DUBLIN INSTITUTE OF TECHNOLOGY

KEVIN STREET, DUBLIN 8

Diploma in Electronic Engineering

YEAR 3

Winter EXAMINATION 2000

ELECTRIC CIRCUITS AND SIGNAL PROCESSING

Mr. P. Tobin
Mr. K. Tiernan
Mr. C. Bruce
DATE:
Attempt three questions
Smith chart
Laplace tables
Chebychev tables
$\mathrm{c}=\mathbf{3 . 1 0}{ }^{8} \mathrm{~m} / \mathrm{s}$

1. (a) A low-pass filter is required to meet the filter specification:

The maximum passband loss $A_{\max }=0.5 \mathrm{~dB}$
The minimum stopband loss $A_{\text {min }}=12 \mathrm{~dB}$
The passband edge frequency $\omega_{p}=100 \mathrm{rs}^{-1}$
The stopband edge frequency $\omega_{s}=400 \mathrm{rs}^{-1}$
Determine the filter order n using the relationship

$$
n=\frac{\log _{10}\left[\frac{10^{0.1 A_{\min }}-1}{10^{0.1 A_{\max }}-1}\right]}{2 \log _{10}\left(\frac{\omega_{s}}{\omega_{p}}\right)} .
$$

Sketch the pole-zero diagram using the relationship between n and the angle θ_{k}, between the poles

$$
\theta_{k}=\frac{360^{\circ}}{2 n}
$$

Hence obtain a transfer function, which meets the specification.
Note: Butterworth tables are not supplied.
(b) Obtain circuit values for a Sallen and Key VCVS circuit configuration that would meet the specification in part (a).
2.(a) State one advantage and one disadvantage of using Chebychev polynomials in approximation loss function analysis.
(b) A bandpass filter is required for a particular application, which will tolerate ripple in the passband equal to 0.5 dB . The specification for the bandpass filter is:
$\omega_{b s 1}=$ the lower stopband edge frequency $=688 \mathrm{rs}^{-1}$
$\omega_{b s 2}=$ the upper stopband edge frequency $=1930 \mathrm{rs}^{-1}$
$\omega_{b p 1}=$ the lower passband edge frequency $=970 \mathrm{rs}^{-1}$
$\omega_{b p 2}=$ the upper passband edge frequency $=1370 \mathrm{rs}^{-1}$
The maximum passband attenuation $A_{\max }=0.5 \mathrm{~dB}$.
The minimum stopband attenuation $A_{\text {min }}=15 \mathrm{~dB}$.
Obtain the bandpass transfer function, which will meet this specification. (Use the available Chebychev tables).
[20 marks]
3.(a) Define the following transmission line terms: Voltage standing wave ratio and voltage reflection coefficient.
(b) A transmission line, whose characteristic impedance $Z_{o}=300+j 0 \Omega$, has an antenna of impedance $225-j 175 \Omega$ connected as a load. Matching by means of a single stub connected, at a distance d metres from the load, is used. Estimate the length in metres of the stub and the distance d if the operating frequency $f=$ 500 MHz . Assume that the stub is formed from a section of the same air-spaced transmission line.
(c)Calculate the characteristic impedance, phase coefficient and attenuation constant for a 10 km length of telephone cable, operating at a frequency of 10 kHz , if the cable has the following, primary transmission line parameters:
$L=700 \mathrm{mH}$ per $\mathrm{km}, C=0.05 \mu \mathrm{~F}$ per $\mathrm{km}, R=28 \Omega$ per $\mathrm{km}, G=1 \mu \mathrm{~S}$ per km [8 marks]

