DUBLIN INSTITUTE OF TECHNOLOGY

KEVIN STREET, DUBLIN 8

Diploma in Electronic Engineering
 YEAR 3

AUTUMN EXAMINATIONS 1999
\qquad

ELECTRIC CIRCUITS AND SIGNAL PROCESSING

Mr. P. Tobin
Mr. K. Tiernan
Mr. C. Bruce
DATE:
Attempt three questions
Smith chart
Laplace tables
Butterworth and Chebychev tables
1.(a)Obtain a transfer function for a high-pass filter, which uses a Butterworth loss function, and which meets the following specification:
The maximum passband loss $A_{\max }=3 \mathrm{~dB}$
The minimum stopband loss $A_{\text {min }}=28 \mathrm{~dB}$
The passband edge frequency $\omega_{p}=6000 \mathrm{rs}^{-1}$
The stopband edge frequency $\omega_{s}=2000 \mathrm{rs}^{-1}$
[10 marks]
(b)Show how the transfer function, for the second stage of the Sallen and Key, highpass filter shown in figure 1 , is:

$$
\frac{E_{3}}{E_{2}}=\frac{s^{2}}{s^{2}+s \frac{2}{C R_{2}}+\frac{1}{C^{2} R_{1} R_{2}}}
$$

[8 marks]
Hence calculate component values for this circuit, which could implement the transfer function obtained in part (a).
$R=20 \mathrm{k} \Omega$.

Figure 1
2.(a)It is desired to produce a 1 kHz sinusoidal signal from a 1 kHz squarewave. Obtain the transfer function for a low-pass filter, which will produce a maximum attenuation of the fundamental signal of 1 dB . The third harmonic (3 kHz) should be attenuated by 12 dB (Butterworth loss functions tables are available for use in your analysis).
[12 marks]
(b) Identify the circuit shown in figure 2. State one possible application for this circuit. Obtain the high-pass transfer function, assuming equal value resistances.
[13 marks]

Figure 2
3 (a) A 10 km length of screened telephone cable, operating at a frequency of 10 kHz , has the following, primary transmission line parameters:
$L=700 \mathrm{mH}$ per km,
$C=0.05 \mu \mathrm{~F}$ per km,
$R=28 \Omega$ per km, and
$G=1 \mu \mathrm{~S}$ per km
Determine the phase and attenuation constants for this cable and hence calculate the characteristic impedance.
(b) An expression for the input impedance of a transmission line, terminated in a resistance $Z_{R,}=35 \Omega$ is:

$$
Z_{i n}=Z_{o}\left[\frac{\frac{Z_{R}}{\tan \beta \ell}+j Z_{o}}{\frac{Z_{o}}{\tan \beta \ell}+j Z_{R}}\right]
$$

Where β is the phase change coefficient and Z_{o} is the characteristic impedance equal to 75Ω. Determine the input impedance of a section of line whose length is $\lambda / 4$ metres.
(c) Describe one graphical technique for matching a transmission line to a load. Illustrate your answer using a Smith chart.

