Feb. 2013). This criterion is the same as one required by UK CAP 437. 

In addition, according to NORSOK C-004, helicopter operation is prohibited in strong 

turbulent wind conditions because it may affect safety margin and lift capacity of helicopter 

(NORSOK Rev. 1,  2004). According to NORSOK C-004 Rev 2, velocity field and velocity 

gradient together with turbulence plot shall be provided at different levels above the 

helideck, and limitations on helicopter operations may be considered for values of the 

vertical velocity fluctuation larger than 2.4 m/s, and restrictions for vertical velocity 

fluctuation exceeding 3.6 m/s (NORSOK Rev. 2, Feb. 2013). Comparing NORSOK criterion 

with CAP 437, UK standard seems to be more conservative as it defined values of vertical air 

flow fluctuation less than 1.75 m/s for helicopter safe operations. 

To measure the wind environment around an offshore installation as well as thermal 

gradient above the helideck, CFD approach should be applied. The international standard 

ISO 15138 second edition called HVAC in oil and gas industry and offshore production 

installation published in 2007, established some guidance and requirement regarding the 

preparation for CFD analysis. In this standard, there is some requirement for construction of 

computation model and mesh generation as well as modeling of boundary layers (ISO 

15138, 2007). There are also requirements for modeling of wind environment around the 

helideck and gas turbine exhaust plume dispersal (ISO 15138, 2007). According to this 

standard and also new version of NORSOK C-004, simulation of wind environment around 

the helideck shall be done by using non-isotropic turbulence models such as Reynolds stress 

model (ISO 15138, 2007) and (NORSOK Rev. 2, Feb. 2013).  

1.2 Problem definition 

With the development of offshore deep water fields, helicopter transportation becomes a 

vital part of these fields that located far from onshore. Consequently, offshore helicopter 

deck becomes an essential part of most offshore platforms. There is also an extensive use of 

helicopter to support offshore oil and gas fields in Norwegian continental self. 

To ensure safe approach of helicopter, aerodynamic hazards around an offshore platform 

need to be identified and the probability of occurrence and consequences of such 

disturbance should be minimized. Turbulence associated with the wake region downwind of 

an offshore platform, recognized as the source of highest workload for the pilots according 

to the survey carried out by Civil Aviation Authority of the UK (Rowe et al.). 

The main aerodynamic disturbance around an offshore platform, fall into two main 

categories. Wind flow around the platform and helideck, and hot gas turbulence. In other 
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words, the most important sources of environmental hazards are vertical turbulence 

fluctuation of wind and temperature increase above the helideck (Morrison, 2001). 

Simulation of Atmospheric boundary layer (ABL) over a complex terrain is essential to 

examine the wind load on the offshore structure (Balogh et al., 2012). Wind environment 

disturbed in vicinity of offshore platform as a major obstacle. Therefore, the strength and 

direction of wind flow could be changed. In addition, turbulent eddies would be generated, 

especially at the sharp edges of the platform.  

To ensure safe operation of helicopter, vertical turbulence fluctuation needs to be 

estimated. Turbulence criterion for helideck design is defined by CAP 437 standard. 

Therefore, care should be taken to ensure that standard deviation of vertical airflow velocity 

is less than 1.75 m/s above the helideck according to UK standard. 

Another important risk factor around an offshore installation is the presence of hot 

turbulent gases. The major sources of exhaust gases in a platform are hot exhaust plume, 

release of process gases and flared gas. Hot plumes exhausted by gas turbines, are highly 

turbulent and buoyant with temperature around 400◦C. These turbulent plumes mixed with 

air and travel by wind direction to helideck. Temperature increase should be less than 2◦C 

averaged over a three seconds interval according to CAP 437 (CAP 437, May 2012). This 

criterion has a great importance for safe helicopter operation, due to effect of temperature 

on engine power of helicopter. Increasing temperature causes reduction of air density that 

lead to reduction of lift capacity of helicopter. Hot plume exhausted from flare tower also 

could cause the similar problem above the helideck the same as hot plume exhausted from 

gas turbine. However, they are more visible to pilots compared to gas turbine plume.   

Release of gases from process area is another source of hazard for offshore helideck. These 

released gases can pose a hazard for helicopter operation because of risk of ingestion of 

hydrocarbon gas mixture into the helicopter engine. This could also be a probability of 

ignition due to the presence of helicopter as source of ignition. 

Prediction of path of these exhaust plume is extremely difficult because it influenced by lots 

of factors such as wind speed and its direction, level of turbulence, geometry of the 

platform, velocity of plume and so on (Kulkarni et al., 2006).  
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1.3 Goals and objective 

This master thesis has three main objectives: 

• The first goal is simulation of atmospheric boundary layer (ABL) for a simple 

geometry with OpenFOAM® toolbox which is a computational fluid dynamic (CFD) 

code. In this phase of project, standard k- ε turbulence model is chosen to simulate 

ABL. 

Since, OpenFOAM is an open source code there is no quality certification, and its 

results needs validation. Therefore, it is tried to validate the result of the modeling 

by comparing them with the results of simulation by Kameleon FireEx (KFX®) CFD 

code with the same initial conditions.   

• The second goal of this project is simulation of hot exhaust plume with OpenFOAM, 

and comparison of the results with KFX. 

• And finally the third goal is to generate mesh and simulate real platform geometry 

by snappyHexMesh utility. Then, vertical air flow fluctuation would be verified 

around the platform and helideck by standard k- ε turbulence model and Reynolds 

stress models for a coarse and fine mesh, so totally 4 cases would be simulated, and 

then their results would be compared with KFX results. 

1.4 Thesis layout 

Present report contains eight chapters:  

The first chapter is introduction that mentioned above. 

The 2nd chapter reviews theories relevant to the topic, Such as offshore helideck and 

different aerodynamics hazards around it, turbulence around offshore helideck and 

different kinds of turbulence models, theory about computational fluid dynamics (CFD) in 

conjunction with CFD governing equation, there is also some theory about atmospheric 

boundary layer, and last part of theory chapter is assigned to OpenFOAM.  

In chapter 3, the ABL simulation set up of simple geometry is explained, divided in to three 

main sections, pre -processing, solving and post - processing. 

Chapter 4 covers simulation set ups of hot exhaust plume simulation. The sub-sections of 

these chapters are the same as chapter 3. 

Mesh generation and simulation setups of ABL simulation around a fixed offshore platform 

and helideck are explained in chapter 5. 

In chapter 6, all simulation results are presented and discussed. First, OpenFOAM ABL 

simulation results of simple geometry are presented and then simulation results compared 

to KFX results. Then, hot plumes simulation results presented and compared with KFX 
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results, and finally results of ABL simulation around helideck is presented for all 4 cases and 

compared with KFX results. 

The conclusion and future works are presented in chapter 7 

In chapter 8, the materials and references used in this project is listed by means of endNote 

X6 citation software with Harvard citation style. 

And finally, appendices cover the details of fields and setups of OpenFOAM for ABL 

simulation of simple geometry, hot exhaust plume simulation, ABL simulation around the 

helideck, and finally the content of attached CD. 

  



6 Introduction 

 

 

  



Universitetet i Stavanger 
CFD simulation of wind condition and thermal gradient around an offshore helideck 

7 

 

 

2 Theory 

2.1 Offshore helideck and environmental hazards 

With the development of offshore deep water fields, helicopter transportation becomes a 

vital part of these fields that located far from onshore. Consequently, offshore helicopter 

deck is an essential part of most of offshore platforms.  

In Norwegian Continental Self (NCS), there is also an extensive use of helicopters to support 

offshore oil and gas fields. There are 74 offshore installations in the Norwegian sector 

classified as Permanent Rigs with helidecks approved for passenger transport operations 

according to Jeppesen1. Many of these permanent rigs were dimensioned for the Sikorsky S-

61N helicopter type and have been approved accordingly with those D-value and weight 

limitations. There are also 38 mobile rigs with offshore helicopter deck. Totally, there are 

166 vessels with offshore helideck in Norway2 (MAP, 2009). Regarding the above mentioned 

statistics, helideck is an integral part of offshore Norway sector as well. Therefore, the safety 

of helicopter transportation has a great importance. 

 
Figure 1: an offshore helideck (Helideckinspect, 2013) 

 

The design of helideck is an integral part of the platform overall design, and placement of 

offshore facilities such as gas turbine, processing, flare tower, cranes and so on could affect 

the flows over helideck a great deal. 

 

                                                      
1 Source of aeronautical navigation data 
2 Statistics is for 2009 
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An accident occurred in 1995 in the Claymore accommodation platform draw an attentions 

toward environmental hazards to helicopter operation. The accident involved an 

uncontrollable decent which resulted in very heavy helicopter landing. Fortunately, the 

accident did not lead to major injuries, but caused very serious damage to helicopter. It is 

assumed that the helicopter was trapped in the plume exhausted from the gas turbine 

(Rowe et al.). 

Helideck operation is considered as one of the risky part of flight in pilot point of view due 

to turbulence within the wake region downwind of an offshore platform (Rowe et al.). 

Therefore, identifying the aerodynamic hazards around an offshore platform has a great 

importance and would help to define characteristics and magnitude of the turbulence 

around the helideck. The following hazards show in figure 2, are known as possible 

aerodynamic disturbance for an offshore helideck. 

 

 
Figure 2: the main aerodynamic hazards around an offshore platform helideck (Rowe et al., 2002) 

 Wind flow 2.1.1

Wind velocity and wind direction is an important factor for helicopter safe operation and its 

impacts should be carefully evaluated. Wind flow is affected by structures and obstacles in a 

platform and its magnitude and direction might be disturbed by them and consequently 

regions of turbulence would be created, especially near the major edges and corner of 

platform. Flows are also generally separated at the front edges of the helideck. 

Wind velocity generally increased with the height over the sea and contains unsteady 

turbulent component. In general, a wind flow for a given point in time can be defined as 
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mean velocity (U) plus the fluctuating part u´ (t). This equation (eq 1) is also known as 

Reynolds decomposition.  

u(t)= U+ u´ (t)                                                      eq (1) 

In above equation, the turbulent part u´ (t) typically defined by statistical quantities such as 

root mean square is mainly used. Velocity fluctuations u´ (t) are typically quite large in a 

region between the upstream edges of helideck and center part of it.  Furthermore, the 

mean velocity (U) sometimes has a turn point in center of helideck that might cause 

instability (Chen et al., 1995).  

In CAP 437, 6th edition a new turbulence criterion is defined for helicopter safe operations. 

As a general rule, standard deviation of the vertical airflow velocity should not exceed 1. 75 

m/s. Therefore, helicopter operator should be informed about the wind condition to make 

sure that this criterion is met before any helicopter operations (CAP 437, May 2012).  

In Norway, there is also a standard for design, arrangement and engineering of helideck, 

called NORSOK standard C-004 for helicopter deck on offshore installation. In this standard, 

there is also an implication of the importance of analyzing the wind environment. According 

to this standard, helicopter operation is prohibited in strong turbulent wind conditions 

because it may affect safety margin and lift capacity of helicopter (NORSOK Rev. 1,  2004). 

According to NORSOK C-004 Rev 2, velocity field and velocity gradient together with 

turbulence plot shall be provided at different levels above the helideck, and limitations on 

helicopter operations may be considered for values of the vertical velocity fluctuation larger 

than 2.4 m/s, and restrictions for vertical velocity fluctuation exceeding 3.6 m/s (NORSOK 

Rev. 2, Feb. 2013). Comparing NORSOK criterion with CAP 437, UK standard seems to be 

more conservative as it defined values of vertical air flow fluctuation less than 1.75 m/s for 

helicopter safe operations. 

However, some questions were raised regarding the above mentioned criterion defined by 

CAP 437 by the research recently done by a Brazilian group (Silva et al., 2010). First, 

according the wind tunnel turbulence measurement they have done on the side of ship 

model in a non-disturbed flow condition, standard deviation of vertical air flow found  

1.45m/s, so how it is possible to have standard deviation of 1.75 m/s in a real condition with 

turbulent flow? Second, how is it possible to assess only vertical turbulence component 

since frontal velocity gradient has significant effect on helicopter performance? (Silva et al., 

2010). Therefore, additional research is required to answer these questions. 

 Hot gas plume 2.1.2

Gas turbines are responsible for power generation on offshore platforms. They produce hot 

exhaust streams that reach a temperature of 400◦C. They are buoyant, unsteady and less 

predictable because of plume temperature fluctuations. This turbulent hot air travels mostly 

upwards and dilutes with air, loose its momentum and gradually travels by local wind 

direction (Rowe et al.). 
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In fixed platform hot exhaust plume reach over the helideck by wind direction; however in 

floating production unit, helideck usually located downwind and steps should be taken to 

ensure lateral separation between hot plume and helideck. The height of the plume that 

reached over the helideck depends on height of exhaust, strength of wind, exhaust 

temperature and its momentum (Rowe et al.).  

According to CAP 437, standard for offshore helicopter landing areas, in excess of 2◦C 

temperature average over 3 seconds’ time interval above the ambient temperature, care 

should be account for helicopter operation. Typically, it took about 2 to 5 seconds for a 

helicopter to respond to the changes, which imply that 3 seconds disturbance should be 

considered. According to CAP 437, 2◦C averages over 3 seconds correspond to hover thrust/ 

margin of approximately 0.4% (Rowe et al.). This criterion is also in accordance with 

NORSOK C-004 rev 2 requirements, as the position of 2◦C isotherm in relation to helideck 

shall be verified by CFD analysis because presence of hot air flows are considered as a major 

risk factor for helicopter operation according to this standard (NORSOK Rev. 2, Feb. 2013). 

Due to fact that helicopter draws the air downward through its rotor, hot gas plume 

combination with sudden change in air temperature lead to significant reduction of 

helicopter lift capacity due to reduction of air density as a result of increasing air 

temperature. It might also lead to possible momentary stalling of helicopter engines 

(NORSOK Rev. 1,  2004).  

According to CAA paper 2007/02; installing gas turbine exhaust plume visualization would 

be fruitful by highlighting the hazards for the pilot, especially for the platforms that produce 

significant amount of gas exhaust. Furthermore, a monitoring program is recommended to 

monitor the temperature around the platform continuously (CAP 437, May 2012).  

 Process gas release 2.1.3

Sometimes process gases vented to air for some reasons and sometimes it might release 

accidentally. The effects of these released gases depend on their momentum, density, 

temperature and location on platform. In excess of process gases, there is a risk of ingestion 

of hydrocarbon gas mixture in to the helicopter engine which result in loss of engine control 

or even flameout. Analysis of engine performance showed that mixture of hydrocarbon- air 

with concentration of 10% lower flammability limit (LFL) is safe condition in engine control 

point of view (Rowe et al.). Concentration above 10% LFL might lead helicopter’s engine 

surge or flameout with risk to the helicopter and its passengers (CAP 437, May 2012).  

Furthermore, the possibility of ignition should be considered as a result of helicopter which 

can be a potential ignition source (Rowe et al.).  

In addition, operation of emergency blow down system may result in excessive gas 

concentration that could lead to engine surge and flameout, so routine cold flaring also 

should consider as a risk factor (CAP 437, May 2012).  
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Gas release problem is considered as a safety case for a platform and it need some sort of 

emergency preparedness such as immediate alert to helicopter to stay clear, rather than 

establishing criterion (Rowe et al.). 

 Flared gas 2.1.4

Flare towers are normally long structures that design to vent excess and unburned gases of 

the platform as far as possible. The hot gas plume of flare tower need the same 

consideration as mentioned for hot gas plume exhausted from the gas turbine, but they 

have the advantage that they are more visible for pilots (Rowe et al.). 

 Helideck management system 2.1.5

To reduce the probability of occurrence of above mentioned aerodynamic hazards and 

reduce the consequence of such disturbance, CAP 99004 proposed the following issues for a 

helideck:  

 Essence of an unobstructed airflow around the helideck  

 Location of gas turbine and diesel units as exhausted plume might reach to helideck 

 Flared gas and venting of flammable gas 

 Location, operation and maintenance of wind recording equipment 

 Combined operations in offshore installation with the potential to disturb the airflow 

or to emit hot exhaust into the helideck path (Morrison, 2001). 
 

Minimizing above mentioned issues by a helideck management system could increase the 

safety of helicopter operations in offshore installations. Therefore, an audit and control 

system which monitors compliance with a set of established operational requirements could 

be designed to minimize aerodynamics hazards (Morrison, 2001).  

2.2 Turbulence 

Turbulent flow is defined as a three - dimensional highly unsteady flow that contains 

random change in its quantities such as velocity, pressure and density with significant 

amount of vorticity. Due to unpredictable nature of turbulence, modeling of a turbulence 

flow is still one of an unresolved problem that needs further improvement despite 

significant progress about it until today (Zienkiewicz et al., 2005).  

In figure 3, a turbulent flow with random variation in its velocity u´ (t) is shown. Where is 

u(t)= U + u´(t).                                              eq(1) 
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Figure3: typical point velocity measurement in turbulent flow (Hjertager, January 2002) 

 

Dimensionless Reynolds number is widely applied to define the characteristic of three 

dimensional flows in transition from laminar or turbulent flow. Above a certain amount of 

Reynolds number a flow become turbulent. In this high Reynolds numbers, the flow governs 

mostly by inertial force rather than viscous forces. On the other hand, laminar flows occur at 

low Reynolds numbers where the viscos force dominates mostly.  The equation of Reynolds 

number is: 

Re= UL/ ν                                                    eq (2) 

Where U and L are characteristic velocity and length scale respectively and ν is kinematic 

viscosity. 

Generally, turbulence leads to generation of eddies at very different scales, extending from 

large eddies down to very small ones. Large eddies, are dominated by inertia effects while 

viscous effects are negligible. These large turbulent eddies are feed by mean flow and 

consequently they are highly anisotropic. These large scale eddies are more energetic than 

small ones and transport their properties more effectively. 

Kinetic energy transfer from large eddies to smaller ones which is called energy cascade. 

Smaller turbulent eddies (Kolmogorov scale) are dominated by viscosity, they rotate faster 

and their energy dissipated and transfer to thermal energy due to work done against viscous 

stress. Small eddies are universally irrelevant to flows  (Kano, 1999) and they are non-

directional or isotropic. 

 Turbulence at offshore helideck 2.2.1

Generally, at a given point wind speed varies randomly with time due to turbulence that 

leads to atmospheric mixing process which is also affected by the friction of the surface 

wind blow on it. Therefore, natural winds contains eddies that lead to variation of wind 

speed both in space and time. The frequency of generated eddies depended on wind speed 

and size of eddies (Rowe et al.). 

In an offshore platform, the number of eddies significantly increase due to separation 

generated because of offshore platform as an obstacle, especially on sharp edges (Rowe et 

al.). 
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To categorize the response of helicopter to generated turbulence, turbulence frequency is 

used as an index. High frequency turbulence has lower length scale compared to dimension 

of helicopter. They are also smoother and more integrated with small amplitude, so 

helicopter responds to them easily. Frequency content above 10 rad/s could cause vibration 

and more uncomfortable ride to helicopter, and make it difficult for the pilot to read 

instrument. However, this disturbance is manageable and does not affect the flight path of 

helicopter (Rowe et al.). 

In the turbulence frequency range between 1 to 10 rad/s, which means longer turbulence 

length scale, the helicopter should start to respond to the turbulence. In this range, the 

generated disturbance can rotate and push the helicopter around that pilot should normally 

adapt a control strategy that minimize the disturbance effect and keep the flight on path or 

position (Rowe et al.).  

In low frequency turbulence and larger amplitude, below about 1 rad/s, flight path of 

helicopter is extremely affected by generated disturbance unless the pilot adopts some 

corrective measures to keep the flight on track (Rowe et al.). 

Obviously, the greater the severity of turbulence happens in final stage of landing, the 

higher work load the pilot would have to keep the helicopter stabilized and guide to safe 

landing (Rowe et al.). 

Pilot work load could be considered as an inverse measure of the safety. Owing to fact that 

the higher work load the pilot has, he could have less attention towards other important 

tasks.  To quantify the pilot work load, the Cooper-Harper (C-H) rating method could be 

applied which show success in practice see figure 4 (Rowe et al.).  

• Level 1: corresponds to low work load and good flight quantities that enable pilot to 

achieve desired performance.  

• Level 2: corresponds to tolerable deficiencies that need pilot attention to achieve an 

adequate performance standard.  

• Level 3: in this level there are major deficiencies that need pilot’s attention and 

ability to handle the situation and keep the flight standard performance (Rowe et 

al.).  
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Figure 4: Cooper-Harper rating scale (Rowe et al.) 

 

Prediction of the helicopter response to the turbulent flow and pilot reaction to this 

situation is a very complicated process that needs a fully dynamic model of the helicopter 

aerodynamic behavior as well as pilot behavior(Rowe et al.).  

 Turbulence models 2.2.2

It is impossible to compute all turbulent flow at one time even with supercomputers. 

Therefore, turbulence models should be applied (Kano, 1999) somehow that introduce the 

minimum amount of complexity while representing the essence of the relevant physics 

(Wilcox, 2006). There is no single turbulence model that could be applied for all kind of 

problems due to lack of computer resources and storage capacity for highly fluctuating 

turbulence model. Therefore, different kind of techniques and models are developed by the 

researchers to describe turbulence as real as possible and defining unknown terms of 

turbulence equations. These kinds of turbulence models contain some differential equation 

and algebraic constants which in conjunction with Navier- Stokes equation can simulate the 

real behavior of turbulent flow (Unhale, 2004).  Turbulence models covered in this report 

are as follow: 

2.2.2.1 RANS models (Two- equation models) 

The whole range of two- equation models and stress transport models are considered as 

Reynolds Average Navier- Stokes (RANS) models. In RANS based models, mean quantities 

are calculated and the fluctuating part calculated from additional modeled variables, 

consequently these models work with coarser grid that need less computational effort, 

which means that these models are more economical (Unhale, 2004).  
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Time – averaging of Navier- Stokes equation generate 6 unknown variables called Reynolds 

stress. The Reynolds stress tensor should be modeled by relating the Reynolds stresses to 

the time averaged velocity. According to Boussinesq suggestion, for 3D flows the equation 

for Reynolds stress is as follow: 

 

                                                                                       eq(3) 

 

In above formula δij is Kroenecker delta, and µt is turbulent viscosity. 

According CAP 437, special care should be account for vertical air flow velocity fluctuation 

component (σz), so we are interested in formulas for calculation of vertical Reynolds stress 

component: 

 

                                                                                        eq (4) 

                                                   

                                                                                        eq (5) 

                                                  

                                                                                        eq (6)                                     

 

Equation 6 represent vertical Reynolds stress component. From above formulas, expression 

for standard deviation of vertical velocity component (σz) derived as follow: 

 

                                                                                         eq (7) 

 

The above formula has two main problems. First, σz value is dependent on gradient of mean 

vertical flow velocity. It means that the results would be different for positive and negative 

value of this gradient. Second, the value under square root expression might become 

negative leading to imaginary number for standard deviation (Giljarhus, 2013). 

In addition to above mentioned formula, turbulent kinetic energy defined as follow: � =  
12  (��´2������ + ��´2������ + ��´2�����)                                       eq (8) 

By defining eq 3 and eq 8 the 6 unknown Reynolds stress tensor is decrease to two new 

unknowns called turbulent viscosity (µt) and turbulent kinetic energy (k). 

2.2.2.1.1 Standard k- ε turbulence model 

Standard k-ε model is the simplest and most validated and robust model of turbulence 

modeling. k-ε models give large reduction in convergence times, so they make parametric 

study possible (Murakami, 1993). Furthermore, k-ε turbulence model shows an excellent 

performance for many industrials flow, such as prediction of mean wind speed (Murakami, 

1993). However, this model overestimates in prediction of turbulent kinetic energy around 

sharp edges (Murakami, 1993). In addition, k-ε model assumes isotropic eddy viscosity and 
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has poor performance on rotating flows, some unconfined flows and curved boundary 

layers (Hjertager, January 2002).  

Both of turbulent kinetic energy and dissipation rate differential equation can derived from 

Navier- Stokes equation. Transport equations for turbulent kinetic energy and dissipation 

are as follow: 

For turbulent kinetic energy k 

                                                                                                              eq (9) 

     

 I              II                     III               IV           V 

In above formula: 

 I: transient term 

 II: convective term 

 III: diffusive transport 

 IV: production of turbulent kinetic energy 

 V: rate of dissipation of  turbulent kinetic energy 

 σk is a constant turbulent Schmidt number for k 

For dissipation rate ε 

                                                                                                               eq (10) 

 

I            II              III                    IV               V 

Where: 

 I: transient term 

 II: convective term 

 III: diffusive transport 

 IV: production of dissipation of rate of turbulent kinetic energy 

 V: rate of dissipation of  turbulent kinetic energy dissipation 

 σε, C1 and C2 are constant 

In k-ε turbulence models, turbulence is assumed fully developed and isotropic. It means that 

velocity fluctuation components in x, y and z directions, can be assumed equal (Silva et al., 

2010).  This means that the second term (     ) in equation 7, could be eliminated as it has 

small values. Therefore for a steady state regime, standard deviation of vertical velocity 

component (σz) is defined as follow: 

σz=�23 �                                                                                                       eq(11) 



Universitetet i Stavanger 
CFD simulation of wind condition and thermal gradient around an offshore helideck 

17 

 

 

As mentioned before, according to CAP 437 vertical velocity fluctuation (σz) should have 

values less than 1.75 m/s (CAP 437, May 2012). 

2.2.2.2 Reynolds Stress Model (RSM) 

In Reynolds Stress Model (RSM), instead of eddy viscosity approach, Reynolds stress is 

calculated directly. RSM is the most general model of all classical turbulence models that 

has high performance for many complex flows including non-circular ducts and curved 

flows. However, it is computationally expensive due to addition of new unknowns’ variable 

that leads to more partial differential equations. Furthermore, this model is not widely 

validated and has some similar problem like as K-ε model due to problem with epsilon 

(Hjertager, January 2002).  

According to ISO 15138 standards and NORSOK C-004 Rev 2, CFD simulation of wind 

environment around the helideck shall be done by applying non-isotropic model, such as 

RSM model. The non-isotropic models enable the turbulence to be resolved into its vertical 

and along-wind components which is necessary for the analysis of helicopter safe 

operations (ISO 15138, 2007).  

As RSM models are used to simulate non- isotropic situation, the velocity fluctuation 

components are not equal in turbulent kinetic energy equation (eq 8) as mentioned for k-ε 

models, so this means: 

 

                                                                                                                            eq(12)         

 

In these situations with non- isotropic transport coefficients, Reynolds stress model defines 

the unknown correlations of above equation as follow: 

                                                                                                                                    

                                                                                                                              eq(13) 

 

In above equation, the terms on the left hand side are transient and convection of the 

correlations, and the terms on the right hand side are diffusion, production, dissipation and 

redistribution of correlations. This equation introduces seven more unknowns, which mean 

that seven more partial differential equation should be solved and this is computationally 

expensive.                                                                                  

2.2.2.3 Large Eddy Simulation (LES) 

In Large Eddy Simulation (LES), large eddies are computed and smallest eddies known as sub 

grid scale (SGS) are modeled. Considering the fact that larger eddies are directly influenced 

by boundary conditions and they transfer most of Reynolds stress, so they should be 

computed. On the other hand, smaller scale eddies are weaker and their contribution to 

Reynolds stresses are less than large one, so they have less influence (Wilcox, 2006).  

Large eddy simulations are three dimensional and time dependent simulation. Generally, 

LES simulation is the preferred method because of its accuracy, but due to its expensive 
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cost, it is not always feasible. However, computational costs of LES are less than Direct 

Numerical Simulation (DNS) method (Hjertager, January 2002).  

In the flow with too high Reynolds number or in complex geometries that application of DNS 

is difficult, so LES is a preferred method (Hjertager, January 2002).  

A major difficulty with LES simulation happens near a solid surface where all small eddies 

should be simulated. To solve this problem, the grid spacing and timestep required by LES 

should be decreased which is falls toward using (DNS) as the surface approached. This 

problem happens because of serious limitation of Reynolds number for LES (Wilcox, 2006). 

In LES simulation, it is essential to define which quantities should be calculated precisely, to 

achieve this goal filtering is used. Filtering helps to have a velocity field that contains only 

large scale component of total field (Hjertager, January 2002). The filtered velocity is 

defined as follow: 

                                                                                                   eq (14) 

The model momentum equation for resolved scale is as follow: 

 

                                                                                                    eq (15) 

This equation is derived from Navier-Stokes equation, when it is filtered for constant density 

which is means that it is for incompressible fluid.  

In this equation, τij
S is a new unknown called Sub-Grid Scale (SGS) Reynolds stress, which the 

large scale momentum flux is caused by the action of the small or unresolved scales 

(Hjertager, January 2002). The models applied to estimate SGS Reynolds stress are called 

sub-grid scale model. 

2.3 Computational fluid dynamics 

When a fluid flow needed in depth analysis and study, normally there is three common way 

towards this problem. First, it can be done by means of experimental fluid dynamics (EFD) 

which applies experimental methodology and procedures for solving fluid such as wind 

tunnel experiment. Second approach is theoretical (analytical) fluid dynamics by use of 

mathematics for physical problem which is only capable to find exact solutions for simple 

geometries, and the last way is numerical approach or computational fluid dynamics (CFD). 

CFD simulation could be well applied in physical phenomena when experimental 

measurements are not possible such as large scales cases, hazardous situation such as 

explosion simulation as well as physical modeling such as Atmospheric Boundary Layer (ABL) 

simulation (Stern et al., 2005).  
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CFD is a very powerful technique that helps to solve wide ranges of physical problems such 

as fluid flow, heat transfer, and chemical reaction and so on by means of computational 

methods including mathematical and physical modeling numerical methods such as grid 

generations, solvers and etc. 

Although, helideck assessments are usually done by wind tunnel experiment rather than 

CFD, due to complexity of platform geometry and difficulties of turbulence modeling with 

CFD simulation. Therefore, wind tunnel tests are considered more reliable and economic for 

this case (Rowe et al.). However, it does not mean that CFD simulations are not applicable in 

assessment of aerodynamic hazards around the helideck. 

Every CFD codes contain three main elements: 

 Pre- processor 2.3.1

In this step required inputs such as geometry definition and computational domain 

specification, grid generation, initial boundary condition, appropriate physical model, and 

fluid properties for a given flow problem is defined. These setting would be later used by 

solver. 

CFD solution accuracy is highly depended on number of cells, the larger the number of cells, 

the higher accuracy. However, it should be considered that with increasing the number of 

cells, the computation cost increased as more powerful computer is needed. Therefore, the 

optimal approach is to use non- uniform mesh. It means that use finer mesh where there is 

large variation from point to point and coarse mesh in regions with little change (Versteeg 

and Malalasekera, 2007).  

 Solver 2.3.2

The numerical solution techniques used by CFD codes, is finite volume method. This method 

has three main steps.  

 First, integration of governing equations of fluid flows over all finite control volume 

of domain.  

 Second, conversion of resulting integral equation into algebraic equations, called 

discretization.  

 Finally, solution of the algebraic equations by an iterative method. Normally, physical 

phenomena chosen to solve a complex and non- linear case need number of 

iterations to get converged (Versteeg and Malalasekera, 2007).  

 Post - processors 2.3.3

In this phase, there are some visualization tool that display grid and geometry, vector and 

contour, and animations. 
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 Governing equations of fluid dynamics 2.3.4

In fluid dynamic there are eight unknown dependent variables. They are pressure (p), three 

velocity components (u, v, w), temperature (T), viscosity (µ), heat conductivity (k) and 

density (ρ). To find these eight unknowns, eight equations are needed. These equations are 

as follow: 

2.3.4.1 Continuity equation  

This is an equation for conservation of mass.  

                                                                                     eq (16) 

For incompressible fluid, density is constant. Therefore, the second term also would be zero       

(∇.� ���⃗  =0).  This means that incompressible fluids are divergence free. 

2.3.4.2 Momentum balance 

The Navier-Stokes equation derived from the Newton’s second law which implies that the 

sum of the forces act on a body is equal to time change of the momentum of the body. 

                                                                                      eq (17) 

In above equation v is the flow velocity, ρ is the fluid density, p is the pressure, T is the total 

stress tensor, and f represents body forces (per unit volume) acting on the fluid. Above 

equation is in a vector form.  

2.3.4.3 Energy balance 

Energy equation is governed by first law of thermodynamic, which implies that the change 

in the internal energy of a closed system is equal to the amount of heat supplied to the 

system, minus the amount of work done by the system on its surroundings 

                                                                                        eq (18) 

In above equation, S is a source term and h is enthalpy of system. 

2.3.4.4 Equation of state  

For an ideal gas the equation of state is as follow 

                                                                                         eq (19) 

In above equation V is volume which is equal to mass divided by density. 

2.3.4.5 Empirical relation for µ and k 

Division of fluids in Newtonian and non-Newtonian fluids is done on the basis of relation 

between stress and strain. In Newtonian fluids the relation between stress and 

corresponding rate of strain is direct and linear. The Newton’s law of viscosity is as follow: 

 

http://en.wikipedia.org/wiki/Cauchy_stress_tensor
http://en.wikipedia.org/wiki/Cauchy_stress_tensor
http://en.wikipedia.org/wiki/Body_force
http://en.wikipedia.org/wiki/Internal_energy
http://en.wikipedia.org/wiki/Thermodynamic_system#Closed_system
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Work_(thermodynamics)
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                                                                                         eq (20) 

The last equation is for finding the last unknown variable called heat conductivity (k). 

Second law of thermodynamics or Fourier’s law relates the heat flux (qi) to the local 

temperature gradient. 

                                                                                           eq (21) 

2.4 Atmospheric boundary layer (ABL) 

Simulation of Atmospheric Boundary Layer (ABL) flows over a complex train is essential to 

estimate the wind load on an offshore platform (Balogh et al., 2012).  

Computational Fluid Dynamics (CFD) codes are widely applied in simulation of ABL. In 

simulation of ABL by CFD codes, RANS turbulence modeling and standard K-ε model are 

mostly used. Although, LES models can provide more accurate simulation for the turbulent 

flow compare to RANS model due to better characterization of turbulent flow, but because 

of their expensive cost, RANS model is still the preferred model. RANS model in conjunction 

with two equation models provide fast answers. To achieve reliable solution with this 

model, turbulence model should sufficiently be defined for the problem in a question 

(Balogh et al., 2012). 

However, application of two- equation RANS model without modification of wall roughness 

often result in unwanted decay in the mean wind speed profile and especially turbulent 

kinetic energy at the inlet of computational domain, due to an inconsistency between fully 

developed inflow condition for ABL, wall function formulation and turbulence model (Balogh 

et al., 2012). 

To remove above mentioned inconsistency, “a reformulation of the wall function base on 

the aerodynamic roughness and on the derivation of the kinetic energy inlet profile from the 

solution of turbulent kinetic energy transport equation” is proposed by Parente et al. recent 

work on 2011 (Balogh et al., 2012).  

In a CFD simulation of ABL, the mean wind speed profile and turbulence quantities that 

define for inlet of the computational domain are generally fully developed, equilibrium 

profiles. These profiles should represent the roughness of that part of upstream terrain that 

is not included in the computational domain, such as terrain upstream of the inlet plane. 

Therefore, this is expressed by means of appropriate aerodynamic roughness length (z0) 

(Blocken et al., 2007). Almost in all CFD codes, accurate description of the flow near the 

ground surface is essential part of simulation of lower part of ABL (Blocken et al., 2007). 

Theoretically, z0 is a height at which the wind speed becomes near zero, when there is a 

logarithmic wind profile. Typical aerodynamic roughness lengths for different train types are 

present in table 1. 
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Table1: surface roughness lengths for different type of terrain (Ramli et al., 2009) 

Terrain description z0 (m) Surface  

Open sea, fetch at least 5 km 0.0002 Sea 

Mud flats, snow; no vegetation, no obstacles 0.005 Smooth 

Open flat terrain; grass, few isolated obstacles 0.03 Open 

Low crops; occasional large obstacles 0.10 Roughly Open 

High crops; scattered obstacles 0.25 Rough 

parkland, bushes; numerous obstacles 0.5 Very Rough 

Regular large obstacle coverage (suburb, forest) 1.0 Closed 

City center with high- and low-rise buildings ≥ 2 Chaotic 

 

The wind profile for different aerodynamic roughness is shown in figure 5 which is plotted 

according to below formula. From this formula, wind profile would have a logarithmic shape 

as it is typical for atmospheric boundary layers. 

                                                                           eq (22) 

Here, κ is Von Karman constant equal to 0.41, and uτ is friction velocity or u star calculated 

at reference wind velocity of 3m/s for 5 meter height above ground. As illustrated in figure 

5, the wind profile is more vertical for small value of roughness compare to higher values of 

the roughness length. (Osenbroch, July 2006) 

 

 
Figure 5:  the relation between roughness length and shape of velocity profile applied at boundaries 

(Osenbroch, July 2006) 

http://en.wikipedia.org/wiki/Fetch_(geography)
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Generally due to importance of the surface roughness and high Reynolds number associated 

with ABL flow which is because of low kinematic viscosity of air flow, the use of wall 

function is required for near wall modeling (Blocken et al., 2007). In figure 6 the universal 

law of wall for a smooth surface is shown. In this figure the dash line represent smooth 

surface. 

In below figure ks
+ is dimensionless equivalent sand-grain roughness height.  

 

Figure 6: law of wall for smooth and sand-grain roughness surface with ks
+ as a parameter (Blocken 

et al., 2007) 

In above figure, the laminar law (u+=y+) is valid for values less than y+=5, and logarithmic law 

(u+= 1/κ ln (y+) + B) is applied for fully turbulent regime  for  y+ values  about y+=30 up to 

y+=500-1000. In this formula B is the integration constant around 5- 5.4 (Blocken et al., 

2007).   

2.5 OpenFOAM® 

OpenFOAM® is an acronym of Open source Field Operation and Manipulation. OpenFOAM 

toolbox was developed at Imperial College of London during 1990-1999. First, it 

was issued as a commercial code between 1999 to 2004, but in 2005 it released as an open 

source code under GPL license until now (Hjertager, December 2009a).  
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OpenFOAM library is written in C++ and design to solve complex physics problem using 

finite volume method and unstructured discretization grid effectively. Variety range of fluid 

dynamics problem can be solved by this software. However, it is not a CFD solver, but a 

finite volume toolbox. Although OpenFOAM is a tool box, it contains lots of solver for 

compressible and incompressible fluid in steady state, transient and turbulent flows as well 

as laminar. It has also the ability for parallel calculation which is an advantage for large and 

complex cases (Churchfield et al., 2010). 

However, regarding to fact that OpenFOAM is an open source program, there is lack of high 

quality documentation and updated guides which lead to absence of quality certification 

(Lysenko et al., 2012). Therefore, the simulation results need validation. In this thesis, it is 

tried to validate the result of the modeling by comparing them with the results of modeling 

by other CFD code, so the models are also simulated with Kameleon FireEx KFX®3 in parallel. 

The KFX simulations are done by Dr. Giljarhus. 

OpenFOAM is executed on Linux machine, so to be able to run it on windows computer it 

needs another platform that in my case it is virtual box. In this project, OpenFOAM version 

2.1.1 is used due to its new boundary condition type for ABL simulation of nut field. 

Every OpenFOAM case contains three main folders. 0 folder, contain initial field information. 

Constant folder, contain poly mesh folder, turbulence property and material property, and 

finally system folder that contains solution setting, time step and solver setting for each 

field. The details of each of above mentioned folders would be explained for my cases in the 

next chapters.(ComputIT, 2013) 

 

  

                                                      
3 Kameleon FireEx KFX® is a 3D transient finite volume CFD simulator, dedicated to gas dispersion, flare and 
fire simulation. It is also used for other industrial analysis for more than 20 years (ComputIT,2013). 
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3 ABL Simulation of simple geometry 
To find scientific literature relevant to simulation ABL and thermal gradient above an 

offshore helideck, different websites such as scienceDirect, Scopus, and EBSCO were 

searched, but a few relevant topics for verification of aerodynamic hazards around an 

offshore helideck founded. The most relevant article was “CFD simulation and wind tunnel 

investigation of a FPSO offshore helideck turbulent flow” which simulate wind flow around 

helideck by means of ANSYS CFX software (Silva et al., 2010). However, no relevant article 

was founded regarding to simulation of thermal gradient or even heat transfer.  

Simulation with OpenFOAM needs lots of patience, due to fact that sometimes trial and 

error is necessary to find optimum values for relaxation factors or even selection of 

boundary condition type and initial values for each fields. In addition, finding the source of 

error happens during the simulation need lots of concentration and patience as well. 

As mentioned before, to estimate wind load on a structure simulation of ABL is necessary. 

Turbulence model chosen to simulate ABL in this phase of project is standard k-ε turbulence 

model, as this model is one of the most verified turbulence models and shows reasonable 

prediction for many flows.  

To simulate ABL with OpenFOAM as a CFD code, three main steps are needed. Pre -

processing, Solving and finally post- processing of the results, the work done in each step 

would be explained in following. 

3.1 Pre- processing 

For this phase of master thesis project, TurbineSiting tutorial used as starting point, and 

some change applied to it to adapt it for defined purposed. 

 Mesh generation 3.1.1

The geometry used for this phase of project is a simple 2D box with dimension of 600m 

length and 100m heights with 300 cells in x direction and 75 cells in z direction. As in this 

case a simple geometry is chosen, hexahedron meshes is applied which is provide high 

quality solutions with fewer cells. The accuracy of CFD simulation is highly influenced by 

number of cells, which means that the higher the number of cells, the better accurate 

result. However, by increasing number of cells, the time and costs of simulation increased as 

more powerful computer is needed (Versteeg and Malalasekera, 2007).  

In this project, simulations were carried out on a 32 bit operating system laptop computer 

with limited processing speed, so it is tried to choose number of cells somehow that have 

reasonable computational time as well as accurate results. In this case, the total number of 

cells is 22500 which are generated by blockMesh utility that generate structured multi-

blocks meshes. The information for mesh setup and number of point coordinates and lists of 

points defining boundaries in OpenFOAM, are defined on blockMeshDict which is 
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located under polymesh on constant folder. The detail of blockMeshDict definition is 

on appendix A.1 . 

To ensure about mesh quality, checkMesh command executed. Some of the most 

important mesh quality parameters are non- orthogonality and skewness (Hjertager, 

December 2009a). In this case, the mesh was definitely OK with maximum non-

orthogonality of zero and maximum skewness of 2.27e-13.  

The mesh geometry and its domain are shown in figure 7. As seen from mesh figure, to 

increase accuracy of results, finer meshes is applied near ground. 

 

Figure 7: mesh and computational domains 

 Initial fields 3.1.2

After mesh generation, the next step is to define initial fields and boundary condition types 

for each of fields.  

As in this phase the aim is simulation of ABL, the initial values needed to be calculated at 

inlet are: friction velocity (uτ), turbulent kinetic energy (k) and epsilon (ε). The inlet 

boundary condition formulas for ABL are proposed by Richards and Hoxey and they are 

widely applied in simulation of neutral ABL as follow (Richards and Hoxey, 1993):  

                                                                                         eq(23) 

In this report the horizontal velocity (u) is 8 m/s, reference height (z) is 10m, roughness 

height (z0 ) is assumed 0.0002 as in our case we have calm sea, and κ is Von Karman 

constant equal to 0.41. Therefore, the friction velocity (uτ) or u star calculated from above 

formula is 0.303. 

After calculation of uτ, the epsilon value is calculated by equation 24. 

                                                                                         eq(24) 
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Turbulent kinetic energy value would be calculated by below formula. In this project the 

constant value of Cµ is considered 0.033, as this value also used in KFX simulation. 

                                                                                          eq(25) 

The inlet boundary type for velocity and epsilon are 

atmBoundaryLayerInletVelocity and atmBoundaryLayerInletEpsilon 

respectively and for k it is fixedValue. In outlet, the boundary type is zeroGradient 

for U, k and ε. The detailed definitions of each of these fields are available in appendices. 

In this report, OpenFOAM version 2.1.1 is used for simulation. This version has a new 

boundary type for nut for modeling of ABL compare to its old version (OpenFOAM, 2011- 

2013). Hence, nutkAtmRoughWallFunction boundary type is chosen for ground in nut 

fields. See appendix A.9. 

 Fluid properties 3.1.3

Physical properties of the fluid define in transportProperties file which is located 

under constant folder in OpenFOAM. In this case our fluid is air with kinematic viscosity of 

around 1.5e-05 m2/s at 300K temperature (engineeringtoolbox, 2013). As air is a Newtonian 

fluid with constant value of viscosity, transport model in transportProperties file is 

selected as Newtonian. 

 Turbulence properties 3.1.4

Turbulence property is defined in RASProperties file under constant directory. 

Turbulence model selected for this phase of simulation is k- ε turbulence model. 

3.2 Solving 

In this phase as we have incompressible, isothermal and steady flow, simpleFoam solver 

is chosen. 

 Solution setups 3.2.1

Solution setups are defined under system folder within three main files called 

controlDict, fvSolution and fvSchemes. 

In controlDict file, number of iteration is set to 1000. As the case is steady state the 

time step setting does not make any changes, so deltaT is set to 1, and writing interval for 

results is set to 50. 

Functions are defined in controlDict to write down information from simulation. In ABL 

simulation, to be able to plot U, k, ε and nut values against height, five sets are defined in 

controlDict under functions to store results of simulation at different x locations. In this 

case 0, 150, 300, 450 and 600 points in the length selected, to monitor how U, k, ε and nut 

values are developed along x axis and 5 diagrams plotted for each of mentioned variables 

against height. Detail of controlDict file is available on appendix A.10. 
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Solvers and various control parameters for every unknown variable are defined under 

fvSolution file under system directory (Hjertager, December 2009a). For this case, 

unknown variables are p, U,k and epsilon.  

In OpenFOAM 3 types of solvers implemented: preconditioned conjugate or bi-conjugate 

gradient called PCG/PBiCG, algebraic multi-grid solver called CAMG, and finally solver with 

smoothing called smoothSolver (Hjertager, December 2009a). 

For this case, CAMG and smoothSolver are selected for unknown variables mentioned 

above, as they are recommended solvers due to their speed (Hjertager, December 2009a). 

In general, CAMG solver is used for pressure and smoothsolver are applied for other 

variables. These smoothSolver needs a smoothing scheme and the recommended one is 

GaussSeidel (Hjertager, December 2009a) which is used in this project. 

Furthermore, solver tolerance and relative tolerance need to be defined for each of 

mentioned unknown variables. Solver tolerance defines how accurately the equation is 

solved and if the initial residual of an equation is lower than this value, the equation is not 

solved anymore (Hjertager, December 2009a). Relative tolerance defines how accurately an 

equation is solved inside each iteration loop. In the case with convergence problem this 

value can set to zero to force the solver to converge (Hjertager, December 2009a). However, 

in ABL simulation of this case there is no convergence problem, so relTol for U,p,k and 

epsilon is set to 0.1.  

Pressure- velocity coupling method applied in steady state cases is SIMPLE. SIMPLE stands 

for Semi Implicit Method for Pressure Linked Equation. SIMPLE algorithm is applied to make 

sure there is a correct linkage between pressure and velocity (Versteeg and Malalasekera, 

2007).  

In steady state cases the solutions need to be under-relaxed. Under relaxation factor are 

well- known tuning tools that force the steady state cases converge (Hjertager, December 

2009a). In this project, typical relaxation factor are used, 0.3 for pressure and 0.7 for other 

variables. The detail of fvSolution file is on appendix A.12. 

Conversion of resulting integral equation in to system of algebraic equation is called 

discretization (Versteeg and Malalasekera, 2007) which is necessary for all equation terms 

needed to be solved. In OpenFOAM discretization is controlled in a dictionary called 

fvSchemes which is located under system directory (Hjertager, December 2009a). 

Time derivative scheme should be indicated in fvSchemes, as this case is steady state 

ddtSchemes is chosen. Then, divSchemes should be defined. divSchemes represent 

the convection scheme and it is the most important discretization scheme in CFD (Hjertager, 

December 2009a). In this project, Gaussian integration used for both gradient and 

divergence term with different interpolation schemes. For this case, a 2nd order upwind 
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interpolation scheme, linearUpwindV, is used for velocity vector to improve handling of 

it.  

Before start to solve the case, the source code of below file is changed according to Dr. 

Giljarhus idea: atmBoundaryLayerInletVelocityFvPatchVectorField.C. The 

change is made on decreasing of the code default roughness length value of 0.001 as it was 

bigger than Z0 value of 0.0002 used in this project, and consequently it did not take into 

account Z0 value of 0.0002 assumed in this project.  This change also made on 

atmBoundaryLayerInletEpsilonFvPatchVectorField.C, and Z0 valued decreased 

with the same reason. In addition, U profile default definition in 

atmBoundaryLayerInletVelocityFvPatchVectorField.C file is corrected 

due to fact that for the values bigger than H ref, it plots a straight line for velocity rather than 

a curve profile. After these changes are made on above mentioned files, the utility is 

compiled with /.Allwmake command. 

 Solving the case 3.2.2

After above mentioned settings, the case is solved by executing below command: 

simpleFoam |tee out 

In this case, the simple solution converged after 594 iterations. In steady state cases, only 

result of last iteration is correct and acceptable and time steps solutions are only 

intermediate un-converged results (Hjertager, December 2009a). The above command 

writes the outputs on a text file named “out”.  

3.3 Post - processing 

After solving the case, the results should be checked for convergence. To achieve this goal, 

individual residuals can be extracted from output text file with the following command: 

foamLog out 

The above command creates a directory logs containing several files. In this file, the most 

important values are initial residuals of p, k, Ux, epsilon, and local continuity error 

(Hjertager, December 2009b) which indicate mass balance error in the solution (Hjertager, 

December 2009a). Initial residuals should approach zero when a solution is converged, and 

local continuity error should have very small value, otherwise it indicates problems in model 

(Hjertager, December 2009a). To check these values, they are plotted with xmgrace in the 

following diagram.   
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Figure 8: initial residuals and local continuity error  

 

As seen from above figure, initial residuals and local continuity error have small acceptable 

values for this case. 
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4 Hot exhaust plume simulation 
Prediction of hot smoke flow exhausted from an offshore installation and its path is a 

challenging task as it affects by different factors such as smoke flow rate, smoke 

temperature, wind velocity and its direction, level of turbulence and geometry of the 

platform. Therefore, different initial conditions such as different smoke flow velocity and 

smoke temperature can lead to different smoke flow or plume patterns (Gong and Li, 2010).  

The use of CFD modeling in case of smoke flow movement is increasingly popular (Deckers 

et al., 2012). By computational fluid dynamic method, hot plume could be modeled 

numerically. According to NORSOK standard CFD analysis should be applied to verify the 

correct location and sizing of 2◦C isotherm above the helideck (NORSOK Rev. 2, Feb. 2013). 

Smoke flow in an offshore installation could be wind - dominated, buoyancy - dominated 

caused by the reduced density of the smoke, or both of them. Smoke flow dominated by 

wind if the exhausted hot gas source has relatively small power.  In sufficiently powerful 

plume source, the flow would be dominated by buoyancy (Gong and Li, 2010).  

In this phase of master thesis project, a three-dimensional, steady state, turbulent, 

buoyancy-driven, hot compressible air flow would be simulated by means of OpenFOAM 

toolbox. In this case, an ABL flow with reference velocity of 8m/s and temperature of 283◦K 

blow form left side of the computational domain or inlet, and air flow rise up with velocity 

of 100m/s and temperature of 483◦K form a secondary inlet located at the bottom of the 

geometry.  

No single tutorial available in OpenFOAM which can use as starting point for our defined 

purpose, so finding appropriate initial boundary type for each field was quite difficult. In 

addition, there was no article or relevant scientific literature for hot smoke simulation with 

OpenFOAM, so there was low inspiration at beginning of this phase. Therefore, some trial 

and error is used to find suitable boundary condition type and initial values for each field. 

Simulations set ups of this phase are as follow: 

4.1 Pre – processing 

 Mesh generation 4.1.1

The geometry used for this phase of project is a 3D box with a secondary inlet on its bottom 

with 50m distance from zero point of box in both x and y directions. The dimension of 

computational domain is 350m x100m x 100m with 100 cells at length, 60 cells at width and 

70 cells at height. Dimension of secondary inlet is 1m in length and 1m in width, with 2x2 

numbers of cells. 

To find appropriate length of computational domain mentioned above, some trial and errors 

were needed as with 250 meter length which was defined at first run it seems that the 

plume path is tend to be longer than the computational domain, so longer computational 
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domain was needed. Finally, 350 meter length seems to be enough to show the entire 

plume length. 

The above mentioned numbers of cells is divided in to nine hex blocks. The detail definition 

of vertices, blocks and boundary are available in blockMeshDict in appendix B.1.Total 

numbers of cells in this phase are 442680 that are generated by blockMesh.  

Simple grading is also applied to have finer cells near the secondary inlet and near wall (near 

wall treatment), to have higher accuracy in the simulation and its results. 

The boundary types for sides of computational domain are defined as symmetryPlane, 

and for ground it is defined as wall, and the others are patch. 

The geometry and computational domain is shown in figure 9. In this computational domain 

the air flow enters form the left side of the geometry or inlet, it mixed with the exhausted 

plume comes from the secondary inlet at the bottom and goes out from right side of 

geometry or outlet.  

 

Figure 9: mesh and computational domains 

 Initial fields 4.1.2

This phase of simulations showed some sort of sensitivity regarding to initial values of 

turbulence kinetic energy and dissipation rate; somehow that for some initial values of k 

and ε the simulation diverges after few iterations. Therefore, appropriate initial values for k 

and ε is provided by Dr.Giljarhus from KFX simulation result. 

This phase of simulation has new initial fields. They are temperature (T) with dimension of K, 

alphat and mut because energy equation needs to be solved, as compressible fluids are non-

isothermals and always there is heat transfer. 

To be able to have ABL velocity profile instead of uniform fixed velocity at the main inlet, 

groovyBC type is applied at main inlet of U field. Definition of valueExpression is 
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according to Richards and Hoxey proposed equation for ABL velocity at inlet (eq 23). 

Velocity at secondary inlet has fixed value of 100 m/s. 

As groovyBC boundary condition applied at main inlet for velocity, it is also should be 

applied for turbulent dissipation rate. However, with this approach the simulation diverged 

after some iterations. Therefore, the model first solved only with groovyBC boundary 

condition type for velocity, and after it got converged, the epsilon main inlet boundary type 

changed to groovyBC type as well. With this method the solution get converged after few 

more iterations. 

In T field, fixedValue boundary condition type is used for the wall, as ground is not 

considered as an adiabatic wall without any heat transfer. Therefore, zeroGradient 

boundary condition is not used for the ground. 

In all of fields top of geometry is defined as slip and sides have symmetryPlane 

boundary type. The details of initial field definition are available in appendices B.2 to B.9. 

 Fluid properties 4.1.3

As in this phase of project there is a heat transfer, thermal material properties for the fluid 

is needed to define instead of transport properties under constant directory. The models 

used to calculate thermal properties are defined after thermoType in 

thermophysicalProperties file (Hjertager, December 2009a).  In this case, hot 

plumes properties are assumed to be constant, and ideal gas equation of state would be 

solved to calculate the density variation of hot air rise up from secondary inlet.       

Numerical value of fluid properties which is air in this model is defined after mixture. 

Detail of thermophysicalProperties file is available on appendix B.10.             

In heat transfer models, the other necessary input is gravitational acceleration defined in g 

file which is located under constant directory. 

 Turbulence properties 4.1.4

As exhaust plumes are usually turbulent, so models are required to examine the effects of 

unresolved small scales movements. The most common turbulence model applied for 

simulation of smoke flow is k- ε model. However, this model has a disadvantage of low 

temporal resolution as it time- averaged eddies (Hu and Fukuchi, 2003). In this phase, 

standard k- ε turbulence model is employed in RASProperties. 

4.2 Solving 

Usually, in heat transfer models there is a compressible fluid. In our case, the hot air rise 

upward with velocity 100m/s. Therefore, Mach numbers have values around 0.34 which 

implies subsonic regime. In this case also there is buoyancy, as with increasing the 

temperature, density would be decreased and the hot smoke flow would be rise up.  
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To sum up, as this case is assumed steady state, and we have subsonic regime with 

buoyancy, the most appropriate solver for this case is buoyantSimpleFoam. 

 Solution setups 4.2.1

Number of iteration for this case set to 1000 with writing interval of 50 in controlDict 

file. In this phase as groovyBC type is applied at velocity and epsilon inlet field, following 

definition is added in controlDict file before the application line: 

libs ( 

      "libOpenFOAM.so" 

      "libsimpleSwakFunctionObjects.so" 

      "libswakFunctionObjects.so" 

      "libgroovyBC.so" 

     ); 

The solvers used for this phase are preconditioned conjugate (PCG) for pressure and p_rgh, 

and bi-conjugate gradient (PBiCG) for the others variables which is defined under 

fvSolution file, as in cases with convergence problem these solvers are the preferred 

ones, however the execution time would be longer. 

The SIMPLE algorithm is used for Pressure- velocity coupling as our case is steady state, 

and Relaxation factors are defined to force the solution gets converged. Heat transfer 

simulation usually converges slowly, so it is recommended to use under-relaxation factors 

0.9 or above for enthalpy  (Bakker, 2002-2006b). However, the optimal combination of 

relaxation factors for this case found by trial and error approach to achieve a balance 

between execution time and results accuracy. The detail of fvSolution file is on 

appendix B.12. 

Time derivative scheme; ddtSchemes; is set to steady state under fvSchemes, and 
second-order upwind scheme was employed for velocity in discretizing of the convection 
terms. Detail of fvSchemes setting is on appendix B.11. 

 Solving hot plume case 4.2.2

After above mentioned solution setups, the case is solved by executing the following 

command: 

buoyantSimpleFoam |tee out 

In this case the solution with groovyBC for velocity converged after 830 iterations and 

execution time was around 3.5 hours. Then, the entire folder copied and the epsilon 

boundary condition type changed to groovyBC, and SIMPLE solution converged after 9 

more iterations. 
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4.3 Post- processing 

To verify the simulation results graphically, paraFoam post-processing utility is used to 

visualize the result. To observe smoke flow pattern, a contour is applied for T at isotherm of 

285◦K. As shown in figure 10, the smoke flow first rise up due to momentum buoyancy, and 

then spreads longitudinally to the right side of computational domain due to wind flow.  

 

Figure 10: exhausted plume pattern 

To check the residuals of simulation results, Foamlog command executed to extract the 

residuals from the out text file as follow: 

foamLog out 

Initial residuals of Ux, epsilon, k, p_rgh, h, and local continuity error are plotted in the below 

figure. 



36 Hot exhaust plume simulation 

 

 

Figure 11: initial residuals and local continuity error 

In above figure, all initial residuals and local continuity error have small values which 

confirm that the results are converged. The peak seen in above figure for p-rgh and local 

continuity error at time step 830 is due to fact that the boundary condition type is changed 

to groovyBC for epsilon after the case got converged in 830 time step. However, these 

initial residuals drop again after few more iterations. 
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5 ABL simulation around an offshore platform and helideck 
The main objective of this thesis is to ensure helicopter safe approach on an offshore 

installation. To achieve this goal, wind environment around an offshore platform should be 

verified by CFD simulation of atmospheric boundary layer. 

Offshore platforms have very complex geometries with lots of utilities and equipment on it. 

Structures located on platform disturb both wind flow and hot gases coming out from the 

platform, and therefore turbulence and eddies would be generated especially at sharp 

edges. Consequently, to verify the vertical velocity fluctuation above the helideck, in this 

phase of project real fixed platform geometry is used to access the wind environment 

around the platform and helideck.  

In this case, an ABL wind flow blow horizontally from right to left of the geometry with 

reference velocity of 8m/s. Turbulence models used for this phase of simulation are k-ε and 

RSM turbulence model to examine which one is going to present the real situation best, and 

also access if they give the same results. Moreover, application of non - isotropic turbulence 

models such as RSM is compulsory by ISO 15138 and NORSOK C-004 rev 2 as RSM turbulent 

models predict complex flows such as flow containing rotation and separation accurately 

(Bakker, 2002-2006a). 

In addition, to observe the effect of mesh refinement on the results, the simulations are 

done for coarse and fine meshes. Therefore, a coarse base mesh is firstly defined with no 

layer, to observe how the model would work and examine the accuracy of initial settings. 

After the case was converged with acceptable results and physical interpretation, a finer 

mesh in conjunction with layer addition is applied, so totally there are 4 cases in this phase 

of project: 

 Case 1: k-ε turbulence model with coarse mesh 

 Case 2: LRR turbulence model with coarse mesh 

 Case 3: k-ε turbulence model with fine mesh 

 Case 4: LRR turbulence model with fine mesh 

The details of simulation setups are as follow: 

5.1 Pre- processing 

 Mesh generation 5.1.1

In this phase of project, the mesh is generated by snappyHexMesh utility which is an 

advanced automatic meshing tool available in OpenFOAM. snapyHexMesh generate 3D 

hexa dominated body aligned meshes with mesh quality guarantee (Hjertager, December 

2009a).  

This automatic mesh generation tool needs three inputs: 
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First, the surface geometry in Stereolithography (.stl) is required. In this phase, the STL 

surface of platform geometry is provided by Dr. Giljarhus as a starting point which is needed 

for mesh generation by snappyHexMesh. This file is located under constant directory, on 

trisurface folder. In this directory the command surfaceCheck executed to ensure about 

soundness of the stl geometry. This utility generates two output folders called badFaces and 

problemFaces (Hjertager, December 2009b). For this project, the first file contains one set of 

bad faces, and the second folder contains 2784 faces with edges connected to only one face.  

The second step is creating the base mesh by blockMesh tool. The computational domain 

bounding box around the platform is (-200 -45 -0.0008) to (280 115 160) shown in figure 12 

for the coarse mesh. 

 

Figure 12: geometry and computational domain in OpenFOAM 

Mesh and computational domain which is used for KFX simulation at this phase of report is 

shown in below figure: 

 

Figure 13: geometry and computational domain in KFX 
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Total numbers of cells for coarse and fine mesh are 609417 and 2390662 respectively, 

including hexahedra, tetrahedral and prisms cells. The detail of blockMeshDict is 

available on appendix C.1. 

And finally the last step of mesh generation is to set up general controls for refinement, 

snapping, layers addition and mesh quality criteria on snappyHexMeshDict located 

under system directory. In this project, firstly castellatedMesh and snap switched true on 

snappyHexMeshDict while addLayers switched off, and snappyHexMesh 

utility executed for coarse mesh to make sure that automatic mesh generation is OK. In this 

step, two time dump added for refinement and snapping mesh phase. Then, to have finer 

mesh the addLayers switched true to add layers for the platform geometry and 

refinementSurfaces for the platform increased from levels (3 3) to (4 4). After these 

changes, the snappyHexMesh utility executed again for the finer mesh, and then the 

third time-dumps added because of layer addition. Detail of snappyHexMeshDict for 

coarse mesh is on appendices C.2. 

To transfer mesh setting to 0 folder time dump snappyHexMesh –overwrite 

command executed. Because, for solving the case initial fields are needed and this 

command overwrite the last mesh setting to 0 folder which initials fields are located there. 

To ensure about mesh quality, checkMesh utility is executed after above mentioned steps. 

For the coarse mesh, maximum and average mesh non-orthogonality was 49.17 and 7.12 

respectively which it is OK, and Max skewness was about 4.17 which is acceptable as it has 

values less than 10. For the finer mesh, non-orthogonality was also OK with values of 52.79 

and 6.73 for maximum and average respectively, and Max skewness was about  3.03 which 

is acceptable as it is less than 10. To see created snappy mesh better on paraFoam, extract 

cells by region filter is used. Below figure shows a cut generated by 

ExtractCellsByRegion filter normal to y plane. 

 

Figure 14: snappy mesh of coarse mesh 
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 Initial fields 5.1.2

After mesh generation, a new boundary field added called platform_geom, this patch should 

be added to all initial fields, and the boundary type defined for it; is the same as boundary 

type defined for ground in each of the initial fields. 

To simulate ABL airflow at inlet, groovyBC is used at inlet for U, k and epsilon fields. The 

detail definitions of each of these fields are mentioned in appendices. The reference velocity 

is assumed 8m/s at reference height of 10 meter the same as the first phase of simulation 

mentioned in chapter 3 of this report, and the other initial fields are the same as well. 

However, the wind blows from right side of domain to left side in this phase of report.  

In addition, as for case 2 and 4 RSM turbulence model  is chosen, there is a new unknown 

variable called R. R field contain Reynolds stress tensor. The values of Reynolds tensor are 

calculated by following formula. These formulas give values for standard deviation of the 

three wind components for flat uniform terrain (Franceschi et al., 2009) which can also 

applied for our cases as we have neutral boundary layer.  ���∗=2.39                   eq(26) ���∗=1.92                   eq(27) ���∗=1.25                   eq(28) 

The u* value is 0.3 as calculated in chapter 3.1.2. The values of Reynolds stress tensor for 

case 2 and 4 are calculated based on above formulas. The detail of R field is mentioned on 

appendices C.3 and C.9. 

 Fluid properties 5.1.3

In this case the fluid is air with the same property as is mentioned in chapter 3.1.3. 

 Turbulence properties 5.1.4

In this phase, we have a turbulent flow situation with high Reynolds number, consequently 

turbulence models should be chosen that appropriate for high Reynolds numbers. 

Furthermore, fully turbulent regime is assumed which means that models that only valid for 

fully turbulent flows such as k-ε model can be applied. 

In this report, kEpsilon turbulence model is selected for case 1 and 3, and for case 2 and 

4 LRR turbulence model is chosen in RASProperties, as LRR is one of the most 

commonly used Reynolds Stress Models, and  application of non-isotropic turbulence 

models for helideck studies is obligatory according to ISO 15138 and NORSOK C-004 rev2. 
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5.2 Solving 

For all 4 cases, simpleFoam solver is chosen, due to fact that air flow is an 

incompressible fluid, and steady state regime is assumed. 

 Solution setups 5.2.1

In fvSolution file, CAMG and smoothSolver are selected to solve unknown variables 

of this phase of simulation, as they are recommended solvers due to their speed (Hjertager, 

December 2009a). In general, CAMG solver is used for pressure and smooth solver applied 

for other variables like U, k, epsilon and R. These smoothSolver needs a smoothing 

scheme and the recommended one is GaussSeidel (Hjertager, December 2009a) which 

is used in this phase. 

Relaxation factors used for theses steady state cases are quite typical, 0.3 for pressure and 

0.6 for other variables.  

Due to non- orthogonality value which is around 50 for the cases, corrections need to be 

defined via both fvSolution and fvSchemes files. Hence, 3 correction loops set for 

SIMPLE pressure- velocity coupling in fvSolution file. The detail of fvSolution file is 

in appendix C.11. 

Mesh quality also influences the setting of discretization scheme file, so snGradSchemes 

and laplacianSchemes set to corrected in fvSchemes file to let the correction 

loops that defined in fvSolution file, work.  

For case 2 and 4, with LRR turbulence model, appropriate discretization scheme is also 

added for new unknown variable R. The detail of fvSchemes file setting is on appendix 

C.10. 

In this phase of simulation as mentioned before snappyHexMesh is used for mesh 

generation. This utility needs decomposeParDict to work. Due to fact that, for our cases 

it was not necessary to execute the computations in parallel as they were not too big, the 

numberOfSubdomains and other coeff sets to 1. Details of decomposeParDict is 

in appendix C.13. 

To be able to extract values of k, R, epsilon and U against computational domain height after 

simulation, a set defined in sampleDict file under system directory. Details of 

sampleDict file is mentioned in appendix C.12. 

 Solving case 1 and 3, k- ε turbulence model 5.2.2

After above mentioned settings, the case 1 and 3 solved by executing below command: 

simpleFoam |tee out 



42 ABL simulation around an offshore platform and helideck 

 

In case 1 with kEpsilon turbulence model and coarse mesh, the simple solution 

converged after 174 iterations, and for case 3 with finer mesh the simulation converged 

after 230 iterations.  

 Solving case 2 and 4, LRR turbulence model 5.2.3

After case 1 and 3 with k-ε turbulence model gets converged, their results would be used as 

starting point for case 2 and 4 with LRR turbulence model, as with this method RSM model 

forced to converge sooner. Therefore, entire of case 1 and case 3 folders with coarse and 

fine mesh are copied as starting point case 2 and case 4. As mentioned before LRR as a 

Reynolds stress models has new unknown variables called Reynolds stress or R field. The 

initial values of Reynolds tensor are calculated according to 26-28 equations. Then the 

turbulence model on RAS properties is changed to LRR, and fvSolution file and 

fvScheme are completed for case 2 And 4.  

After these changes made, simpleFoam command executed to solve the cases. 

5.3 Post- processing 

After above mentioned 4 cases got converged, turbulent kinetic energy and vertical airflow 

fluctuations’ patterns are shown in paraFOAM for further assessments. These figures and 

their interpretations are presented in the next chapter. 
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6 Results and discussion 
It is known that CFD results depend on the mesh chosen for simulation (Deckers et al., 

2012), so selecting the right mesh has a great importance. In this project, it is tried to 

achieve a balance between the mesh size and expected computational time due to 

limitation of the laptop that simulation executed on it, as the more mesh quality, the more 

computational time needed. 

Furthermore, in this master project it is tried to consider real conditions in the simulations. 

However, there is some limitation in these modeling. The most import limitation in ABL and 

thermal gradient simulation is the geometry used, which is simplified a great deal for both 

of them. For simulation of ABL a simple 2D box is used as the main focus was simulation of 

wind profile against height, so the width had less importance. This simplification also 

decreases the computational time as used laptop had limited processing speed, and for hot 

plume simulation as mentioned before a simplified 3D box with a secondary inlet on bottom 

of box is used.  

However, the geometry limitation is solved a great deal for ABL simulation, as in the third 

phase of this master thesis project, a real fixed platform geometry is used. 

The results of each phase of project simulations are mentioned in the following paragraphs. 

6.1 Simulation results of atmospheric boundary layer 

The results of ABL simulation for a simple 2D box are presented in following diagrams. To 

observe how horizontal velocity, turbulent kinetic energy, dissipation rate and turbulent 

eddy viscosity profiles are developed from inlet to outlet, they are plotted for different 

lengths of geometry against height, they are measured at inlet x=0, at length of x=150, 

x=300, x=450 and at outlet which is x=600 by functioned defined in controlDict as 

mentioned before, and then the values are plotted. 

The simulation results of OpenFOAM are plotted for Ux, k, epsilon, and nut in the following 

diagrams against distance from wall or ground to the height of computational domain. 
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Figure 15: Ux,k, ε and nut are plotted against height at different length with OpenFOAM 

The above diagrams show an acceptable degree of homogeneity between inlet and outlet 

profile especially for Ux, k and epsilon. 

The roughness length in this case as mentioned before, has small value of z0=0.0002. 

According to figure 5 for small value of roughness length, the wind profile is more vertical 

compare to bigger value of roughness length. As one can see from above velocity profile, 

the plotted horizontal velocity fall in a vertical line which is confirm the accuracy of 

assumption and results.  

As mentioned before the results of OpenFOAM as an open source code needs validation. 

Therefore, to ensure about the accuracy of simulation results, ABL simulation is also done by 
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Dr.Giljarhus by means of KFX as a commercial CFD code. The initial values used in inlet are 

the same as ones that used in OpenFOAM, and grading and mesh properties is also the 

same. 

The comparison between results of OpenFOAM and KFX is presented in the following 

diagrams. The comparison is made for length of x=450 for Ux, k, epsilon, and nut. 

 

 

Figure 16: comparison of Ux, k, epsilon and nut results from OpenFOAM with KFX results 

The above diagrams show an acceptable degree of homogeneity between OpenFOAM and 

KFX results, especially for velocity profile which they are fairly similar. These results also 

imply that OpenFOAM toolbox is a very useful tool for simulation of atmospheric boundary 

layer flows. 
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In figure 17, the velocity profile resulted by OpenFOAM and KFX would be compared with 

actual velocity profile. The values of actual velocity profile are calculated by ABL velocity 

equation proposed by Richards and Hoxey (eq 23): 

 

 

Figure 17: velocity profile of OpenFOAM, KFX and actual velocity profile 

According to above diagram there is a great homogeneity between the simulations results 

of OpenFOAM with KFX velocity profile, and also actual velocity profile which confirms the 

accuracy of the simulations. 

One of the most important missions of this report is to verify vertical velocity fluctuation 

above helideck, as explained in chapter 2.2.2.1.1 this value can interpreted as follow due to 

fact that in this case with k- ε  turbulence model, it is assumed that turbulence is isotropic 

and fully developed. 

σz=�23 �                                                            eq(11) 

The values of standard deviation of vertical flow velocity is plotted in the below diagram for 

different values of turbulent kinetic energy at x= 450 against the wall distance. σz is plotted 

for both simulation results of OpenFOAM and KFX. 
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Figure 18: standard deviation of vertical velocity against height 

As shown in above diagram, the values of vertical velocity fluctuation for both OpenFOAM 

and KFX code is around 0.5 at different height and this value is definitely acceptable for 

helicopter safe approach as it is less than 1.75m/s which defined by CAP 437. 

In addition, comparison between results of σz with OpenFOAM and KFX shows acceptable 

homogeneity. 
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6.2 Simulation results of emission of hot plume 

In this part, the plume path pattern resulted from simulation with OpenFOAM would be 

presented, and the results would be compared with the simulation results of KFX done by 

Dr.Giljarhus, to ensure about the accuracy of the results. 

In below figures 285◦K contour is applied to specify the location of 2◦C isotherm as required 

according to NORSOK-004 and CAP437 standard. 

 

Figure 19: plume side with OpenFOAM 

 

Figure 20: plume side with KFX 

The plume length with OpenFOAM is about to 220m and with KFX is 225m. As shown in 

above figures the plume moves upward after it goes out of the secondary outlet and the 

maximum plume height at its end is around 60m with OpenFOAM, and 50m with KFX. 
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Figure 21: plume top with OpenFOAM 

 

Figure 22: plume top with KFX 

From above figures, maximum plume width is about 20m with both OpenFOAM and KFX.  

To sum up, according to above mentioned plume pattern sizing, there is an acceptable 

homogeneity with the simulation results of OpenFOAM and KFX, and they confirm each 

other.     
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6.3 Simulation results of ABL simulation around the helideck 

In this part, the simulation results regarding to vertical turbulence fluctuation would be 

verified as it is one the most important factors that affect helicopter safe operations in 

offshore platforms. 

To achieve this goal, the final simulation results of turbulent kinetic energy (k) and vertical 

Reynolds tensor (Rzz) are needed above the helideck height up to height of computational 

domain. Therefore, the following command executed to extract data according to sets 

defined in sampleDict. 

sample – time 174 

This command generates a folder called sets which contains files for value of U, k and ε 

against height for the last iteration of case 1.  

 Comparison results of case 1 and 2 with coarse mesh to case 3 and 4 6.3.1

with finer mesh 

In this part, the aim is to compare the results of simulation with k- ε turbulence model with 

the results of simulation with RSM turbulence model while both of them have the same 

coarse mesh, and when they have finer mesh. 

For case 2 and 4 with RSM turbulence model, the standard deviation of vertical air flow 

velocity is interpreted as follow: 

 σz = ����                                                   eq(29) 

To verify σz quantity, it is plotted in below diagrams. In these diagrams the values of ���� 

and ����  are also plotted from height of helideck up to height of computational domain, 

to show that RSM model is non- isotropic as Rxx, Rzz and Ryy have different values. Figure 23 

present R values for coarse mesh while figure 24 is for fine mesh.   

  

 

 

 

 

 

 

Figure 23: ����, ����  and ���� for coarse mesh    Figure 24 : ����, ����  and ���� for fine mesh 
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The above figures diagrams shows acceptable values for vertical turbulence fluctuation, as 

in both diagrams σz have values less than 1.75m/s. However, finer mesh show more 

fluctuations in Reynolds tensor especially at heights above the helideck, but σz value are still 

less than CAP 437 criteria. Moreover, as expected, the value of ���� is bigger compared to ����   and����, as according to equation 26 to 28 mentioned on chapter 5.1.2 of this 

report, ratio of 
���∗ is higher than 

���∗  ,and ratio of  
���∗ is higher than 

���∗ . 
As explained in chapter 2.2.2.1.1, vertical air flow fluctuation can interpreted as follow for 

case 1 and 3 with k- ε turbulence model, as turbulence is assumed isotropic and fully 

developed. 

σz=�23 �                                                                  eq(11) 

The comparison between σz   for case 1 and 2 with coarse mesh, and case 3 and 4 with fine 

mesh are shown in following diagrams. 

 

 

 

 

 

 

 

 

      Figure 25: σz    for case 1 & 2 with coarse mesh              Figure 26: σz    for case 3 & 4 with fine mesh 

Above diagrams show higher values of σz at height of 65 to 85 especially in k - ε model which 

is expected due to fact that there is more turbulence at that area because of presence of 

modules on the platform and presence of helideck. Although, σz values are totally 

acceptable as they are less than 1.75m/s criteria in both coarse and fine mesh and with two 

different turbulence models. 

In addition, comparison between coarse mesh and fine mesh shows more details and 

fluctuation in fine mesh as expected due to its higher resolution and mesh quality, but in 

general the results are fairly the same and fall in the same pattern. 
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Furthermore, the simulation results of k-ε turbulence model show more values of σz 

compare to RSM model, which is reasonable due to assumption made in this report for 

calculation of vertical velocity fluctuation component in Reynolds tensor and vertical air 

flow fluctuation for k- ε turbulence model. In this report as mentioned in chapter 5.1.2 the 

following ratio is considered for σz in RSM model: ���∗=1.25                                             eq( 28)           

And for k-ε turbulence model, as mentioned in chapter 3.1.2 of this report, following 

formula used for turbulent kinetic energy calculation proposed by Richards and Hoxey: 

                                                            eq(8) 

In this formula the value of Cµ is considered 0.033, as this value is assumed in KFX 

calculation. On the other hand, due to isotropic assumption of k-ε turbulence model, 

following equation present the relation of σz and turbulent kinetic energy, as also explained 

on chapter 2.2.2.1.1 of this report: 

σz=�23 �                                             eq( 11) 

Replacing ABL turbulent kinetic energy equation to equation 11, is resulted to following 

ratio for σz in k-ε turbulence model: ���∗= 1.92                                             eq( 30) 

Comparing equation 28 with equation 30, show that according to above mentioned formula 

σz value resulted for k- ε turbulence model is higher than one calculated for RSM model. 

Therefore, according to these arguments and calculation and assumption used in this 

report, it is obvious that the simulation results of σz are expected to be higher for k-ε 

turbulence model compared to RSM model. 

 Turbulent kinetic energy and vertical air flow fluctuation plots 6.3.2

In this part, the turbulent kinetic energy side and top patterns are viewed in paraFOAM for 

both coarse and fine mesh and their patterns are compared with the simulation results of 

KFX. As KFX has only k-ε turbulence model, so for comparison of turbulent kinetic energy 

patterns, case 1 and case 3 with k-ε turbulence model are chosen. In addition, to have 

similar plot for KFX and OpenFOAM, KFX results are converted and viewed in paraFOAM 

by Dr.Giljarhus, to make comparison of results easier. 
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Figure 27: turbulent kinetic energy from side view with OpenFOAM for case 1, coarse mesh 

 

Figure 28: turbulent kinetic energy from side view with OpenFOAM for case 3, fine mesh 
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Figure 29: turbulent kinetic energy from side view with KFX 

 

Figure 30: turbulent kinetic energy from top view with OpenFOAM for case 1, coarse mesh 

 

Figure 31: turbulent kinetic energy from top view with OpenFOAM for case 3, fine mesh 
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Figure 32: turbulent kinetic energy from top view with KFX 

Interpreting of above figures is quite difficult as, there is not any distinct difference or 

similar trend between OpenFOAM fine and coarse mesh results and KFX.  

It was expected that finer mesh, generate more turbulent kinetic energy compare to coarse 

mesh, as its resolution is higher and it resolve the objects better. However, in figure 28 it is 

shown that in finer mesh; more turbulent kinetic energy is generated compare to coarse 

one, but from top view as shown in figure 31 this is not happen compare to coarse mesh.  

In addition, it was expected that KFX generate more turbulent kinetic energy as it has a sub-

grid model which resolve the object. However, in top view comparison of KFX with 

OpenFOAM it shows that turbulent kinetic energy generated by KFX is higher, but in side 

view comparison it is not the case. 

Although, there are some contradicts in the results, but in general the results are fairly the 

same and confirm each other.  

In following figures, vertical air flow fluctuation would be presented for all 4 cases: 

 

    Figure 33: σz for case1 (k-ε and coarse mesh)                     Figure 34: σz for case3 (k-ε and fine mesh) 

 

 Figure 35: σz for case2 (LRR and coarse mesh)                     Figure 36: σz for case 4 (LRR and fine mesh)      
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From above figures it is obvious that σz values are higher for case 1 and 3 with k-ε 
turbulence model compare to case 2 and 4 with LRR turbulence model with the same 

argument explained before on chapter 6.3.1. 

In addition, finer mesh shows more details in σz pattern as it is expected due to higher mesh 

quality compare to coarse mesh.    
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7 Conclusion 

7.1 Project conclusions 

In order to ensure helicopter safe operation on offshore platform, verticals airflow 

fluctuation is calculated by simulation of ABL around a simple 2D box, and then ABL 

simulated around an offshore fixed platform and helideck. In addition, hot air plume coming 

out of a secondary inlet is simulated for simple 3D box geometry. 

ABL simulation for simple 2D geometry with OpenFOAM, and its results comparison with 

KFX results show an acceptable degree of homogeneity between OpenFOAM and KFX 

results; especially for velocity profile, which validate the OpenFOAM results as an open 

source code, and prove that OpenFOAM toolbox is a useful tool for ABL flow simulation. In 

addition, the OpenFOAM results show a great degree of homogeneity of velocity, turbulent 

kinetic energy and epsilon profiles in inlet, specified points at length of computational 

domain, and outlet.  

In case of hot exhaust plume simulation, hot plume 2◦C isotherm location, sizing and pattern 

simulated by OpenFOAM was fairly similar to simulation result of KFX which confirms it 

accuracy, and provide a basis for further improvement for hot plume simulation with 

OpenFOAM. 

Finally, vertical air flow fluctuation that calculated at heights above helideck, show that 

these values are acceptable for the defined wind condition as σz results for all 4 cases are 

definitely less than 1.75 m/s criterion defined by CAP437. Moreover, comparison of 

simulation results with k-ε and RSM turbulence models for both coarse and fine mesh, show 

that the vertical air flow fluctuation values are higher for k-ε turbulence model compare to 

RSM model, due to assumption made and formula used for calculation of σz value in these 

two turbulence models. In addition, turbulent kinetic energy patterns resulted from 

OpenFOAM was in general similar to the KFX results. However, there is not obvious trend 

between OpenFOAM coarse and fine mesh and KFX results. 
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7.2 Future work 

Although, in this thesis it is tried to simulate the main aerodynamic hazards around an 

offshore platform to ensure helicopter safe operation, there is still room for further 

development specially regarding to simulation of hot plume exhausted from an offshore 

platform, so following items could develop in future studies: 

• Simulation of hot plume exhausted from an offshore platform with real geometry of 

a platform. 

• Running hot plume simulation by considering other gas like as methane exhausted 

instead of air, and consequently using other solver than buoyantSimpleFoam, 

like as reactingFoam. 

• Further studies regarding to groovyBC, since applying groovyBC for epsilon 

shown some divergence problem when buoyantSimpleFoam solver is used, so 

further studies could be done to examine this problem. 

• Real experiments could be carried out regarding exhausted plume to prepare basis 

for comparison of CFD simulation results with real experiment results. 

• Influence of grid parameters should be studied in more details. 

In addition, future studies could be developed for ABL simulation in following area: 

• Regarding to vertical airflow fluctuation criteria define by CAP 437, some questions 

were raised by the research done by a Brazilian group (Silva et al., 2010). First, 

according the wind tunnel turbulence measurement they have done on the side of 

ship model in a non-disturbed flow condition, standard deviation of vertical air flow 

found  1.45m/s, so how it is possible to have standard deviation of 1.75 m/s in a real 

condition with turbulent flow? Second, how is it possible to assess only vertical 

turbulence component since frontal velocity gradient has significant effect on 

helicopter performance? (Silva et al., 2010). Therefore, additional research might be 

required to validate this criterion. 
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Appendices 

Appendix A:  ABL simulations of simple geometry 

Appendix A.1: blockMeshDict 

convertToMeters 1; 
vertices 
( 
    ( 0    -1      0) 
    ( 600  -1      0) 
    ( 600   1      0) 
    ( 0     1      0) 
    ( 0    -1    100) 
    ( 600  -1    100) 
    ( 600   1    100) 
    ( 0     1    100) 
    ); 
blocks 
( 
    hex (0 1 2 3 4 5 6 7) (300 1 75) simpleGrading (1 1 4) 
); 
edges 
( 
); 
boundary 
( 
    outlet 
    { 
        type patch; 
        faces 
        ( 
            (2 6 5 1) 
        ); 
    } 
    sides 
    { 
        type empty; 
        faces 
        ( 
            (1 5 4 0) 
            (3 7 6 2)           
        ); 
    } 
    inlet 
    { 
        type patch; 
        faces 
        ( 
            (0 4 7 3) 
        ); 
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    } 
    ground 
    { 
        type wall; 
        faces 
        ( 
            (0 3 2 1)  
        ); 
    } 
    top 
    { 
        type patch; 
        faces 
        ( 
            (4 5 6 7)          
        ); 
    } 
); 
mergePatchPairs 
( 
); 

Appendix A.2: ABL conditions  

 

Uref                 8; 

Href                 10; 

z0                   uniform 0.0002; 

turbulentKE          0.505; 

windDirection        (1 0 0); 

zDirection           (0 0 1); 

zGround              uniform 0;  

Appendix A.3: initial conditions  

 

flowVelocity         (8 0 0); 

pressure             0; 

turbulentKE          0.505; 

turbulentEpsilon     0.007; 

Appendix A.4: side and top patches 

top 

{ 

    type slip; 

} 

sides 

{ 

    type empty; 

}  
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Appendix A.5: U field  
 

#include        "include/initialConditions" 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform $flowVelocity; 
 
boundaryField 
{ 
    #include "include/ABLConditions" 
 
    outlet 
    { 
        type            zeroGradient; 
    } 
 
    inlet 
    { 
        type            atmBoundaryLayerInletVelocity; 
        Uref            $Uref; 
        Href            $Href; 
        n               $windDirection; 
        z               $zDirection; 
        z0              $z0; 
        value           $internalField; 
        zGround         $zGround; 
    } 
 
    ground 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    
    #include "include/sideAndTopPatches" 
} 
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Appendix A.6: k field  

#include        "include/initialConditions" 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform $turbulentKE; 
 
boundaryField 
{ 
    #include "include/ABLConditions" 
 
    outlet 
    { 
        type            zeroGradient; 
    } 
 
    inlet 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
 
    ground 
    { 
        type            kqRWallFunction; 
        value           $internalField; 
    } 
 
    #include "include/sideAndTopPatches" 
} 
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Appendix A.7: ε field  

dimensions      [0 2 -3 0 0 0 0]; 
 
#include        "include/initialConditions" 
 
internalField   uniform $turbulentEpsilon; 
 
boundaryField 
{ 
    #include "include/ABLConditions" 
 
    outlet 
    { 
        type            zeroGradient; 
    } 
    inlet 
    { 
        type            atmBoundaryLayerInletEpsilon; 
        Uref            $Uref; 
        Href            $Href; 
        z               $zDirection; 
        z0              $z0; 
        value           $internalField; 
        zGround         $zGround; 
    } 
 
    ground 
    { 
            
        type            epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.4; 
        E               9.8; 
        value           $internalField; 
     
    } 
 
    #include "include/sideAndTopPatches" 
} 
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Appendix A.8: P field  

 
#include        "include/initialConditions" 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform $pressure; 
 
boundaryField 
{ 
    inlet 
    { 
        type            zeroGradient; 
    } 
 
    outlet 
    { 
        type            fixedValue; 
        value           uniform $pressure; 
    } 
 
    ground 
    { 
        type            zeroGradient; 
    } 
 
    #include "include/sideAndTopPatches" 
} 
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Appendix A.9: nut field  

 
 
dimensions      [0 2 -1 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    #include "include/ABLConditions" 
    inlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
 
    outlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
 
    
 
    ground 
    { 
       type            nutkAtmRoughWallFunction; 
        z0              $z0; 
        value           uniform 0.0; 
    } 
 
    #include "include/sideAndTopPatches" 
 
} 
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Appendix A.10: controlDict  

application     simpleFoam; 
startFrom       latestTime; 
startTime       0; 
stopAt          endTime; 
endTime         1000; 
deltaT          1; 
writeControl    timeStep; 
writeInterval   50; 
purgeWrite      0; 
writeFormat     ascii; 
writePrecision  12; 
writeCompression uncompressed; 
timeFormat      general; 
timePrecision   6; 
runTimeModifiable yes; 
functions 
{ 
    testSample 
    { 
        type sets; 
        functionObjectLibs ("libsampling.so"); 
         
        setFormat raw; 
        interpolationScheme cell; 
        fields 
        ( 
            U 
         k  
            epsilon 
            nut 
        ); 
        sets 
        ( 
            line1 
            { 
                type        midPoint; 
                axis        z; 
   
        start       (0 0 0); 
                end         (0 0 100);                     
            } 
        
            line2 
            { 
                type        midPoint; 
                axis        z; 
     
                start       (150 0 0); 
                end         (150 0 100);   
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            } 
      
             line3 
            { 
                type        midPoint; 
                axis        z; 
   
   
                start       (300 0 0); 
                end         (300 0 100); 
            } 
 
             line4 
            { 
                type        midPoint; 
                axis        z; 
   
   
                start       (450 0 0); 
                end         (450 0 100);  
            } 
 
             line5 
            { 
                type        midPoint; 
                axis        z; 
   
   
                start       (600 0 0); 
                end         (600 0 100);  
            } 
        );       
        outputControl   timeStep; 
        outputInterval  1; 
 
    } 
} 
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Appendix A.11: fvSchemes  

ddtSchemes 

{ 

    default            steadyState; 

} 

gradSchemes 

{ 

    default            Gauss linear; 

    grad(p)             Gauss linear; 

    grad(U)             Gauss linear; 

} 

divSchemes 

{ 

    default             none; 

    div(phi,U)          Gauss linearUpwindV grad(U); 

    div((nuEff*dev(T(grad(U)))))    Gauss linear; 

    div(phi,epsilon)    Gauss upwind; 

    div(phi,k)          Gauss upwind; 

    } 

laplacianSchemes 

{ 

    default             Gauss linear limited 0.333; 

} 

interpolationSchemes 

{ 

    default             linear; 

} 

snGradSchemes 

{ 

    default             limited 0.333; 

} 

fluxRequired 

{ 

    default             no; 

    p; 

}  
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Appendix A.12: fvSolution  

 
solvers 
{ 
    p 
    { 
        solver           GAMG; 
        tolerance        1e-7; 
        relTol           0.1; 
        smoother         GaussSeidel; 
        nPreSweeps       0; 
        nPostSweeps      2; 
        cacheAgglomeration on; 
        agglomerator     faceAreaPair; 
        nCellsInCoarsestLevel 10; 
        mergeLevels      1; 
    } 
 
    U 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
    k 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
    epsilon 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
} 
 
SIMPLE 
{ 
    nNonOrthogonalCorrectors 0; 
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    residualControl 
    { 
        p               1e-2; 
        U               1e-3; 
        "(k|epsilon)"   1e-3; 
    } 
} 
 
relaxationFactors 
{ 
    fields 
    { 
        p               0.3; 
    } 
    equations 
    { 
        U               0.7; 
        k               0.7; 
        epsilon         0.7; 
    } 
} 
 
cache 
{ 
    grad(U); 
} 
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Appendix B: hot plume simulation 

Appendix B.1: blockMeshDict 

convertToMeters 1; 
vertices 
( 
    (0 0 0) // vertex nb 00 
    (50 0 0) // vertex nb 01 
    (51 0 0) // vertex nb 02 
    (350 0 0) // vertex nb 03 
    (0 50 0) // vertex nb 04 
    (50 50 0) // vertex nb 05 
    (51 50 0) // vertex nb 06 
    (350 50 0) // vertex nb 07 
    (0 51 0) // vertex nb 08 
    (50 51 0) // vertex nb 09 
    (51 51 0) // vertex nb 10 
    (350 51 0) // vertex nb 11 
    (0 100 0) // vertex nb 12 
    (50 100 0) // vertex nb 13 
    (51 100 0) // vertex nb 14 
    (350 100 0) // vertex nb 15 
    (0 0 100) // vertex nb 16 
    (50 0 100) // vertex nb 17 
    (51 0 100) // vertex nb 18 
    (350 0 100) // vertex nb 19 
    (0 50 100) // vertex nb 20 
    (50 50 100) // vertex nb 21 
    (51 50 100) // vertex nb 22 
    (350 50 100) // vertex nb 23 
    (0 51 100) // vertex nb 24 
    (50 51 100) // vertex nb 25 
    (51 51 100) // vertex nb 26 
    (350 51 100) // vertex nb 27 
    (0 100 100) // vertex nb 28 
    (50 100 100) // vertex nb 29 
    (51 100 100) // vertex nb 30 
    (350 100 100) // vertex nb 31  
); 
blocks           
( 
 hex (0 1 5 4 16 17 21 20) (20 30 70) simpleGrading (0.25 1 4) 
 hex (4 5 9 8 20 21 25 24 ) (20 2 70) simpleGrading (0.25 1 4)            
hex ( 8 9 13 12 24 25 29 28) (20 30 70) simpleGrading (0.25 1 4) 
  hex (1 2 6 5 17 18 22 21 ) (2 30 70) simpleGrading (1 1 4) 
  hex (5 6 10 9 21 22 26 25 ) (2 2 70) simpleGrading (1 1 4) 
 hex (9 10 14 13 25 26 30 29 ) (2 30 70) simpleGrading (1 1 4) 
   hex (2 3 7 6 18 19 23 22) (80 30 70) simpleGrading (4 1 4) 
  hex (6 7 11 10 22 23 27 26 ) (80 2 70) simpleGrading (4 1 4) 
    hex (10 11 15 14 26 27 31 30 ) (80 30 70) simpleGrading (4 1 4) 
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); 
edges            
( 
); 
boundary 
( 
    outlet 
    { 
        type patch; 
        faces 
        (    
     (3 19 23 7) 
     (7 23 27 11) 
     (11 27 31 15) 
        ); 
    } 
    mainInlet 
    { 
        type patch; 
        faces 
        ( 
           (0 16 20 4) 
    (4 20 24 8) 
    (8 24 28 12)  
        ); 
    } 
    secondaryInlet 
    { 
        type patch; 
        faces 
        ( 
           (5 6 10 9)  
        ); 
    } 
    sides 
    { 
        type symmetryPlane; 
        faces 
        ( 
          (0 1 17 16) 
     (1 2 18 17) 
     (2 3 19 18) 
     (12 13 29 28) 
     (13 14 30 29) 
     (14 15 31 30) 
              ); 
    } 
    ground 
    { 
        type wall; 
        faces 
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        ( 
     (0 1 5 4) 
     (4 5 9 8) 
     (8 9 13 12) 
     (1 2 6 5) 
     (9 10 14 13) 
     (2 3 7 6) 
     (6 7 11 10) 
     (10 11 15 14) 
               ); 
    } 
    top 
    { 
        type patch; 
        faces 
        ( 
     (16 17 21 20) 
     (20 21 25 24) 
     (24 25 29 28) 
     (17 18 22 21) 
     (21 22 26 25) 
     (25 26 30 29) 
     (18 19 23 22) 
     (22 23 27 26) 
     (26 27 31 30) 
               ); 
    } 
 );  
mergePatchPairs 
( 
); 
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Appendix B.2: initial conditions  

 
flowVelocity         (8 0 0); 
pressure             1e5; 
turbulentKE          37.5; 
turbulentEpsilon     1887; 
 

Appendix B.3: side and top patches 

 
top 
{ 
    type slip; 
} 
 
sides 
{ 
    type symmetryPlane; 
} 
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Appendix B.4: U field  

dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform (15 0 0); 
 
boundaryField 
{ 
    outlet 
    { 
 type            zeroGradient; 
    } 
 
    mainInlet 
    {  
        type                groovyBC; 
        value               uniform (0 0 0);  
        variables    
"Uref=8.0;Href=10.0;z0=0.0002;kappa=0.41;Cmu=0.033;ustar=Uref*
kappa/log((Href+z0)/z0);"; 
        fractionExpression  "1";  
        valueExpression     
"vector((ustar/kappa)*log((pos().z+z0)/z0), 0, 0)"; 
 
     } 
 
    secondaryInlet 
    { 
        type            fixedValue; 
        value           uniform (0 0 100); 
    } 
 
    ground 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    
    #include "include/sideAndTopPatches" 
} 
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Appendix B.5: k field  

 
#include        "include/initialConditions" 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform $turbulentKE; 
 
boundaryField 
{ 
     
    outlet 
    { 
        type            zeroGradient; 
    } 
 
    mainInlet 
    { 
        type            fixedValue; 
        value           $internalField; 
  
    } 
 
   secondaryInlet 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
 
    ground 
    { 
        type            compressible::kqRWallFunction;  
    value           $internalField; 
    } 
 
    #include "include/sideAndTopPatches" 
} 
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Appendix B.6: ε field  

dimensions      [0 2 -3 0 0 0 0]; 
 
#include        "include/initialConditions" 
 
internalField   uniform $turbulentEpsilon; 
 
boundaryField 
{ 
    outlet 
    { 
        type            zeroGradient; 
    } 
 
    mainInlet 
    { 
   type                groovyBC; 
   value               $internalField; 
   variables           
"Uref=8.0;Href=10.0;z0=0.0002;kappa=0.41;Cmu=0.033;ustar=Uref*
kappa/log((Href+z0)/z0);"; 
   fractionExpression  "1";  
   valueExpression"(((pow (ustar,3))/(kappa*(pos().z+ z0))))"; 
 
    } 
 
    secondaryInlet 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
 
    ground 
    { 
            
        type            compressible::epsilonWallFunction; 
 //type            epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.4; 
        E               9.8; 
        value           $internalField; 
     
    } 
 
    #include "include/sideAndTopPatches" 
} 
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Appendix B.7: P field  

 
#include        "include/initialConditions" 
 
dimensions      [1 -1 -2 0 0 0 0]; 
 
internalField   uniform 1e5; 
 
boundaryField 
{ 
    mainInlet 
    { 
        type            zeroGradient; 
    } 
 
    secondaryInlet 
    { 
        type            zeroGradient; 
 
    } 
     
    outlet 
    { 
     type            fixedValue; 
 value           $internalField; 
    } 
 
     
    ground 
    { 
        type            zeroGradient; 
 
    } 
 
    #include "include/sideAndTopPatches" 
} 
  



Universitetet i Stavanger 
CFD simulation of wind condition and thermal gradient around an offshore helideck 

83 

 

 

Appendix B.8: T field  

 
dimensions      [0 0 0 1 0 0 0]; 
 
internalField   uniform 283; 
 
boundaryField 
{ 
    mainInlet 
    { 
        type            fixedValue; 
        value           uniform 283; 
    } 
    secondaryInlet 
    { 
        type            fixedValue; 
        value           uniform 483; 
    } 
 
    ground 
    { 
         
    type            fixedValue; 
        value           uniform 283; 
    } 
 
    outlet 
    { 
        type            inletOutlet; 
    inletValue      uniform 283; 
        value           uniform 283; 
    } 
 #include "include/sideAndTopPatches" 
 
} 
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Appendix B.9: alph at field  

dimensions      [1 -1 -1 0 0 0 0]; 
 
internalField           uniform 0; 
 
boundaryField 
{ 
    ground 
    { 
        type            alphatWallFunction; 
        Prt             0.85; 
        value           uniform 0; 
    } 
     mainInlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
 
    secondaryInlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
     
    outlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
 
 #include "include/sideAndTopPatches" 
} 
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Appendix B.10: thermophysicalProperties 

 

thermoType      

hPsiThermo<pureMixture<constTransport<specieThermo<hConstTherm

o<perfectGas>>>>>; 

 

pRef            100000; 

 

mixture 

{ 

    specie 

    { 

        nMoles          1; 

        molWeight       28.9; 

    } 

    thermodynamics 

    { 

        Cp              1000; 

        Hf              0; 

    } 

    transport 

    { 

        mu              1.8e-05; 

        Pr              0.7; 

    } 

} 
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Appendix B.11: fvSchemes  

ddtSchemes 

{ 

    default         steadyState; 

} 

gradSchemes 

{ 

    default         Gauss linear; 

} 

divSchemes 

{ 

    default         none; 

    div(phi,U)      Gauss linearUpwindV grad(U); 

    div(phi,h)      Gauss upwind; 

    div(phi,K)      Gauss upwind; 

    div(phi,k)      Gauss upwind; 

    div(phi,epsilon) Gauss upwind; 

    div(phi,R)      Gauss upwind; 

    div(R)          Gauss linear; 

    div((muEff*dev2(T(grad(U))))) Gauss linear; 

} 

laplacianSchemes 

{ 

    default         none; 

    laplacian(muEff,U) Gauss linear uncorrected; 

    laplacian((rho*(1|A(U))),p_rgh) Gauss linear uncorrected; 

    laplacian(alphaEff,h) Gauss linear uncorrected; 

    laplacian(DkEff,k) Gauss linear uncorrected; 

    laplacian(DepsilonEff,epsilon) Gauss linear uncorrected; 

    laplacian(DREff,R) Gauss linear uncorrected; 

} 

interpolationSchemes 

{ 

    default         linear; 

} 

snGradSchemes 

{ 

    default         corrected; 

} 

fluxRequired 

{ 

    default         no; 

    p_rgh; 

} 
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Appendix B.12: fvSolution  
solvers 

{ 

    p 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-08; 

        relTol          0.01; 

    } 

    p_rgh 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-08; 

        relTol          0.01; 

    } 

    "(U|h|k|epsilon|R)" 

    { 

        solver          PBiCG; 

        preconditioner  DILU; 

        tolerance       1e-05; 

        relTol          0.1; 

    } 

} 

SIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

    pRefCell        0; 

    pRefValue       0; 

    residualControl 

    { 

        p_rgh           1e-2; 

        U               1e-3; 

        h               1e-3; 

        // possibly check turbulence fields 

        "(k|epsilon|omega)" 1e-3; 

    } 

} 

relaxationFactors 

{ 

    fields 

    { 

        rho             1.0; 

        p_rgh           0.7; 

    } 

    equations 

    { 

        U               0.2; 

        h               0.2; 

        "(k|epsilon|R)" 0.5; 

    } 
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}  
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Appendix C: ABL simulations around helideck 

Appendix C.1: blockMeshDict  

convertToMeters 1; 
 
vertices 
( 
    (-200 -45 0) 
    (280  -45 0) 
    (280   115 0) 
    (-200  115 0) 
    (-200 -45  160) 
    (280  -45  160) 
    (280   115  160) 
    (-200  115  160) 
); 
 
blocks 
( 
    hex (0 1 2 3 4 5 6 7) (72 24 24) simpleGrading (1 1 1) 
); 
 
edges 
( 
); 
 
boundary 
( 
    sides 
    { 
        type patch; 
        faces 
        ( 
            (3 7 6 2) 
            (1 5 4 0) 
        ); 
    } 
 
    outlet 
    { 
        type patch; 
        faces 
        ( 
            (0 4 7 3) 
        ); 
    } 
 
    inlet 
    { 
        type patch; 
        faces 
        ( 
            (2 6 5 1) 
        ); 
    } 
 
    ground 
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    { 
        type wall; 
        faces 
        ( 
            (0 3 2 1) 
        ); 
    } 
 
    top 
    { 
        type patch; 
        faces 
        ( 
            (4 5 6 7) 
        ); 
    } 
); 

Appendix C.2: snappyHexMeshDict 

castellatedMesh true; 

snap            true; 

addLayers       false; 

geometry 

{ 

    platform.stl 

    { 

        type triSurfaceMesh; 

        name platform; 

    }        

    refinementPlatform 

    {                                      

        type searchableCylinder; 

        point1 (16.75 36.5 60); 

        point2 (16.75 36.5 110); 

        radius 45; 

    } 

}; 

castellatedMeshControls 

{ 

    maxLocalCells 100000; 

    maxGlobalCells 7000000; 

    minRefinementCells 10; 

    maxLoadUnbalance 0.10; 

   nCellsBetweenLevels 6; 

    features 

    ( 

           

    ); 

    refinementSurfaces 
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    { 

        platform 

        { 

                      level (3 3); 

         }                  

 

     } 

    resolveFeatureAngle -1; 

    refinementRegions 

    { 

        refinementPlatform 

        { 

            mode inside; 

            levels ((1E15 1)); 

        }    

    } 

    locationInMesh (-45 -25.7 30); 

    allowFreeStandingZoneFaces true; 

} 

snapControls 

{   

    nSmoothPatch 3; 

    tolerance 4.0;   

    nSolveIter 1; 

    nRelaxIter 5; 

} 

addLayersControls 

{     

relativeSizes true;    

layers 

    { 

        platform_geom 

        { 

            nSurfaceLayers 3; 

        } 

    } 

     expansionRatio 1.0; 

 

  finalLayerThickness 0.1; 

    minThickness 0.01; 

    nGrow 3; 

    featureAngle 90; 

    nRelaxIter 3; 

    nSmoothSurfaceNormals 1; 
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    nSmoothNormals 3; 

    nSmoothThickness 10; 

     maxFaceThicknessRatio 0.5; 

    maxThicknessToMedialRatio 0.3; 

    minMedianAxisAngle 90; 

    nBufferCellsNoExtrude 0; 

    nLayerIter 50; 

} 

meshQualityControls 

{ 

    maxNonOrtho 65; 

    maxBoundarySkewness 1; 

    maxInternalSkewness 1; 

    maxConcave 80;     

    minVol 1e-13; 

    minTetQuality 1e-30; 

    minArea -1; 

    minTwist 0.02; 

    minDeterminant 0.001; 

    minFaceWeight 0.02; 

    minVolRatio 0.01; 

    minTriangleTwist -1; 

    nSmoothScale 4; 

    errorReduction 0.75; 

} 

debug 0; 

mergeTolerance 1e-6; 
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Appendix C.3: ABL conditions  

Uref                 8.0; 

Href                 10; 

z0                   uniform 0.002; 

windDirection        (-1 0 0); 

zDirection           (0 0 1); 

zGround              uniform 0.0; 

ABLvariables         

"Uref=8.0;Href=10.0;z0=0.0002;kappa=0.4;Cmu_b=0.033;ustar=Uref

*kappa/log((Href+z0)/z0);"; 

Rtensor   uniform (0.4997 0.4014 0.2613 0.3224 0.2099 0.1367); 
 

 

Appendix C.4: initial conditions  

flowVelocity         (-8 0 0); 

pressure             0; 

turbulentKE          0.5; 

turbulentEpsilon     0.01; 

 

Appendix C.5: side and top patches 

top 

{ 

    type slip; 

} 

sides 

{ 

    type slip; 

}  
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Appendix C.6: U field  

#include        "include/initialConditions" 

dimensions      [0 1 -1 0 0 0 0]; 

internalField   uniform $flowVelocity; 

boundaryField 

{ 

    #include "include/ABLConditions" 

    outlet 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type                groovyBC; 

        value               uniform (0 0 0); 

        variables           $ABLvariables; 

        fractionExpression  "1";  

        valueExpression     "vector(-

(ustar/kappa)*log((pos().z+z0)/z0), 0, 0)"; 

    } 

     ground 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    platform_geom 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

 

    #include "include/sideAndTopPatches" 

     

} 
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Appendix C.7: k field  

#include        "include/initialConditions" 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform $turbulentKE; 

 

boundaryField 

{ 

    #include "include/ABLConditions" 

 

    outlet 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

 

        type                groovyBC; 

        value               uniform 0.5;  

        variables           $ABLvariables; 

        fractionExpression  "1";  

        valueExpression     "pow(ustar,2)/sqrt(Cmu_b)"; 

    } 

 

    ground 

    { 

        type            kqRWallFunction; 

        value           $internalField; 

    } 

 

    platform_geom 

    { 

        type            kqRWallFunction; 

        value           $internalField; 

    } 

 

    #include "include/sideAndTopPatches" 

} 
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Appendix C.8: ε field  

dimensions      [0 2 -3 0 0 0 0]; 

#include        "include/initialConditions" 

internalField   uniform $turbulentEpsilon; 

boundaryField 

{ 

    #include "include/ABLConditions" 

    ground 

    { 

        type            epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.4; 

        E               9.8; 

        value           $internalField; 

    } 

    platform_geom 

    { 

        type            epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.4; 

        E               9.8; 

        value           $internalField; 

    } 

 

    outlet 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

 

        type                groovyBC; 

        value               uniform 0.1; 

        variables           $ABLvariables; 

        fractionExpression  "1";  

        valueExpression     

"pow(ustar,3)/(kappa*(pos().z+z0))"; 

    } 

        

    #include "include/sideAndTopPatches" 

}  
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Appendix C.9: R field  

 

dimensions      [0 2 -2 0 0 0 0]; 
 
#include "include/ABLConditions"; 
 
internalField $Rtensor; 
 
 
boundaryField 
{ 
    sides 
    { 
        type            slip; 
    } 
    outlet 
    { 
        type            zeroGradient; 
    } 
    inlet 
    { 
        type            fixedValue; 
        value           $Rtensor; 
 
    } 
    ground 
    { 
        type            kqRWallFunction; 
        value           $Rtensor; 
    } 
    top 
    { 
        type            slip; 
    } 
    platform_geom 
    { 
        type            kqRWallFunction; 
        value           $Rtensor; 
    } 
} 
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Appendix C.10: fvSchemes  

ddtSchemes 

{ 

    default         steadyState; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default         none; 

    div(phi,U)      Gauss upwind; 

    div(phi,k)      Gauss upwind; 

    div(phi,epsilon)  Gauss upwind; 

    div(phi,R)  Gauss upwind; 

    div(R)  Gauss linear; 

    div((nuEff*dev(T(grad(U))))) Gauss linear upwind; 

} 

 

laplacianSchemes 

{ 

    default         Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

fluxRequired 

{ 

    default         no; 

    p; 

} 
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Appendix C.11: fvSolution  

solvers 

{ 

    p 

    { 

        solver           GAMG; 

        tolerance        1e-5; 

        relTol           0.1; 

        smoother         GaussSeidel; 

        nPreSweeps       0; 

        nPostSweeps      2; 

        cacheAgglomeration on; 

        agglomerator     faceAreaPair; 

        nCellsInCoarsestLevel 10; 

        mergeLevels      1; 

    } 

 

    U 

    { 

        solver           smoothSolver; 

        smoother         GaussSeidel; 

        tolerance        1e-5; 

        relTol           0.1; 

        nSweeps          1; 

    } 

 

    k 

    { 

        solver           smoothSolver; 

        smoother         GaussSeidel; 

        tolerance        1e-5; 

        relTol           0.1; 

        nSweeps          1; 

    } 

 

    epsilon 

    { 

        solver           smoothSolver; 

        smoother         GaussSeidel; 

        tolerance        1e-5; 

        relTol           0.1; 

        nSweeps          1; 

    } 

    R 
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    { 

        solver           smoothSolver; 

        smoother         GaussSeidel; 

        tolerance        1e-5; 

        relTol           0.1; 

        nSweeps          1; 

    } 

} 

SIMPLE 

{ 

    nNonOrthogonalCorrectors 3; 

    residualControl 

    { 

      p  1e-2; 

      U  1e-3; 

      k  1e-3; 

      epsilon 1e-3; 

      R 1e-3; 

    } 

} 

potentialFlow 

{ 

    nNonOrthogonalCorrectors 10; 

} 

 

relaxationFactors 

{ 

    fields 

    { 

        p               0.3; 

    } 

    equations 

    { 

        U               0.6; 

        k               0.6; 

        epsilon         0.6; 

        R               0.6; 

    } 

} 

 

cache 

{ 

    grad(U); 

} 
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Appendix C.12:sampleDict 

interpolationScheme cellPoint; 

setFormat       raw; 

sets 

( 

    heliProfile 

    { 

        type    uniform; 

        axis    z; 

        start   ( 16 37 65.5 ); 

        end     ( 16 37 110 ); 

        nPoints 250; 

    } 

 

); 

fields          ( U k epsilon nut R ); 

 

Appendix C.13:decomposeParDict 

numberOfSubdomains 6; 

method          hierarchical; 

simpleCoeffs 

{ 

    n               (4 1 1); 

    delta           0.001; 

} 

 

hierarchicalCoeffs 

{ 

    n               (3 2 1); 

    delta           0.001; 

    order           xyz; 

} 

 

manualCoeffs 

{ 

    dataFile        "cellDecomposition"; 

} 
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Appendix D: content of enclosed CD 

 

The enclosed CD contains the master thesis file and OpenFOAM® simulations main folders 

(0, constant and system fodders) in a ZIP format. The content of CD is as follow: 

 

• Thesis report file in pdf format 

• Thesis report file in docs format 

• ABL simulation files for simple geometry 

• Hot plume simulation files 

• ABL simulations files for coarse mesh and k-ε turbulence model 

• ABL simulations files for fine mesh and k-ε turbulence model 

• ABL simulations files for coarse mesh and LRR turbulence model 

 


