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SUMMARY 

Current finite element based models for the processing of thermoset composites deal 

with either flow (pre-gelation) or stress development (post-gelation), and there is 

currently no means of rigorously combining the two. We present a framework to 

address this issue, with the ultimate goal of predicting the geometry and stress state of 

the final cured part, whilst including the effect of pre-gelation resin flow on local 

geometrical features and fibre volume fraction. 
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INTRODUCTION 

The common approach to the process modeling of thermoset matrix composites is to 

divide the analysis into two distinct stages: pre-gelation and post-gelation. During the 

first stage, flow of resin through the fibre-bed plays a major role in deformation of the 

part as the viscosity of uncured resin drops significantly due to melting when the 

temperature is increased. In order to capture this behaviour, a 2-D finite element (FE) 

model for porous flow-compaction is commonly introduced based on Darcy’s law [1,2]. 

Once the curing of resin begins, it undergoes a gradual evolution from a viscous fluid to 

a viscoelastic material while developing solid-like properties along the way until the 

molecules form a cross-linked structure when the resin gels. At this point, resin flow 

becomes insignificant as the resin matrix has formed a solid network, and the flow 

simulation terminates. 

The second stage of modeling deals with the behaviour after gelation of resin, where the 

aim is to predict the final geometry and stress state of the composite laminate [3,4]. The 

properties of the resin are dependent on its degree of cure, and evolve throughout the 

analysis. Appropriate micromechanics equations are typically utilized to arrive at the 

moduli of the fibre-reinforced composite at various stages of cure. 

The motivation for the current work is to integrate these two stages involved in process 

modeling in a unified model. This enables one to track and analyse the resin flow 

behaviour and stress development in the composite seamlessly throughout the curing 



process. In order to achieve this goal, a numerical model is developed based on a 2-D 

flow-compaction FE representation. For this purpose, a Q2P-1 finite element with 

quadratic approximation of kinematic degrees of freedom (system displacement and 

relative resin velocity) and linear and discontinuous (across neighbouring elements) 

representation of resin pressure is developed (Figure 1). However, to be able to model 

the response at the other extreme of the process (i.e. composite behaviour after gelation 

of the resin) using the proposed element, a generalized definition for the effective stress 

of the fibre-bed must be introduced so that it includes the elastic contributions of the 

resin in shear. The moduli related to this generalized form of fibre-bed stress represent 

the actual moduli of the fibre-bed when the flow is significant while in the post-gelation 

regime they represent the moduli of the transversely isotropic composite material. To 

obtain the properties of the generalized fibre-bed, appropriate micromechanics 

equations are invoked for the interaction of the fibres with the surrounding resin.  

 

FLOW-COMPACTION IN COMPOSITE PROCESSING 

Governing Equations 

The governing equations for flow and deformation of porous media involves three 

distinct equations including the momentum balance equation of the fluid phase, the 

momentum balance equation of the two-phase system, and the mass conservation 

equation. In the literature relevant to the modeling of flow phenomena in composites 

manufacturing, it is very common to assume that the solid and fluid phases are 

incompressible. The system of governing equations may then be written in the form 
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where the effect of body forces on the response is neglected. u, v, and P are the main 

variables of the above differential equations. u is the displacement of the solid structure 

which is representative of the displacement field of the system. v is the relative velocity 

field of the fluid phase, while P represents the pressure of the fluid phase throughout the 

system, and shear stresses in the fluid phase are assumed to be negligible. µ is the 

viscosity of the fluid phase, and S is the matrix of permeability of the porous solid 

structure. σ' represents the effective stress in the porous structure. The usual approach in 

FE representation of multi-phase media is to substitute the momentum balance equation 

of the fluid phase into the mass conservation equation [5] that leads to 
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As a result, the relative velocity of the fluid is eliminated from the governing equations 

and the pressure undergoes a second-order differentiation in space. In the present work, 

we do not neglect the contribution of shear components of stress in the fluid phase to the 

response of the system. This will help in the generalization of the formulation to model 



the response of the composite with gelled resin, as the solid resin can carry considerable 

amounts of shear stress. Tucker & Dessenberger [6] used the volume averaging method 

to arrive at the governing equations of flow through a stationary fibre-bed. Using the 

volume averaging method for the case of deformable porous structure, we arrive at a 

more general form of the governing equations 
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where τm represents the shear stress in the fluid phase and φ  is the volume fraction of 

the fluid phase or porosity. A 2D plane strain Q2P-1 finite element is developed based on 

the governing equations in (3). This element is a bi-quadratic isoparametric element 

with 9 nodes for the system displacement and relative velocity of the fluid phase. As 

depicted in Figure 1, three internal nodes are assigned to the pressure of the fluid phase, 

therefore enabling every element to represent its internal pressure distribution as a linear 

surface. For simplicity, we will refer to this element as the 9-3 element. 
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Figure 1, Schematic representation of the proposed finite element. 

 

Compaction of unidirectional angle laminates 

Hubert et al. [1] performed simulations involving resin flow and compaction of angle 

laminates. Their FE model involved a bilinear 2D element developed based on Eqs. (2) 

with 4 nodes for displacement and pressure degrees of freedom (DOFs), i.e. a 4-4 

element. They carried out a comprehensive parametric study of the numerical response 

and studied the effect of various constitutive properties on the compaction behaviour of 

the laminates. Hubert and Poursartip [7] also performed an experimental investigation 

on the compaction of unidirectional angle laminates on convex and concave tools. The 

samples were made of two different materials including AS4/3501-6 and AS4/8552. 

The numerical simulations were conducted on examples that closely represented the 



geometry of the actual specimens used in the experiments. Here, the 9-3 element is used 

to model the same problem with the same material properties assumed in Hubert’s work 

to compare the results from the two approaches. Figure 2 shows the geometry and 

boundary conditions of the problem on a convex tool. Two different FE meshes are 

presented in Figure 3 to study the convergence of the predicted response. The two 

points where the normal displacements of the laminate are compared (at the corner and 

at the mid-point of the flat section) are shown in the figure. Table 1 presents the 

properties of the resin and the fibre-bed for AS4/8552 unidirectional laminate. These 

values are adopted from references [1] and [7]. 
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Figure 2, Geometry, BC, and processing cycle used for compaction of a unidirectional 

angle laminate on a convex tool 
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Figure 3, (a) 8×4 mesh, and (b) 16×6 mesh of the angle laminate (half-geometry) 



Table 1, Resin and fibre-bed properties for the AS4/8552 angle laminate  

 Resin degree of cure Resin viscosity Fibre-bed elastic propertiesFibre-bed permeability
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The normal displacements at the corner (point A) and the mid-point of the flat section 

(point B) of the laminate are compared to those obtained by Hubert et al {1,7]. Figure 4 

shows the time-history of the normal displacement at the top surface of the AS4/8552 

[0] unidirectional angle laminate on a convex tool predicted by the two approaches. A 

very good correlation is obtained between the current predictions and those obtained by 

Hubert et al for the displacements at both locations thus verifying the capability of the 

proposed element to model flow-compaction phenomena in composites processing 

involving practical geometries. 
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Figure 4, Time-histories of normal displacements at two different locations in a 

unidirectional AS4/8552 angle laminate with [0°] fibres on a convex tool 

(Figs. 2, 3) 



MODELING THE RESPONSE OF CURED COMPOSITE 

An important aspect of this work is to implement the modifications required in the two-

phase element so that it can model the different stages of the cure of the material from a 

fluid resin to a completely cured polymer matrix. As verified earlier, it is naturally 

expected of the element to successfully model the initial stages of the process consisting 

of resin flow and compaction of the sample. For the purpose of simplicity, the 

formulation presented in this section is based on the assumption that the composite 

material is isotropic. However, the approach is also applicable to the case of 

transversely isotropic materials. 

In order for the two-phase element to successfully model the cured composite, a few 

critical implementations are required. The assumption of incompressible phases is not 

relevant to the analysis of cured composites as materials as a cured resin has a bulk 

modulus that is in the same order of magnitude as its shear modulus. Therefore, 

compressibility of the phases needs to be considered in the governing equations 

implemented in the finite element scheme. The common approach in the FE analysis of 

flow and deformation in porous media toward accounting for compressibility is to 

obtain the volumetric strain rates of each phase and substitute the summation in the 

mass conservation equation. For instance, Lewis & Schrefler [5] present the following 

equation as the mass conservation of a porous system with compressible fluid and solid 

grains 
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to be substituted as the first equation of (1) or (3). Km, and Kf are the bulk moduli of the 

fluid phase and solid grains (fibres) respectively. b is the biot coefficient defined by 

 
f

fb

K

K
b −= 1  (5) 

Kfb is the bulk modulus of the porous solid structure (fibre-bed in our case). Here, for 

the method to be consistent with the analysis of solid composite materials, the bulk 

modulus of the system is defined using the same micromechanics approach taken for the 

cured composite. The total volumetric strain rate is then obtained using the system’s 

bulk modulus and substituted into the mass conservation equation to have 
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The total volumetric strain rate may be written as 
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where σs is the total stress of the two-phase system, and Kc is the bulk modulus of the 

system obtained from the micromechanics formulation of choice for the moduli of the 

cured composite. As a result of the above modifications in mass conservation equation, 



a small error is introduced in the flow-compaction response of the system. However, the 

error is introduced only in the component pertaining to the change of volume of the 

components.  This has a very small and typically neglected effect in the total flow-

compaction of porous systems, and therefore the discrepancy is deemed to be negligible. 

With the assumption of compressibility, the governing equations in (3) are slightly 

modified and rewritten in the form of 
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where τm ij are the components of the deviatoric stress tensor in the matrix phase, and σ"ij 

represent the components of the Biot effective stress tensor of the porous structure. In 

the case of resin flow in the processing of composite materials, the term involving the 

deviatoric stress of the matrix is negligible compared to last term of the second equation 

in (8) which represents the Darcy interaction force between the two phases. Based on 

the total equilibrium equation in the 3rd equation of (8) the total stress of the two-phase 

system may be defined as 

 ijijmijijs bPσ δτσ −+′′=  (9) 

Let us define the “s-p” stress (stress of the system excluding the pressure of the matrix 

phase) as 

 
ijmijijijsijps σbPσ τδσ +′′=+=−  (10) 

Combining the deviatoric components of matrix stress with the stress components of the 

porous structures paves the way toward a formulation for the porous two-phase system 

that is consistent with the micromechanics representation of choice for the eventually 

solid composite material. Considering the above points, we may rewrite (8) as 
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The modulus pertaining to the bulk behaviour of the “s-p” system is set to be equal to 

the modulus of the fibre-bed throughout the whole process modeling. The shear 

modulus of the “s-p” system is obtained by an additive combination of the shear 

modulus of the porous structure (pertaining to σ"ij) with the shear modulus of the 

composite material (obtained from the micromechanics equation of choice).  
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The above definitions of moduli are consistent with the second definition of the “s-p” 

stress in (10). When the resin can be considered a viscous fluid, the “s-p” shear modulus 

is practically equal to that of the fibre-bed as a negligible value for the shear modulus of 

the resin leads to a negligible value for the shear modulus of the composite (as the load-

sharing rule is of a parallel nature, the smaller shear modulus dominates the shear 

behaviour of the composite). For the case of cured resin, the shear modulus of resin is 

quite large and therefore the shear modulus obtained from the micromechanics of the 

composite dominates the value of “s-p” modulus. The bulk behaviour of the system is 

correctly represented by the mass conservation equation throughout the analysis.  

The 9-3 element developed in this work is based on the governing equations in (11) that 

may be characterized as a u-v-p formulation. According to the very common u-p 

approach in FE treatment of porous media, the governing equations in (11) may be 

written as 
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after substituting the fluid phase equilibrium equation into the mass conservation 

equation. A 9-4 element based on the above u-p formulation is also developed in this 

work for the sake of comparison. This element is geometrically very similar to 9-3 

element with 9 nodes for displacement degrees of freedom and 4 corner nodes for the 

fluid pressure. The 9-4 element should be considered an element very close to Taylor-

Hood element (that could be named 8-4 by the naming system of this work) which is 

extensively used in FE modeling of multi-phase systems and also incompressible fluids. 

In the u-p formulation pressure undergoes second order differentiation in space, and 

therefore needs to be introduced as an essential BC of the system at the boundaries. In 

the u-v-p formulation, there is no need to specify pressure degrees of freedom at the 

boundary of the system, and any applied pressure is considered in the traction vectors 

applied to the system. 

 

Rectangular sample under pressure gradient 

Figure 5 depicts a schematic representation of a rectangular elastic solid composite 

sample under two different magnitudes of normal pressure loading on either side. 
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Figure 5, Composite sample under pressure gradient 



Assuming isotropic properties, a mesh of 9-3 elements is used to model half of the 

sample due to symmetry, and the displacement profile of the right-hand-side of sample 

is presented in Error! Reference source not found.. The ratio of the bulk modulus of 

fibre-bed to the bulk modulus of composite is assumed to be 0.01. The viscosity of the 

resin is assumed to be a high value at 7×10
7
 Pa.s to reduce the flow of resin to 

negligible values in the time scale of interest, and the permeability of the fibre-bed is set 

to 1×10
-14

 m
2
 (a value in the range of typical permeability values for thermosetting 

composites. The 9-4 element based on the u-p formulation is also used to predict the 

response of the system under permeable and impermeable boundary conditions on the 

sides. Error! Reference source not found. also presents the response of the 9-4 

element under the two different B.C. which shows a good agreement to 9-3 element 

under impermeable B.C. but is not a good match under assumed permeable conditions.  
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Figure 6, Comparison of displacement profiles for 9-3 and 9-4 elements, obtained using 

a 12×8 mesh 

 

The problem was also modeled in ABAQUS by an 8-noded solid 2D element based on a 

plane strain formulation. Various meshes from 6×4 to 192×128 were modeled, and the 

horizontal displacement of the system at point A was obtained. The values converge to 

1.649×10
-7

 m. In the case of using 12×8 9-3 elements, the obtained displacement for 

point A is 1.648×10
-7

 m, proving the capability of this approach in the prediction of the 

elastic response of the cured material.  

In the case of 9-4 elements with permeable BC, pressure DOFs are forced to take pre-

determined values and that leads to a considerable error in the displacement response of 

the system. It is evident that for the case of 9-4 elements, the displacement response of 

the system is dependent on the assumed BC. It is very desirable for the response of the 

solid and cured composite to be independent of the BC considered for the flow of resin 



during the initial stages of cure. Therefore, the 9-3 element has a clear advantage over 

the 9-4 element in this regard. 

 

CONCLUSIONS 

A 9-3 element based on a u-v-p formulation is developed and verified for the purpose of 

modeling the flow-compaction response of the thermosetting composite laminates 

during autoclave processing. An approach is presented to model the stress response of 

cured isotropic composites using the developed element toward the ultimate goal of 

integration of modeling the processing of thermosetting composites from the flow-

compaction response through to the stress response in a seamless fashion. Through an 

example, the capability of the proposed two-phase element in the prediction of the 

elastic response of a cured isotropic composite sample is demonstrated. 
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