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Abstract 

Co-Simulation is a general approach to simulate 

coupled technical systems. In a master-slave concept 

the slaves simulate sub-problems whereas the master 

is responsible for both coordinating the overall simu-

lation as well as transferring data. To unify the inter-

face between master and slave the FMI for Co-

Simulation was developed. Using FMI a master was 

implemented with simple and advanced algorithms 

which can be applied depending on the properties of 

the involved slave simulators. The master was tested 

amongst others by coupling with SimulationX. 
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1 Introduction 

Modeling problems in natural sciences and engineer-

ing often leads to hybrid systems of differential and 

algebraic, time continuous and time or event discrete 

equations. Often complex multi-disciplinary systems 

cannot be modeled and simulated in one simulation 

tool alone or subsystem models are available only for 

a specific simulation tool. Sometimes sub-problems 

shall be simulated with the simulator which suits best 

for the specific domain. Thus for the simulation of 

multi-disciplinary problems or for hardware-in-the-

loop simulation it is often reasonable or even neces-

sary to couple different simulation tools with each 

other or with real world system components. 

Simulator coupling is used in various fields of 

application like automotive engineering, microelec-

tronics, mechatronics etc. 

Up to now simulator coupling is nearly always a 

point-to-point solution tailored to the involved simu-

lators. These special solutions cause high effort so a 

generally accepted interface for simulator coupling 

supported by many simulation tools is desirable. 

2 Co-Simulation 

Co-simulation is an approach for the joint simulation 

of models developed with different tools (tool cou-

pling) where each tool treats one part of a modular 

coupled problem. Intermediate results (variables, 

status information) are exchanged between these 

tools during simulation where data exchange is re-

stricted to discrete communication points. Between 

these communication points the subsystems are 

solved independently. 

2.1 Coupling of simulators 

A simulation tool S can be coupled if it is able to 

communicate data during simulation at certain time 

points t, cf. Figure 1. Here input variables are 

denoted by u and output variables by y. 

 
Figure 1: Block representation of a simulator S 

Simulators have different capabilities which have 

an influence on the algorithms that can be used for 

their coupling. Such capabilities are: 

 The simulator can handle variable 

communication step sizes. 

 The simulator can handle events. 

 It is possible to undo a time step, i.e. the 

simulator can reject time steps. 

When using simulator coupling the original 

problem is divided into N subproblems each handled 

by a simulator. Typically, N is small, i.e. below 20. 

Thereby the simulators do not have to be different. 



The signal flow for the coupled simulators can be 

described by a directed graph with the simulators as 

the nodes and the exchanged data as the edges. 

If there is feedback in the graph then cycles exist. 

A cycle is a path in a graph with the same node as 

start and end point. Cycles can be eliminated if the 

simulators in a cycle are combined into a super-

simulator i.e. a simulator superior to the simulators 

of the cycle. 

Figure 2 shows an example of such a graph. 

Simulator A has the highest priority. The simulators 

B, C, and D form a cycle. E, F, and G are 

subordinated to this cycle. That means simulator A is 

executed first of all. Then the cycle of B, C, and D is 

finished. Afterward simulators E and F are executed 

whereat both simulators can be run in parallel. At 

last G is processed. 

 
Figure 2: Example graph of coupled simulation tools 

For simulation, the whole graph is analyzed first. 

If cycles are detected then they are combined into a 

super simulator. The simulators are coupled with 

directed data flow. A priority is assigned to each 

simulator with 0 representing the highest priority. 

Simulators with the same priority can be executed in 

parallel. All simulators in cycles either have to be 

processed iteratively or with small enough time steps 

and error control. 

 
Figure 3: Master-Slave structure 

Instead of direct coupling, a master is assumed to 

be located between the single simulation tools which 

synchronizes, controlles and manages them [1]. Each 

edge of the graph is regarded as to go “through” the 

master, cf. Figure 3. The master serves as an 

interface, establishes connections and exchanges data 

between the simulators which are called slaves. 

Slaves are assumed to communicate with the master 

only. 

2.2 Basic Co-simulation computational flow 

The whole co-simulation can be divided into several 

phases. 

 

1. Initialization phase 

All simulation tools are prepared for starting the co-

simulation. The master receives the properties of the 

slaves. Furthermore the master receives the connec-

tion graph. The slaves and models are initialized and 

parameters are set. The communication links be-

tween master and slaves are established. The master 

chooses its algorithm based on the capabilities of the 

slaves as well as the connection graph and user input. 

 

2. Simulation phase 

The master forces the slaves to simulate the time in-

terval from start time to stop time by stepwise solv-

ing master subintervals which are also called com-

munication steps. Their boundaries are called com-

munication points. In case of event iteration the 

communication step size can be zero. The simulation 

is performed independently for all subsystems re-

stricting data exchange between subsystems to these 

communication points. 

Before simulating a subinterval a slave receives 

its input values and possibly their derivatives with 

respect to time as well as the communication step 

size from the master. After finishing the communica-

tion step the master receives the output values of the 

slave and possibly their derivatives with respect to 

time. Furthermore the slave status has to be trans-

ferred to the master. If the slave simulation fails fur-

ther communication is necessary. 

 

3. Closing phase 

The master stops the complete simulation and is re-

sponsible for proper memory deallocation, terminat-

ing and resetting or shutting down the slaves. 

2.3 Accuracy and stability 

Co-simulation can lead to problems regarding stabil-

ity and accuracy of the simulation [2] – especially if 

feedback exists between simulators, cf. the example 

given in section 4.4. If a simulation tools provides an 



interface for co-simulation at all then usually it is not 

possible to reset a simulator so that a time step can 

be repeated e.g. with a smaller step size. 

So co-simulation should often be used as a last 

resort as long as iterative methods have to be used 

for stability and simulators only provide a rudimental 

co-simulation interface. Hopefully this will change 

in future with the introduction of a standardized co-

simulation interface like the one proposed in the next 

section. 

3 Functional Mock-up Interface 

(FMI) for Co-Simulation 

The Functional Mock-up Interface (FMI) for Co-

Simulation [3], [4], [5] is an interface standard for 

the solution of time dependent coupled systems con-

sisting of subsystems that are continuous in time or 

time-discrete. It provides interfaces between master 

and slaves and addresses both data exchange and 

algorithmic issues. Both simple as well as more so-

phisticated master algorithms are supported. How-

ever, the master algorithm itself is not part of FMI 

for Co-Simulation. 

FMI for Co-Simulation consists of two parts: 

 Co-Simulation Interface: a set of C functions for 

controlling the slaves and for data exchange of 

input and output values as well as status infor-

mation. 

 Co-Simulation Description Schema: defines the 

structure and content of an XML file. This slave 

specific XML file contains “static” information 

about the model (input and output variables, pa-

rameters, …) and the solver/simulator (capabili-

ties, …). 

The complete interface description can be ob-

tained from [3]. 

The capability flags in the XML file characterize 

the ability of the slave to support advanced master 

algorithms which use variable communication step 

sizes, higher order signal extrapolation etc. 

A component implementing the FMI is called 

Functional Mock-up Unit (FMU). It consists of one 

zip file containing 

 the XML description file and 

 the implementation in source or binary form 

(dynamic library). 

A master can import an FMU by first reading the 

model description XML file contained in the zip file. 

Coupling simulators by FMI for Co-Simulation 

hides their implementation details and thus can pro-

tect intellectual property. 

FMI for Co-Simulation version 1.0 was published 

in October 2010. Currently it is planned to combine 

FMI for Co-Simulation with FMI for Model Ex-

change to an FMI standard. 

4 EAS Master 

MODELISAR [6] is a research project within the 

European ITEA2 program. It is aimed to develop the 

FMI as well as to support it by involved tool ven-

dors. Use cases will show the benefits of applied 

FMI. Master algorithms are not standardized with 

FMI but developed in the MODELISAR project e.g. 

by tool vendors. A prototypical implementation of a 

master has been provided by EAS for the MODELI-

SAR consortium. The package contains the ANSI C 

code of the master, a generic “C function” slave, and 

a collection of examples. 

The “C function” slave provides the basic func-

tionality of FMI for Co-Simulation. The user has 

only to provide two functions for initialization (the 

number of input and output variables) and the com-

putation of a step with the step size communicated 

by the master. 

4.1 Configuration 

The master is configured by a simple text file. There 

are keywords for start and stop time, step size, cou-

pling algorithm, error tolerance etc. The coupled 

FMUs with their paths have to appear within the 

configuration file, too. The graph of the simulator 

coupling has to be supplied by an incidence matrix 

and information about the priority of the slaves as 

well as occurring cycles. 

4.2 Coupling algorithms 

The master prototype provides three algorithms for 

the simulation with fixed step size: 

 data flow between the slaves without iterations, 

i.e. simple forward calculation 

 fixed point iteration of all cycles within the 

graph 

 simple implementation of Newton’s method with 

Jacobians approximated by finite differences 

All master algorithms proceed in macro steps of 

fixed step size from start time to end time. 

The computation of a time step from ti to ti+1 

within cycles is performed in the following way: 

Every slave makes an assumption for its input value 

u at time ti+1. Currently this is done using constant 

interpolation    ii tutu 1 , i.e. in each macro step 



all terms that couple the subsystems are frozen. Thus 

synchronization and update of the exchanged values 

with computed output  1ity  is done at the end of 

the time step. Because no slave depends on the cur-

rent output of another one, the slaves can run in par-

allel. This iteration scheme is called to be of Jacobi 

type. 

Another approach would be to simulate a time 

step with every slave of a cycle one after another and 

to use the output  1ity  just calculated as input 

 1itu  for the following slaves. These staggered al-

gorithms which handle the subsystems sequentially 

are called of Gauß-Seidel type. This method was 

used within a first master implementation. The 

drawback of this approach is that the slaves within 

the cycles cannot run in parallel and the behavior of 

the iteration depends on the calling sequence of the 

slaves. However, an example exists where this ap-

proach converges while the first method does not 

converge. 

4.3 Simple slave test examples 

A collection of examples using the “C function” 

slave is provided together with the master. They 

cover different types of coupling – with or without 

cycles, nonlinear equations, ODEs, DAEs – and 

demonstrate the usage of the configuration file. 

Some of the examples can be solved with all master 

algorithms, some only with Newton’s method. 

One of these examples is BspK6. It consists of 

four coupled slaves which exchange 4 values (0, 1, 2, 

3) of type fmiReal and 2 values (4, 5) of type 

fmiInteger, cf. Figure 4. The slaves S0, S1, and 

S2 form a cycle. 
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Figure 4: Example BspK6 from collection 

Input, output, and internal variables of the slaves 

are related by the following equations. 

Slave S0: 
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Slave S1: 
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Slave S2: 
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Slave S3: 
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Figure 5 and Figure 6 show simulation results for 

constant step size 10-4 and Newton’s method as itera-

tive method for the cycle. The other two methods do 

not converge for this example. 
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Figure 5: Simulation results for exchanged values 0 

and 3 
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Figure 6: Simulation results for exchanged values 1, 2, 

4, and 5 



4.4 Coupling with ITI SimulationX 

Another example shows coupling of SimulationX [7] 

with a “C function” slave via the EAS Master. 

The original SimulationX model is shown in 

Figure 7. It is a simple plant with a controller driven 

by the “speed” function 

 
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
 


else0

s 1s 2.0rpm 100 t
tf  

 
Figure 7: Full SimulationX model 

This model has been split into three FMUs: two 

SimulationX FMUs for the controller and the plant 

and one “C function simulator” FMU for the speed 

input, cf. Figure 8. The SimulationX FMUs contain 

the model as well as the solver as a DLL. They were 

created via the code export option of SimulationX. 
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Figure 8: Coupling of three FMUs 
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Figure 9: Simulation results 

The coupled FMUs have been simulated by the 

prototypical master with fixed step size 10-3 with the 

simple algorithm for forward calculation without 

iteration. Results of this calculation as well as of the 

original simulation model are presented in Figure 9. 

As it can be seen, the angular velocity of the plant 

shows a small but fast decaying oscillation in the 

original model after the speed has been switched to 0 

after 1 s. In contrast, the oscillation is larger and does 

not decay in the simulator coupling. For larger step 

sizes the amplitude of this oscillation is even larger 

(not shown). 

At the moment, SimulationX cannot discard steps 

so a simulation with iterative methods was not possi-

ble. With iterative methods we expect the oscillation 

to decay like in the original model. 

4.5 Efficiency 

Efficiency and simulation speed strongly depend on 

the problem which has to be solved. 

Clearly, the most efficient approach would be to 

use only one simulation tool and do without co-

simulation. If this is not possible then problems de-

scribed by graphs without feedback can be simulated 

most efficiently using the non-iterative method. If 

there are cycles within the graph and no iterative 

methods can be used because the simulators cannot 

discard steps then accuracy and numerical stability 

may be poor. Anyway, the macro step size has to be 

very small then and thus the computational costs 

strongly increase. 

S1 S2

S3

 
Figure 10: Disadvantage of current OpenMP approach 

compared to thread programming 

By using OpenMP [8] slaves of the same priority 

can run in parallel. However, the current implemen-

tation of this approach has a disadvantage compared 

to thread programming which will be explained with 

the help of Figure 10. Here S1 has a higher priority 

than S2. S3 can have the same priority either as S1 or 

S2. Thus either both S3 and S1 can run in parallel 

and the simulation continues with S2 after both S1 

and S3 have finished or S2 and S3 can both run in 

parallel after S1 has finished. Instead it would be 

better to handle S1 and S2 as a “super slave” which 

runs in parallel with S3, i.e. synchronization takes 

place at the start of S1 and S3 and after S2 and S3 

have finished. However, either a more complicated 

data structure has to be used for this purpose if 

OpenMP should be used or platform dependent 

thread programming has to be used. 



4.6 Summary of properties 

The implementation of the EAS Master is as plat-

form independent as possible. Platform dependent 

code – mainly for dealing with dynamic libraries – 

could happily be collected as preprocessor defines 

within a single header file. Thus the master runs on 

multiple platforms (MS Windows, Linux, Sun So-

laris). 

Slaves can run in parallel if they have the same 

priority. Platform independence also was the reason 

to use OpenMP instead of explicitly dealing with 

thread programming for this purpose. OpenMP is 

supported by newer version of the major C compilers 

(gcc, Visual Studio). Parallelization is realized by 

one #pragma directive in front of a “for” loop so that 

compilers without OpenMP support simply compile 

the code for serial execution. However, the OpenMP 

approach has the drawback compared to explicit 

dealing with threads that only slaves of the same pri-

ority and not across different priorities can run in 

parallel. 

Currently the three algorithms mentioned in sec-

tion 4.2 are available. 

4.7 Future enhancements 

A commercially available version of the master will 

have the following features: 

 The graph will automatically be analyzed for the 

priority of the slaves and cycles. 

 Newton’s method will be improved. A better 

Jacobian update strategy will be used so that the 

high cost of calculating a new Jacobian by finite 

differences will be reduced. 

 Broyden’s method will be available as another 

iterative method. 

 A step size control will be implemented based on 

results in [9] so that variable macro steps can be 

used. 

 Polynomial interpolation of data besides the cur-

rently used constant interpolation will be sup-

ported. 

5 Conclusions 

Co-simulation is a powerful method to simulate het-

erogeneous systems where each subsystem is simu-

lated by its own specialized simulator. However, cur-

rently simulation tools have their own interface for 

coupling – if at all. Additionally, they are often not 

able to discard steps and thus not suitable for itera-

tive methods. 

The Functional Mock-up Interface (FMI) for Co-

Simulation as a proposed standard for simulator cou-

pling will hopefully be widely used because it re-

places current point-to-point solutions and thus eases 

the reuse of models tailored to special simulators. 

The protection of intellectual property is also possi-

ble with FMI. 

Providing the prototypical master implementation 

will hopefully help to promote the FMI for Co-

simulation. 
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