
Chatter on the Wire: 
A look at excessive network traffic and 

what it can mean to network security. 
 

by Eric Kollmann 

aka xnih 

v.1.0 

6 August 2005 



 I-2 

Dedicated to 
  

• My wife and children that I’ve been away from for the last year while serving in 

Iraq and will continue to be away from for the next few months 

• To those who have helped me in my research on this and other products over the 

years 

• To those who have written the programs mentioned and written the papers that a 

lot of this is based on 

• To all those that continue to push security forward 



 I-3 

Table of Contents 

SECTION I - ACTIVE SCANNING I-1 

NMAP I-2 
XPROBE I-3 
GFI’S LANGUARD NETWORK SECURITY SCANNER I-6 
OSFP I-8 
VISIONX I-10 
ACTIVE SCANNER CONCLUSION I-11 

SECTION II - DEFAULT TTL II-1 

SECTION III - PASSIVE OS DETECTION III-1 

P0F III-2 
DHCP LISTENER III-3 

SECTION IV - WHERE TO GO FROM HERE WITH PASSIVE OS FINGERPRINTING

 IV-1 

MICROSOFT MACHINES IV-2 
NBNS PACKETS IV-6 
SMB PACKETS IV-7 
SESSION SETUP ANDX RESPONSE IV-7 
SESSION SETUP ANDX REQUEST IV-7 
MAC OS X IV-9 
RENDEZVOUS IV-9 
DEVICES AND OTHER PROTOCOLS IV-11 
DHCP IV-11 
POSSIBLE PROMISING USES OF DHCP THAT DIDN’T PAN OUT… IV-15 
CISCO DISCOVERY PROTOCOL (CDP): IV-15 
SERVICE ADVERTISEMENT PACKETS (SAP) IV-16 
UPNP IV-18 
HTTP TRAFFIC IV-19 
ICMP IV-21 

SECTION V - CONCLUSION V-1 



 I-4 

Introduction 
The man that just came out of the building is Joe, he is an overworked, under paid and 

under appreciated employee at one of the nations largest IT companies.  He has access to 

all the software the company is currently developing, and has hinted, to a yet unknown 

source that he may be willing to sell as many of the programs and other thing he can get 

his hands on, for a few bucks, of course.  It isn’t that he hates his company, or that he has 

any ill will towards them, he just wants to make some quick cash and is looking for 

something to do.  In short he is bored and broke. 

 

Stan, a man in a long trench coat, smoking a cigarette and standing in the shadows, is 

waiting for his victim to walk out of the building across the street.  .He’s been hired by an 

unknown source to follow Joe and make sure there are no police of FBI agents involved. 

 

As the victim emerges from the building, Stan slowly stubs his cigarette out and 

meanders after him.  He doesn’t want to get to close and tip the guy off that he is 

following him….. 

 

This is a cheap dime store Spy novel, correct?   

 

Maybe it is, maybe it isn’t, lets look at how someone might get information about your 

company, about your network or about products you are selling?   

 

How does a spy find out information?  There are a few main ways: 

 

• Straight-out breaking into a building/computer/whatever and stealing the info 

• Recruiting other people to do it or who already have inside access 

• Listening in on conversations while people are sharing sensitive information 

 

And a ton of others ways, but ultimately, planning, planning, planning.  It most likely 

isn’t a 5 minute deal.   

 

This happens in everyday locations, around the world, on computer networks all the time.  

In the weekly SANS report there are articles about break-ins at Universities or 

Corporations in every report.  Information about social security numbers or other 

personal data being stolen on a monthly, if not weekly, or even daily basis.  In most cases 

information is not provided on exactly how the intrusion took place, only that it did.  But 

it basically comes down to 2 things, either they actively went after the information, 

leaving clues behind as to their entrance and the deed, or they silent gather the 

information in the background until they had enough to get in and out without being 

noticed.  Either way, the information is gone, but in one case you may not even know that 

it has happened, in the other there are probably easily noticed clues that may help 

investigators. 

 



 I-5 

Since we are hearing about it, most likely this was an active attack or the intruder wasn’t 

quite as quiet and didn’t clean up quite as well as they thought they did.  That or you 

really don’t know what they have! 

 

I know what you are probably thinking; this is yet another paper on Active and Passive 

network OS detection and Scanning Techniques OR this is a scare tactic to finally get 

management to listen.  Well it is and it isn’t, on both cases.  It started, primarily as a 

paper on passive fingerprinting, that dips a bit into this and that along the way trying to 

give you a broad enough understanding of everything that has come before so that the 

new stuff makes sense.  Without understanding how they are doing it, or what has 

happened in the past, parts of the new ideas or techniques will mean little to you.  

Perhaps in the end they will mean little to you anyway.  I won’t go into the specifics of 

all of the different types of active/passive OS detection techniques, but I will cover some 

of the major and unique ones.  Not to mention ones I’ve written programs to attempt to 

do.  And, by the way, if it helps frighten your management into finally doing something, 

let me know, and please send a few kickbacks to me on whatever you finally get them to 

buy! 

 

Both Active and Passive fingerprinting have their own strengths and their own 

weaknesses.  One leaves noticeable tracks in the sand and makes it much easier to track, 

while the other is much stealthier, leaving little to nothing behind and you may never 

know it has happened.  Where one, provides instant results and the other takes time, days, 

weeks, months, or even years to collect everything you may need. 

 

Nothing located in this paper is anything completely new and unseen before.  It is built 

upon hours, weeks and months of other peoples work and their dedication to the art of 

determining what devices are located on our networks.  It is work that has been done by 

system administrators, white hats, black hats, grey hats, and common every day end 

users.  All who just want to understand more about what is out there on their network, 

how to better determine that and perhaps hide that.  It is work that has been built upon by 

many individuals over the years, some which will be mentioned, others who will not. 

 

Again, there is nothing secret in here, all of this work can be verified against your own 

networks.  It can be used as a stepping stone for the next program.  Most techniques have 

been in use for a few years at least, where others perhaps only a few months.  I’ll try to 

bring together as much of the different techniques in one central place, with links to the 

products, research papers, or articles that this is all based on.  Some things I will expand 

on greatly because they interested me or were found to be lacking in the original research.  

Others will be glossed over because there is a ton of other papers and books about them 

already and I just want to point you in the right direction or I plain found them either 

boring or so technical that I just couldn’t bother trying to understand them (I am a bit lazy 

at times). 

 

Hopefully this is useful for the next generation of fingerprinting tools, if not, oh well, it 

helped pass the time here in the desert. 



Section I - Active Scanning 
I’ve personally always been interested in knowing what is out on the network and have 

used many active scanning utilities over the years to determine this.  There are many 

products out there that are widely used and we will discuss some of them.  There are also 

a lot of home grown apps out there that, either haven’t received a lot of “press time” or 

just have been well hidden which we will also discuss. 

 

Active scanners as a whole have the following traits: 

Strengths: 

• Immediate Results 

• Highly Accurate (most cases where firewalls are not involved) 

 

Weaknesses: 

• Very noisy  

• High bandwidth usage 

• Easily traceable 

 

Each active scanner, itself, has its own strengths and weaknesses beyond the generalized 

ones above.  Some of them are getting much better at what they do as more and more 

people utilize them and provide the programmer(s) with feedback.   

 

I think the feedback programmers have received and the growing security concern are 

some of the number one reasons these programs have grown so much in the past few 

years.  Initially a programmer may come up with an idea, but if only a few people are 

providing them with feedback, signatures, etc, they have a very small world in which 

their program runs and signatures are generated from.  With this small world the program 

has little chance to expand.   

 

As computer security has grown, the use of these programs has also grown with it.  With 

that growth, more people are using it, providing feedback and signatures and with that 

info the programs have grown much more accurate.  With more accuracy, more people 

start to use and rely on them.  It is a nice circle. 

 

Enough about the field as a whole, onto some of the programs themselves… 

 



 I-2 

NMAP1
, of course, is the one people and books go on and on about, it uses some nice 

techniques to determine the OS and is quite reliable most of the time.  Almost any 

network security book will talk about NMAP and I believe there is actually a book or two 

dedicated exclusively on how to use NMAP.  It uses TCP/IP fingerprinting of the IP stack 

using some of the following techniques: 

 

• FIN probe 

• BOGUS flag probe 

• TCP ISN Sampling 

• IPID sampling 

• TCP Timestamp Don't Fragment bit 

• TCP Initial Window 

• ACK Value 

• ICMP Error Message Quenching 

• ICMP Message Quoting 

• ICMP Error message echoing integrity 

• Type of Service 

• Fragmentation Handling 

• TCP Options 

• Exploit Chronology 

• SYN Flood Resistance 

 

If you want to know more about the above scan types you can read all about them at 

NMAP’s Remote OS Detection Page
2
. 

 

Note:  To do most of the tricks that NMAP uses, on a windows based machine, you need 

something like WinPCAP or RAW Sockets, since most of the tweaks that need done 

aren’t easily accessible using winsock.dll.  When I first started using RAW sockets, (prior 

to Windows XP SP2 which broke some of this ability), I attempted some of these features 

in a program I called VisionX, more on that program later on.  Some of the features that 

have been implemented in NMAP are fairly easy to duplicate without knowing a ton 

about packet manipulation, others aren’t, as I have found out over the years. 

 

NMAP is a widely used program that has been ported to many platforms.  The use of 

many of these techniques can be seen throughout the field of OS Fingerprinting.  Some of 

these same tests will be seen again, not on the active side, but on the passive side.   

 

If you want to know more about NMAP pick up any security book and there is probably a 

whole chapter set aside of it. 

 

                                                 
1
 NMAP is written by Fyodor and can be found at:  http://www.insecure.org/nmap/ 

 
2
 More on NMAP’s remote OS Detection can be found at:  http://www.insecure.org/nmap/nmap-

fingerprinting-article.html 



 I-3 

Xprobe
3
 is one I’ve read about and followed a lot of the research on how it was done, 

but it is one that I have never played with.  I’m not a huge Windows fan by any means, 

but I’ve never been a huge *nix fan either.  I’m a Novell Admin, or was, for years, 

dabbled in Linux, HP-UX and whatnot, but back to being lazy, I got tired of having to 

install this library to get productX to work, only to find out that to get libraryY to work 

this libraryZ needed installed, and on top of that this version of productX, didn’t work 

with that version of libraryY.  Why all the babbling, well last I checked, Xprobe only 

runs on *nix, so I haven’t actually run it (again, I’m lazy sometimes).   

 

Anyway, I found out about Ofir’s page sometime in early 2001 when his paper ‘ICMP 

Usage in Scanning v2.5’ was out.  Within a few months of printing the 200 odd page 

paper, he of course, released v3.0 of it and I got to turn around and kill another tree 

printing it.  There are lots of trees out there, what was one more?   

 

That paper has been invaluable! The information provided is all about using the ICMP 

protocol to fingerprint an OS.  Just like every other RFC out there, every vendor has 

chosen their own interpretation of what certain things mean and implemented them 

slightly different.  The ability to use these differences, in the way they respond, to ICMP 

traffic provides us with a way to uniquely identify them. 

 

Xprobe uses the following tests: 

• ICMP Echo (normal ping) 

• TTL 

• ICMP Echo (invalid code) 

• ICMP Timestamp 

• ICMP Address 

• ICMP Info Request 

• ICMP Port Unreachable 

 

When most people hear the term ‘ICMP traffic’ they jump directly to ping packets.  True 

ping packets are ICMP traffic, but they are not the only type of ICMP traffic.  You have 

Echo requests (ping packets), Timestamp, address mask, info request and a number of 

others.  As you can see above, the program sends 2 separate ICMP Echo Requests to the 

machine.  The first one is a typical packet that you would expect to see on the network, 

nothing “special” about it.  A typical ping packet looks like this: 

 

 
                                                 
3
 XProbe is written by Ofir Arkin and Fyodor Yarochkin and can be found at:  http://www.sys-

security.com/ 

 



 I-4 

 

Notice how Code: 0?  This is the default value in an ICMP ping packet. 

 

The second ICMP Ping packet that was sent has the code value changed to a non-zero 

value.  Different OS’s will do different things with this.  Some will echo back what was 

sent (like the RFC states), others, contrary to the RFC will set it to zero in the Reply 

packet.  Examples of OS’s that do it contrary to the RFC are Windows and Novell 

Netware. 

 

One recent observation on my part is that, on windows at least, the ID field seems to 

always be 0x0200.  Not sure what other OS’s use by default, but ICMP traffic, like other 

protocols can be used to help, at least a bit, to differentiate between OS’s.  (Later test 

have shown 0x0100, 0x0300, and 0x0400, but more on this later in the paper about ICMP 

traffic where we will also look at some other default values and some possible changes or 

other identifying features of ICMP traffic that I don’t recall in Ofir’s paper).   

 

Knowing this we can next look at the payload sent with a typical Windows client ping, 

which is:  ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI 

Unix on the other hand does not use alphabetic codes for most of it, but starts if off with a 

timestamp and then fills it with other info.   

 

So by looking at ICMP Ping traffic we can differentiate between Windows and non 

Windows machines.  Assuming of course they are using the built in ping utility.  Anyone 

can write a utility that masquerades as another OS’s.  There is nothing that requires an 

OS to send a specific ICMP ping packet out.  For that matter, any type of test, passive or 

active can be fooled by a tweaking of the responses that the device gives.  That is just the 

nature of the game. 

 

Next we will look at TTL, which most fingerprint utilities will use to some extent in their 

analysis of the remote system, this is not unique to XProbe.  Each hop through a router 

decrements it by 1, so you have to have a general idea how many hops away the machine 

is for it to help.  Most machines, on a local network will only be 1 or 2 hops away from 

you at the most.  Even though it may only be 2 hops away on a LAN it may be 10-20 

hops away from you if it is a machine on the internet.  If you don’t know you can 

normally just assume it falls into the 32, 64, 128, or 255 framework.  

 

Some devices use “odd” TTL values such as 15, 60, 150, etc.  In general this does two 

things: 

• In the case where it is easy to determine what the base value was (i.e. your local 

LAN) this just adds to the uniqueness of the device and makes it that much easier 

to identify. 

• It makes it that much easier to identify! 

(More on Default TTL can be found in a later chapter all about TTL values). 

 



 I-5 

ICMP Timestamp, Address, and Info request packets all help to differentiate between 

systems even more.  Some builds of an OS may support Timestamp Requests/Replies, 

while others may not.  The same goes for Address and Info request packets. 

 

ICMP Port Unreachable packets add one more place to get info from.  Different OS’s, 

just like all of the above features, send different info back in the Port Unreachable packet. 

 

Note:  Almost everything that Xprobe does, packet wise, I’ve been able to implement.  I 

actually wrote a program, prior to Xprobe’s release that used as many of the features as 

possible from Ofir’s paper.  I actually only sent 4 packets in my program at the time.  

ICMP Echo, TimeStamp Request, Address Request, and Info Request.  Just using those 4 

packets, and the info it generated, a large part of our network could be mapped out to a 

base OS, or a class of OSes.  In my program, due to a small computer base to test against, 

certain OSes were harder to differentiate between than others.  Most types of *nix 

machines, at least to my program, all looked the same.  One thing I did start to implement 

was the ability to masquerade as other OSes with the ICMP traffic that was sent out, but 

due to my inability, at the time to change all of the parameters in the packet that I wanted, 

this project fell to the way side and was later replaced by VisionX.  The technology was 

rolled over into the new product, but wasn’t expanded on much.   

 

Xprobe was also the first program to use, as they describe it, “fuzzy logic”.  They give 

the OS a score based on how it matches up to a set of tests and gives you a probability of 

which OS it is.  Instead of locking you into a static list, saying it must pass, all these tests 

to be this OS. 

 

It will be interesting to see how certain hotfixes and SP’s change their IP stacks, either on 

purpose to help hide their OS, or to fix broken functionality in them.  I haven’t had a 

chance to keep up with the latest MS hotfixes, but I know at least one of them, I believe 

MS05-019 had to do with ICMP issues.  Will the fixing of that issue change the way the 

OS responds to ICMP packets.  If it does, will it be in an easy enough way to determine it 

is still the same OS, but with or without that hotfix?   

 

The reason this could be an issue, assuming it is simple to tell, either on this hotfix or 

others, is that most of the vulnerabilities anymore seem to be oriented towards “remote 

compromise”.  There have been many tools released over the past few years to detect if a 

specific hotfix is installed, such as MS03-026, or MS04-011, will these same types of 

tools be released for MS05-0xx patches that were released in April 2005?  Or will it turn 

out that these attack vectors and not as easily used?   

 

Note:  Information about Xprobe is all with version 0.2.  0.2.3 has since been released in 

August 2005 which added some new scanning features.  Also, Ofir has been busy with a 

new company call insightix, which can be found at www.insightix.com and their utility 

does a cross of passive and active scanning for network security.  Still waiting for info to 

be sent to me about it beyond their default .pdf files.  Not sure if it is going to ever make 

it to me or not. 



 I-6 

GFI’s Languard Network Security Scanner4
, is one that I’ve been 

using/following for years now.  (Perhaps this is because I worked for them for a time 

being there, writing documentation, testing, etc?)  This program is primarily used for 

network scanning by administrators for hotfix checking on MS networks these days, but 

it has a ton of other features in it and I believe it has a wider base in detection than some 

people may give it credit for!  Most people only seem to be using it to push/scan for 

hotfixes though.  As for OS detection with it, it uses some of the same ICMP tricks 

Xprobe uses, but not all of them.  It also does banner grabbing, SNMP scans, SMB scans 

and others. 

 

You can do simple scans of your network with null sessions, to see what anyone else 

could see if they were to scan you from the internet.  Even though this type of scanning 

should gradually be on the decline, as more people move to XP in the windows world and 

implement the built in firewall, at least for home users, I believe it will still be with us for 

some time to come.  This type of scan may still be useful, in some cases against 

corporations, at least scans from the “inside” since many networks have implemented 

GPO’s to shutdown the default firewall, either to keep it from interfering with their own 

internal scans or to keep it from causing issues with home grown network apps.  The Null 

Session scan is still useful on most networks, but due to its wide use over the years, 

hopefully, it isn’t nearly as useful as it once was.  I won’t hold my breath though, I’m 

sure you can scan quite a few networks and return way too much info! 

 

You can also specify a specific user (say Joe.Smith, with no special rights) or you can 

specify to use an administrative account.  Either way, assuming you make a valid 

connection to the machine, LNSS will then do registry reads, file scans, etc, all depending 

on the profile used to determine what OS (exact OS unlike some other programs 

mentioned that can only get a general guess, LNSS will/can read the info straight from 

the Windows Registry assuming it has rights) and it will also check for what hotfixes are 

installed by verifying the file versions of specific files. 

 

Again, depending on the profile being used it may also run scripts against your FTP, 

SMTP, Web, etc Servers and check for vulnerabilities there also.  Not to mention gather 

user lists, group lists, etc.  All of this through Windows API calls.  Some of these things 

can be done through the Null session, others you must have appropriate rights to do. 

 

Version 1.1 was the first one I played with, so I’ve been with it since its early days, 

watching it go to 2.0, 2.25, 3.0..3.3, betas of 4, and then into 5 where I sort of bowed out 

due to other commitments (like this one that has me in Iraq now).  It has come a long way 

to say the least, and it was fun being in on the testing of it, all of those years!  They are 

currently in version 6 which I have had little opportunity to play with except for a few 

minutes here or there.  I assume version 7 will be out in the next few months, or at least 

be in a beta format before long. 

 

                                                 
4
 GFI’s website is located at:  http://www.gfi.com 

 



 I-7 

Note:  Most of what LNSS could do through version 3.3 I have reproduced in my own 

program that I currently am using to scan our networks here.  One shortfall, in my 

opinion, in LNSS is that it uses Microsoft’s mssecure.xml file.  This is a blessing and a 

curse.  It saves them time, but also costs them time.  In my opinion the file contains too 

much information for products that are not supported and is too big and cumbersome to 

work with.  To add support for something that wasn’t in there, originally, one has to 

modify the file in 3 places.  I much prefer my approach to a specific file per product.  

That way, if files need updated, all the user has to do is download that one file that will 

range in size form 1-10K compared to one huge file that is 250K or more compressed (it 

is normally around 2 megabytes uncompressed).  Some of that may have been taken care 

of in the latest versions though, I have been out of the loop for awhile now. 

 

 



 I-8 

OSFP5
, was released for a very short time.  Not sure how many people ever downloaded 

it, but I know I added signature files to it for awhile there.  The last version I had was 

0.4.5, at which time many cool features had been added.  It also had the ability to identify 

the OS, in as little as one packet, normally within three.  It used the following tests: 

• TCP SYN request to an open port 

• TCP ACK+PUSH request to an open port 

• UDP request to a closed port 

 

Perhaps these tests look a bit familiar?  Sort of a cross between NMAP and Xprobe and 

some of the features that make them both very effective at what they do.  It didn’t stop at 

just using the best tests from each of the other products, it implemented the ability to take 

the info returned by the program, compare it to the “static” list it knew about, take the 

weight each answer had, and predict what the OS was in a similar way to Xprobe. 

 

To do these tests with the least amount of packets you’d need to know an open TCP port 

and a closed UDP port.  To help in this it has a set of default ports for both cases.  By 

using this it, of course, increases the packets sent though: 

 

 
 

One issue with OSFP was that it used RAW Sockets to send packets.  Prior to XP SP2 

this was not an issue, but with the release of SP2, the use of RAW sockets on the 

Windows platform is no longer a feasible option for what needs done. 

 

I believe this is part of the reason that OSFP was short lived.  Another reason was, in my 

opinion, it was a research product to see if it could be done back in late 2002 through the 

middle of 2003 (ouch has it been that long already?).  For the product to continue it 

would need to be rewritten utilizing WinPCAP or something besides RAW sockets. 

 

Though, through a little bit of “google-ing” I did find a copy of it out there on the lovely 

internet, got to love it, programs never cease to exist. Granted the copy I found had a 

CRC error in the .exe.  Oh well, I still have the original, what do I need a copy from the 

internet for! 

                                                 
5
 OSFP was written by blad3, who has gone by other names over the years, the program which is no longer 

there used to be found at:  http://www.blad3.ro 

 



 I-9 

 

 

Note:  I worked a bit on duplicating this program also, though I was having trouble with 

RAW sockets at the time.  I could read the info returning just fine, but the ability to send 

the TCP packet in Delphi 6 was kicking my butt due to a PacketBuffer Byte vs. String 

issue.  I fixed it late one night, got an updated version of the RAW socket files from the 

author sometime later, wasn’t paying attention, and overwrote the version I’d fixed the 

issue in, and by the time I got around to playing with it again had forgotten all about how 

I fixed it.  So that pretty much ended that project. 

 

Soon after that SP2 came out, I found out TCP Packets in RAW mode were either no 

longer available or severely limited, so I moved onto other projects such as my network 

enumeration program for Windows that still used RAW sockets for the ICMP and SMB 

Scanning (UDP) part of it since they were not affected by the new SP.  The use of RAW 

sockets greatly speed up the initial detection time for a class B or for the matter a class C 

network.  With the ability to only wait 1 millisecond (or if I thought the card could keep 

up with inbound/outbound traffic I could set it to a 0 millisecond pause) between packets 

I can scan an entire network for both ICMP and SMB in mere seconds, compared to quite 

a few minutes.  No waiting to see if they respond back or not, just send and forget, while 

listening for any packets directed back at me.  If someone is talking back to my machine, 

evidently they are alive, so add them to the list.  It has the possibility of adding a few 

false positives (people outside who I wanted to scan), but is worth the time saving 

features.  I’ve since read of a way to fix that too, but haven’t had the time since I’ve 

moved onto what prompted this whole paper which will be mentioned more later, but so 

you have a name, it is currently called Satori.  . 

 



 I-10 

VisionX, is a program I wrote a few years ago.  It took bits and pieces of the above 

programs and rolled them all together into one program.  It primarily did the following: 

• ICMP OS Detection 

• TCP Port Scanning 

• UDP Port Scanning 

• Banner Grabbing 

• SNMP Scanning 

• SNMP Brute Force Community Name Guesser 

 

The ICMP OS Detection was actually written before Xprobe 0.1 was, or at least about the 

same time.  I’m not sure I had rolled that into VisionX yet, but I had written my original 

ICMP detection kit at that point.  It was all based off the paper mentioned before in the 

Xprobe section.  VisionX did ok at identifying objects on the network, but the TCP/UDP 

scanning was wanting to say the least.  I didn’t know about raw sockets at the time, so it 

was very slow on the scanning process and it had some other major memory glitches in it 

that I never bothered to track down.  But it gave me a place to start.  Without some of that 

code I probably wouldn’t be where I am on other projects.   

 

Regardless of the simplicity or the duplication from other programs that may be out there 

each of my programs helped me to understand different concepts about programs that 

were on the market. 

 

The main shortcoming on most of my programs, such as VisionX, besides bad 

programming skills on my part, was that they all added to the network traffic, providing 

people with clues that they were being scanned or probed.  For those administrators who 

were checking logs I normally got an earful about my IP showing up in their logs yet 

again!  Fortunately for me, this didn’t happen that often, not me scanning the network, 

but administrators checking their logs on a regular basis.  Sad, but true. 

 



 I-11 

Active Scanner Conclusion is this…  

 

These products all generate a lot of noise to determine what the remote device is.  Some 

generate a lot more than others depending on what the end result you want is.  If all you 

want is the OS this can be done in as little as 1-3 packet(s) in some cases assuming you 

know a little about the network.  Information is gathered via TCP/UDP packets, 

responses on ICMP packets, SNMP OID info, banner grabbing, etc.  But as mentioned, 

they are all quite noisy and point right back at who sent them.  When using them you’ve 

put a big sign out that says “Here I am, I’m scanning the network!!!!”  Even with the 

ability to spoof the source MAC/IP on some programs the noise generated on the wire is 

still there and because of the decoys it is greater.  These decoy scans may get the “Hey 

I’m here” message away from you a bit, but they are still adding traffic to the net. 

 

Active Scanners have the ability to pinpoint the remote devices OS better, in most cases, 

than Passive products, but at a cost of bandwidth and a lack of stealth since any IDS 

should be capable of being tweaked to determine exactly what type of scan is coming in.  

With this in mind, we need to look at the other part of this equation, passive scanning, but 

first….. 

 

 



Section II - Default TTL 
Somewhere in between active and passive OS fingerprinting you need to take a look at 

the default Time to Live (TTL) on an IP packet.  Both active and passive utilities will 

utilize the TTL in their determination of the OS.  One problem with this is that there are 

many utilities that will allow you to change the default TTL, so utilizing the TTL alone 

will not give you 100% reliability, but it may give you a starting point on what OS the 

remote device is running.  Based on active scans with my ICMP project here is a list of 

devices and their TTL in returned packets (note that, ‘returned’ packets, not ‘sent’ 

packets, this is a major issue and will be discussed more later): 

 
3Com Hub 255 

AIX 3.2-4.3 255 

APC Web/SNMP Management Card 60 

Apple LaserWriter 8500 128 

Asante Intrastack 6014 DSB 255 

AXIS 2100 Network Camera 64 

Axis 560 (5600?) PS 15 

BSD 255 

Canon Fiery Printer/PS 255 

Cisco 1900 64 

Cisco 1900C 255 

Cisco 2800 Switch 15 

Cisco 2900 Series Switch IOS 11.2 and 12.0 255 

Cisco 7500 Router 255 

Cisco Catalyst 5000 Series 60 

Cisco Catalyst 6000 Series 60 

Cisco IP Phone 64 

CoBox for Recognition Systems 128 

Compaq Tru64 v5.0 64 

Dec Digital Alpha 64 

Dell Power Connect 3024 Switch 255 

DiscZerver 64 

HP 700 X-Term 255 

HP Ethertwist Hub Plus 32 

HP J2603A AdvStack Hub 255 

HP J4813A ProCurve Switch 2524 64 

HP JetDirect Device Firmware <= X.8.32 (old devices) 60 

HP Jetdirect Firmware L.2x.x Series (new devices) 64 

HP ProCurve Switch 2424M 64 

HP ProCurve Switch 2524 64 

HP-UX 9000/300 255 

HP-UX 9000/700 255 

HP-UX 9000/800 255 

HP-UX V10.20 255 

HP-UX V11.0 255 

Irix 6.2-6.5 64 

Irix 6.5.3-6.5.8 255 

Lexmark Optra S 1855 PS 255 



 II-2 

LinkSys Print Server 32 

Linux Kernal 2.0 64 

Linux Kernel 2.2.x 255 

Linux Kernel 2.4.x 255 

Macintosh 255 

Macintosh OS X 255 

MetaSys - HVAC Stuff 126 

Micro Annex MICRO-XL-UX 255 

Novell Netware 5.1 or below 128 

Novell Netware 6.0 or greater 128 

OpenVMS V7.1-2 255 

Optical Hand Scanner/Time Clock 126 

OS 2 255 

QMS MagiColor PS 15 

Savin 2070 DP EB-70 255 

Savin 2070 EB-70 PS 255 

Savin 2535/2235 Network Printer 255 

SmartChoice Register on Win98SE 128 

Solaris 2.5.1-2.8 255 

SunOS 4.1 255 

SunOS 5.6 255 

Ultrix 4.2-4.5 255 

Ultrix 4.2-4.5 255 

USR8000 broadband router 64 

Web V Networks Web Cam 64 

Windows 2000 128 

Windows 2003 128 

Windows 95 Original 32 

Windows 95A or B w/winsock 2 128 

Windows 98 or 98SE 128 

Windows ME 128 

Windows NT 4 128 

Windows XP 128 

Wireless Access Point 64 

Wireless AP-1000 from Lucent 126 

Xerox Document Centre (Photocopier) 255 

 

For the most part the default TTL holds along the line of 32, 64, 128, 255, but in some 

cases odd IP stacks will implement something outside of the norm.  If the machine is on 

your local network this can be a dead giveaway to its OS, or at least a greater help in 

determining what it is.  When the machine is out on the internet “somewhere” you would 

have to turn around and do a traceroute to it, determine how many hops away it is, and 

based on that figure out the TTL.   

 

If you see a TTL of 126, you’ll most likely assume the device is 2 hops away, but in 

reality it could be an AP-1000 from Lucent or a MetaSys HVAC system on your local 

subnet.  Taking the IP address into account (and the subnet mask) along with the type of 

network when determining the TTL, from the source, is the key. 

 



 II-3 

Most of the data above is a couple of years old now (or more), new firmware could have 

come out for the AP-1000 to fix this along with many of the others you see here. But as a 

general rule of thumb you can assume a TTL of: 

 

• 255 – Some form of *nix or a network device (switch/router/hub). 

• 128 – Windows (winsock 2 and above on 95 and the whole NT/2K family) or 

Novell Netware (at least through 6.0, haven’t tested anything recently). 

• 64 – Some form of linux, network device (switch/router/hub), or printer 

• 60 – Some printer or network device (switch/router/hub) 

• 32 – Something old if it is an OS (such as Win95 with the original winsock 

version), otherwise printer/hub 

• 15 – Some type of printer 

 

As you can see, just basing it off TTL is not going to get you real close to an OS, but it 

may break it down into smaller groups. 

 

There is a good paper, though quite old now, located at 

http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html which goes into some other 

information on Default TTL and what values are safe for the TTL and what aren’t.  It also 

takes a look at the TTL on packets depending on if they are TCP or UDP packets.  This 

gets a bit away from what this chapter is about, but as we’ll see later depending on the 

protocol and if you are sending the initial request or if you are sending a response your 

TTL may be different.  



Section III - Passive OS Detection  
Passive OS detection is going to be, by nature, completely quiet, therefore they are not 

going to leave any type of a fingerprint of their own on the network they are monitoring.  

There are products out there that claim to be able to detect if a machine is in promiscuous 

mode and I can’t say if they work or not since I have never tested one, but this can be 

thwarted, in some cases by simply making a receive only cable.  If all you want to do is 

monitor the network, and not interact with it, why would you want to be able to transmit 

onto it.  Granted without the ability to transmit onto the network, you may be missing a 

vital group of packets that are needed to help identify the remote machine. 

 

The problem with passive programs is that they only hear what is being sent to them or 

what is being multicast or broadcast out to everyone.  Assuming you are the network 

engineer you can incorporate the passive scanner onto a switched port that is setup for 

monitoring, or if you are listening for “other means” you could do something like ‘ARP 

Poisoning’, but since we wanted to be passive (read quite!) this would defeat the purpose 

of putting a passive listener out there.  The use of any IDS system should detect ARP 

Poisoning.  For those not aware of what this is I’d recommend doing some research on it 

because it can be a serious security issue in certain circumstances and is beyond the scope 

of this paper. 

 



 III-2 

p0f
6
 is probably the first program most people think of with passive scanners. It is now 

in version 2.0.  p0f uses the following 3 types of TCP packets to determine the remote 

OS: 

• SYN 

• SYN+ACK 

• RST+ 

 

Each type of test has its own associated fingerprint file.  Below is a list of tests that p0f 

uses: 

• Window Size 

• Overall Packet Size 

• Initial TTL 

• Don’t Fragment Flag 

• Maximum Segment Size 

• Window Scaling 

• Timestamp 

• Selective ACK Permitted 

• NOP Option 

• Other/Unrecognized Options 

• EOL Option 

• Sequence of the Options 

• Quirks (about 10 of them) 

 

All of the above are read off of TCP Syn Packets.  The Syn+Ack packets and RST+ 

packets have slightly different features and quirks they are looking at. 

 

As mentioned before, in the Active Scanning section, each vendor has implemented the 

IP stack their own way, as they read the RFC’s, it isn’t enough to break the protocol, just 

enough to give someone with plenty of time on their hands, and access to tons of systems, 

to look at the differences long enough to be able to determine how to differentiate 

between them. 

 

There have been many products that have either incorporated the fingerprint technology 

of p0f (version 1) or were built using the same general idea (some before, some after) 

such as:  Ettercap, Siphon and others.   

 

All of these programs basically listen for TCP packets with options and compare that to 

the static list they have.  I haven’t played a lot with these in a few years, but as I recall, 

unlike Xprobe and OSFP, they use a static list to determine what OS it is, which due to 

the strict type of test it is, with little “wiggle” room, this may be for the best.  Many OS’s 

appear to show the same general type of fingerprint, but not until you take it all together 

do you get an exact OS. 

                                                 
6
 p0f can be found:  http://lcamtuf.coredump.cx/p0f.shtml 

 



 III-3 

DHCP Listener7
 is a java program, which appears to be the proof of concept code they 

originally used in testing.  It listens for DHCPREQUEST or DHCPDISCOVER packets 

and uses the options requested to fingerprint the remote OS/Device.  They have 

incorporated a DHCP fingerprint module into their custom software that tracks machines 

at their university (DHCP Listener was the POC I believe to get the ball rolling).  They 

provided a nice write-up about it for the February 2005 issue of Sys Admin Magazine.  

The article can be found at inisipd.com.
8
   

 

Reading through their article and glancing at their code they are using the following main 

2 things to identify the OS: 

• Option 55 in the DHCP Request 

• Option 60 in the DHCP Request 

 

The DHCP Listener program has ~20 objects that it can identify with Option 55 (the Java 

program does not appear to use Option 60, but it is discussed in their paper).   

 

Option 55 is the Parameter Request List from the client.  It lists what features the client 

would like to know about on the network.  You ask “How can we use this to identify the 

machine?”  Well just like every other fingerprint feature so far, guess what, this protocol 

is no different.  Well that isn’t entirely true, since there is no specific rules on what a 

client should request or in what order.  In this case, part of this, of course, has to do with 

the fact that different OS’s are going to need different information.  A windows machine 

will probably want to know where its Netbios servers are (options 44, 46 and 47), where 

a Mac OS X machine won’t really care about those.  So in this case, it isn’t as much 

about vendors doing their own thing compared to what the RFC says, but vendors doing 

their own thing, because they need different info. 

 

Option 60 is the Vendor Specific Code.  Originally I thought only Windows implemented 

this.  You’ll see MSFT 5.0 and MSFT 98 in most Windows DHCPREQUEST packets 

and you don’t see it in Mac OS X packets, but after some digging, I did found that other 

OS’s and more importantly devices do use it.    There aren’t a lot that I’ve been able to 

find, but there have been a few.  In the case of Windows 2000/XP and I assume 2003 we 

should find MSFT 5.0.  In Windows 98 (SE only it appears) and ME we will see MSFT 

98.   

 

Note:  Another feature that can be used, that DHCP Listener does not do, is just utilizing 

the Options that are requested as a whole.  This may not provide you with an exact OS 

match (take for example the whole Windows family, which all have the same options as a 

whole they request:  53,61,12,60,55), but this gets us down to a family of OS’s 

immediately.  Also, this may be all that you get since a client does not have to request 

option 55. 

 

                                                 
7
 POC program can be found at:  http://www.insipid.com/ 

 
8
 Sys Admin Magazine article about DHCP Fingerprinting:  http://www.insipid.com/NGDHCP.pdf 

 



Section IV - Where to go from here with Passive OS 

fingerprinting 
The main problem with the p0f and other passive programs like p0f out there, is that they 

only look at TCP packets, and only packets with TCPDataOptions .  We have a ton of 

other TCP packets out there that hold a ton of useful information.  We also have another 

third of the IP protocol, that little thing known as UDP.  Not to mention ICMP for yet 

another third of it.  We saw a small portion of UDP being utilized in the DHCP Listener 

program, but even that didn’t use everything, that was in that packet, to the fullest 

potential possible. 

 

Ok, so now we need to look at more TCP and UDP packets, what else is there?  What 

about 802.3 packets?  I know everybody is going to IP these days, but there are a ton of 

programs out there that utilize IEEE 802.3 to send info, and they are just as chatty as the 

rest. 

 

It is time to start looking at something new….  (maybe 20+ pages was a long intro just to 

get to this point in the paper that is all about chatty protocols and why this was written in 

the first place, but oh well, we are here now and there is good info above!) 

 

I started looking through packet captures for unique packets on the network I’m on right 

now in Iraq.  I long ago realized that people in general are way to talkative to people they 

have just met or know nothing about.  This is always an issue in war time for OPSEC 

(Operational Security), it is just as big of an issue when you are in sensitive work areas in 

the private sector, and it is also an issue with computer networks.  A quick packet 

capture, on any network will show you that machines are chatty and will provide 

someone “new” (a computer they know nothing about) info about their OS, name, IP, 

MAC, locally logged on user, etc. 

 

Each OS has its own chatty nature and protocols it use’s, some have been cleaned up, a 

bit, over the years, others don’t appear to have been at all, and yet other protocols are 

being added that are designed to make life easier, but have added even more noise to the 

line. 

 

We are going to look at a few of the main OS’s out there and how they broadcast out 

everything they know about themselves to anyone willing to listen.  For the normal end 

user, on a secure network, this might be a good thing, but is it worth the risk? 

 



 IV-2 

Microsoft Machines 

We’ll start with Microsoft Machines and all the traffic they spew on the network.  Fire up 

your favorite packet capture utility and you’ll see plenty of these packets on a MS 

network.  In my case I use Ethereal
9
 and all the packet captures you’ve seen so far and 

will see from here on out will be from there, along with some of the packet names used. 

 

Anyway, glancing at a packet capture of a MS network you will see a ton of SMB and  

BROWSER packets, each one, possibly, full of information about a machine on the 

network.  The two packets below show two separate OS’s.  The one on the left is 

Windows XP, the one on the right is FreeBSD 4.11.  Your thinking 4.11, why does it say 

4.9 then?  We’ll talk about that more here in a minute.  The one on the right also tells us a 

bit more, it provides us with info in the Host Comment section, telling us it is running 

Samba 3.0.10 

 

 
Microsoft Windows Browser Packets, that are also Host Announcement packets, tell you 

the following: 

• OS 

• Services the machine offers 

• And in some cases, the version of Samba running on it 

 

In the case, on the left, it is a Windows XP Workstation (OS = 5.1).  The machine isn’t 

providing Print Services or Novell/Apple/SQL etc services as we can see from the Server 

Type (Expanding the Server type will show you 1 or 0 to a bunch of services, 1 means 

‘on’ or available, 0 means ‘off’ or not a service it provides). 

 

In the case, on the right, it is a FreeBSD 4.11 machine, that lovely one with 4.9 that is 

causing us a bit of confusion, well that is providing the following services:  Workstation, 

Server, Print Server, Xenix Server, NT Workstation, NT Server, Master Browser. 

 

OS Major/Minor versions that I’ve seen so far, for Windows, are: 

• 5.0 – Windows 2000 

• 5.1 – Windows XP 

• 5.2 – Windows 2003 

                                                 
9
 Ethereal’s homepage is:  http://www.ethereal.com 

 



 IV-3 

• 4.0 – Windows NT 4.0 

 

I don’t know if BROWSER packets actually existed prior to NT 3.5, I’d have to think 

hard to remember when I started using specific protocols.  It seems NetBEUI was around 

way back when, but how “way back” and “when” are we talking about.  More things to 

look into one of these days. 

 

The addition of new information, about FreeBSD originally had thrown a small kink into 

the project (that little issue of it being version 4.11 and not 4.9).  Not a bad kink really 

since this is why the project was started, but I originally thought, what will a machine 

with version 5.0 of FreeBSD show (does that version currently exist, if not, what about 

when it is created), will it show 5.0 for the version info and if so, how do we incorporate 

this change into the program?  Do we need to instead of focusing on the OS Major/Minor 

version, to start looking at the Server Type information along with the use of OS 

Version?  Will this help provide more light on the subject?  I think it will and may try to 

incorporate it into future builds.  So time to start parsing the Server Type field also!  The 

reason to also parse the server info field, is that for non windows machines, they 

normally advertise as Xenix Server.  So even if we were to have 2 OS’s (Windows and a 

*nix variant) with the same OS version, we would still be able to differentiate between 

them in these cases at least. 

 

Anyway, with the addition of more info, from more testers, it appears that every machine 

we’ve seen so far with Samba installed on it shows either 4.5 or 4.9.  So in the case of 4.5 

and 4.9, we can’t use this to determine what OS is on the machine, but we can use it to 

determine software installed on that machine (we know Samba is installed on it).  If we 

happen to pick up a few other packets we may even find out what version of Samba (as 

we did above with the Host Description field) or with the LANManager field. 

 

As you can see, by just listening on the wire we can get the base OS, but we can’t tell SP 

level (for Windows) from Browser.  Most everything, so far, that I’ve seen has 15.1 for 

the Browser Protocol, this is different on most pre-Windows2k OS’s and may also be on 

the 9x series, or older versions of Samba, but so far I have not had the opportunity to get 

my legacy software out and start testing that theory.   

 

Note:  Some versions of NT4 will have a browser version of 15.1 and others 21.4.  

Originally the only machines I saw which advertised as 4.0 and 15.1 together were 

Novell Netware machines running Native File Access, but as always happens as you 

collect more intel is that you find that things overlap.  So we’ve now seen some NT4 

machines with 15.1 and others with 21.4, what causes the difference?  Don’t know, could 

be SP level or a hotfix, or perhaps it is server vs workstation.  More on this is a few 

paragraphs. 

 

As for FreeBSD we also see the same version in its packets (15.1), so this tends to make 

me lean towards the side that use of the Browser Protocol version, in fingerprinting, is 

not going to be useful, or is it? 

 



 IV-4 

Take a look at these 2 packets: 

 
 

Browser Protocol of 21.4 = 4.0 for windows? 

Browser Protocol of 11.3 = 3.11 for Windows? 

 

OS version 1.51, and Browser Protocol of 11.3  An interesting issue with this device is 

that Server Type says this is a WFW Host, so far this is the only ones I’ve seen this in.  

All of them appear to be the same types of machines. Upon further checking we found 

these devices were actually print servers, brother print servers to be exact with their own 

built in SMB support. 

 

And just when you thought you had it figured out, here comes a packet like this one: 

 

 
Well this is where it comes in useful to know your networks naming convention, even if 

you don’t know all the systems.  This machine is actually not a Windows NT 4.0 machine 

(notice the Browser Protocol of 15.1?) this is actually a Novell Netware machine, I 

assume running, Native File Access (NFA) for Netware which allows you to connect to a 

Netware machine without having the Novell 32 bit client installed. 

 

So what do we learn from this?  We can’t take OS Major.Minor version, without also 

looking at Browser Protocol Major.Minor version!  And as noted in the note: above even 

when we take both the OS Major.Minor and Browser Major.Minor we aren’t guaranteed 

to get a perfect match.  It may be that we need to utilize the Server Type at that point in 

time also. 

  

Another interesting device is this one. 

 



 IV-5 

 
It claims it is a Print Server (in the Server Type field) and it very well may be.  It is either 

a network printer or a Macintosh if memory serves me (the Marching Band part of the 

Music department is very big on using Macintosh computers).  I’m pretty sure it is a 

printer, but can’t recall specifics at this time, perhaps a printer/copier system? 

 

We don’t just need to look at Ethernet II SMB packets, we can also look at 802.3 SMB 

packets, such as the one of the left below: 

 

 
 

The one on the right appears pretty much the same, but it is an IP packet and gives us a 

Browser Protocol version of 0.0  Both packets are from the same machine as you can see 

in the Server Name and Host Name respectively. 

 

These appear to be Ricoh NIC’s and are advertising themselves as Workstation, Server, 

and Printer Server Queues.  I can’t say for 100% certainty that they are print servers, but 

other ones that I have seen that advertise as 1.0 and 0.0 have been linksys switches with a 

USB PS built into them, so I assume that these are also. 

 

Next area of study is on SMB Logon Protocol packets: 



 IV-6 

 
The versions of ‘NT Version’ I’ve seen are  

• 11  

• 536870923 

• 553648139 (Windows 2000 Server SP4, maybe others) 

 

Do these tell us an actual version number?  In at least one case it may, as noted above.  

Again, more research is needed into this part of the packet.  What does NT Version really 

tell us here?  Perhaps nothing, but perhaps, like the DHCP Options as a whole, it may at 

least give us a base OS Family such as the NT Kernel vs the 9x Kernel.  

 

We do get the Computer name and a MailslotName which may come in useful later.  The 

MailSlotName does provide us with a bit of info here.  DC828 may indicate the name of 

a Domain Controller? 

 

NBNS Packets 

 
With these packets we can see who on the network the machine is trying to communicate 

with or find out who is in what groups (workgroups/domains).  These may just be looking 

for WORKGROUP, WPAD, etc.  But this tells us who the machine is trying to talk to.  In 

most cases this may not mean much, but other times this info could be useful.  Take for 

instance the WPAD query.  When I first saw this I promptly went out and looked for a 

workgroup called WPAD, when that didn’t show up, I did a quick search on google (got 

to love google).  WPAD queries are sent when Internet Explorer is configured to Auto 

Detect Proxies.  So ok, we now find out every machine out there that is configured to 

AutoDetect Proxy settings.   

 



 IV-7 

Complete Sidebar:  What would happen if we setup our rogue machine to answer these 

proxy requests?  We setup a little relay program that answers the query, takes traffic on 

port XYZ and relays it all to wherever they wanted to go, in the process looking for any 

type of username/password that they may decide to enter.  They have no idea that they 

are going through a proxy, no idea that basically a Man-in-the-Middle attack has 

happened and the best part about it, we didn’t even have to flood a chunk of the network 

with ARP Poisoning or something such as that to accomplish this.  Nor did we have to do 

anything to the primary DNS server to get them to route info to us instead of where they 

wanted to.  All we had to do was gather info and answer that one little packet.  (Granted 

most of this is speculation on my part, so far I’ve not read that it works this easy, but I 

don’t see why this couldn’t be done fairly simply). 

 

SMB packets 
Any time you go to connect to another MS machine they do their little protocol dance and 

provide us with something like: 

 
Can we fingerprint the OS by the dialects it supports?  Unfortunetly, again I don’t have 

enough research or big enough test bed to know.  But with this we can find out what 

languages this machine speaks.  Perhaps one of them has a known bug, or is easier to 

crack than another one.  If so, when it goes to talk to you, if you have a program set to 

only allow that “weaker” dialect you may find it easier to compromise the system 

afterwards. 

 

Session Setup AndX Response 

 
 

Session Setup AndX Request 

 
With both Session Setup and Request/Response packets we find out two main things 

• Base OS 

• LAN Manger version of the conversation going on between the two machines 

 

We know we can use the information about the Base OS, here is a list of what I’ve found 

so far either on my own network or by searching the internet for packet captures: 

• Windows Server 2003 3790 

• Windows Server 2003 3790 Service Pack 1 

• Windows 5.1 



 IV-8 

• Windows 2002 Service Pack 1 2600 

• Windows 2002 2600 Service Pack 1 (what is different with these machines?) 

• Windows 2002 Service Pack 2 2600 

• Windows 2000 2195 

• Windows NT 4.0 

• Unix 

 

And for LAN Manager: 

• Windows Server 2003 5.2 

• Windows 2000 LAN Manager 

• Windows 2002 5.1 

• Windows 2000 5.0 

• NT LAN Manager 4.0 

• Samba 2.0.0 for IRIX 

• Samba 2.0.5a for IRIX 

• Samba 2.2.7a-SuSE 

• Samba 2.2.8a-SuSE 

• Samba 3.0.4-SuSE 

• Samba 3.0.2-7.FC1 

• Samba 3.0.4-1.FC1 

• Samba 3.0.6-2.FC1 

• Samba 3.0.7-2.FC1 

• Samba 3.0.10-1.fc3 

And a ton of other Samba ones 

 

Ok, what can we learn from that Session Setup and Request/Response?  Originally, you 

probably thought not much, but as you can see, with Windows alone you have the 

possibility of learning the exact SP level of the machine.  I say “possibility” because in 

some instances it doesn’t always provide the exact version.  So far this has not been the 

case with the Native OS field, but the Native LAN Manager field sometimes indicates a 

prior version (Windows XP will say Windows 2000 2195).  Is this because of the 

handshake before, did the older OS not understand something, so we stepped down to a 

easier/older version?  Again, unknown at this time. 

 

For Unix machines, using samba, we may be able to determine the type of *nix it is, such 

as in the case of SuSE, Fedora, and IRIX, assuming they are running the precompiled 

versions of SAMBA for them.  If they have taken the source and compiled it themselves 

all we will know is the version they are running.  This may be enough to manipulate later, 

depending on how out of date the version is that they are running. 

 

Also, depending on what packets are captured we can get the username being used and 

the encrypted password.  There are many other programs out there that use/abuse this, I 

don’t plan on bothering to even look at it in my captures, or at least I haven’t bothered so 

far.  If you are interested in that side of it you may want to look at Cain and Abel. 

 



 IV-9 

Mac OS X 

Ok, we’ve had fun looking at MS machines, what about those lovely new Unix versions 

of the Mac OS? 

 

Rendezvous 

My favorite new product/protocol, that I just found out about, is Rendezvous (now 

known as: Bonjour) it sends out multicast packets on UPD 5353 that Ethereal calls 

MDNS packets.  Basically, as you’ll see, this protocol is more than happy to share 

everything it knows about you to the world.  In a perfect network, where we know it is 

100% secure, we know everyone who is on the network, and we trust them all, this isn’t 

an issue, but unfortunately, we don’t know who else is on the network, and we shouldn’t 

trust everyone else on the network. 

 

 
Note:  When I first looked at this protocol I missed a major little issue, all that MDNS is, 

at least to a point is DNS on another port that provides HINFO type packets.  Not that it 

provides HINFO packets, but just that it provides them more often than DNS does. 

 

I removed the young lady’s last name here since she had done what most people do when 

they get a machine; they personalize it with their own name.  So her machine constantly 

sits there and “talks” on the network telling everyone that it is here, it is a PowerBook 

running OS X 10.3.5.  Is this too much info?  Is it enough to make you worry?  Well this 

isn’t all that Ann-Marie’s machine told us, but it is the most revealing.  

 

Next we have this printer, it decided it want to provide us with a little info too: 



 IV-10 

 
Minor Sidebar:  So now we have the IP address (first 2 octets removed), the name, 

NPIE9C09, the type of printer, HP Color LaserJet 4600, and its MAC address.  Lets 

assume this was a printer with either a HD or memory that I could store files on, instead 

of just print to.   

 

I’ve always wondered how vulnerable printers are to “attack” and/or abuse.  Years ago I 

found a nice little “feature” on SNMP enabled printers, but more of that in the SNMP 

section to come. 

 

So now that I know the printers IP and what type it is I could use/abuse it to do multiple 

things, perhaps only for a short period of time, if I’m storing stuff in volatile ram that will 

be reset when it is rebooted, but there are other places it may be stored and then utilized.  

A great little program to play with HP printers is HIJetter
10

, but this is getting off topic.  

All of this information, again, is just being broadcast out. 

 

Rendezvous, is available on the Microsoft platform also, it does not appear to be unique 

to Mac OS X, but that is where I first ran into it.   

 

I’m sure OS X has plenty of other chatty protocols, but I haven’t had a chance to look 

into it much.  Take for example one talkative protocol, such as appletalk.  Unfortunately, 

I’m not on a network that has many Mac’s on it, so I can’t look into it much at this time.  

But between Appletalk ARP packets that we can use to build a database of name to 

MAC’s and ZIP (Zone Information Protocol) to get info about Appletalk zones we have 

plenty of things to look at in the Macintosh world too! 

 

                                                 
10

 HiJetter can be found at:  http://www.phenoelit.de/hp/ 
 



 IV-11 

Devices and other protocols 

DHCP 

Before we looked a bit at DHCP Listener and what it did, now we will go beyond that 

and look at everything we can find out via DHCP. 

 

Here is a quick list I’ve noticed so far on my network: 

Windows XP 

DHCP Options: 

• 53,61,12,60,55 

• 53,61,50,12,81,60,55 

 

DHCP Option 55: 

• 1,15,3,6,44,46,47,31,33,249,43,252 

• 1,15,3,6,44,46,47,31,33,249,43 

• 1,15,3,6,44,46,47,31,33,249,43,252,12 

 

Windows 2000 

DHCP Options: 

• 53,61,12,60,55 

 

DHCP Option 55: 

• 1,15,3,6,44,46,47,31,33,43 

 

MacOS X 

DHCP Options: 

• 53,55,57,61,50,51 

 

DHCP Option 55: 

• 1,3,6,15,112,113,78,79,95,252 

 

As you can see DHCP Options, 53,61,12,60,55 are what both Windows XP and 2000 

request, but to differentiate them more we can go to the Option 55 and fingerprint it.  

(Actually, so far, every Windows OS tested has this one specific fingerprint).  We 

probably could just use the DHCP Option 55 to ID them alone, but by broadening it we 

may find matches to products we didn’t know about before.  In many cases, as you can 

see with the Windows XP example above, there are multiple DHCP Option 55 request 

lists that a machine may send.   

 

Looking at Windows XP, it sometimes requests 252 and 12 also, but other times it does 

not.  The nice thing is the rest of the options are all the same.  More research needs to be 

done to see if those extra options help to indicate a different SP level, or different 

services that may be running on the machine, but at this time there is not enough data to 

say one way or the other why the extra Options in 55 exist. 

  



 IV-12 

To do proper fingerprinting using this method, simply comparing the first X options may 

not work in all cases on Option 55.  According to the fingerprint file from inisipid, 

Windows 2000 and ME have the same basic fingerprint, ME just requests one more 

feature in Option 55.  Therefore, just like with p0f we need to do exact fingerprinting 

with this, we can’t, at least easily, say that 9 out of 10 are the same, therefore it must be 

OS xyz.  We may do this as a best guess, but there is no guarantee it is anywhere close.  

This could, of course, be due to a fairly small pool in the test pool used. 

 

Note:  I would have never even stumbled across DHCP fingerprinting had it not been for 

a packet capture I was looking at only 2 months after the article on DHCP Fingerprinting 

was published.  I just happened to notice one DHCPREQUEST that was different than 

the rest, at the time I didn’t have Option 55 expanded, all I could see was the Options as a 

whole the machines were requesting.  That one packet was all it took, along with 20 

seconds on google, to expand my passive program that much farther. 

  

I was a little sad to see that there was already research done in this area since I was 

hoping to have finally found something “new” instead of just repeating what everyone 

else had done. 

 

Now into the nitty gritty of DHCP, here are the main options that we’ve seen requested: 

• 1 – Subnet Mask 

• 3 – Router 

• 12 – Hostname – provides the name of the machine 

• 17 – Root Path 

• 40 – NIS Domain 

• 43 – Vendor Specific – depending on the vendor, different type of info may be 

sent in this field  

• 50 – Address Request – What’s the point of sending a request if we don’t ask for 

an address? 

• 51 – Address Time – How long of a lease time 

• 53 – DHCP Message Type - 9 types, typical ones are:  Discover, Offer, Request, 

Acknowledgement 

• 54 – DHCP Server ID 

• 55 – Parameter List – Sends the list of options the client wants to know, more 

about this later 

• 57 – DHCP Max Message Size  

• 60 – Class ID 

• 61 – Client ID 

• 77 – User Class 

• 81 – Client FQDN 

• 82 – Relay Agent Information 

• 93 – Client System 

• 94 – Client NDI  

• 97 – UUID/GUID 

• 116 – Auto Config 



 IV-13 

• 150 – Unknown 

• 220 – Unknown 

• 221 – Unknown 

• 251 – Private 

 

More can be found at:  http://www.iana.org/assignments/bootp-dhcp-parameters 

 

Some of these are requested by all clients, others are specific to each OS or device.  So 

these options in themselves can give us a better idea of what device is out there even if 

we don’t have an exact match.  In other cases, as we’ve already seen the order in which 

they are requested is also a tell-tale sign. 

 



 IV-14 

DHCP Request, Options the Remote machine is requesting (all options are listed even if they were in multiple packets which may skew data): 

 

W
in

d
o
w

s
 9

5
 

W
in

d
o
w

s
 9

5
a
 

W
in

d
o
w

s
 9

5
b
 

W
in

d
o
w

s
 9

8
 

W
in

d
o
w

s
 9

8
 S

E
 

W
in

d
o
w

s
 M

E
 

W
in

d
o
w

s
 N

T
 3

.5
 

W
in

d
w

o
s
 N

T
 3

.5
1
 

W
in

d
o
w

s
 N

T
 4

.0
 

W
in

d
o
w

s
 2

0
0
0
 G

o
ld

 

W
in

d
o
w

s
 2

0
0
0
 S

P
1
 

W
in

d
o
w

s
 2

0
0
0
 S

P
2
 

W
in

d
o
w

s
 2

0
0
0
 S

P
3
 

W
in

d
o
w

s
 2

0
0
0
 S

P
4
 

W
in

d
o
w

s
 X

P
 G

o
ld

 

W
in

d
o
w

s
 X

P
 S

P
1
 

W
in

d
o
w

s
 X

P
 S

P
2
 

W
in

d
o
w

s
 2

0
0
3
 G

o
ld

 

W
in

d
o
w

s
 2

0
0
3
 S

P
1
 

E
th

e
rb

o
o
t 

5
.0

 

E
th

e
rb

o
o
t 

5
.2

 

M
a
c
 O

S
 ?

 

M
a
c
 O

S
 X

 

e
m

p
e
g
:m

e
c
u
ry

 

L
in

u
x
 2

.4
.8

-p
re

4
 i
5
6
8
 

L
in

u
x
 2

.4
.2

0
-b

r2
0
 Z

E
U

S
 

L
in

u
x
 2

.4
.2

1
-2

0
2
-d

e
fa

u
lt
 i
6
8
6
 

D
e
b
a
in

 3
 u

n
s
ta

b
le

 

P
X

E
C

lie
n
t 

IB
M

W
A

R
P

_
V

4
.1

 

C
is

c
o
 I
P

 P
h
o
n
e
 

1                        X        

3                        X        

12     X X    X     X X X       X   X    X 

17                        X        

40                        X        

43                      X         X 

50                       X  X  X   X X 

51                       X X X X X X    

53     X X    X     X X X   X X X X X X X X X X X X 

54               X X X               

55     X X    X     X X X   X X X X  X X X X X X X 

57                    X X  X  X X X  X   

60     X X    X     X X X   X X X  X X X X  X X X 

61     X X    X     X X X      X X X X X   X X 

77          X     X X X             X  

81          X     X X X               

82                             X   

93                             X   

94                             X   

97                             X   

116               X X X               

150                     X           

220                      X          

221                      X          

251          X                      

 



 IV-15 

Possible Promising Uses of DHCP that didn’t pan out… 

Now what happens, instead of just looking at the DHCP Request and Discover 

packets if we look at the Inform packets, is there anything different or more 

importantly is there anything useful…  Yes there is useful info, in some cases, but is 

there anything specific that will help us in OS Fingerprinting, it doesn’t appear so. 

 

So far the best I can see that we can get from Inform packets is on a Novell Netware 

network where it lets you know about NDS specific info, but beyond knowing they 

have the Netware 32 Client installed we don’t seem to find out much. 

 

What about the cases when the DHCP server sends out a DHCP Offer for an IP 

address that is already in use on the network, this should generate a DHCP NAK 

packet from the host that is currently using that IP, will this info provide us with 

something useful? 

 

 
 

At least with this machine, no, we don’t get any useful info back, or at least none that 

can be used for fingerprinting purposes, or can it?  We would need more NAK 

packets to compare once we know the OS of the machine in question to know for 

sure.  Perhaps other OS’s will send more than just Option 53 and 54, but for that we’ll 

need to wait until someone provides me with more NAK packets. 

 

Cisco Discovery Protocol (CDP): 

Now we are going to do a little jump, we are leaving the IP world, to an extent, and 

jumping over to IEEE 802.3.  Here we find a very useful protocol CDP, the problem, 

it babbles just like everything else we have talked about.  It wants to tell anyone and 

everyone all about everything that it has.  It just wants to share info, is that so wrong? 



 IV-16 

 

 
Here you can get the IP addresses of the switches/routers, the Software version 

running on them, port info, duplexing and exact type of hardware.  Normally you’d 

have to know the SNMP community name and IP address to query the OID to see 

what this is, but instead, with CDP turned on, it is out there for anyone to listen as the 

switches go upon the merry way to announce this to the world.  With the number of 

Buffer Overflows in different IOS versions, I’m not sure I’d want to be advertising to 

the world what IOS version I’m on!  But hey, that is just me. 

 

Service Advertisement Packets (SAP) 

Also in the IEEE 802.3 world we have SAP packets, they can help provide useful info 

about a device also:  

 

 
 

This is a bit generic, but it may be more than we currently had for this MAC.  The 

one issue with this is that we have to somehow correlate this MAC with the IP 

address.  Otherwise all we have is a pretty MAC and have no idea where on the 

network it resides. 



 IV-17 

SNMP 
Jumping back into the realm of IP and running away from 802.3 for now, we find 

ourselves back in the IP realm, looking at UDP packets headed for port 161, better 

know as SNMP packets.  To make SNMP work, all we need to know is one little 

thing, at least with SNMPv1 and I believe v2, haven’t looked at v2 or v3 very much.  

Anyway, all we need is that community string, that simple thing gives us the keys to 

the kingdom, at least in some sense to that device.  A quick listen on most networks 

will show: 

 

 
This may not be a lot of information to start with, but since the Community name is 

passed in clear text, we have a starting point to abuse the switched network.  

According to most books, and based on general human nature, the default Community 

name of ‘public’ is never changed.  This may just be the read community name, but 

guess what, the write community name, by default, and again, normally never 

changed, is ‘private’.  Now wasn’t that hard? 

 

Depending on the device we are talking about this may get the attacker nowhere.  But 

certain HP printers did the following, for no apparent reason I was able to ever track 

down. 

• Store their jetdirect password in a place that anyone with the community name 

could read in clear text. 

• Store their jetdirect password in a place that anyone with the community name 

could read by simply converting it from HEX to ASCII 

 

Slightly off track:  I actually emailed HP about this 4-5 years ago or so when I first 

noticed it, got a quick response back that development had been notified and besides 

adding it to a query in LNSS that I published I pretty much forgot about it until it was 

brought up about 2 years ago in a notice on full disclosure or other mailing list.  The 

author went into more details and explanations than I had when I first found it, but I 

found it funny that something that I’d seen/known about for so long was just then 

getting noticed in the full disclosure mailing lists (in other words, odds are this had 

been being abused for a long time!).  Actually, it was mentioned again in an article 

about hacking printers in between those 2 events (me publishing it in LNSS and the 

full disclosure notice by someone else).  I know I forwarded it onto him and he added 

a bit about it to his Defcon presentation
11

 since I got recognition in his presentation 

                                                 
11

 http://packetstorm.linuxsecurity.com/defcon10/dc10-mattison/printers.pdf 

 



 IV-18 

paper (think this was post the main presentation and was for the upcoming year, been 

too long now). 

 

Scanning a NT/2k/2k3 or Novell Netware Server that has SNMP enabled will give 

you users, loaded modules, services, etc.  So this isn’t harmless information by any 

means.  If the service isn’t being used, it should be turned off by default.  Make the 

administrators go find it if they want to use it! 

 

The point, developers have put information, available with a clear text “password” 

available via SNMP that probably shouldn’t be.  Hopefully they are cleaning this up 

as more and more things are being published to mailing lists, but, how many old 

printers with out of date firmware do you have in your organization? 

 

Here is a list of SNMP Community names that I’ve seen floating around in packet 

captures that I’ve had access to: 

• public (no surprise here) 

• internal (HP JD Cards I believe) 

• access 

 

UPnP 

This one falls a bit into the middle ground between active and passive.  A device will 

broadcast out searching or notifying about services it offers.  Here is a quick example: 

 

 
 

Right now, all we know from this is that the device 192.168.0.50 is advertising the 

fact that it supports UPnP.  To find out more about the device we would have to go 

to:  http://192.168.0.50:5678/igd.xml  The other bit of info we actually do posses here 

is that it is an Internet Gateway Device (igd.xml). 

 

Where this crosses the line from passive, into active, or sits somewhere in between is 

when we actually go to the web address listed and retrieve that file to find out more 

about the device.  In a normal network load/flow this shouldn’t be an issue or stand 

out at all, since this device was actively telling us it was out there and this is how to 

find out more info. 

 

Grabbing the igd.xml file from the device we see: 
<?xml version="1.0"?> 

<root xmlns="urn:schemas-upnp-org:device-1-0"> 

 <specVersion> 



 IV-19 

  <major>1</major> 

  <minor>0</minor> 

 </specVersion> 

 <URLBase>http://192.168.0.50:5678</URLBase> 

 <device> 

  <deviceType>urn:schemas-upnp-org:device:InternetGatewayDevice:1</deviceType> 

  <presentationURL>http://192.168.0.50:80</presentationURL> 

  <friendlyName>NAT-Gateway</friendlyName> 

  <manufacturer>U.S. Robotics Corporation</manufacturer> 

  <manufacturerURL>http://www.usr.com</manufacturerURL> 

  <modelDescription>Wireless Internet Gateway Device</modelDescription> 

  <modelName>802.11g Wireless Router</modelName> 

  <modelNumber>USR 8054</modelNumber> 

        <UDN>uuid:upnp-InternetGatewayDevice-1_0-12345678900001</UDN> 

        <UPC>123456789001</UPC> 

 

So what do we know now?  We have a Wireless AP that supports 802.11g that is 

from US Robotics and is model #8054. 

 

If you want more info about UPnP a good starting source is www.upnp.org 

HTTP Traffic 

There is a good paper on some of this at: 

http://net-square.com/httprint/httprint_paper.html 

This article is more related to active fingerprinting, but the idea remains the same in 

what we can pull from a passive packet capture. 

 

When you make a connection to a remote HTTPD you will normally see something 

like this within a packet capture: 

 
 

We can find out a few main things here: 

• Server Type, in this case Apache 1.3.26 

• X-Powered-By PHP 4.3.1 

 

Another Unix machine: 

 
 

Something a little new here: 

• In this one we find out that it is running 2.8.15 SSL and Open SSL 0.9.7c 

 



 IV-20 

Or for Windows machines we have this: 

 
 

In this one we can determine the following: 

• Server type – Microsoft IIS 6.0 

• X-Powered-By – ASP.net 

 

In either case, we can profile the system we are connecting to and determine a base 

OS that is most likely running on the server.  This is not always the case or it may be 

a very vague idea of what OS, such as Unix, but in other cases we may not believe the 

info it provides, such as in this case: 

 

 
 

Now it could just be me, but I don’t think they are really running an HTTPD on a 

Commodore64, but who knows these days, anything is possible! 

 

Ok, so now we know about the remote systems we connect to, what about the local 

system that is connecting to it?   

 

 
 

As you can see here the User-Agent is Mozilla 4.0, compatible with MSIE 6.0, 

Windows NT 5.1, Avant Browser 7.0.0.7 

 

 

 
 

 

 
 



 IV-21 

As you can see from the above few there are many different types of User Agents that 

you may see on the network.  Each one may provide a bit different fingerprint option.  

In the case of Symantec LiveUpdate , we don’t know much more about the system 

besides the fact that it is running Symantec, either AV and/or Firewall software, and 

is doing an update at this point in time. 

 

In the case of a few others, we get Windows NT 5.x, which would lead me to believe 

it is the OS that is running on the system in most cases, but not all!  Since I’m pretty 

sure the first one listed with Avant Browser is actually a Cisco IP phone. 

 

Depending on if we are looking at GET, POST, etc packets the information in the 

User-Agent field may be different.  Most, if not all of the ones above are from GET 

packets. 

 

We can also see nice things like >NET CLR 1.1.4322, which means it has MS .NET 

1.1 installed. 

 

So again we see that we can use quite a bit of different types of traffic to get a better 

feel for what OS is running on a system, or we can see what products are running on a 

machine. 

ICMP 

Next we will start looking at ICMP traffic.  Again, a common packet on the network, 

that at first glance you’d assume is useless in fingerprinting a device, but on the 

contrary, at least in certain OS’s it is useful to distinguish one OS from another. 

 

A typical ICMP packet will look something like this: 

  
You will have a Type, Code, Checksum, Identifier, and a Sequence Number, along 

with Data, in most cases.   

 

The Type field we will be looking at is 8 and 0, 8 being a request, 0 being a reply to 

that request.  In most cases Code should be 0, but as we saw in the Xprobe section, by 

setting this to a nonzero in an active scan we can help differentiate between OS’s, but 

that is off topic for here. 

 

What we will look at from here is the Identifier field and the Sequence Number field. 

 

Windows OS’s will, when using the built in ping function, send packets out with an 

Identifier of 0x0200, 0x0300, or 0x0400.  The machine appears to always send the 

same ID field, so this may be OS or SP dependent. 

 



 IV-22 

The data field for a Windows machine is 32 bytes in length and consists of 

ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI 

 

The data field for a *nix machine has a timestamp value in there, some other stuff, 

and then 1234567 

 

Common Identifiers are: 

• 0x4757 Novell Netware 

• 0x1b04 ??? 

• 0x0000 Linux Kernel 2.4x (replies only) 

• 0x0100 Unknown (abcd for data) 

• 0x0100 Windows (rare?, possible NT4?) 

• 0x0200 Windows (most common) 

• 0x0300 Windows (2
nd

 most common) 

• 0x0400 Windows (3
rd

 most common) 

 

Added to this we can look at the Sequence Number, with Windows machines we see 

the sequence increment by 0x0100 (256) on each ICMP packet, on other OS’s we see 

other values. 

 

In the case of Novell Netware, sometimes it will pick a Sequence number and stick 

with it through the current set of pings it does, other times it appears to increment by 

0x0100.  Not sure what the differences are here, but a nice area for more study.  We 

can easily identify a Novell box though by its ID field of 0x4757 

 

Other OS’s, on the other hand, appear to have completely random ID fields.   

 

One interesting thing to note is that some machines appear to do a completely random 

Identifier field, but then turn around and use 0x0000 for their sequence number. 

 

Another thing to look at here is the TTL value on the IP packet.  32, 128, 255, etc…. 

The IP TTL here will depend on if it is a Response or a Request.  The windows 9x 

family and up through NT4 will set the TTL to 32 in a request packet, where 2000+ 

will set it to 128.  The TTL value will depend on if it is a Request or a Response. 

Other info on ICMP can be found in ICMP Scanning 3.0 paper by Ofir Arkin at the 

link previous mentioned in the Xprobe section of the paper. 

 

Further Info:  I hope to add more to this section later, but on an ending note, if there 

is data involved, at least in a Windows ping, the TTL is different than when it sends a 

ping packet with no data.  So just because we have a packet that has a TTL of X, we 

may also need to verify the contents of the data that was sent with it before we utilize 

this information! 

 



 V-1 

Section V - Conclusion 
Bandwidth for most people is free, at least for all intent and purposes.  Most people 

are not paying per packet that flows across the wire, so they aren’t worried about a 

little extra traffic here, a little there, but as seen above some protocols provide a lot of 

info that either could help to compromise a network or at least helps to congest it.  At 

the university, where I normally work full time, we went in and turned IPX and 

Appletalk off on almost every printer.  We also changed the default time printers 

polled for new print jobs.  In most cases we increased it by a factor of 10.  So instead 

of polling for new print jobs every 6 seconds it was every 60.  Most end users will 

never notice the difference, especially on a network printer since they have to walk to 

it, but you’ve just saved 9 packets from going out on the wire over that minute time 

frame that may have not been needed.  You say, so what, what’s nine packets….. 

 

How does this tie back into what we’ve been talking about?  It is all about what and 

how much we are broadcasting out onto the network all day long.  Some of it may be 

needed for machines to know/understand what is going on and what resources are 

available, but a central server could just as easily provide that info.  When you need 

to know where a printer is, request it, don’t have it broadcast out all day that “I’m 

here, abuse me”.  We had WINS, we have SLP, etc.  Are any of them the best, don’t 

know.  But if DHCP were to push the tag to tell you who to request/send info to and 

this gave you a “one stop” repository we wouldn’t need BROWSER election packets, 

Dialect packets, etc floating around in every few packets we send.  My machine, 

sitting here while I type this away, is busy chatting away with the domain controller, 

other machines on the network that are in workgroups wanting to become the next 

elected master browser, etc.  All stuff that I would normally know nothing about, nor 

care, nor for that matter, should my computer care while I type this.  The only time it 

should come to any type of importance is if I was about to print and didn’t know 

where my printer was.  Then again I’m of the opinion that the user should get off their 

lazy butt, walk down to the printer, get the IP, walk back and add it themselves the 

first time.  But again, we’ve digressed. 

 

It seems to me, instead of worry about jumping to 1 GB (or 10GB) network 

connections we should first look at what we can get off the network that is congesting 

it and making us need to look at greater speeds.  To send my word document to the 

server in 0.2 secs compared to 2 seconds may be more of an issue with less protocols 

chatting on the network than spending thousands and thousands of dollars on 

infrastructure changes.  By cutting down some of the chatter this in turn will make it 

harder for anyone listening to determine what is out there and possibly be exploitable. 

 

Information floating across the network really is like a party line that some of you 

may still remember in your neighborhoods (before my time, and if you are reading 

this, most likely before yours, but there are still a few old timers out there that know 

what I’m talking about).  The information is freely available on the wire for anyone 

with the expertise to install a packet capture program, parse it for the type of packet 

they need/want, and then turn around and have the gumption to use it to exploit you.   



 V-2 

Or in the case of the party line, just pick up the phone and listen in.  Not quite that 

simple, but close!  In some cases you can’t do anything about this, but in others you 

can by enforcing what protocols are allowed on the network and blocking those that 

aren’t, at the router, so they at least don’t propagate any farther than they have to. 

 

I’ve repeatedly mentioned programs that I’ve written that imitate what other 

commercial products do, most of the time poor imitations, but what sparked this 

whole paper was a program, I was working on, that went farther than any of these 

other programs (hey I had to finally get out and write my own stuff one of these days, 

though I really am a crappy programmer).  Almost everything that is mentioned in 

here for passive OS fingerprinting is incorporated into my latest program Satori.  

Stuff that isn’t currently incorporated I plan to add to a future build if time permits.  It 

listens in the background, captures packet after packet, looks for ones it likes 

(Browser, Session Setup and Response/Request, CDP, DHCP packets, SNMP, along 

with a poor mans version of p0f that I haven’t had a chance to dig into very deeply), 

plus a few others that I haven’t mentioned in the paper.  Basically any packet on the 

network that may help identify either the OS/device or a product running on that 

device that I’ve had access to I’ve parsed and tried to incorporate.  All of this just so 

that I could see what is on the network, which as I mentioned at the beginning is 

something I’ve always been interested in. 

 

I’ve toyed with the idea of putting active OS fingerprinting options into it also.  You 

find a machine you don’t know what it is, right click, choose if you want to send 

ICMP tests, OSFP type tests, etc, sort of an all in one network detection utility.  When 

I started writing this paper there was nothing on the market like that, but around 

June/July a company released a product that, to my knowledge, does just this.  Again, 

just a little late on my part to getting it to the market! 

 

A few months left over here, just don’t know, maybe for the first time in a long time, 

I’ll actually finish a large programming project and use it! 

 

Hope you got something out of the babbling!  Send comments, questions, or 

derogatory remarks to:  eric.kollmann@us.army.mil or xnih@cableone.net or 

erickollmann@boisestate.edu   The first address should be good, at least until I get 

back stateside.  The other two…  I don’t check often, but I do check from time to 

time. 

 

To find the latest version of this paper or to check out Satori, that uses almost 

everything mentioned in this paper and a few other tricks, try my website at:  

http://myweb.cableone.net/xnih  

Direct downloads: 

Paper – http://myweb.cableone.net/xnih/download/os%20fingerprint.pdf 

Satori – http://myweb.cableoen.net/xnih/download/satori.zip 

 


