N	AI	M	E

1

TEST DATE:_____

NA	ME	

Vocabulary	Chapter 11
Chemical Bonds Binary compound	
- · ·	Page
Chemical bond	
	Page
Chemical formula	Page
Chemically stable	C C
	Page
Corrosive	
Covalant hand	
Covalent bond	Page
Hydrate	
	Page
Ion	
	Page
Ionic bond	Page
Nonpolar molecule	
	Page
Oxidation number	
Polyatomic ion	Page
	Page
Polar molecule	
	Page
Toxic	
	Page

CHAPTER 11-Chemical Bonds

3

Aim: State a reason why chemical bonding occurs.

Compounds: Most of the matter around you is in the form of compounds. Some of the matter around you is in the form of elements.

Subscripts: _	 	 	

Some Familiar Compounds

Familiar Name	Chemical Name	Formula
Lye		
Vinegar		
Ammonia		
Grain alcohol		
Sand		
Battery acid		
Stomach acid		
Milk of magnesia		
Cane sugar		

The ratio of carbon atoms to hydrogen atoms to oxygen atoms in sucrose is _____.

Chemically Stable Atoms:

Energy Level	Maximum number of e	Number of e ⁻ to be stable
1		
2		
3		
4		

If an atom isn't chemically stable, it will become chemically stable.

Electrons can't be found just anywhere. They are found inside other atoms. Electrons can't just be thrown away; other atoms must take them. This chlorine atom isn't chemically stable.

17 pt 2e 8e 7e -----

This sodium atom isn't chemically stable either.

Ile 2e 8e 1e

These two atoms can work out a "partnership."

11 P 2e 8e 1e

170° 2e 8e 7e

	Sodium	Chlorine
Model		
# of Protons (+)		
# of Electrons (-)		
Overall Charge		

Assignment

- 1. STUDY GUIDE "Why Atoms Combine"
- 2. REINFORCEMENT "Why Atoms Combine"
- 3. ENRICHMENT "Why Atoms Combine"

S	TUDY GUIDE				Chapter 11
V	Why Atoms Combine	e			Text Pages 268-273
	e definitions of several key terms abou ord list that makes each definition com		combine are given	below. In the blanks,	write the term from the
		al symbol	compound elements		force
1.	Chemical formula: tells what		m	ake up a	
	an	d the		of the atoms	of those elements.
2.	Subscript: a	in a	a chemical formula	written after	
	a that	tells how man	ny atoms of an eler	ment are in a unit of t	he compound.
3.		atom when its	s outer		_ is completely filled with
4.	Chemical bond: in a compound, the		tł	at holds	
	the	togethe	er		

DATE

CLASS_

1

Use the diagram below to select eight letters to form a word found in this chapter. Use the statements as hints to help you select the correct letters. Circle each letter as you find it in the diagram. Write the word in the space provided. Then define the term.

- 1. The first letter must be in the triangle and in the circle, but not in the rectangle.
- 2. The second letter must be in the triangle only.
- 3. The third letter must be in the circle, triangle, and rectangle.
- 4. The fourth letter must be in the rectangle only.
- 5. The fifth letter must be in the circle only.
- 6. The sixth letter must be in both the rectangle and the triangle, but not in the circle.
- 7. The seventh letter must be in both the rectangle and circle, but not in the triangle.
- 8. The eighth letter must be in the part of the rectangle that is below the triangle.

The word is									Definition: A	is
	1	2	3	4	5	6	7	8		

Why Atoms Combine

Each statement below contains a pair of terms or phrases in parentheses. Circle the term or phrase that makes each statement true.

CLASS

DATE

- 1. Most of the matter around you is in the form of (elements, compounds).
- 2. The properties of a compound are (the same as, different from) the properties of the elements that make up the compound.
- 3. Na and Cl are (chemical symbols, chemical formulas).
- 4. NaCl and NaOH are (chemical symbols, chemical formulas).
- 5. H_2O is the formula for (salt, water).
- 6. In the formula H_2O , the number 2 is a (subscript, superscript).
- 7. In the formula HCl, the ratio of hydrogen atoms to chlorine atoms is (1:1, 2:1).
- 8. The number 2 in the formula H₂0 tells you that each unit of this compound contains (2 hydrogen atoms, 2 oxygen atoms).
- 9. If a symbol in a chemical formula does not have a subscript after it, a unit of that compound contains (0 atoms, 1 atom) of that element.
- 10. In the formula Fe_20_3 , the ratio of iron atoms to oxygen atoms is (3:2, 2:3).
- 11. An atom is chemically stable if its outer energy level (is filled with, contains no) electrons.
- 12. For atoms of most elements, the outer energy level is filled when it has (3, 8) electrons.
- 13. The noble gases do not readily form compounds because they (are, are not) chemically stable.
- 14. A chemical bond is a (force, chemical) that holds together the atoms in a compound.
- 15. Chemical bonds form when atoms lose, gain, or (share, multiply) electrons.

Complete the table below by using the formula of each compound to identify the elements that each compound contains and the ratios of those elements. The first one has been done for you as an example.

Formula	Elements in Compound	Ratios
H ₂ O	hydrogen, oxygen	2:1
NaOH		
NaCl		
NH ₃		
H_2SO_4		
SiO ₂		

Chapter 11

Text Pages 268-273

ENRICHMENT Why Atoms Combine

Chapter 11

Text Pages 268-273

ELECTRON DOT DIAGRAMS

The most important electrons in an atom are found in the outer energy level. These electrons are often involved in chemical reactions. These outer energy level electrons are often drawn as dots around the symbol of an element. This type of drawing is called an electron dot diagram.

In this activity, you will draw electron dot diagrams for several elements.

Procedure

1. Write the symbol for the element. This symbol will represent the nucleus and all of the electrons of that element except the outer level electrons.

Example: chlorine = Cl

2. Determine how many outer level electrons the element has. This can be done by finding which group in the periodic table the element belongs to.

Example: Chlorine belongs to Group 17, the halogens, which have 7 outer level electrons.

3. The top, bottom, left, and right sides of the symbol represent a place where two electrons can be placed. Draw a dot to represent each electron in the outer level of the element. It is not important which side of the element contains electrons. The electrons can be paired or unpaired.

Example: chlorine = $Cl \cdot$

Problems

1. Write electron dot diagrams for the following elements.

a.	hydrogen
b.	neon
c.	sodium
	calcium
e.	aluminum
f.	fluorine
g.	argon
	potassium

2. Why do sodium and potassium have the same number of dots in their electron dot diagrams? What does this tell you about the chemistry of these elements?

Aim: Describe the difference between ionic and covalent bonds.

Ions are charged particles	
The charge of the ion is writ	ten as a
	•
Positive and negative ions	·
The compound sodium chlor	ride is formed ()
•	·/
C	vere to combine, what kinds of
charges will each ion ha	ve?
Ma	Ignesium will have a charge of
Flu	orine will have a charge of
1 г	nagnesium ion can attract
	orine ions.

Sometimes, atoms don't transfer electrons. Sometimes they share electrons. When atoms share electrons, they form covalent bonds. Once these atoms join as a result of sharing electrons, they form a particle called a molecule.

Diffe	erence between Ionic an	d Covalent bonding
	Ionic	Covalent
Particle:		
Process:		
Bond:		
Strength:		
Product:		

Molecules can be either _____ or _____. They can have a positive end and a negative end or there may be no difference between the ends.

Polar molecule	Nonpolar molecule

1. STUDY GUIDE "Kinds of Chemical Bonds"

2. REINFORCEMENT "Kinds of Chemical Bonds"

STUDY GUIDE Kinds of Chemical Bonds

In the blank, write the letter of the term that is defined by each phrase.

	 force that holds together the atoms in a corr a. chemical formula 	npound b. chemical bond
	2. an atom that has an electrical charge a. element	b. ion
	3. molecule that does not have oppositely cha a. nonpolar molecule	rged ends b. ion
	4. molecule that has oppositely charged ends a. covalent molecule	b. polar molecule
	5. number and sign written by the symbol of a a. subscript	an ion to indicate its charge b. superscript
	6. force of attraction between the opposite cha a. ionic bond	arges of the ions in an ionic compound b. polar bond
	7. bond that forms between atoms when they a. covalent bond	share electrons b. polar bond
In the bla	nk, write the letter of the term or phase that co	rrectly completes each statement.
	8. In the symbol Na ⁺ , the + sign is a a. subscript	b. superscript
	9. A chloride ion, Cl ⁻ , has a. a negative charge	b. no charge
	10. The compound NaCl is an example ofa. an ionic compound	b. a polar compound
	11. When Na ⁺ and Cl ⁻ unite to form the comp a. positively charged	ound sodium chloride, the compound that forms is b. neutral
	12. Neutral particles formed as a result of the a. molecules	sharing of electrons are called b. ions
	13. At room temperature, most covalent comp a. solids	b. liquids or gases
	14. At room temperature, most ionic compour a. solids	nds are b. liquids or gases

Text Pages 276-281

Chapter 11

REINFORCEMENT Kinds of Chemical Bonds

Chapter 11

Text Pages 276-281

Answer the questions about the diagram shown below. Write your answers in the spaces provided.

- 1. How many electrons will atom A lose to atom B?_____
- 2. What kind of chemical bond will be formed between atom A and atom B if atom A loses electrons and atom B gains these electrons?
- 3. If atom A gives up electrons to atom B, what will the electrical charge of atom A be?_____
- 4. If atom B gains electrons from atom A, what will the electrical charge of atom B be? Why?_____
- 5. What is an atom with an electrical charge called?
- 6. If atom A and atom B unite to form a compound, what will the total charge of the compound be? Why?_____

Complete the table comparing ionic compounds and covalent compounds.

Characteristic	Ionic	Covalent
How formed		
Smallest particles		
Usual state of compound at room temperature		

Aim: Write formulas and compounds from their names.

Oxidation numbers: _____

 Mg^{+2}

Your periodic table shows common oxidation numbers at the top of each group of elements.

Oxidation numbers		
Binary compounds are		
Binary compounds are formed when a and a bond.		
We name binary compounds with the first (+ oxidation number), the second (- oxidation number) and the nonmetal ends with ""		
Some binary compounds:		
To write formulas for binary compounds, you must first know the oxidation numbers.		

Your reference tables contain the following table. It includes oxidation numbers for common elements.

Oxidation	Numbers of Some	e Elem ents
1+	2+	3+
Copper (1), Cu^+	Barium , Ba ²⁺	Alum inum , Al ³⁺
Hydrogen, H ⁺	Ca cium ,Ca ²⁺	Chrom ium , Cr ³⁺
Lithium , Li ⁺	Copper (II), Cu ²⁺	Iron (III), Fe ³⁺
Potassium , K $^{+}$	Iron (II), Fe^{2+}	
Silver, Ag ⁺	Magnesium , Mg ²⁺	
Sodium , Na ⁺	Zinc, Zn ²⁺	
1-	2-	3-
Bromine, Br	Oxygen, O ²⁻	Nitrogen, N ³⁻
Chbrine, Cl	Sulfur, S ²⁻	Phosphorous, P ³⁻
Fluorine, F ⁻		
bdine, I		

Problem: What is the formula for a compound composed of sulfur and aluminum?

Solution:

- 1. Write the symbol of the metal first, then write the symbol of the nonmetal.
- 2. Write oxidation numbers above each symbol.
- 3. Write subscripts so that the sum of the oxidation numbers is zero.
- 4. Check the formula.

Not all compounds are binary compounds.

Polyatomic ion: _____

_____. Some polyatomic ions are a table in your reference tables.

S	ome Polyatomic Ion	ns and Their Charg	es
1+	1-	2-	3-
Ammonium, NH_4 +	Acetate, $C_2H_3O_2^{-1}$ Chbrate, CD_3^{-1}	Carbonate, CO_3^{2-} Sulfate, SO_4^{2-}	Phosphate, PO ₄ ³⁻
	Hydroxide, OH ⁻		
	$Nitrate, NO_3^-$		

Problem: What is the formula for calcium nitrate?

Solution:

- 1. Write the symbol for calcium first, then write the symbol for the nitrate ion.
- 2. Write oxidation numbers above each symbol.
- 3. Write subscripts so that the sum of the oxidation numbers is zero.
- 4. Check the formula.

NOTICE:	 	 	

Hydrates:

For example;	_ is cobalt chloride hexahydrate.

You can remove the water from these crystals by heating them.

Plaster of paris is the anhydrous form of calcium sulfate dihydrate, $CaSO_4 \bullet 2H_2O$

Assignment

1. STUDY GUIDE "Formulas and Names of Compounds"

2. REINFORCEMENT "Formulas and Names of Compounds"

3. ENRICHMENT "Formulas and Names of Compounds"

STUDY GUIDE Formulas and Names of Compounds

Match each term in Column II with its description in Column I. Write the letter of the correct term in the space provided.

CLASS

	Column I	Column II
1.	prefix meaning six	a. bi-
2.	prefix meaning many	b. ion
3.	prefix meaning two	c. binary
4.	compound composed of two elements	d. anhydrous
5.	positively or negatively charged atom	e. polyatomic ion
6.	positively or negatively charged group of atoms	f. subscript
7.	compound that has water chemically attached to its ions	g. poly
8.	number assigned to an element to show its combining ability in a compound	h. oxidation numberi. hydrate
9.	without water	j. hexa-
10.	number that tells how many atoms of an element are in a unit of the compound	

The words in each group below are related. Write a sentence, using all the words in the group, that shows how the words are related.

Example:

compound, properties, elements The properties of a compound differ from the properties of the elements making up the compound.

1.	hydrate, water, ions
2	oxidation number, element, compound
2.	
3.	zero, oxidation numbers, noble gases
4.	oxidation number, Roman numeral, element

Chapter 11

Text Pages 282-288

N	Aľ	ME	

∠U

REINFORCEMENT

Text Pages 282-288

Formulas and Names of Compounds

Use the Periodic Table of Elements in your reference tables to identify the oxidation numbers of the elements in each group.

	1. any element in group 1					
	4. any element in group 18 2. any element in group 17					
	5. any element in group 16					
An	swer the following questions in the spaces provided. Use the Periodic Table if you need help.					
1.	What is the usual oxidation number of oxygen?					
2.	What is the usual oxidation number of hydrogen?					
3.	. What name is given to many of the elements that have more than one oxidation number?					
4.	4. What is the sum of oxidation numbers in a compound?					
5.	5. What is an oxidation number?					
ref	ite the formulas for the following compounds. Use the Periodic Table of the Elements or Oxidation Number in your Gerence tables for help.					
	. copper(II) sulfate					
	calcium chloride					
3.	iron (II) oxide					
4.	copper(I) oxide					
5.	sodium sulfide					
~						

Complete the following table by providing the name of the compound and the total number of atoms in each formula given.

Formula	Name	Number of atoms
NH ₄ OH		
NH ₄ Cl		
Ag ₂ O		
K ₂ SO ₄		
Ca(NO ₃) ₂		
Na ₂ S		

ENRICHMENT	
Formulas and Names of Compour	nds

WRITING CHEMICAL FORMULAS WITH THE CRISSCROSS METHOD

Oxidation numbers are useful for writing chemical formulas. Use your textbook or a periodic table to find oxidation numbers for elements and polyatomic ions. In the following examples, oxidation numbers and the crisscross method will be used for writing chemical formulas. Remember that subscripts in a formula give the ratio of atoms in a compound. After crisscrossing, simplify the ratio, if necessary.

Example 1. What is the formula for barium chloride? Solution: Barium is in Group 2. Elements in this group tend to lose two electrons, so their oxidation number is 2+. Chlorine is in Group 17. Elements in this group tend to gain one electron. Chlorine has an oxidation number of 1—. Now write the symbols in the correct order. The metal ion is written first. Write the oxidation numbers as superscripts. For oxidation number of 1+ or 1—, only the positive or negative sign is written.

$Ba^2 + Cl$ -

Next, crisscross the numbers only and show them as subscripts. The number 1 does not need to be written.

$$\begin{array}{c} Ba^{2+} & Cl^{-} \\ Ba & Cl_{2} \end{array}$$

CLASS

The correct formula for barium chloride is BaC1₂.

Example 2. What is the formula for magnesium phosphate? Solution: Write the parts of the formula in the correct order. Assign oxidation numbers. Write the formula for the compound by crisscrossing the superscripts. Since the phosphate ion is used more than once, place it in parentheses. The parenthese: prevent confusion between the subscripts.

$$Mg^{2+}$$
 PO_4^{3-} PO_4^{3-} PO_4^{3-}

The correct formula for magnesium phosphate is $Mg_3(PO_4)_2$.

Use the crisscross method to write the chemical formulas for the compounds described below.

- 1. The compound ammonium selenate is used as a mothproofing agent. The selenate ion is written as SeO_4^{2-} What is the formula for this compound?
- 2. Titanium oxide is used as a white paint pigment. If titanium has an oxidation number of 4+ in this compound, what is this compound's formula?
- 3. Zinc iodide is used as an antiseptic. What is its formula?
- 4. Potassium chloride is used in fertilizer, photography, and as a salt substitute. What is its chemical formula?
- 5. Write the correct chemical formula for a compound containing barium and oxygen. What is the name of this compound?

Chapter 11

Text Pages 282-288