
Master for Co-Simulation Using FMI

Jens Bastian Christoph Clauß Susann Wolf Peter Schneider

Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS

Zeunerstraße 38, 01069 Dresden, Germany

{Jens.Bastian, Christoph.Clauss, Susann.Wolf, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

Co-Simulation is a general approach to simulate

coupled technical systems. In a master-slave concept

the slaves simulate sub-problems whereas the master

is responsible for both coordinating the overall simu-

lation as well as transferring data. To unify the inter-

face between master and slave the FMI for Co-

Simulation was developed. Using FMI a master was

implemented with simple and advanced algorithms

which can be applied depending on the properties of

the involved slave simulators. The master was tested

amongst others by coupling with SimulationX.

Keywords: co-simulation; FMI; master

1 Introduction

Modeling problems in natural sciences and engineer-

ing often leads to hybrid systems of differential and

algebraic, time continuous and time or event discrete

equations. Often complex multi-disciplinary systems

cannot be modeled and simulated in one simulation

tool alone or subsystem models are available only for

a specific simulation tool. Sometimes sub-problems

shall be simulated with the simulator which suits best

for the specific domain. Thus for the simulation of

multi-disciplinary problems or for hardware-in-the-

loop simulation it is often reasonable or even neces-

sary to couple different simulation tools with each

other or with real world system components.

Simulator coupling is used in various fields of

application like automotive engineering, microelec-

tronics, mechatronics etc.

Up to now simulator coupling is nearly always a

point-to-point solution tailored to the involved simu-

lators. These special solutions cause high effort so a

generally accepted interface for simulator coupling

supported by many simulation tools is desirable.

2 Co-Simulation

Co-simulation is an approach for the joint simulation

of models developed with different tools (tool cou-

pling) where each tool treats one part of a modular

coupled problem. Intermediate results (variables,

status information) are exchanged between these

tools during simulation where data exchange is re-

stricted to discrete communication points. Between

these communication points the subsystems are

solved independently.

2.1 Coupling of simulators

A simulation tool S can be coupled if it is able to

communicate data during simulation at certain time

points t, cf. Figure 1. Here input variables are

denoted by u and output variables by y.

Figure 1: Block representation of a simulator S

Simulators have different capabilities which have

an influence on the algorithms that can be used for

their coupling. Such capabilities are:

 The simulator can handle variable

communication step sizes.

 The simulator can handle events.

 It is possible to undo a time step, i.e. the

simulator can reject time steps.

When using simulator coupling the original

problem is divided into N subproblems each handled

by a simulator. Typically, N is small, i.e. below 20.

Thereby the simulators do not have to be different.

The signal flow for the coupled simulators can be

described by a directed graph with the simulators as

the nodes and the exchanged data as the edges.

If there is feedback in the graph then cycles exist.

A cycle is a path in a graph with the same node as

start and end point. Cycles can be eliminated if the

simulators in a cycle are combined into a super-

simulator i.e. a simulator superior to the simulators

of the cycle.

Figure 2 shows an example of such a graph.

Simulator A has the highest priority. The simulators

B, C, and D form a cycle. E, F, and G are

subordinated to this cycle. That means simulator A is

executed first of all. Then the cycle of B, C, and D is

finished. Afterward simulators E and F are executed

whereat both simulators can be run in parallel. At

last G is processed.

Figure 2: Example graph of coupled simulation tools

For simulation, the whole graph is analyzed first.

If cycles are detected then they are combined into a

super simulator. The simulators are coupled with

directed data flow. A priority is assigned to each

simulator with 0 representing the highest priority.

Simulators with the same priority can be executed in

parallel. All simulators in cycles either have to be

processed iteratively or with small enough time steps

and error control.

Figure 3: Master-Slave structure

Instead of direct coupling, a master is assumed to

be located between the single simulation tools which

synchronizes, controlles and manages them [1]. Each

edge of the graph is regarded as to go “through” the

master, cf. Figure 3. The master serves as an

interface, establishes connections and exchanges data

between the simulators which are called slaves.

Slaves are assumed to communicate with the master

only.

2.2 Basic Co-simulation computational flow

The whole co-simulation can be divided into several

phases.

1. Initialization phase

All simulation tools are prepared for starting the co-

simulation. The master receives the properties of the

slaves. Furthermore the master receives the connec-

tion graph. The slaves and models are initialized and

parameters are set. The communication links be-

tween master and slaves are established. The master

chooses its algorithm based on the capabilities of the

slaves as well as the connection graph and user input.

2. Simulation phase

The master forces the slaves to simulate the time in-

terval from start time to stop time by stepwise solv-

ing master subintervals which are also called com-

munication steps. Their boundaries are called com-

munication points. In case of event iteration the

communication step size can be zero. The simulation

is performed independently for all subsystems re-

stricting data exchange between subsystems to these

communication points.

Before simulating a subinterval a slave receives

its input values and possibly their derivatives with

respect to time as well as the communication step

size from the master. After finishing the communica-

tion step the master receives the output values of the

slave and possibly their derivatives with respect to

time. Furthermore the slave status has to be trans-

ferred to the master. If the slave simulation fails fur-

ther communication is necessary.

3. Closing phase

The master stops the complete simulation and is re-

sponsible for proper memory deallocation, terminat-

ing and resetting or shutting down the slaves.

2.3 Accuracy and stability

Co-simulation can lead to problems regarding stabil-

ity and accuracy of the simulation [2] – especially if

feedback exists between simulators, cf. the example

given in section 4.4. If a simulation tools provides an

interface for co-simulation at all then usually it is not

possible to reset a simulator so that a time step can

be repeated e.g. with a smaller step size.

So co-simulation should often be used as a last

resort as long as iterative methods have to be used

for stability and simulators only provide a rudimental

co-simulation interface. Hopefully this will change

in future with the introduction of a standardized co-

simulation interface like the one proposed in the next

section.

3 Functional Mock-up Interface

(FMI) for Co-Simulation

The Functional Mock-up Interface (FMI) for Co-

Simulation [3], [4], [5] is an interface standard for

the solution of time dependent coupled systems con-

sisting of subsystems that are continuous in time or

time-discrete. It provides interfaces between master

and slaves and addresses both data exchange and

algorithmic issues. Both simple as well as more so-

phisticated master algorithms are supported. How-

ever, the master algorithm itself is not part of FMI

for Co-Simulation.

FMI for Co-Simulation consists of two parts:

 Co-Simulation Interface: a set of C functions for

controlling the slaves and for data exchange of

input and output values as well as status infor-

mation.

 Co-Simulation Description Schema: defines the

structure and content of an XML file. This slave

specific XML file contains “static” information

about the model (input and output variables, pa-

rameters, …) and the solver/simulator (capabili-

ties, …).

The complete interface description can be ob-

tained from [3].

The capability flags in the XML file characterize

the ability of the slave to support advanced master

algorithms which use variable communication step

sizes, higher order signal extrapolation etc.

A component implementing the FMI is called

Functional Mock-up Unit (FMU). It consists of one

zip file containing

 the XML description file and

 the implementation in source or binary form

(dynamic library).

A master can import an FMU by first reading the

model description XML file contained in the zip file.

Coupling simulators by FMI for Co-Simulation

hides their implementation details and thus can pro-

tect intellectual property.

FMI for Co-Simulation version 1.0 was published

in October 2010. Currently it is planned to combine

FMI for Co-Simulation with FMI for Model Ex-

change to an FMI standard.

4 EAS Master

MODELISAR [6] is a research project within the

European ITEA2 program. It is aimed to develop the

FMI as well as to support it by involved tool ven-

dors. Use cases will show the benefits of applied

FMI. Master algorithms are not standardized with

FMI but developed in the MODELISAR project e.g.

by tool vendors. A prototypical implementation of a

master has been provided by EAS for the MODELI-

SAR consortium. The package contains the ANSI C

code of the master, a generic “C function” slave, and

a collection of examples.

The “C function” slave provides the basic func-

tionality of FMI for Co-Simulation. The user has

only to provide two functions for initialization (the

number of input and output variables) and the com-

putation of a step with the step size communicated

by the master.

4.1 Configuration

The master is configured by a simple text file. There

are keywords for start and stop time, step size, cou-

pling algorithm, error tolerance etc. The coupled

FMUs with their paths have to appear within the

configuration file, too. The graph of the simulator

coupling has to be supplied by an incidence matrix

and information about the priority of the slaves as

well as occurring cycles.

4.2 Coupling algorithms

The master prototype provides three algorithms for

the simulation with fixed step size:

 data flow between the slaves without iterations,

i.e. simple forward calculation

 fixed point iteration of all cycles within the

graph

 simple implementation of Newton’s method with

Jacobians approximated by finite differences

All master algorithms proceed in macro steps of

fixed step size from start time to end time.

The computation of a time step from ti to ti+1

within cycles is performed in the following way:

Every slave makes an assumption for its input value

u at time ti+1. Currently this is done using constant

interpolation    ii tutu 1 , i.e. in each macro step

all terms that couple the subsystems are frozen. Thus

synchronization and update of the exchanged values

with computed output  1ity is done at the end of

the time step. Because no slave depends on the cur-

rent output of another one, the slaves can run in par-

allel. This iteration scheme is called to be of Jacobi

type.

Another approach would be to simulate a time

step with every slave of a cycle one after another and

to use the output  1ity just calculated as input

 1itu for the following slaves. These staggered al-

gorithms which handle the subsystems sequentially

are called of Gauß-Seidel type. This method was

used within a first master implementation. The

drawback of this approach is that the slaves within

the cycles cannot run in parallel and the behavior of

the iteration depends on the calling sequence of the

slaves. However, an example exists where this ap-

proach converges while the first method does not

converge.

4.3 Simple slave test examples

A collection of examples using the “C function”

slave is provided together with the master. They

cover different types of coupling – with or without

cycles, nonlinear equations, ODEs, DAEs – and

demonstrate the usage of the configuration file.

Some of the examples can be solved with all master

algorithms, some only with Newton’s method.

One of these examples is BspK6. It consists of

four coupled slaves which exchange 4 values (0, 1, 2,

3) of type fmiReal and 2 values (4, 5) of type

fmiInteger, cf. Figure 4. The slaves S0, S1, and

S2 form a cycle.

S0

S1 S2

S3

0

4 5

1 2 3

u

u4u3

y

y1 y2

y

u1

y1

u2

y2

u

Figure 4: Example BspK6 from collection

Input, output, and internal variables of the slaves

are related by the following equations.

Slave S0:

02
d

d
21  uux

t

x



















else

10
:

else

10
:

2

3

2

1

4

1

xu

u
y

xu

u
y

Slave S1:

 

     01001πsin1000

0π3sin
d

d

2

1

10
2 



utxy

tux
t

x

Slave S2:

 

     01001πsin1000

0π2sin
d

d

2

1

10
2 



utxy

tux
t

x

Slave S3:

 

 


 





 



else0

2πsin1

else0

πsin1

2
1

2

2
1

1

t
y

t
y

Figure 5 and Figure 6 show simulation results for

constant step size 10-4 and Newton’s method as itera-

tive method for the cycle. The other two methods do

not converge for this example.

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0 0.2 0.4 0.6 0.8 1

t

BspK6

0
3

Figure 5: Simulation results for exchanged values 0

and 3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

t

BspK6

1
2
4
5

Figure 6: Simulation results for exchanged values 1, 2,

4, and 5

4.4 Coupling with ITI SimulationX

Another example shows coupling of SimulationX [7]

with a “C function” slave via the EAS Master.

The original SimulationX model is shown in

Figure 7. It is a simple plant with a controller driven

by the “speed” function

 


 


else0

s 1s 2.0rpm 100 t
tf

Figure 7: Full SimulationX model

This model has been split into three FMUs: two

SimulationX FMUs for the controller and the plant

and one “C function simulator” FMU for the speed

input, cf. Figure 8. The SimulationX FMUs contain

the model as well as the solver as a DLL. They were

created via the code export option of SimulationX.

Plant

Controller Speed

Figure 8: Coupling of three FMUs

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

time (s)

Plant.sensor1.om (rad/s)

SimulationX
Coupling

Figure 9: Simulation results

The coupled FMUs have been simulated by the

prototypical master with fixed step size 10-3 with the

simple algorithm for forward calculation without

iteration. Results of this calculation as well as of the

original simulation model are presented in Figure 9.

As it can be seen, the angular velocity of the plant

shows a small but fast decaying oscillation in the

original model after the speed has been switched to 0

after 1 s. In contrast, the oscillation is larger and does

not decay in the simulator coupling. For larger step

sizes the amplitude of this oscillation is even larger

(not shown).

At the moment, SimulationX cannot discard steps

so a simulation with iterative methods was not possi-

ble. With iterative methods we expect the oscillation

to decay like in the original model.

4.5 Efficiency

Efficiency and simulation speed strongly depend on

the problem which has to be solved.

Clearly, the most efficient approach would be to

use only one simulation tool and do without co-

simulation. If this is not possible then problems de-

scribed by graphs without feedback can be simulated

most efficiently using the non-iterative method. If

there are cycles within the graph and no iterative

methods can be used because the simulators cannot

discard steps then accuracy and numerical stability

may be poor. Anyway, the macro step size has to be

very small then and thus the computational costs

strongly increase.

S1 S2

S3

Figure 10: Disadvantage of current OpenMP approach

compared to thread programming

By using OpenMP [8] slaves of the same priority

can run in parallel. However, the current implemen-

tation of this approach has a disadvantage compared

to thread programming which will be explained with

the help of Figure 10. Here S1 has a higher priority

than S2. S3 can have the same priority either as S1 or

S2. Thus either both S3 and S1 can run in parallel

and the simulation continues with S2 after both S1

and S3 have finished or S2 and S3 can both run in

parallel after S1 has finished. Instead it would be

better to handle S1 and S2 as a “super slave” which

runs in parallel with S3, i.e. synchronization takes

place at the start of S1 and S3 and after S2 and S3

have finished. However, either a more complicated

data structure has to be used for this purpose if

OpenMP should be used or platform dependent

thread programming has to be used.

4.6 Summary of properties

The implementation of the EAS Master is as plat-

form independent as possible. Platform dependent

code – mainly for dealing with dynamic libraries –

could happily be collected as preprocessor defines

within a single header file. Thus the master runs on

multiple platforms (MS Windows, Linux, Sun So-

laris).

Slaves can run in parallel if they have the same

priority. Platform independence also was the reason

to use OpenMP instead of explicitly dealing with

thread programming for this purpose. OpenMP is

supported by newer version of the major C compilers

(gcc, Visual Studio). Parallelization is realized by

one #pragma directive in front of a “for” loop so that

compilers without OpenMP support simply compile

the code for serial execution. However, the OpenMP

approach has the drawback compared to explicit

dealing with threads that only slaves of the same pri-

ority and not across different priorities can run in

parallel.

Currently the three algorithms mentioned in sec-

tion 4.2 are available.

4.7 Future enhancements

A commercially available version of the master will

have the following features:

 The graph will automatically be analyzed for the

priority of the slaves and cycles.

 Newton’s method will be improved. A better

Jacobian update strategy will be used so that the

high cost of calculating a new Jacobian by finite

differences will be reduced.

 Broyden’s method will be available as another

iterative method.

 A step size control will be implemented based on

results in [9] so that variable macro steps can be

used.

 Polynomial interpolation of data besides the cur-

rently used constant interpolation will be sup-

ported.

5 Conclusions

Co-simulation is a powerful method to simulate het-

erogeneous systems where each subsystem is simu-

lated by its own specialized simulator. However, cur-

rently simulation tools have their own interface for

coupling – if at all. Additionally, they are often not

able to discard steps and thus not suitable for itera-

tive methods.

The Functional Mock-up Interface (FMI) for Co-

Simulation as a proposed standard for simulator cou-

pling will hopefully be widely used because it re-

places current point-to-point solutions and thus eases

the reuse of models tailored to special simulators.

The protection of intellectual property is also possi-

ble with FMI.

Providing the prototypical master implementation

will hopefully help to promote the FMI for Co-

simulation.

Acknowledgements

The SimulationX model and FMUs were kindly pro-

vided by T. Blochwitz from ITI.

This work is supported by the German BMBF within

the ITEA2 MODELISAR project.

The authors thank the reviewers for valuable re-

marks.

References

[1] Wolf, S.; Blochwitz, T.: Master Slave Simu-

lator Coupling. ITI Symposium 2010.

[2] Schierz, T.; Arnold, M.: Advanced numerical

methods for co-simulation algorithms in ve-

hicle system dynamics. 1st Conference on

Multiphysics Simulation, Bonn 2010.

[3] Functional Mock-up Interface for Co-

Simulation v1.0, MODELISAR consortium,

2010. http://functional-mockup-interface.org

[4] Arnold, M.; Blochwitz, T.; Clauß, C.; Neid-

hold, T.; Schierz, T.; Wolf, S.: FMI-for-

CoSimulation. 1st Conference on Multiphys-

ics Simulation, Bonn, 2010.

[5] Enge-Rosenblatt, O., Clauß, C.; Schneider,

A.; Schneider, P.: Functional Digital Mock-

up and the Functional Mock-up Interface –

Two Complementary Approaches for a

Comprehensive Investigation of Heterogene-

ous Systems. 8th International Modelica Con-

ference, Dresden, 2011.

[6] http://www.modelisar.org

[7] http://www.simulationx.com

[8] http://www.openmp.org

[9] Schierz, T.; Arnold, M.; Eichberger, A.; Frie-

drich, M.: Study on Theoretical and Practical

Aspects of Communication Stepsize Control.

MODELISAR, sWP203 report, 2010.

